
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Plan B and other Reports Graduate Studies 

12-2021 

Comparative Metabolism of Aflatoxin B1 in Two Quail Genera Comparative Metabolism of Aflatoxin B1 in Two Quail Genera 

Coturnix japonica and Callipepla californica Coturnix japonica and Callipepla californica 

Sean Moody 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports 

 Part of the Amino Acids, Peptides, and Proteins Commons, Animal Diseases Commons, Biological 

Factors Commons, Medical Toxicology Commons, Other Chemicals and Drugs Commons, and the Other 

Pharmacy and Pharmaceutical Sciences Commons 

Recommended Citation Recommended Citation 
Moody, Sean, "Comparative Metabolism of Aflatoxin B1 in Two Quail Genera Coturnix japonica and 
Callipepla californica" (2021). All Graduate Plan B and other Reports. 1594. 
https://digitalcommons.usu.edu/gradreports/1594 

This Report is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Plan B and 
other Reports by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/918?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/930?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/930?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/678?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/951?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/737?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/737?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1594?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


COMPARATIVE METABOLISM OF AFLATOXIN B1 IN TWO QUAIL GENERA Coturnix 

Approved: 

japonica AND Callipepla californica 

by 

Sean L. Moody 

A research paper submitted in partial fulfillment 

of the requirements for the degree 

of 

MASTER OF SCIENCE 

In 

Animal Management 

Roger A. Coulombe, Jr., Ph.D. 

Major Professor 

Jeffery 0. Hall, D.V.M., Ph.D. 

Committee Member 

Kerry Rood, D.V.M., M.S., M.P.H. 

Committee Member 

UTAH STATE UNIVERSITY 

Logan, Utah 

2021 

1 



 

2 
 

Abstract 
 

Avian species are highly susceptible to the hepatotoxic mycotoxin aflatoxin B1 (AFB1). 

Domesticated turkeys are exquisitely sensitive, due to a combination of highly-efficient hepatic 

cytochrome P450 (CYP)-mediated bioactivation, and to dysfunctional alpha-class glutathione S-

transferases (GSTAs) which typically detoxify the bioactivated electrophilic metabolite exo-

AFB1-8,9-epoxide (AFBO). Wild turkeys are relatively resistant to AFB1 in large part due to 

expression of functional GSTAs. Quail, a related Galliforme, are slightly less sensitive in vivo to 

AFB1, but whether this is related to the hepatic metabolic profiles of these two critical enzymes 

has not been rigorously evaluated. The purpose of this study was to compare hepatic CYP-

mediated bioactivation and GST-mediated detoxification activities toward AFB1 in Callipepla 

californica (HQ) and Coturnix japonica (JQ) against those from domesticated Broad-breasted 

White (BB) or Eastern Wild (EW) turkeys. Although Callipepla californica is commonly known as 

the California quail, the flock investigated in this study originated in Hawaii, hence use of the 

identifier “HQ” (noted above) that will be used throughout this report. Hepatic expression of 

CYP1A5 was significantly greater in both quail species, whereas there was no difference in 

CYP3A37 expression between species. Likewise, livers from both quail species expressed 

significantly greater GSTA3 than that from both turkey types, whereas turkeys expressed 

greater hepatic GSTA4 than those from both quail species. Kinetic analysis confirmed that liver 

microsomes from turkeys bioactivated AFB1 more efficiently (high Vmax, Kcat; low Km) than those 

from quail, whereas hepatic cytosols from quail were significantly more efficient in detoxifying 

AFBO than those from turkeys. Conversely, turkey hepatic cytosols were more efficient than 

quail at detoxifying GST indicator substrates 1-chloro-2,4-dinitrobenzene (CDNB), ethacrynic 
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acid (ECA), and cumene hydroperoxide (CHP), but not 1,2-dichloro-4-nitrobenzene (DCNB), 

indicating greater presence of GST isoforms not relevant to AFB1 detoxification. In total, our 

data shows that the relative resistance of quail compared to turkeys is reflected in the relatively 

lower in vitro bioactivation and higher detoxification activities.  
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Aflatoxins: Overview 
 

Aflatoxins are one of the most important mycotoxins in terms of occurrence and 

potency (Pitt, 2013). Aflatoxin B1 (AFB1; Figure 1) was discovered when it was identified as the 

etiological agent of “Turkey X Disease” in 1960, which caused extensive and widespread deaths 

of turkeys and other poultry species across Europe. The source of AFB1 that caused the disease 

outbreak was traced to contaminated Brazilian peanut meal a widely used feed ingredient for 

poultry (Blount, 1961; Stevens et al., 1960). This event demonstrated the extreme sensitivity of 

turkeys to this mycotoxin, and it is now clear that domesticated turkeys (Meleagris gallopavo) 

are one of the most sensitive animals known (Kim et al., 2013; Monson et al., 2015).  

Aflatoxins are naturally occurring 

metabolites produced by the fungus 

Aspergillus flavus, A. parasiticus, and others. 

Derivatives of difuranocoumarin, individual 

aflatoxins (AFs) are named according to their 

blue (B) or green (G) fluorescence under UV 

light and elution position on a thin-layer 

chromatograph, hence AFB1, AFB2, AFG1, and 

AFG2 (Dalvi, 1986; Yu et al., 2004); of these, AFB1 is the most potently hepatotoxic, mutagenic, 

and carcinogenic (Coulombe, 1993; Monson, et al., 2015; Rawal, et al., 2010a). Aflatoxin B1 is 

hepatocarcinogenic in livestock, laboratory animals, and humans (Kim, et al., 2013; Wogan, 

1992). Aflatoxin B1 is also considered a "pro-carcinogen", because it requires enzymatic 

bioactivation for its carcinogenic and toxic effects to occur (Diaz et al., 2010a; Diaz et al., 2010b; 

Figure 1: Chemical structure of Aflatoxin B1 
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Rawal and Coulombe, 2011; Rawal, et al., 2010a). Aflatoxin B1 also acts as a "force multiplier" 

synergizing the adverse effects of microbial and viral pathogens, and other agents (Monson, et 

al., 2015). While AFB1 is toxic to every animal species examined, the primary focus of this 

review is on the effects of this mycotoxin in poultry, specifically turkey and quail. When 

relevant, molecular mechanisms of toxicity in other species that may also aid in our 

understanding of a response in poultry will be briefly presented.  

 

Aflatoxins: Toxicity and Carcinogenicity 
 

The acute and chronic diseases caused by AFB1 consumption are termed aflatoxicoses 

(Bennett and Klich, 2003). Aflatoxin B1 affects the liver as the primary target organ, where it 

causes hemorrhagic necrosis, fatty infiltration, and bile duct proliferation (Coulombe, 1993). 

Chronic AFB1 exposure results in immunosuppression, as well as reductions in growth rates, 

productivity, fertility, feed utilization, milk production, and egg production (Diekman and 

Green, 1992; Galvano et al., 1996; Monson, et al., 2015; Pandey and Chauhan, 2007; 

Polychronaki et al., 2006).  

Species susceptibility to the acute toxic effects of AFB1 varies considerably. Mice are one 

of the most resistant species to both the acute and chronic toxic effects of AFB1 whereas rats, 

fish, and poultry are extremely sensitive to both (Bailey et al., 1988; Bedard et al., 2005; Gold et 

al., 1984; Klein et al., 2002a; Monson, et al., 2015; Rawal, et al., 2010a; Wogan, 1992). Chronic 

aflatoxicosis inflicts an estimated US$143 million yearly loss to the turkey industry in the United 

States from hepatotoxicity, reduced performance, and secondary infections (CAST, 1989, 2003).  
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Acute AFB1 exposure leads to structural and functional damage to the liver (Busby and 

Wogan, 1984). The clinical signs and pathological changes associated with acute AFB1 exposure 

in humans include vomiting, abdominal pain, pulmonary edema, and fatty acid infiltration into 

the liver (Shank et al., 1972); and in animals there are parenchymal cell necrosis, bile duct 

proliferation, and hepatic lesions (Newberne and Butler, 1969). Additionally, acute toxicosis 

may be associated with an increased future risk of cancer, through the formation of DNA 

adducts, especially in transcriptionally active genes (Irvin and Wogan, 1984; Yu, 1983). Acute 

toxicosis in turkeys is evident by enlarged mottled livers that have periportal necrosis, 

hemorrhage, and accumulation of fat (Wannop, 1960).  

Chronic exposure more readily leads to cancer than does acute exposure (Edds, 1973). 

In rats chronic treatment of AFB1 resulted in failure to gain body weight, loss of liver weight, 

and loss of hepatic DNA content (Liu et al., 1988). The clinical signs of chronic AFB1 exposure are 

anemia; jaundice; anorexia; hemorrhage; embryotoxicity; increased susceptibility to 

environmental and microbial stressors; hepatic necrosis; hepatobiliary hyperplasia; and it can 

alter the gut microbiota allowing colonization of gut pathogens (CAST, 2003; Klein et al., 2002b; 

Reed et al., 2019). 

 

Aflatoxin B1: Metabolism 
 

Once ingested, AFB1 is initially converted by oxidative phase I hepatic enzymes to a 

number of metabolites, many of which are detoxified and excreted per se, whereas others are 

of greater bioactivity. Many phase I metabolites are further metabolized through one or more 

secondary (phase II) conjugations with endogenous endocons such as glucuronic acid and 
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glutathione (GSH) (Deng et al., 2018; Lozano and Diaz, 2006). Aflatoxin B1 requires prior 

bioactivation by cytochrome P450s to become toxic, as shown in Figure 2 (Ball and Coulombe, 

1991; Coulombe, 1993). The main bioactive metabolite is the electrophilic and highly reactive 

exo-AFB1-8,9-epoxide (AFBO), which reacts with cellular macromolecules, most significantly 

DNA to form the AFB1- N7-guanine adduct that is the principal mutagenic and carcinogenic 

cellular lesion (Ball et al., 1990; Iyer et al., 1994). Although AFBO is the most toxic, other 

metabolites of AFB1 include aflatoxin M1 (AFM1; first named due to its prevalence in cow's 

milk), aflatoxin Q1 (AFQ1), and aflatoxicol (AFL) (Coulombe, 1993; Monson, et al., 2015) (Figure 

2).  

Aflatoxin M1 (4-hydroxy AFB1; AFM1) represents the primary hydroxylated metabolite of 

AFB1. Aflatoxin M1 is classified as a group 2B carcinogen, possibly carcinogenic to humans. In 

the United States, the maximum acceptable limit of AFM1 in fluid milk products is 0.5 ppb. 

Aflatoxin Q1 is the 3-hydroxy metabolite of AFB1 and is considerably less toxic than AFB1 (IARC, 

2012; Raney et al., 1992).  
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Role of Cytochrome P450 in AFB1 Metabolism 
 

The principal phase I metabolic enzymes that metabolize AFB1 are the cytochrome P450 

proteins (CYPs), hemeproteins principally located in the smooth endoplasmic reticulum (Nebert 

and Russell, 2002). An important endogenous role of CYPs is to catalyze the synthesis of steroid 

hormones (hCYP17A1, 19A1, 21A2), cholesterol (hCYP11A1, 27A1, 39A1) and bile acids 

(hCYP7A1, 27A1) (Guengerich, 2017; Nebert and Russell, 2002; Staels and Fonseca, 2009). 

Cytochrome P450s are named and classified according to nucleotide and amino acid sequence 

homology by a family number (e.g., CYP1, CYP3) and a subfamily letter (e.g., CYP1A, CYP3A) 

Figure 2: The extreme sensitivity of turkeys to AFB1 is associated with efficient AFB1 epoxidation catalyzed by CYP1A5 and 
CYP3A37, coupled with deficient GST detoxification. The hydroxylated metabolites, AFM1, and AFQ1 are formed by CYP1A5 and 
CYP3A37, respectively. Dashed line indicates this critical detoxification pathway is deficient in domesticated turkeys. Adapted 
from (Rawal et al., 2010a). 
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then by isoform number (e.g., CYP1A5, CYP3A37) (McDonnell and Dang, 2013). Additionally, a 

lowercase letter can precede the cytochrome designation to indicate species of the enzyme, for 

example, mouse (mCYP1A2) or turkey (tCYP1A5).  

In turkeys, AFB1 is metabolized primarily by two hepatic P450s, CYP1A5 and CYP3A37 

(Rawal and Coulombe, 2011). For example, AFQ1 is the principal product of tCYP3A37 

metabolism, and AFM1 is produced primarily by tCYP1A5 (Rawal and Coulombe, 2011). Both 

isoforms bioactivate AFB1 to AFBO, but show significant substrate affinities in that tCYP1A5 

predominates at low, pharmacologically-relevant concentrations (~0.1 μM), whereas CYP3A37 

catalysis is significant only at much greater (> 50 µM) concentrations of AFB1 that are unlikely to 

be achieved in vivo in most if not all “real world” exposures (Rawal and Coulombe, 2011).  

The relative contribution of both microsomal CYP1A5 and CYP3A37 AFB1 bioactivation is 

approximately 98% and 2%, respectively, at sub-micromolar (0.1 µM) concentrations of AFB1 

(Rawal and Coulombe, 2011). At 0.1 µM AFB1, CYP1A5 produces a higher ratio (50:1) of 

bioactivation to detoxification product (AFBO:AFM1) compared to CYP3A37 (AFBO:AFQ1 = 

0.17:1) (Rawal and Coulombe, 2011). Using custom anti-peptide antibodies to perform a series 

of immunoinhibition experiments to independently characterize CYP 1A5 and 3A37 metabolism 

in hepatic microsomes, two kinetic models were observed (Rawal and Coulombe, 2011; Yip and 

Coulombe, 2006). At sub-micromolar AFB1 concentrations CYP1A5 is characterized by 

hyperbolic Michaelis kinetics producing only AFBO and AFM1 (Rawal and Coulombe, 2011). 

Identical kinetics have been observed from E. coli that expressed tCYP1A5 (Yip and Coulombe, 

2006) and hCYP1A2 (Gallagher et al., 1996). The inhibitory effect of BHT on CYP1A5 exhibited 

Michaelis competitive inhibitory kinetics (Ki = 0.81 µM) (Guarisco et al., 2008). Conversely, 
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when CYP1A5 was immunoinhibited, isolating CYP3A37 catalysis, turkey liver microsomes 

produced AFBO and AFQ1, following sigmoidal Hill kinetics (Rawal and Coulombe, 2011). The 

sigmoidal relationship observed between the substrate concentrations and the rates of product 

formation suggests cooperativity between CYP3A37 and AFB1 (Rawal and Coulombe, 2011). This 

relationship was explored previously in our laboratory where E. coli expressed CYP3A37 

exhibited a sigmoidal relationship suggesting that both AFBO and AFQ1 formation is driven by 

an allosteric interaction between AFB1 and CYP3A37, showing positive cooperativity (Rawal et 

al., 2010b).  

The epoxidation of AFB1 to form AFBO is the most critical step in the toxic and 

carcinogenic effects of this mycotoxin (Rawal, et al., 2010b). Turkey hepatic P450s are among 

the most efficient at bioactivating AFB1 to AFBO compared to other poultry species, specifically 

ducks, quail, chickens, and pheasants (Monson, et al., 2015; Rawal and Coulombe, 2011). 

Cytochrome P450s of turkey poults are more active toward AFB1 than those of mature birds 

(Klein, et al., 2002a). The dominant catalyst of AFB1 epoxidation at low, environmentally-

relevant concentrations found in poultry liver is CYP1A5 (Rawal and Coulombe, 2011). The 

critical role of CYP1A5 was further illustrated by the use of butylated hydroxytoluene (BHT) an 

hCYP1A5 inhibitor to alleviate the symptoms of aflatoxicosis in AFB1 exposed poultry (Guarisco, 

et al., 2008). 

 

Aflatoxin B1: Carcinogenicity 
 

Aflatoxin B1 is one of the most potent hepatocarcinogens known, and its potency has 

been established in numerous avian, mammalian, aquatic, and non-human primate species 
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(Bailey et al., 1984; Eaton and Schaupp, 2014; Monson, et al., 2015; Muller et al., 1970). 

Numerous epidemiological and clinical studies have led the International Agency for Research 

on Cancer (IARC) to classify AFB1 as a class 1 or recognized human carcinogen (IARC, 1993). 

Essential to AFB1 toxicity and carcinogenesis is the formation of the N7-guanine adduct (Figure 

3), the principal mutagenic and carcinogenic cellular lesion in animals (Ball, et al., 1990; Iyer, et 

al., 1994). Bailey et al. (1988) demonstrated that rainbow trout, when exposed to AFB1, 

exhibited an 62% tumor incidence after 12 months compared to Coho salmon that had no 

incidence of tumors when they were treated identically. Additionally, that study demonstrated 

that rainbow trout AFB-DNA binding is 18 times greater than salmon AFB-DNA binding after a 

three-week dietary exposure to AFB1 (Bailey, et al., 1988). Studies working with rats have 

shown that through the use of a detoxifying enzyme inducer, Oltipaz, N7-guanine adducts could 

be reduced by 97% with no incidence of AFB1-induced hepatocellular neoplasms (Kensler et al., 

1985; Roebuck et al., 1991). The AFBO metabolite has also been found to cause genetic damage 

in bacteria, as well as in human and animal cells (IARC, 2012). Cancer results from the 

introduction of a G→T transversion in hepatic DNA in human hepatocytes (Mace et al., 1997); 

this is the result of AFB1 adducts predisposing DNA synthesis machinery to make G→T 

transversions (Smela et al., 2002). The G→T transversion is the predominant mutation induced 

by AFB1 exposure (Foster et al., 1983). The specific mutation is made to codon 249 of the p53 

tumor suppressor gene (IARC, 2012; Kensler et al., 2011; Mace, et al., 1997), which occurs in 

more than half of the patients with hepatocellular carcinoma (HCC)(Bressac et al., 1991; Hsu et 

al., 1991).  
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Role of Glutathione S-transferases in AFB1 Detoxication 
 

 Phase II metabolism is an enzymatic process whereby a phase I metabolite is conjugated 

with an endogenous cofactor, or “endocon” such as glucuronic acid, sulfate acetic acid, or 

glutathione with the resultant metabolite being safely excreted(Zamek-Gliszczynski et al., 2006) 

. In nearly all animals studied, the primary route of AFB1 detoxification is through hepatic 

glutathione S-transferases (GSTs) which are critical phase II detoxification enzymes that 

specifically recognize, react with, and detoxify electrophilic intermediates, such as AFBO, by 

conjugating this reactive intermediate with the cofactor glutathione (GSH)(Coles and Kadlubar, 

Figure 3: Metabolites and enzymes involved in aflatoxin B1 (AFB1) metabolism in turkey liver microsomes. Hepatic glutathione S-
transferases (GSTs) from domesticated turkeys lack exo-AFB1-8,9-epoxide (AFBO) conjugating activity (dashed line), while those from 
wild turkeys are fully functional. [Adapted from Monson, et. al., 2015]  
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2003). Glutathione S-transferases are dimeric cytosolic enzymes that are organized, based upon 

their amino acid homology, into six classes- zeta (ζ), pi (π), alpha(α), omega (Ω), mu (µ), and 

theta (Θ). Glutathione is a tri-peptide consisting of glutamate and cysteine through gamma 

linkage and glycine through peptide bond (Eaton and Bammler, 1999; Kim, et al., 2013; Ziglari 

and Allameh, 2013).  

In the case of AFB1, GSTs catalyze the reaction between the nucleophilic sulfur atom in 

the cysteine residue of GSH with the electrophilic substrate, with the resultant AFB-GSH adduct 

safely eliminated in the urine and feces (Wang et al., 1999; Ziglari and Allameh, 2013) (Figure 

3). Glutathione S-transferase activity is routinely quantified using prototype assays involving 

bioactivated substrates such as 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-

nitrobenzene (DCNB), ethacrynic acid (ECA), and cumene hydroperoxide (CHP) (Awasthi, 2007; 

Habig and Jakoby, 1981; Habig et al., 1974b). Previous studies in our laboratory identified and 

cloned six turkey alpha class GSTs, tGSTA 1.1, 1.2, 1.3, 2, 3, and 4 (Kim et al., 2010; Kim et al., 

2011). Cloned and expressed tGSTAs possessed detectable activities toward prototypical 

substrates (Kim, et al., 2011). The cloned tGSTA1.2 and A3 had the highest activities toward 

CDNB, ECA, and CHP, whereas tGSTA1.1 possessed the highest activity toward DCNB (Kim, et 

al., 2011). Even though tGSTA1.1 is missing a signature motif, detectable catalytic activity was 

measured for all substrates (Kim, et al., 2011). Cytosolic tGSTAs possessed activities toward all 

GST prototype substrates, however these activities were significantly lower than those 

observed for mouse cytosol except for ECA (Kim, et al., 2011). All cloned and expressed tGSTAs 

possessed measurable AFBO-conjugating activity compared to non-cloned hepatic tGSTAs (Kim, 

et al., 2011; Kim, et al., 2013). Domesticated hepatic turkey GSTs lack detoxifying activity, while 
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wild varieties have fully functional GSTs (Kim, et al., 2011; Kim, et al., 2013). These six turkey 

GST genes are homologs of AFB1-protective GSTAs in mice and other species (Kim, et al., 2010). 

The catalytic activity of hepatic turkey GSTAs toward AFBO are substantially lower or not 

detected compared to that of mGSTA3, the “gold standard” for AFBO detoxification (Kim, et al., 

2013). The importance of GSTA3 in other species was confirmed with the demonstration that 

GSTA3 knockout mice are substantially more AFB1-susceptible than wild-type mice (Ilic et al., 

2010). Studies in our laboratory have consistently demonstrated that hepatic GSTs from 

domesticated turkeys lack AFBO detoxifying activity (Kim, et al., 2013), indicating that the rate-

limiting step in species sensitivity toward AFB1 is GST mediated detoxification of the AFBO 

metabolite (Eaton and Bammler, 1999; Kim, et al., 2011). Additionally, the phylogeny of poultry 

GSTs was constructed to illustrate the relatedness of these GSTAs between chickens, heritage, 

wild, and domesticated turkeys (Kim, et al., 2013). This study concluded that turkey and chicken 

GSTAs are orthologous, and that the GSTA loci was established before speciation (Kim, et al., 

2013).  

 

Quail 
 

Our laboratory has previously determined the extreme sensitivity of poultry species to 

AFB1 that was observed during “Turkey X Disease” is most likely due to a deficiency of 

protective hepatic glutathione S-transferases (GSTs) (Kim, et al., 2011; Klein et al., 2000). 

Importantly, studies from our laboratory showed that unlike the hepatic forms, recombinant 

GSTAs from domesticated turkeys have the ability to conjugate and detoxify AFBO (Kim, et al., 

2013), leading to the conclusion that GST silencing is not due to sequence changes within the 
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GST coding region, but more plausibly due to regulatory gene abnormalities in domestic turkeys 

not present in their wild counterparts (Coulombe et al., 2005; Kim, et al., 2011). The use of 

purified metabolic proteins has provided many insights and answers to how these enzymes 

interact with AFB1. 

While turkeys are among the most susceptible species studied, quail, a related 

Galliforme, appeared in one in vivo feeding study to be less susceptible AFB1 when considering 

gross hepatic lesions and lethality (Arafa et al., 1981). Another study demonstrated that quail 

microsomal preparations produced significantly lower bioactivation metabolites (as measured 

by both production of metabolites AFB1-dihydrodiol, AFB-GSH, and AFL) than that from turkey 

(Lozano and Diaz, 2007). To our knowledge, there have been no studies focusing specifically on 

the functional characteristics of CYP- and GST-mediated bioactivation and detoxification in quail 

liver.  

Given the centrality of these two opposing metabolizing pathways in AFB1 toxicology in 

turkeys, the purpose of this study was to characterize the kinetic and functional properties of 

microsomal CYP and cytosolic GST enzymatic activities of Coturnix japonica (JQ) and Callipepla 

californica (HQ). These properties were compared against those of domesticated and wild 

turkeys with a view to determine whether these reflect differences in in vivo susceptibility 

between quail and turkeys.  

 

Research Goals 
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The research goals were to characterize microsomal and cytosolic enzyme activities 

from Japanese (JQ) and Hawaiian (HQ) quail with regards to AFB1, CDNB, DCNB, CHP, and ECA. 

Comparing the results to Broad-breasted white (BB) and Eastern Wild turkeys (EW). Doing so 

would allow the assessment of the susceptibility of quail with respect to other poultry species 

and it would generate further insight about the mechanisms of AFB1 bioactivation and 

detoxification.  

 

Materials and Methods 
 
Supplies and Reagents  
 
1-chloro-2,4-dinitrobenzene (CDNB), 1,2-Dichloro-4-nitrobenzene (DCNB), ethacrynic acid 

(ECA), cumene hydroperoxide (CHP), GSH, glutathione reductase, nicotinamide adenine 

dinucleotide (NADPH), AFB1, aflatoxin G1 (AFG1), butylated hydroxytoluene (BHT), 

phenylmethylsulphonyl fluoride (PMSF), sucrose, 85% H3PO4, tetrahydrofuran (THF), and 

isopropyl-b-D-thiogalactopyranoside (IPTG) were obtained from Sigma–Aldrich (St Louis, MO). 

Bradford Protein Assay Kit was from Bio-Rad (Philadelphia, PA). The PTFE membranes were 

purchased from Millex Samplicity Filters (Tullagreen, Carringtonhill, Co Cork IRL). Turkey starter 

mash obtained from IFA Country Stores (Salt Lake City, UT). Custom anti-peptide antibodies for 

P450 1A5 (Rabbit anti-serum BLD#1, Lot#33964, Rabbit#G5415), P450 3A37 (Rabbit anti-serum 

BLD#1, Lot#33965, Rabbit#G5424), GSTA3 (Rabbit anti-serum #1 [A3R2], Lot#35788-35789, 

Rabbit#G7496), and GSAT4 (Rabbit anti-serum #2 [A4R2-2], Lot#35790-35791, Rabbit# G7510) 

were prepared by Genemed Synthesis Inc. (San Antonio, TX). The anti- β-actin antibody 
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(ab8224) was purchased from Abcam (Cambridge, UK). The remaining immunoblot reagents 

(streptavidin-HRP, anti-rabbit secondary, and the chemiluminescent substrate) were from 

ProteinSimple (San Jose, CA).  

 

Animal Tissues 
 
  The liver tissues used were from two varieties of Quail, Callipepla californica (HQ) and 

Coturnix japonica (JQ) obtained from the Deschambault Research Station Quebec, Canada. The 

livers were flash-frozen in liquid N2, shipped overnight on dry ice, and stored at -80 °C until use. 

Turkeys were purchased from Strombergs hatchery (Hackensack, MN) and raised at Utah State 

University South Farm. Female poults were identified by PCR and culled (Kalina et al., 2012). 

Male poults were fed starter mash and livers harvested at approximately three weeks of age. 

Livers were flash frozen in liquid N2, transported on dry ice, and stored at -80 °C. Swiss-Webster 

mice were obtained from Charles River Laboratories (Wilmington, MA) through Laboratory 

Animal Research Center, Utah State University and were given a diet containing 0.75% 

butylated hydroxyanisole (BHA) using corn oil for 14 days. Animals were housed in an AAALAC-

accredited facility, and all procedures involving animal care and tissue collection were approved 

by Utah State University’s Animal Care and Use Committee (approvals #2668 and 2670). 

 

Isolation of Hepatic and Cytosolic Proteins 
 

Microsomes and cytosols were isolated by pooling approximately 2 g of liver tissue from 

two birds in each group, resulting in a total of 4 HQ and 3 JQ samples. Proteins were purified 

through differential centrifugation as described previously (Klein, et al., 2000). All steps were 
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performed at 4 °C. Frozen livers were homogenized using a Polytron (Brinkman, Westbury, NY) 

in a 1:3 w/v cold homogenizing buffer (50 mM Tris, 1 mM EDTA, 0.25 M sucrose, 150 mM KCl, 

20 mM BHT, 200 mM PMSF, pH 7.4). Homogenate was centrifuged at 10,000 x g for 10 min then 

supernatant was centrifuged at 16,000 x g for 10 min then at 105,000 x g for 60 min. 

Supernatants (consisting of liver cytosols) were collected, aliquoted and stored at -80 °C. The 

microsomal pellet was homogenized and centrifuged at 105,000 x g (L7-55 ultracentrifuge 

Beckman Coulter, Indianapolis, IN), for 60 min and the pellet collected, aliquoted, and stored at 

-80 °C until assayed. Proteins were quantified using the Bradford assay (Kim, et al., 2011). 

 

Quantifying AFB1 Bioactivation and Detoxification 

 
Bioactivation of AFB1 to AFBO and detoxification activities of AFBO to exo-AFB1-GSH 

(AFB-GSH) were performed according to published methods(Kim, et al., 2011; Rawal and 

Coulombe, 2011) . Turkey liver microsomes (~400 µg total protein for control sample) and quail 

microsomes (~50 µg total protein) were used as the P450 source for AFB1 bioactivation which 

were reacted in 0.1 mM Tris buffer (pH 7.6) containing 10-1024 µM AFB1 in HPLC grade 

dimethyl sulfoxide, 2 mM NADPH, 5 mM GSH, and BHA-Induced mouse cytosol (~800 µg total 

protein for each sample and ~3 µg total protein for control sample) as the GST source to “trap” 

the short-lived AFBO (Guarisco, et al., 2008; Klein, et al., 2000). The mixture was incubated in 

epoxide trapping buffer (5 mM MgCl2, 25 mM KCl, 0.25 mM sucrose, and 80 mM K2HPO4, pH 

7.6) to give a final volume of 250 μl. The mixture was incubated for 10 min with the cofactor 

mix at 37 °C, then incubated an additional 20 min with the AFB1. The reaction was stopped by 

adding 250 uL of cold MeOH spiked with 24 µM AFG1 as an internal standard. The samples were 
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left overnight at -20 °C to facilitate precipitation and then centrifuged for 11 min at 17,000 G. 

Supernatants were filtered through a 0.2 µM hydrophilic PTFE membrane and 160 µL was 

injected into an HPLC. Metabolites were separated on a Shimadzu LC system (Pleasanton, CA), 

equipped with a model LC-20AD pump, a model SPD-20AV UV/vis detector, and an Allsphere 

ODS-2.5 uM (250 × 4.6 mm) column (Grace Davison Discovery Sciences, Columbia, MD) kept at 

40 °C. The elution of the peaks was monitored by UV absorbance (λ = 365 nm). Mobile phases 

and elution programs used were as previously reported (Kim, et al., 2011). Metabolite 

formation was quantified using a calibration curve generated using authentic exo-AFB1-GSH 

standard. Bioactivation of AFB1 from turkey samples was performed as described (Rawal and 

Coulombe, 2011). 

Quail hepatic cytosolic GST-mediated detoxification of AFBO to AFB-GSH was measured 

by a modification of the above protocol. Quail liver cytosol (~100 µg total protein) was 

substituted for the BHA-induced mouse cytosol. The AFBO metabolite was enzymatically 

generated by using turkey liver microsomes (~400 µg total protein). Detoxification of AFBO 

from turkey samples was performed as described (Kim, et al., 2011).   

 

GST Prototype assays 
 

Specific enzyme activities were assayed using previously established protocols for 

activity toward prototype substrates ethacrynic acid (ECA), 1,2-dichloro-4-nitrobenzene (DCNB), 

and 1-chloro-2,4-dinitrobenzene (CDNB) (Habig and Jakoby, 1981; Habig et al., 1974a), and 

cumene hydroperoxide (CHP) (Lawrence and Burk, 1976). The assays were optimized for a final 

volume of 200 µL of 100 mM phosphate buffer at room temp (25°C) using a Synergy H1 
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microplate reader (Biotek, Winooski, VT), with the exception of ECA which was performed in a 1 

mL volume using a Genesys 6 spectrophotometer (Thermo Spectronic, Madison, WI): (1) 0.2 

mM ECA, 0.25 mM GSH, ΔA270 nm (Extinction coefficient: 5/mM/cm), and buffer pH 6.5, (2) 1 

mM DCNB, 5mM GSH, ΔA345 nm (8.5/mM/cm), and buffer pH7.5, (3) 1 mM CDNB, 1 mM GSH, 

ΔA340 nm (9.6/mM/cm), and buffer pH 6.5, and (4) CHP glutathione peroxidase activity was 

determined using 1.2 mM CHP, 2mM GSH, 1 U Glutathione reductase, 0.2 mM NADPH, ΔA340 

nm (6.22/mM/cm), and buffer pH 7.0.  

 

Expression of CYPs and GSTs 
 
Expression of CYPs and GSTs were quantified by immunoblots using ProteinSimple WesTM 

system utilizing the 12-230 kDa 25 capillary separation module, performed according to the 

manufacturer’s instructions, except the antibody incubation time was increased from 30 min to 

60 min per the manufacturers recommendation. The proteins were diluted to 0.50 mg/mL for 

both quail varieties and for EW; while BB was diluted to 2.0 mg/mL for labeling with both 

isoforms of P450 (1A5 and 3A37) and GSTA (A3 and A4). The anti-peptide dilution used was 

1:50 for both P450 1A5 and 1:10 for P450 3A37 for all samples. Proteins were identified using 

the following antipeptide concentrations 1:50 tGSTA3 and 1:50 tGSTA4 for turkey, 1:50 tGSTA3 

and 1:250 tGSTA4 for quail. 1:10 (29 kDa) System loading control and 1:100 (90 kDa) System 

loading control were used for P450 and GSTA immunoblots, respectively.  

Statistical Analysis 
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 Kinetic data and statistics analyzed Prism by nonlinear regression for Michaelis-Menten 

and Kcat equations using (GraphPad Software, San Diego, CA).  

Results and Discussion 
 

Although quail are generally regarded to be of intermediate susceptibility among 

poultry, with turkeys the highest (Arafa et al., 1981), a direct comparison has been complicated 

by a lack of direct in vivo AFB1 feeding trials between these two species of equivalent age, 

gender, AFB1 intake, and toxicity endpoints.  In the absence of such definitive studies, 

quantifying activities and metabolic profiles of specific phase I and phase II enzymes can 

accurately predict in vivo comparative toxicity (Kim, et al., 2013; Klein, et al., 2000).  

In turkeys and most other animals studied, metabolic bioactivation of AFB1 is catalyzed 

by orthologs of turkey CYPs 1A5 and 3A37 (Rawal, et al., 2010b; Yip and Coulombe, 2006). 

Hepatic expression of these CYPs was determined from immunoblots using custom anti-peptide 

antibodies prepared against the turkey forms of these enzymes previously cloned, expressed 

and functionally characterized in our laboratory (Rawal, et al., 2010b; Yip and Coulombe, 2006). 

For all liver samples, CYPs 1A5 and 3A37 appeared at the expected molecular weights of 60 and 

58kD, respectively (Rawal, et al., 2010b; Yip and Coulombe, 2006). As shown in Figure 4, quail 

liver, like that from turkey, constitutively express both of these CYP forms. Hepatic expression 

of CYP1A5 was not significantly different between quail, but was significantly greater than that 
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from turkey. Conversely, there were no significant differences between and among species with 

respect to expression of CYP3A37 (Figure 4).  

A 

 
  
B 

 
 

Figure 4: Immunoblots showing expression of CYP1A5 (A) and 3A37 (B) from liver microsomes from Japanese (JQ) and 
Hawaiian Quail (HQ), and Broad-breasted White (BB) and Eastern Wild (EW) Turkeys.  A] CYP1A5 B] CYP3A37. Custom Turkey 
anti-P450 peptides and HRP-conjugated anti-Rabbit secondary antibody were used and bands were detected by 
chemiluminescence analysis. Each sample represents two pooled liver samples corresponding to three unique pooled microsome 
samples. Arrows indicate the protein band of interest and the associated molecular weight. 
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Cytochrome P450-mediated bioactivation to AFBO, the metabolite most responsible for 

the toxic and carcinogenic effects of this mycotoxin, is accurately quantified as the trapped 

AFB-GSH adduct (Klein, et al., 2000) using exogenous GST in the microsomal incubations due to 

the transient nature of AFBO (t0.5 ~ 0.5 sec; (Eaton et al., 1994)).  Bioactivation from livers 

prepared from both quail and turkeys exhibited traditional Michaelis saturation kinetics (Figure 

5). At a substrate concentration of 128 µM, CYP-mediated formation of AFBO in microsomes 
 

A 

 

B 

 
 

 

Figure 5: Michaelis-Menten (A) and Lineweaver-Burke (B) plots for AFB1  bioactivation by Japanese and Hawaiian Quail (JQ, 
HQ) and Domesticated and Wild Turkey (BB, EW) Liver Microsomes. Enzyme kinetics of AFB1 epoxidation activity in liver 
microsomal proteins (A and B). Panel A shows SE for each data point, with an N of 3. R2 values were 0.97, 0.84, 0.84, and 0.89 
respectively.  
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prepared from HQ and JQ were not significantly different from each other, but were 

significantly (p < 0.05) lower than those from domesticated and wild turkeys, respectively (HQ: 

2.14 ± 1.80; JQ: 1.89 ± 0.69; BB: 69.06 ± 6.28; EW: 104.90 ± 3.72 nmol/min/mg protein). In all 

cases, quail microsomes exhibited significantly lower maximum rates (Vmax), lower catalytic 

affinity of enzyme for substrate (Km), and lower specificity (Kcat) (Table 1).  

 

 

In humans and in most animals studied, the principal route of detoxification and single most 

important determinant for species resistance regardless of efficiency of AFB1 bioactivation is via 

hepatic GSTs (Eaton and Bammler, 1999). As shown in Figure 6, liver cytosolic fractions 

prepared from all species expressed both GSTA3 and GSTA4, subunits that putatively catalyze 

conjugation of AFBO with GSH (Kim, et al., 2013). Bands were observed for GSTA3 and GSTA4 at 

the expected a MW of 29 kDa (Figure 6 A and B) (Kim, et al., 2011). Apparent expression shows 

significant difference in expression of GSTA3 between turkey and quail (Figure 6). 

Table 1 
Kinetics of Hepatic Microsomal P450 Bioactivation of AFB1 to AFBO for Hawaiian (HQ) and 
Japanese Quail (JQ) and, Broad-breasted White (BB) and Eastern Wild (EW) Turkeys.  

Vmax  
(nmol/min/mg protein) 

Km  

(µM AFB1) 
Kcat  

(s-1) 
HQ  2.28 ± 0.54 a 214.92 ± 13.43 a 8.61X10-04 ± 1.79X10-04 a 

JQ  2.49 ± 0.12 a  231.50 ± 18.96 a  1.08X10-03 ± 5.03X10-05 a 

BB 3.87 ± 0.27 b 178.25 ± 2.17 b 1.73X10-03 ± 9.29X10-06 b 

EW 4.52 ± 0.28 b 129.10 ± 18.91 c 1.82X10-03 ± 1.09X10-04 b 

Data are mean (+ SE; n=3); different superscript letters represent significant difference (P < 0.05). The AFBO column represents the 
bioactivation of Aflatoxin B1 (AFB1) to the AFB1-8,9-epoxide (AFBO) intermediate in microsomes, calculated for the 128 µM AFB1 treatment. 
1 AFB1-8,9-epoxide (AFBO); GSH (5mM) 
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The most specific and state-of-the-art method of measuring GST-mediated AFB1 

detoxification in liver cytosolic fractions is by an HPLC-based method that employs liver 

microsomes to generate AFBO that is then trapped by GSTs in the cytosolic fraction (Eaton, et 

  
A 

 
  
B 

 
 

Figure 6: Immunoblots of Japanese (JQ) and Hawaiian Quail (HQ), and Broad-breasted White (BB) and Eastern Wild (EW) 
Turkey Hepatic Protein Expression for GSTA3 (A) and GSTA4 (B). A] GSTA3 B] GSTA4. Custom Turkey anti-GSTA peptides and 
HRP-conjugated anti-Rabbit secondary antibody were used and bands were detected by chemiluminescence analysis. Each 
sample represents two pooled liver samples corresponding to three unique pooled cytosol samples. Arrows indicate the protein 
band of interest and the associated molecular weight. Blots were truncated between ~50-110kd.   
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al., 1994). Cytosolic AFBO detoxification in livers prepared from both quail and turkeys 

exhibited traditional Michaelis saturation kinetics (Figure 7). At a substrate concentration of 

128 µM, hepatic cytosols from quail were significantly more active in AFB-GSH formation than 

that in turkeys (HQ: 188.69 ± 0.13; JQ: 504.17 ± 0.24; BB: n.d.; EW: 18.40 ± 0.40 pmol/min/mg 

protein). Among quail, conjugation activity in JQ was significantly greater than in HQ (Table 2).  

 

 

A 

 

B 

 
 

 

Figure 7: Michaelis-Menten (A) and Lineweaver-Burke (B) plots showing kinetics of GST-mediated AFBO detoxification by 
Japanese and Hawaiian Quail (JQ, HQ) and Domesticated and Eastern Wild Turkey (BB, EW) Liver Cytosols. Enzyme kinetics of 
AFB1 detoxification in liver cytosolic proteins (A and B). Saturation curve was determined using AFB1 concentrations of 10 to 
1024 μM. Panel A shows SE for each data point with an N of 3. R2 values were 0.92, 0.81, 1.00, 0.79 respectively. 
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 The AFB-GSH formation, presented as Vmax rates, is significantly different between HQ 

and JQ. However, both quail species presented rates slightly lower than that of EW. Cytosolic 

AFBO detoxification in livers from HQ and JQ exhibited significantly lower catalytic affinity of 

enzyme for the AFBO substrate (Km), and lower specificity (Kcat) than that from EW. (Table 2).  

Detoxification of the prototype substrates CDNB, DCNB, ECA and CHP provide further 

information on hepatic GST activity, though these activities are not relevant to AFB1 per se but 

can be used in larger cross-species comparisons. Unlike BB and EW, neither HQ nor JQ 

possessed the ability to metabolize DCNB, while quail had significantly lower metabolic activity 

toward CDNB than turkeys (Table 3). Cytosols from both quail species had lower metabolic 

activities toward ECA and CHP compared to those from BB and EW.  

 

 

 

 

Table 2 Kinetics of Hepatic Cytosolic GST mediated Detoxification of AFBO to AFB-GSH in Hawaiian (HQ) and 
Japanese Quail (JQ) and, Broad-breasted White (BB) and Eastern Wild (EW) Turkeys.  

Vmax  
(nmol/min/mg protein) 

Km  

(µM AFB1) 
Kcat  

(s-1) 
HQ  0.12 ± 0.02 a 169.82 ± 32.71 a 1.75X10-05 ± 8.76X10-06 a 

JQ  0.15 ± 0.01 b  184.34 ± 25.09 b 3.25X10-05 ± 2.03X10-06 b 

BB n.d. n.d. n.d. 

EW 0.18 ± 0.01 c 27.03 ± 9.69 c 4.21X10-05 ± 4.21X10-06 c 

Data are mean (+ SE; n=3); different superscript letters represent significant difference (P < 0.05). The AFB-GSH column represents the formation of the 
trapped epoxide in cytosol, calculated for the 128 µM AFB1 treatment.  
Abbreviations: n.d. is not detected.  
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 Quail are like other avian species regarding metabolism of exogenous substrates by liver 

enzymes. This study examined two genera of quail, Gallipepla californica (HQ) and Coturnix 

japonica (JQ), to rank quail susceptibility to AFB1 toxicity as a species against turkey of which we 

have known susceptible (BB) and resistant (EW) varieties (Kim, et al., 2011). Species 

susceptibility to AFB1 has been described as a balance between P450-mediated AFBO 

production, and the efficiency with which this reactive intermediate is detoxified through GST 

conjugation (Eaton and Gallagher, 1994). Mice efficiently bioactivate AFB1 to produce AFBO 

through high-affinity P450s and are substantially resistant to AFB1 owing to the expression of 

the A3 GST subunit (mGSTA3), which has a high catalytic activity toward AFBO (Kim, et al., 

2011). The current knowledge indicates that the efficiency of GST conjugation is a principal 

“rate-limiting” determinant for AFB1 action in individuals and species (Ilic, et al., 2010). 

Investigations from our laboratory have previously demonstrated the extreme sensitivity of 

turkeys to the effects of AFB1, due to the presence of high affinity and high epoxidation activity 

of P450s toward AFB1 (Rawal, et al., 2010a; Rawal et al., 2009; Rawal, et al., 2010b; Yip and 

Table 3 
 
Cytosolic Detoxification of GST Pseudosubstrates in Hepatic Cytosols from Hawaiian (HQ) and 
Japanese Quail (JQ) and, Broad-breasted White (BB) and Eastern Wild (EW) Turkeys.  

 Specific enzyme activity (nmol/min/mg protein)  
CDNB1 DCNB2 ECA3 CHP4 

HQ  19.10 ± 1.67 a n.d. 25.38 ± 0.10 a 141.33 ± 4.94 a 

JQ  25.64 ± 1.77 a n.d. 27.45 ± 1.44 a  172.86 ± 8.37 a 

BB 380.40 ± 40.07 b 0.80 ± 0.08 a 78.12 ± 2.67 b 56.70 ± 1.14 b 

EW 306.40 ± 24.99 b 0.76 ± 0.10 a 47.65 ± 7.43 c 46.40 ± 1.98 b 
Data are mean (+ SE; n=3); different superscript letters represent significant difference (P < 0.05). The AFBO column represents the bioactivation of 
Aflatoxin B1 (AFB1) to the AFB1-8,9-epoxide (AFBO) intermediate in microsomes. The AFB-GSH column represents the formation of the trapped epoxide 
in cytosol. 
11-Chloro-2,4-dinitrobenzene (CDNB): GSH (1mM);  
21,2-Dichloro-4-nitrobenzene (DCNB): GSH (5mM); 
3Ethacrynic acid (ECA); GSH (2.5mM);  
4 Cumene Hydroperoxide (CHP); GSH (2mM); 
Abbreviations: n.d. is not detected.  
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Coulombe, 2006). The toxic effects of the bioactivated AFBO metabolite in quail was studied by 

the Oliveira group who observed typical aflatoxicosis symptoms such as, hepatic cell 

vacuolation with fatty infiltration in all treatment groups (Oliveira et al., 2002). Additionally, bile 

duct proliferation and trabecular disorder in treatment groups that received 0.1 ppm AFB1 

(Oliveira, et al., 2002). These studies provided important information on the acute and chronic 

effects of AFB1 for quail production, giving insight to the relevant toxic doses and confirming 

that quail suffer from the same toxic effect as other poultry species.  

Only a few research groups have done metabolic analysis of quail enzymatic 

bioactivation and detoxification toward AFB1 and AFBO. As was observed in turkey hepatic 

microsomes (Rawal, et al., 2010b), cytosols (Kim, et al., 2011), and expressed tGSTAs, quail 

microsomal and cytosolic proteins possess catalytic activity for both bioactivating AFB1 to AFBO 

and detoxifying AFBO to AFB-GSH. There have not been any studies, to date, that address the 

relative susceptibility of quail versus other Galliformes to AFB1 insult. Those previous studies 

focused more on the transportation and movement of AFB1 and related metabolites within a 

given species of bird. These studies cannot accurately be analyzed and compared to the current 

study. The current study utilized the same techniques previously performed on turkey species 

to determine relative resistance and susceptibility toward AFB1. Compared to previous studies 

utilizing the same techniques and end points it is clear that quail microsomes are not as 

efficient at bioactivating AFB1 to AFBO (Rawal, et al., 2010b). However, quail cytosols possess 

similar catalytic detoxifying activity toward AFBO compared to turkeys (Kim, et al., 2011).  

As previously observed in turkey hepatic cytosols (Kim, et al., 2011), quail cytosols 

possessed catalytic activity toward the GST substrates CDNB, ECA, and CHP, however, DCNB 
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activity was not detected. Similar observations have been previously made (Dai et al., 1996), 

however, the GSTs isolated were fractioned and tested individually, as opposed to using whole 

cytosolic proteins. The Dai group observed similar trends in the conjugating activity of quail 

GSTs toward prototype substrates. Notably, DCNB is not a suitable substrate for quail Alpha 

class GSTs as either no or only marginal activity was measured, a conclusion that is similar to 

current study. However, the specific activity of the enzymes is different, most likely an effect of 

the difference in and the purity of the protein preparations. Therefore, direct comparisons 

cannot be made between the two studies as the protein preparations are quite different; 

however, activity was detected for CDNB, CHP, and ECA in both studies. The GST enzyme 

activities for the prototypical substrates were determined using established protocols (Habig 

and Jakoby, 1981; Lawrence and Burk, 1976).  

The molecular weights (MW) of P450 CYP1A5 and CYP3A37 along with GSTA3 and 

GSTA4 were consistent with the expected molecular weights of analogous proteins in turkey. 

The MW of quail P450s and GSTs observed in this study correlate with the MW observed 

previously for CYP1A5 (Diaz, et al., 2010a) and CYP3A37 (Dai, et al., 1996). Where the Diaz 

group only observed quail P450 enzymes analogous to the hCYP2A6 and hCYP3A4 families the 

current study observed the presence of P450 enzymes analogous to tCYP1A5 and tCYP3A37, 

homologs of human CYP1A2 and 3A4, using turkey antipeptide serum to label the proteins 

(Diaz, et al., 2010a). The Dai group (Dai, et al., 1996) observed molecular weights between 26 – 

27 kDa as opposed to the 29 kDa observed in this study for the GSTA enzymes. This observation 

confirms that quail hepatic proteins possess P450 and GSTA enzymes homologous to human 

and turkey enzymes (Dai, et al., 1996).  



 

34 
 

The current study characterized the kinetics of quail P450s and GSTs to understand the 

susceptibility of quail to the toxic effects of AFB1 in comparison to other Galliformes. The data 

indicates there is as much variation between quail genera as there is between poultry species, 

which suggests that quail susceptibility to AFB1 varies between genera. Quail P450s bioactivate 

AFB1 to AFBO at a significantly slower rate (Vmax), a greater substrate concentration (Km), and at 

a slower turnover rate (Kcat) than those of turkeys. Concluding that quail P450s are less efficient 

at bioactivating AFB1 to AFBO. The detoxifying activity of quail GSTs toward AFBO is significantly 

different from both mouse and turkey cytosolic proteins. The EW turkey species possessed 

greater detoxifying ability, while the two genera of quail are statistically different from one 

another with JQ having greater detoxifying activity than that of HQ. The expression of each 

metabolizing enzyme isoform and the correlated kinetic rates indicate the observed difference 

in susceptibility. Quail livers expressed more CYP1A5 than turkey livers did, however, turkey 

liver CYP1A5 proteins have an overall lower Km of bioactivation. Leading to the conclusion that 

the order of susceptibility based on bioactivation is not different than what has previously been 

published, ducklings >>> turkey (EW > BB) > quail (JQ > HQ) > mouse. Conversely, quail livers 

expressed more GSTA3 enzyme with a significantly greater cytosolic protein detoxifying Km 

compared to the BB turkey species, with JQ being more efficient than HQ. Interestingly the 

detoxifying ability of EW turkey species is more efficient than both of the quail species and the 

BB turkey species. In terms of detoxification the data concludes that the order of susceptibility 

is ducklings >>> turkey (BB) > quail (HQ > JQ)> turkey (EW) > mouse. Additional studies are 

needed to further clarify our understanding of quail phase I and II metabolic enzymes in 

relation to other Galliformes. Specifically, additional studies isolating and identifying the 
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specific contributions of the identified individual P450s and GSTA enzymes involved in the 

metabolism of AFB1 with a greater number of individual animals and variety of poultry species. 

The study should prioritize characterizing the above poultry species utilizing the AFB-GSH 

detoxified metabolite as the endpoint. The AFB-GSH detoxified metabolite is the best metric to 

determine susceptibility of poultry species to the toxic effects of AFB1. As such, a study in which 

duck, chicken, turkey, quail, pheasant, mice, and rats are all characterized at the same time will 

provide the most comprehensive data on the matter.  
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