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Long-term experimental hybridisation results in the
evolution of a new sex chromosome in swordtail
fish
Paolo Franchini 1, Julia C. Jones1,2, Peiwen Xiong1, Susanne Kneitz3, Zachariah Gompert4, Wesley C. Warren5,

Ronald B. Walter6, Axel Meyer 1,7 & Manfred Schartl 3,8,9

The remarkable diversity of sex determination mechanisms known in fish may be fuelled by

exceptionally high rates of sex chromosome turnovers or transitions. However, the evolu-

tionary causes and genomic mechanisms underlying this variation and instability are yet to be

understood. Here we report on an over 30-year evolutionary experiment in which we tested

the genomic consequences of hybridisation and selection between two Xiphophorus fish

species with different sex chromosome systems. We find that introgression and imposing

selection for pigmentation phenotypes results in the retention of an unexpectedly large

maternally derived genomic region. During the hybridisation process, the sex-determining

region of the X chromosome from one parental species was translocated to an autosome in

the hybrids leading to the evolution of a new sex chromosome. Our results highlight the

complexity of factors contributing to patterns observed in hybrid genomes, and we experi-

mentally demonstrate that hybridisation can catalyze rapid evolution of a new sex

chromosome.
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Sex chromosomes evolve from autosomes and are typically
extremely conserved, not only among species but entire
classes of organisms. The best-studied sex chromosome

systems are ZW and XY, female and male heterogametic systems
respectively. These categorical sex-determining systems have
evolved repeatedly and independently in the animal and plant
kingdoms1. Yet genomic studies have also revealed several
examples of rapidly evolving sex-determining mechanisms in
closely related species of fish2–7, and also in amphibians8,9 and
reptiles10,11. Even between sister taxa of fishes, instances are
known where either males or females are heterogametic. How-
ever, despite much theoretical work and empirical findings of
convergent evolution of sex chromosomes11–16, why such variety
in something as fundamental as the mechanisms of sex deter-
mination exists, and how it evolves, remains elusive.

If two closely related lineages differ in their sex chromosome
systems, several scenarios for the emergence of this difference are
possible17: either there was no chromosomal sex determination in
the last common ancestor and both systems developed indepen-
dently, or one lineage retained the ancestral sex chromosomes
while in the other lineage a transition to the alternate system
occurred. Theoretically, such transitions can happen on the same
pair of sex chromosomes (homologous transition) or involve an
autosome, which then becomes a new sex chromosome (hetero-
logous transition). At the molecular level, the gene(s) determining
sex might have changed their mode of action, e.g. from female to
male determination, or a novel sex-determining (SD) gene might
have arisen and taken over (SD turnover) in the evolving lineage.

An intriguing scenario in sex chromosome evolution con-
nected to speciation is hybridisation, particularly in crosses of
species with different male and female heterogametic sex chro-
mosomes. Based on Haldane’s rule, one would expect that the
heterogametic sex in hybrids tends to show greater inviability or
sterility than the homogametic sex18 and one proposed expla-
nation for this is dominance theory19. Hybrids between different
species might be expected to suffer deleterious incompatibilities
because alleles from orthologous genes from different species may
not interact well in hybrids, and if these genes are on the sex
chromosomes and are recessive, the heterogametic sex is likely to
suffer the most. This would be expected to result in selection for
alternative sex chromosome systems in lineages arising from a
hybridisation event. As intriguing as these concepts are, empirical
evidence for the evolution of new sex chromosome systems fol-
lowing hybridization is very scant because these events have
happened in the evolutionary past and would be expected to take
long time periods to complete. Still, in some laboratory animals
the loss of a sex-determining locus has been observed (e.g.
medaka20 and zebrafish21), but these domesticated lines have not
yet developed a new stable mechanism of the same kind (a sex
determination turnover) or completed a transition.

In vertebrates, teleost fish show an enormous diversity of sex
chromosome systems, hence turnovers or transitions must have
occurred more often than in most other classes of vertebrates (e.g.
ref. 7). Therefore, the study of closely related species of fishes that
exhibit different sex chromosome systems would be particularly
informative for the investigation of the evolution of mechanisms
of sex determination (e.g. ref. 7). Among the 26 species of the
genus Xiphophorus (swordtails and platyfish) are species with
both XY and ZW sex chromosome systems22,23. In this genus,
these simple heterogametic systems are both present together
with more complex situations that can include multiple loci and
chromosomes23,24. Xiphophorus maculatus, for example, one of
the most well studied and geographically widespread species in
this genus, has three different genetically well-defined sex chro-
mosomes, X, Y and W. Possible female genotypes are XX, XW
and YW, and in males XY or YY. Several different models have

been proposed to explain sex determination with three sex
chromosomes in this species25,26. While in the wild in most
populations all these sex chromosome combinations co-exist,
laboratory lines have been established which are stable for XY/XX
or WY/YY sex determination. WW females can be generated in
the laboratory after experimental manipulation and are viable, but
such individuals have not been reported in natural populations23.
In several species, autosomal modifiers, which occur at low fre-
quency in natural populations, have also been reported to act, and
may explain instances of atypical sex determination24,25. As
another example of sex determination variation in this genus, in
Xiphophorus hellerii, a polyfactorial sex-determining system has
been reported to be acting. Additionally, it has been suggested
that this species has a main genetic system affected by numerous
autosomal modifiers, while more recent studies report that some
strains of X. hellerii have a XW–YY female heterogametic sys-
tem22,23. To our knowledge, environmental sex determination has
not been reported from observations in nature or from laboratory
studies in the genus Xiphophorus.

In general, this genus of fish comprises well known and widely
studied models for organismic and molecular evolution. In par-
ticular, Xiphophorus species have been used as a model system for
studying the evolutionary genetics of hybridisation for more than
50 years27–32 with a recent resurgence of investigations using
modern molecular and genomic data27,33–38. Ancient hybridisa-
tion events between many species in this genus has been infer-
red27,36,37,39 and may be facilitated by apparently weak
postzygotic isolation in Xiphophorus39–41. We previously utilized
SNP data from RAD sequencing to estimate the phylogenetic
relationships among all 26 Xiphophorus species, and uncovered
incongruence between the RAD-nuclear vs. mtDNA phylo-
genies33,36,42. This phylogenetic incongruence likely reflects the
contribution of hybridisation to the evolution of two Xiphophorus
species (Xiphophorus clemenciae and Xiphophorus monticolus)36.
Such phylogenetic incongruence, in addition to asymmetrical
behavioural preferences of first generation hybrids and the
morphology of the putative hybrid taxon being much closer to
one of the possible parental species33, provides support for
hybridisation followed by repeated backcrossing having con-
tributed to the evolution of these species. The inferred ancient
hybridisation event likely involved a female Southern platyfish, X.
maculatus, and a male green swordtail, X. hellerii.

Evidence for reticulate evolution is typically inferred from
analyses of extant populations or species. However, the actual
processes contributing to the introduction of an allospecific
genome and the fate of the extra-specific genetic material are
difficult to identify and document. To better understand the
genomic consequences of interspecific hybridisation for sex
chromosome evolution and speciation, we conducted a long-term
crossing experiment (conducted for >30 years and spanning >100
generations) in fish of the genus Xiphophorus (Fig. 1). We
experimentally mimic the evolutionary scenario, hybridisation
with repeated backcrossing, which is thought to have contributed
to the evolution of at least two of the 26 species in the genus
Xiphophorus33,36,37. Of particular interest is that the parental
species used in the experimental evolutionary crosses differ in
their sex chromosome systems. The maternal lineage used here,
the platyfish X. maculatus Jp163A strain, has an XY sex chro-
mosome system43, whereas the backcross paternal lineage, the
swordtail X. hellerii strain originating in the Rio Lancetilla, has a
ZW sex chromosome system. This experimental set up enabled us
to investigate the genomic consequences of known hybrid
ancestry and timing, and specifically the consequences of sex
chromosome evolution. We find that during the process of con-
tinuous introgressive breeding, the sex-determining region of the
X chromosome derived from the maternal ancestor was

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07648-2

2 NATURE COMMUNICATIONS |          (2018) 9:5136 | DOI: 10.1038/s41467-018-07648-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


translocated to an autosome of the receiving genome, thus pro-
viding empirical experimental evidence of a heterologous transi-
tion. We also note that at its new chromosomal position the
former X-chromosome-specific region is located in a large region
of retained maternal sequences, indicating that the loss of
recombination accompanied the establishment of the novel W
chromosome.

Results
Identification of the sex-determining system and sex linkage
group in X. hellerii. The sex determination system of the

platyfish strain used for our study is firmly established as XY, not
only from a plethora of crossing data but also from molecular
genetic evidence, and there is no evidence for an influence of
autosomal or environmental modifiers (e.g. the platyfish genome
was based on the same strain43). However, for X. hellerii the
situation is less clear and there are conflicting reports ranging
from pure ZW heterogamety to a polyfactorial system with the
absence of sex chromosomes44,45. To identify the sex-determining
(SD) system in X. hellerii, deep coverage RAD sequencing of 60 X.
hellerii individuals (30 males and 30 females) of the Rio Lancetilla
strain was done (sequencing statistics for each individual is
provided in Supplementary Data 1).
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Fig. 1 Schematic outline of the laboratory cross. The parental species X. maculatus and X. hellerii, a female specimen of the first generation hybrid and the
resulting offspring obtained after approximately 100 generation of backcrosses (see Methods for details) are shown. The dorsal red (Dr), the spotted dorsal
(Sd) and the oncogene xmrk loci, closely linked on the X-chromosome of the platyfish (LG21), are also highlighted. A translocation event of a genomic
region containing these loci accompanied by recombination suppression has likely contributed to the formation of a new sex chromosome, a neo W
chromosome (LG2), during the backcross experiment. Fish images by M. Schartl
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To identify genomic regions associated with sex in X. hellerii,
we employed a genome-wide association study (GWAS) and an
analysis of genetic differentiation (FST). For these analyses, we
used the X. maculatus v4.4.2 as the reference genome46, where the
sex chromosome pair was clearly detected in linkage group 21
(LG21). Given the high level of synteny conservation between the
two species’ genomes47 this approach allowed us to directly
compare the sex chromosome regions of X. maculatus and X.
hellerii by plotting the GWAS p-values and the FST estimates on
the X. maculatus linkage groups. The GWAS approach identified
a large genomic region strongly associated with sex distal on
LG21, spanning more than 1/3 of the LG (a genomic region of
approximately 10Mb, from ~13 to ~23Mb, at the end of LG21)
(Fig. 2b). This region includes 243 SNPs that exceeded the
Bonferroni-corrected genome-wide threshold (p-value= 7.64e−7)
and showed an excess of heterozygosity in females vs. males,
conforming to expectations under a ZW sex determination
system. A weaker association was identified in LG7, where 15
SNPs exceeded a threshold suggestive of significance (p < 0.0001)

(the location of the SNPs highly associated with sex that exceed
the thresholds are shown in Supplementary Data 2). A second
region of increased female sex linked heterozygosity besides LG21
representing the W/Z pair was unexpected. A reasonable
explanation is that this region may play a role as a minor sex
modifier. Such autosomal modifiers of a major sex chromosomal
system have frequently been noted in the genus Xiphophorus24.
Further, in our laboratory cross experiments (see below) we
observed exceptional cases of males with a BC100_pigm
phenotype and females with a BC100_wt phenotype (Supplemen-
tary Table 1). Such cases may be caused by autosomal modifiers.

FST analyses confirmed our findings using the GWAS
approach. Several genomic regions exhibited a high degree of
genetic differentiation between males and females on LG21 (FST
> 0.5) on a background of low genome-wide differentiation
(average FST across all loci= 0.004). This pattern was consistent
across the three different sliding windows used (1, 10 and 100
Kb). FST analysis confirmed the weaker association found on LG7
using the GWAS approach. Across the three windows used,
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Fig. 2 Sex-determination system in Xiphophorus hellerii. a A male and female specimen of X. hellerii, males are clearly distinguished by the elongated caudal
fin, ‘the sword’ (Fish images by M. Schartl). b Genome-wide association analysis, where sex is set as a binary case/control variable. The 65,417 SNPs that
passed quality control were used in this analysis. The Manhattan plot shows the −log10 p-value (Fisher’s exact test) of each SNP across the 24 X. maculatus
linkage groups (LGs). The dashed red line indicates the genome-wide significance level (p-value= 7.79e−7), while a suggestive significance (p-value=
0.001) is denoted by the dashed black line. Orange and blue colours are used to distinguish between LGs. The peak showing the strongest association is
located on LG21, and is enlarged in the bottom-right section of the panel. c Sequence coverage of RAD loci in female and male X. hellerii individuals. Each
dot in the scatter plot represents the average coverage across all males (x-axis) against the average coverage across all females (y-axis) for each of the
selected RAD loci. Red dots indicate potential W-linked loci (female-specific loci), while blue dots indicate loci potentially linked to the Z chromosome
(twice the coverage in males than in females). The upper and lower green lines show the expected coverage of X-linked and Z-linked loci in a XY and ZW
sex determination system, respectively. The coverage plot showing the total number of selected loci (average coverage across all individuals >3 and <400)
is reported in Supplementary Fig. 2
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several regions consistently exceeded the set threshold, showing
an average FST value in the upper 1% of the distribution of the per
window FST values. However, the majority of the windows
exceeding the threshold were located on LG21 (see Supplemen-
tary Data 3 and Supplementary Fig. 1).

To provide further confirmation of the genomic regions
associated with sex in X. hellerii, we analysed coverage
information from males and females in order to identify any
non-recombinant regions along chromosomes. Here, we used the
X. hellerii genome v3.0.147 for aligning the RAD reads, derived
from a single female, the heterogametic sex in a W/Z sex
chromosome system. By investigating copy number variation, we
detected 18 candidate female-specific loci (mean coverage in
females >7; mean coverage in males <2) (Fig. 2c, Supplementary
Fig. 2 and Supplementary Data 4) and no male-specific loci.
Again, such a pattern is compatible with female heterogamety and
a W/Z sex chromosome system. We then aligned these loci to the
X. maculatus genome v4.4.2 to compare the location of the sex-
determination system in the two Xiphophorus species. We found
that out of the total 18 female-specific loci, 16 aligned to the X.
maculatus genome, 14 of which were on LG21, which is the sex
linkage group (Supplementary Data 4). This indicates that the
sex-chromosome pairs of X. hellerii and X. maculatus are
homologous. We then identified potential Z-linked loci (mean
coverage ratio in male/female >1.9) (Fig. 2c, Supplementary Fig. 2
and Supplementary Data 4). Of these, we found that 161 loci
aligned to the X. maculatus genome, and the highest number of
loci aligned to LG21 (54: 33.5%), followed by LG13 (27: 16.8%)
and LG10 (17: 10.5%) (Supplementary Fig. 3 and Supplementary
Data 4). Both the W-linked female-specific loci and the Z-linked
male loci were found to be over-represented on LG21 (two-tailed
Fisher exact test: p-value < 0.001). The occurrence of several Z-
linked loci that did not align to X. maculatus LG21 could suggest
the presence of autosomal modifiers. However, given the
potentially high false positive rate when using such an approach,
caution is needed in interpreting these findings.

Taken together the GWAS, FST and coverage analysis results
show that the Rio Lancetilla population of X. hellerii, which is the
paternal species in our long-term crossing experiment, has a ZW
chromosome system. LG21 is the sex chromosome pair and
includes a terminal non-recombining region (spanning from
approximately 13 to 23Mb) and a large (0–13Mb)

pseudoautosomal region (PAR). The boundary between the
non-recombining region and the PARs was identified by a
sudden drop of SNPs significantly associated with sex, as revealed
by the GWAS (Fig. 2b and Supplementary Data 2), a pattern
confirmed by the FST (Supplementary Fig. 1 and Supplementary
Data 3) and the coverage analysis (Supplementary Data 4).
Despite X. maculatus having a different type of genetic sex
determination, the sex chromosomes of both parental species are
homologous.

Introgression of parental DNA in a controlled backcrossing
experiment. We performed a laboratory cross, hybridisation with
backcrossing, and sequenced the first and approximately 100th
generation backcross individuals (sequencing statistics for each
individual are provided in Supplementary Data 5). This crossing
experiment mimicked the evolutionary scenario that has poten-
tially given rise to two Xiphophorus fish species, X. clemenciae and
X. monticolus, and in which the parental species differ in their sex
chromosome systems (see refs. 26,33,36,37,43). Accordingly, we
crossed a female Southern platyfish (X. maculatus, genotype 2N
= 48; XX) with a male swordtail (X. hellerii, genotype 2N= 48;
ZZ). A female F1 fish was used for producing the first backcross
with X. hellerii. Further on, female fish were selected in each
backcross generation for two pigmentation phenotypes that are
encoded on X. maculatus X-chromosome (LG21) close to a
molecular marker, the xmrk oncogene, and mated to X. hellerii
males.

Not unexpectedly, the crossing of two species with opposing
sex chromosomal systems produced an F1 generation that showed
severe signs of hybrid dysgenesis. In such crossing, the number of
offspring that developed to adulthood was very low (usually 1–3,
compared to 20–50 in the purebred parental species) and a
considerable number of these were sterile (Supplementary
Table 1). This was particularly the case for females, which carry
the X. maculatus X chromosome, which was our target for
selection in the long-term crossing experiment. Conversely, those
offspring from backcrosses to X. hellerii, including BC100,
displayed full fertility and a clear-cut sex-linked inheritance of
the pigmentation loci (Supplementary Table 2). All fish (99.7%)
with these markers were females, while the fish without the
selected markers were preponderantly males (91.7%).
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A clear enrichment of maternal alleles was observed in the
BC1_pigm group (Fig. 3) as expected at LG21 (maternal/paternal
allele ratio >0.9) in a genomic region close to the xmrk oncogene
of X. maculatus (Fig. 3). In the >100 backcross generation,
maternal polymorphisms were found at 476 SNPs in the
BC100_pigm group, and at 158 SNPs in the BC100_wt group
(Table 1 and Fig. 4; see the ancestry frequency calculated at each
SNP in Supplementary Fig. 4). Notably, in the BC100_pigm a large
block of retained maternal polymorphisms (204 SNPs) spanning
approximately 10Mb was found in the central part of LG2
(Fig. 4). Specifically, several loci with X. maculatus alleles were
retained in the BC100_pigm group, which in the genome of the
parental X. maculatus exclusively identify scaffolds from LG21
that are located in the region containing xmrk and the
pigmentation loci. No such enrichment was seen on LG21 of
the BC100_pigm group. Hence, this genomic region in the
backcross hybrids is derived from the X. hellerii genome.

To identify genomic regions in hybrid individuals that harbour
X. maculatus polymorphisms, parental alleles were sorted
according to a set of key criteria, sites carrying a maternal
variant in at least one individual of the BC100 generation were
identified and annotated, and the ancestry frequency of each SNP
was calculated. For this analysis, the region in the BC100_pigm
showing high maternal allele density in LG2 was masked because
of the hypothesized different mechanisms by which it was
produced (translocation of the X. maculatus sex-determining
region to an autosome of the receiving genome). After removing
these sites, a total of 204 loci with maternal alleles were identified
in the BC100. Our simulations show that the number of retained
X. maculatus polymorphisms is higher than expected under a
neutral model of hybridisation with backcrossing (p < 0.001;
Fig. 4). This suggests that selection has shaped the hybrid
genomes beyond LG2.

Discussion
By conducting a long-term evolutionary crossing experiment, we
demonstrate the genomic consequences, and particularly the
consequences of sex chromosome evolution, of hybridisation with
backcrossing to the paternal species. This same mechanism has
potentially contributed to the evolutionary history of two
Xiphophorus fish species. Importantly, the parental species in this
cross differ in their sex chromosome systems. We find that arti-
ficial selection for pigmentation phenotypes in backcrossed
individuals results in the retention of a large, maternally derived
genomic block after 100 generations (>30 years). Interestingly,
this experimental design has unexpectedly promoted the forma-
tion of a new sex chromosome, and although no other known
selection is imposed under our experimental conditions, there is
also a higher proportion of maternal SNPs retained elsewhere in
the genome than expected under a neutral model. The retention

of certain X. maculatus alleles in synthetic swordtail–platyfish
hybrids thus appears to be a phenomenon that occurs across a
very short timescale and may be driven by a range of non-
mutually exclusive forces.

In the synthetic hybrid lineage, maternal (X. maculatus) alleles
are concentrated within a region of approximately 10Mb on LG2
after about 100 backcross generations. Such a concentration is not
seen elsewhere in the genome, or in the wild-type non-selected
hybrid lineage. We suggest that a combination of two proximate
mechanisms may have contributed to the retention of this
unexpectedly large maternal genomic block. Firstly, a mechanism
likely contributing to the generation and or maintenance of this
genomic pattern is a translocation event accompanied by
recombination suppression. Specifically, potentially sometime
during the establishment of the selected backcross line the region
of LG21 known to encompass the black pigmentation locus Sd
including the xmrk oncogene, the female sex-determining locus,
and the red colour pattern locus Dr was translocated into the
region on LG2. By imposing selection for these genes (a small
region of former LG2146), the genes and the surrounding non-
recombining regions on LG2 are transmitted as a large block.
Second, theoretical predictions suggest that blocks of an intro-
gressing genome are expected to be longer around selected loci48.
Therefore, due to artificial selection of two genes, sometime
during the early backcross generations a large maternally derived
block encompassing the selected genes may have been main-
tained. We note that the higher proportion of maternal SNPs
retained elsewhere in the genome may be due to the selection of
fertile individuals in each backcross generation, and therefore the
purging of incompatible combinations of alleles while an excess of
maternal alleles are left.

Given that the core of the retained genomic block originates
from the X chromosome and includes the sex-determining locus
(from X. maculatus), the genomic consequences of this form of
hybridisation followed by repeated backcrossing and selection
appears to include the formation of a new sex chromosome. Our
results strongly suggest that an X chromosome from the platyfish,
X. maculatus, was introgressed into the genome of the swordtail,
X. hellerii, which has a ZW sex chromosome system. After
approximately 100 generations of backcrossing, the platyfish X-
chromosome derived sex-determining region (X-SD) has moved
to what was previously an autosomal location. While in the
purebred platyfish homozygosity at the Sd region of X is required
for female development, in the BC100 heterozygosity is sufficient.
Thus the recombinant neo-sex chromosome behaves like a W
with a dominant effect on SD. In the backcrosses, only male X.
hellerii were used, and the almost exclusive female sex of the fish
expressing the selected colour loci on LG2 in the highest back-
cross generations show that the Z-chromosome (LG21) in X.
hellerii has no male determining power. Our observation that the

Table 1 Segregation patterns of the parental alleles

Group Class Paternal alleles (X. hellerii) Maternal alleles (X. maculatus)

F1 Observeda 130,379 (0.500) 130,379 (0.500)
BC1_wt Observed 263,923 (0.743) 91,329 (0.257)

Expected 266,439 (0.750) 88,813 (0.250)
BC1_pigm Observed 336,355 (0.771) 100,059 (0.229)

Expected 327,310 (0.750) 109,103 (0.250)
BC100_wt Observed 525,244 (~1.000) 258 (158 sites)

Expected 525,502 (~1.000) ~0 (~0.000)
BC100_pigm Observed 513,445 (~1.000) 1073 (476 sites)

Expected 514,518 (~1.000) ~0 (~0.000)

For each group, the observed and expected number of alleles and their proportions (in parentheses) are shown
aObserved and expected number of alleles have the same values for the F1 class as a result of the quality filter we applied to the loci selection
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sex-determining region of the X was translocated to an autosome
provides the first empirical evidence of a heterologous transition.
Additionally, at its new chromosomal position the former X-
chromosome specific region is located within a large region of
retained maternal sequences, indicating that the loss of recom-
bination accompanied the establishment of the novel W chro-
mosome. This formation of a new sex chromosome under a
hybridisation with backcrossing scenario highlights the possibility

that the variation in genetic sex-determining mechanisms found
in the genus Xiphophorus, which include simple male and female
heterogametic systems together with more complicated situa-
tions24, may be contributed to by the many hybridisation events
inferred among species in this genus. More specifically, this for-
mation of a new sex chromosome provides a key target for future
functional studies, and for further investigations of the Xipho-
phorus species thought to have arisen through hybridisation with
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backcrossing in the wild. For example, could this new sex chro-
mosome play a role in reproductive isolation? And do the sex
chromosomes of wild hybrids play similar roles?

The X chromosome has been found to play a special role in
reproductive isolation in many species, most likely due to Hal-
dane’s rule, meiotic drive or faster evolution (‘faster X’)49.
However, to date a definitive role for the X chromosome in
reproductive isolation and speciation remains elusive in Xipho-
phorus. In another Xiphophorus species, Xiphophorus neza-
hualcoyotl, that exhibits significant hybrid ancestry, it has been
indicated that the putative X chromosome has lower levels of
coding and non-coding introgression than average, although
reportedly not a clear outlier from other chromosomes27. Sex
chromosome systems in closely related species of fish are gen-
erally highly variable, suggesting changes occur rapidly in these
systems, and neo-sex chromosomes or novel SD regions have
been reported in natural populations50–55.

More broadly, further studies of hybridisation in this genus are
imperative for fully understanding the genomic and adaptive
consequences of the process, including at different time scales.
Importantly, recent advances have been made in the development
and application of genomic methods for detecting hybridisation
and inferring individual ancestries56–58. Indeed, fine-scale signals
of hybridisation can be detected using genomic analyses that
allow the identification of introgressed genes and gene combi-
nations which may be important in adaptation (e.g. refs. 59–61).
Also, long-read de novo assemblies of various species allow more
refined measures of genomic introgression events, a necessary
measure to develop evolutionary theories of molecular mechan-
isms. Broadly, research to date suggests that hybridisation can be
a mechanism for co-opting functional elements from another
genome61,62. For instance, modern humans carry genomic
regions derived from Neanderthal ancestors including loci
involved in skin and hair phenotypes suggested to be adaptive for
humans migrating to non-African environments61,62. Impor-
tantly, previous studies have suggested that the rate of hybrid
genome stabilisation varies across taxa and is dependent on
demographic differences, selection or strong genetic drift57. In
rare and extreme cases, whole genome hybridisations can alter the
course of major traits such as meiosis38.

In the current study, by using an experimental backcross for
over 100 generations we could directly observe the genomic
consequences of hybridisation with backcrossing. Importantly
this was done with two parental species with different sex
(determining) chromosome systems, and where we strongly
selected for distinct phenotypes. It is likely that a combination of
different processes drove the observed genomic outcomes,
including exogenous selection (i.e. artificial selection for the
pigmentation phenotype and female sex), and endogenous
selection such as gene–gene interactions. Further, the genomic
patterns observed here could have come about through a number
of different scenarios that require future investigation. For
instance, the patterns may reflect the potential for a connection
between chromosomal organisation and adaptive evolution in
this system. Alternatively, and potentially equally parsimoniously,
the translocation event may have also been neutral. Recombina-
tion suppression associated with chromosomal rearrangement
can promote local adaptation and the accumulation of genetic
incompatibilities between species (reviewed in refs. 63,64). In
Helianthus sunflowers, where large linkage blocks appearing to
resist recombination were observed in both experimental and
ancient hybrids, gene interactions were invoked as the most likely
explanation for the observed concordance in genomic pattern65.
In another more recent study where introgression and local
adaptation in two poplar species were investigated using fine-
scale genomic techniques, admixed individuals of one species

harbour a telomeric region on one chromosome which had
introgressed from the other species, and this region was found to
contain several candidate genes for local adaptation59. Interest-
ingly, a paralogous block of genes on another chromosome
showed no signs of introgression or signatures of selection59.
Natural hybridisation between several species in the genus
Xiphophorus has been inferred and has reportedly occurred across
different timescales, including contemporary and more ancient
events27,34,36,37,39, suggesting hybridisation, such as the scenario
investigated in our study, may be a key contributor to the evo-
lutionary history of this group of fishes.

Methods
Sex determination in Xiphophorus hellerii. A total of 30 female and 30 male X.
hellerii individuals from the same strain (origin Rio Lancetilla), which were
also used for the backcrossing experiment, were genotyped to identify sex-related
markers, and thus characterize the sex determination system of this swordtail
species strain.

Sequencing and data filtering. Genomic DNA was extracted from fin clips using
standard phenol–chloroform extraction66, followed by RNase treatment. DNA
quality of each sample was assessed by agarose gel electrophoresis and quantified
using a Qubit v2.0 fluorometer (Life Technologies, Darmstadt, Germany).
Approximately 100 ng of DNA template of each sample was used to construct a
single quaddRAD67 library (PstI and MspI were used as rare and frequent
restriction enzymes, respectively), size selected from 450 to 550 bp using a Pippin
Prep platform (Sage Sciences, Beverly, USA) and paired-end sequenced in an
Illumina HiSeq2500 (rapid run mode, 2 × 151 cycles).

The raw fastq files obtained from one Illumina lane (NCBI’s SRA database,
accession no. PRJNA493969) were first processed using the clone_filter module
implemented in the Stacks v1.4668,69 package to identify and remove duplicate
reads. The retained sequence data, stripped of the four random bases at the 5′ end
of each paired read, was then separated by the dual index inner barcodes using the
Stacks’ process_radtags script (option: –inline_inline) with no quality filters applied.
Next, the sequences were processed by the dDocent v2.2.25 pipeline70, with default
parameters, in order to get the individuals’ genotypes. For this RAD data set, the
dDocent pipeline was preferred to Stacks because of its superior ability to deal with
paired-end reads when calling genotypes. Briefly, dDocent calls Trimmomatic
v0.3671, bwa v0.7.1572 and Freebayes v1.1.073 to respectively quality control the raw
reads, align the filtered sequences to the reference genome and infer individuals’
genotypes at polymorphic loci. Trimmomatic was used to remove bases with a
quality score <20 from the beginning and end of reads, and additionally trim bases
with an average quality score <10 in a sliding 5 bp window. The ‘mem’ algorithm
implemented in bwa was applied setting the match score value (-A) to 1, the
penalty for a mismatch (-B) to 4 and the gap penalty (-O) to 6. Freebayes was used
to call genotypes setting a minimum mapping and base quality score to 10.

Sequence variation analysis: filtering and GWAS of sex in X. hellerii. The raw
VCF variant file was obtained by setting the X. maculatus v4.4.2 as the reference
genome46. In this version of the X. maculatus genome, the original scaffolds43 were
tiled along a dense genetic map to create chromosome-length genome assemblies.
The VCF file was filtered using VCFtools v0.1.1574 to retain loci present in a
minimum of 80% of the individuals and having mapping quality (MQ) > 30.
Further stringent filtering was applied using the dDocent_filters script (http://
ddocent.com/filtering/) that relies on both VCFtools and the vcffilter module in the
vcflib package (https://github.com/vcflib/). A total of 65,417 SNPs passed the
quality control applied and were used for the GWAS and the FST analyses (the full
set of filters, and the number of sites removed at each step, are reported in Sup-
plementary Table 3; the individuals’ genotypes were deposited into the Dryad Data
Repository: https://doi.org/10.5061/dryad.7h54h66).

The final VCF file was used to perform a standard genome-wide association
analysis using PLINK v1.90b4.975 setting sex as the binary case/control variable.
The −log10 p-value (obtained with a Fisher’s exact test) of each SNP was shown as
a function of genomic position on the 24 X. maculatus LGs46 in a Manhattan plot
constructed with the R package qqman v0.1.476. The threshold for genome-wide
significance was set at a p-value= 7.64e−7 after Bonferroni correction for multiple
comparisons (0.05/65,417 variants). To identify highly divergent, potential
candidate sex-chromosome regions using an additional line of investigation, the
program VCFtools was used to calculate FST-values between males and females
across different non-overlapping sliding windows (1, 10 and 100 Kb). As a
suggestive threshold for significance, we used the upper 1% percentile distribution
of the per window FST values (1 Kb window: FST= 0.184; 1 Kb window: FST=
0.181; 1 Kb window: FST= 0.157).

Coverage analysis to identify sex association in X. hellerii. As an alternative and
independent approach to identify and verify potential sex-associated SNPs, we
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analysed mapped sequence coverage information from X. hellerii males and females
to identify loci located in the non-recombining and recombination restricted
regions of the sex chromosomes. We first created a set of reference loci using the
ustacks module of the Stacks package in default mode, but setting the minimum
depth of coverage required to create a stack (-m) to 5. As a reference for aligning
the RAD loci, we used the X. hellerii genome v3.0.1 (NCBI accession number:
GCA_001443345.1)47 that is derived from a single female, strain Sarabia, from the
Xiphophorus Genetic Stock Center (TX, USA). Existing evidence suggested that the
female is the heterogametic sex in this species; therefore, because the genome of X.
hellerii was generated using a single female individual, using the X. hellerii genome
would allow us to recover a higher number of W-linked loci than using the X.
maculatus genome. We used this approach to confirm the findings of the statis-
tically more robust GWAS approach, and possibly to identify specific X. hellerii
sex-determining regions (e.g. autosomal modifiers). The total 70,763 loci, extracted
from the Stacks’ catalogue formatted in fasta format (deposited into the Dryad
Data Repository: https://doi.org/10.5061/dryad.7h54h66), were used as a reference
for the alignment of the sequence set of each sample carried out with Bowtie2
v2.3.077 in ‘--very-sensitive’ mode. To avoid redundant information, only one of
the paired loci was retained to serve as a reference. Next, raw coverage values—i.e.
the number of reads mapping to each locus—were extracted from each individual
mapping file using SAMtools v1.2.178 idxstats and normalized using the Median
Ratio Normalization (MRN) function implemented in DESeq2 v1.8.179.

We then calculated the mean coverage for each locus (including males and
females), but first removed loci with coverage below 3 and above 400 because they
most likely indicate mapping errors and repetitive elements, respectively (the
number of loci was reduced to 29,444 after the coverage filters were applied). We
assumed a ZW sex-determination system is operating in this system, given the
results from our sequence variation analysis (see the previous paragraph), and from
the filtered coverage data set we selected (1) potentially W-linked female-specific
loci and (2) Z-linked loci. According to expectations, W-linked loci should be
present only in females, the heterogametic sex, so we applied coverage filters to
satisfy this condition (mean coverage in females >7; mean coverage in males <2).
On the other hand, the Z-linked loci are expected to be present in both sexes, but
they should have twice the coverage in males than in females, as they have two
copies of the Z chromosome (coverage filter to identify these loci: mean coverage
ratio in male/female >1.9). We note that this type of filtering criteria is dependent
on the sequencing depth of coverage used in the experiment, and the use of these
arbitrary filters means the results should be interpreted with caution. However, the
main purpose of the coverage analysis was to confirm the results of the GWAS
analysis. Finally, we used a two-tailed Fisher’s exact test to test for over-
representation of these candidate sex-chromosome loci in the X. maculatus LGs
that were associated with sex (SNP analysis).

Synthetic hybrids: laboratory cross experiment. Laboratory crosses were con-
ducted which mimic the hybridisation with backcrossing evolutionary scenario that
has potentially given rise to at least two Xiphophorus fish species, and may have
contributed to the ancestry of other taxa. We sampled both first generation and
approximately 100th generation backcrossed individuals that had been artificially
selected for two pigmentation phenotypes. We note that all sampled backcross
generations were raised under the same standard laboratory conditions, therefore
excluding any environmental effects.

In these laboratory crosses, one parental species is X. maculatus, where the
strain Jp163A (origin Rio Jamapa) was used, which is also the same strain from
which the reference genome was produced43. This strain has been kept as a
brother–sister mating line for more than 100 generations. The other parental
species used in the laboratory crosses is X. hellerii. The stock is derived from fish
collected from the Rio Lancetilla and has been kept for over 50 years in closed
colony breeding. The X. hellerii stock has been through several bottlenecks (due to
the breakdown of the stock) where only a handful of fish or even a single pair was
used to regenerate the stock. Both parental species are representatives of the two
clades that were earlier shown to have been involved in the initial hybridisation
event generating X. clemenciae and X. monticolus33,36,37.

The first generation hybrid cross was between a female X. maculatus and a male
X. hellerii. Next, a backcross was made between an F1 female, carrying the
pigmentation phenotypes intended for selection and an X. hellerii male. Females
were then selected for each successive backcross according to the two colour
markers. One is the erythrophore pigmentation pattern dorsal red, Dr, which
causes a dark red colouration of the dorsal fin and in hybrids extends from there
over the whole body and the unpaired fins. The second pattern is caused by the
closely linked macromelanophore pattern locus spotted dorsal, Sd. It is expressed as
jet-black pigmentation spots at the base of the dorsal fin in purebred X. maculatus.
In the genetic background of X. hellerii, the macromelanophores cover the whole
dorsal fin, and from there invade the dorsal and caudal body compartment of the
fish. As an effect of the Sd locus component, xmrk oncogene74, the
macromelanophore pattern in the genetic background of X. hellerii is enhanced to
melanotic hyperpigmentation that can progress to malignant melanoma (for an
overview of the pigmentation genetics of platyfish/swordtail hybrids, see ref. 40). Dr
and Sd/xmrk are closely linked on the X-chromosome of the platyfish
corresponding to linkage group 2143,46. In the serial backcross experiment, each
generation consists of 50% fish with and 50% without the chromosome region

where both genes are located, designated as ‘pigm’ or ‘wt’ group. Selecting fish with
the two linked colour markers for breeding mimics natural selection for a certain
phenotype. Therefore, we expect fish with the pigmentation phenotype to carry the
parental platyfish genetic region of the X-chromosome. Backcrossing was
continued in this fashion for at least 100 generations (more than 30 years of
laboratory crosses have been performed, counting was terminated after backcross
50 and on average three backcross generations were produced per year). For the
approximate 100th generation backcross offspring, we expect fish carrying the
pigmentation genes (further on referred to as BC100_pigm) to be enriched for
genetic markers of platyfish LG21. By contrast, segregants not carrying the colour
genes (wild type pigmented, further on referred to as BC100_wt) should not be
enriched for platyfish sequences of this region of the genome.

Sequencing, filtering and genotype calling. Genomic DNA was extracted from
pooled organs (brain, eyes, gills, liver, spleen, kidney) of the two parental species
(two males and two female individuals each for X. maculatus and X. hellerii), four
F1 females, 16 first generation backcross individuals and 18 individuals generated
after about 100 backcross generations. DNA extraction was carried out using the
standard phenol–chloroform extraction66. The DNA quality of each sample was
determined by agarose gel electrophoresis and quantified using a Qubit v2.0
fluorometer. Approximately 300 ng of DNA template of each sample was used to
construct double-digest restriction site-associated DNA (ddRAD)80 libraries fol-
lowing the modifications introduced in ref. 81. DNA digestion was carried out using
the restriction enzymes PstI (rare cutter) and MspI (frequent cutter).

A single ddRAD library containing 46 barcoded individuals (see Supplementary
Data 3 for details) was constructed, size selected from 360 to 430 bp using a Pippin
Prep system and single-end sequenced in an Illumina HiSeq2500 using rapid run
mode with 151 cycles (raw reads were deposited in the NCBI’s SRA database,
accession no. PRJNA493969).

The process_radtags script implemented in the Stacks package was used for
individual demultiplexing and for filtering erroneous and low-quality reads
(options: -c –q). After this process, an average of 2.95 million (X. maculatus) and
2.08 million (X. hellerii) sequences were obtained for the parents; an average of
3.05, 1.91 and 2.34 million sequences were obtained for the F1, BC1 and BC100

individuals, respectively (see Supplementary Data 3). The sequence length of each
read was 146 bp after removing its 5-bp barcode.

Filtered reads were individually aligned to the anchored version of the X.
maculatus genome46 using Bowtie2 with default end-to-end mode. SAMtools was
then used to filter the mapping result by retaining only sites with high quality score
(MQ ≥ 30). Loci construction and genotype calling were performed using the
Stacks’ ref_map.pl pipeline requiring a minimum of five reads (- m 5) to form a
locus and calling genotypes at a 5% significance level using the bounded error
model (upper bound of 0.05). The allelic variants (SNPs) were exported in VCF
format using the Stacks’ populations module.

Sorting of parental alleles in the laboratory cross dataset. An in-house Perl
script was used to identify the subset of sites fixed for alternative alleles in the two
parental species (X. maculatus and X. hellerii) of the laboratory cross following
these criteria: (1) the individuals’ genotypes are homozygous within each parental
species, but they have different allelic variants; (2) the sites selected previously are
heterozygous including both parentals’ allelic variants in F1 individuals; (3) at these
sites, all BC1 and BC100 individuals have at least one paternal (X. hellerii) allele.
After these filtering steps, we obtained a total of 34,632 SNPs (the individuals’
genotypes were deposited into the Dryad Data Repository: https://doi.org/10.5061/
dryad.7h54h66).

Tests for excess ancestry. As we focused on SNPs fixed between the parental
species (see above), each SNP was fully informative about ancestry. Thus, we were
able to directly calculate the frequency of platyfish ancestry in the BC100 lines. We
then used a stochastic simulation to develop null expectations for the frequency of
platyfish ancestry expected in the absence of selection after 100 generations of
backcrossing. We sampled platyfish ancestry frequencies each generation sto-
chastically as yt= binomial(pt−1 * 0.5, 2N) and then set pt= yt/2N. Here, yt is the
number of platyfish alleles in the sample of N diploid hybrid fish and pt and pt−1

are the ancestry frequencies in the current and previous generation, respectively.
The expectation for the binomial is reduced by half each generation as the BC line
is backcrossed to X. hellerii. Using this iterative process and starting from p0= 0.5
(F1s), we simulated expectations for 100 generations of backcrossing with N= 10
or 15 hybrid fish per generation (conservative estimates of the average number of
fish used to maintain the line over time). We repeated this procedure 10,000 times.
In all cases, we found expected platyfish ancestry at generation 100 of p100= 0.

Ethical statement. All animals were kept and sampled in accordance with the
applicable EU and national German legislation governing animal experimentation.
In particular, all experimental protocols were approved through an authorization
(568/300-1870/13) of the Veterinary Office of the District Government of Lower
Franconia, Germany, in accordance with the German Animal Protection Law
(TierSchG).
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Data availability
Raw Illumina sequences were deposited in the NCBI’s Sequence Read Archive
(SRA) database with accession no. PRJNA493969. The genotypes of each data set
that we described in the manuscript (VCF format) and the Stacks' loci we used in
the coverage analysis (FASTA format) have been uploaded to the Dryad Digital
Repository (https://doi.org/10.5061/dryad.7h54h66). A reporting summary for this
article is available as a Supplementary Information file.
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