Comparing L-368,899 and ALS-III-61 as human-selective oxytocin receptor antagonists

Blake Nielson and Matthew Webb, Utah State University

Introduction

- Oxytocin and vasopressin are two hormones that act in the brain to modulate social functions in both humans and animals.

-Oxytocin acts in the brain by binding to the oxytocin receptor (OXTR), a G-protein coupled receptor. Oxytocin also has an affinity for vasopressin 1a receptors (AVPR1a), since oxytocin and vasopressin have similar chemical structures.

-Therefore, it is important to develop and validate <u>selective</u> drugs to target each of these receptors for research purposes.

-Compound L-368,899 (or the "Merck compound") is a commercially-made drug used as an oxytocin antagonist, but there is limited evidence for its effectiveness.

-ALS-III-61 (or the "Smith compound") is a novel oxytocin antagonist that was provided by a collaborator, who has changed careers and is no longer synthesizing it.

-The human substantia nigra is known to contain a high amount of OXTR and was used as our source for OXTR: .

-We used competitive binding autoradiography; increasing concentrations of each competitor ligand (either the Merck or Smith compounds) were incubated on the tissue in the presence of a constant concentration of one of the commercially available radioligands: ¹²⁵I-ornithine vasotocin analog for OXTR and ¹²⁵I-linear vasopressin antagonist for AVPR1a. We then measured radioligand displacement.

Dr. Sara Freeman, Utah State University

ALS-III-61

-10

-8

-7

Methods

-Fresh frozen, postmortem human brain specimens (provided by the NIH NeuroBioBank) were sliced using a cryostat at -15°C at 20 μ m sections and mounted to microscope slides.

-The human primary visual cortex is known to contain a high amount of AVPR1a and was used for AVPR1a: .

-6 ਤ੍ਰੋ 0.25 --12 Figure 1 (left) – Human brain sections of the substantia nigra showing the ability of competitor ligands ALS-III-61 and L-368,899 at increasing concentrations to displace the OXTR radioligand.

Results

ALS-III-61 has 6.5x higher binding affinity for OXTR than L-368,899 has for OXTR.

L-368,899 binds with 4.3x higher affinity to AVPR1a than to OXTR.

ALS-III-61 binds with 18.4x higher affinity to OXTR than to AVPR1a.

References 1.Aaron L. Smith, Sara M. Freeman, Ronald J. Voll, et al. Carbon-11 N-methyl alkylation of L-368,899 and in vivo PET imaging investigations for neural oxytocin receptors Bioorganic & Medicinal Chemistry Letters 23 (2013) 902–906

2. Aaron L. Smith, Sara M. Freeman, Jeffery S. Stehouwer, et al. Synthesis and evaluation of C-11, F-18 and I-125 small molecule radioligands for detecting oxytocin receptor. Bioorganic & Medicinal Chemistry Volume 20, Issue 8, 15 April 2012, Pages 2721-2738

Conclusions

Because our data shows that L-368,899 has a 4.3x higher affinity to AVPR1a than to OXTR, we do not recommend using L-368,899 as an antagonist for OXTR-related **experiments.** We recommend the continued use of ALS-III-61 for such experiments due to its higher selectivity to OXTR.

Due to some unexpected assay results, we wish to repeat this experiment to confirm our findings.

UtahStateUniversity DEPARTMENT OF BIOLOGY

Figure 2 (right) – Competitive binding curves comparing both antagonists for OXTR and for AVPR1a (top); and binding selectivity curves for each antagonist for both receptors (bottom).