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ABSTRACT 
 
 

Computational Scattering Models for Elastic and Electromagnetic Waves 
 

in Particulate Media 
 
 

by 
 
 

Timothy Edwin Doyle, Doctor of Philosophy 
 

Utah State University, 2004 
 
 
Major Professor:  Dr. J. R. Dennison 
Department:  Physics 
 
 

Numerical models were developed to simulate the propagation of elastic and electromagnetic 

waves in an arbitrary, dense dispersion of spherical particles.  The scattering interactions were modeled 

with vector multipole fields using pure-orbital vector spherical harmonics, and solved using the full vector 

form of the boundary conditions.  Multiple scattering was simulated by translating the scattered wave fields 

from one particle to another with the use of translational addition theorems, summing the multiple-

scattering contributions, and recalculating the scattering in an iterative fashion to a convergent solution.  

The addition theorems were rederived in this work using an integral method, and were shown to be 

numerically equivalent to previously published theorems.  Both ordered and disordered collections of up to 

5,000 spherical particles were used to demonstrate the ability of the scattering models to predict the spatial 

and frequency distributions of the transmitted waves. 

The results of the models show they are qualitatively correct for many particle configurations and 

material properties, displaying predictable phenomena such as refractive focusing, mode conversion, and 

photonic band gaps.  However, the elastic wave models failed to converge for specific frequency regions, 

possibly due to resonance effects.  Additionally, comparison of the multiple-scattering simulations with 

those using only single-particle scattering showed the multiple-scattering computations are quantitatively 

inaccurate.  The inaccuracies arise from nonconvergence of the translational addition theorems, introducing 

errors into the translated fields, which minimize the multiple-scattering contributions and bias the field 



 

iv

amplitudes towards single-scattering contributions.  The addition theorems are shown to converge very 

slowly, and to exhibit plateaus in convergence behavior that can lead to false indications of convergence.  

The theory and algorithms developed for the models are broad-based, and can accommodate a 

variety of structures, compositions, and wave modes.  The generality of the approach also lends itself to the 

modeling of static fields and currents.  Suggestions are presented for improving and implementing the 

models, including extension to nonspherical particles, efficiency improvements for the algorithms, and 

specific applications in a variety of fields. 

(226 pages) 
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SYMBOLS AND NOTATION 
 
 

nmA , ,   Incoming wave field coefficients of order n,m for longitudinal, shear-electric, nmB nmC
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CHAPTER 1 
 

INTRODUCTION 
 
 
A.  Background 
 

A particulate medium is inhomogeneous matter comprised of discrete particles suspended in a 

solid, liquid, gas, or vacuum.  Particulate media are ubiquitous.  They comprise a large portion of the 

Earth’s crust, and are found in interstellar nebulae, interplanetary plasmas, dust-strewn atmospheres, 

clouds, and ocean sea beds.  Biological systems are also particulate in character, consisting of 

macromolecular suspensions, organelles, cells, and tissues.  Humanity has also engineered materials that 

use particulates to enhance strength (concrete, rubber tires, nanocomposites), provide chemical energy 

(alkaline batteries, solid rocket propellants), or impart new properties (photonic band gap materials, 

electrorheological fluids). 

The propagation of waves through particle-filled media is an important yet difficult problem that 

has challenged physicists for over a century.  An analysis of the propagation of waves through a particle-

filled medium is a study in scattering.  If the particles are widely dispersed the scattering is dominated by 

single-particle scattering, where the waves are scattered only once by a particle.  At low particle 

concentrations, the single-scatterer approximation is usually sufficient to describe the propagation of a 

wave through a particulate medium and to predict the resultant wave properties.     

At high particle concentrations the single-scatterer approximation is no longer valid.  As the 

particles become more closely packed, a larger portion of the waves scatter from one particle to another in 

a process known as multiple scattering.  Important problems in understanding wave propagation in 

particulate media include determining under what conditions single-particle scattering is valid, under what 

conditions multiple scattering must be considered, and determining the extent and effects of multiple 

scattering. 

Multiple scattering is a notorious problem in physics because it is a many-body problem.  There 

are special cases where multiple scattering is exactly solvable, including those involving just a few 

particles or symmetric geometries such as molecular structures or ordered lattices.  However, the multiple-
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scattering problem is not solvable in an exact, closed, analytical form for arbitrary scatterer numbers, 

properties, and arrangements.  Statistical, approximation, or computational methods must therefore be 

employed to physically describe how waves propagate through the particulate medium, and to predict the 

changes in wave properties as a result of the multiple interactions.  Many approximate and statistical 

solutions have been advanced and are successful at predicting the general, overall propagation properties of 

particulate matter.  However, these methods replace the detailed physics of the scattering mechanisms with 

simplistic mathematical idealizations, and are often not a satisfactory substitute for a complete mechanistic 

description of the scattering. 

To date, wave propagation has been most successfully treated for dilute particle dispersions where 

multiple scattering is minimized.1,2  Statistical and approximation methods work quite well for these cases, 

but typically also require particles of uniform size, uniform properties, and low contrast with respect to the 

matrix properties.  Current statistical and approximation methods fail, however, for moderate-to-high 

particle concentrations (above 15 percent for solid particles in a solid matrix) and high-frequency (small 

wavelength) scattering.1,2   

Another deficiency of current statistical and approximation methods is they are not sensitive to the 

details of the microstructure.  Such details include particle size distributions, mixed particle types (i.e., 

particles of different materials), and various degrees of order and disorder in the spatial distribution of the 

particles.1  Statistical and approximation methods typically use an effective medium approximation to 

model the particulate medium.  Such approaches are useful for qualitative analysis of the general behavior 

of the medium, but fall short of a quantitative determination of properties based on the microstructure (i.e., 

particle sizes, properties, and spatial distributions).  Additionally, dense particle dispersions and close 

random packs have yet to be reasonably treated with an exact, first-principles approach.   

Computational physics has grown into a major area of research over the last quarter century, 

complementing both experimental and theoretical physics.  Computational models allow simulation of 

many phenomena not approachable with analytic methods, including many-body systems (molecules, 

polymers, amorphous structures, planetary and stellar systems), continuous systems (atmospheric 
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circulation, material stress states, thermal properties), and complex or chaotic systems (biological 

structures, neural networks, cellular automata, coupled dynamical systems). 

Due to the phenomenal increase in computational speed, capability, and accessibility in the past 

few decades, computational simulations in condensed matter and materials physics have become powerful 

and useful alternatives to statistical, approximation, and experimental methods.  Computational models 

have allowed the numerical solution of problems and simulation of physical systems that were previously 

unsolvable and beyond analysis.  They additionally offer the following advantages:3

1. They are ideally suited for many-body problems, providing exact and detailed information on the 

microscopic processes, and deriving macroscopic properties from these processes in an ab initio 

first-principles manner. 

2. They are a more physics-based, mechanistic approach as compared to empirical approaches since 

they directly calculate the relevant interactions to arrive at the final solution. 

3. They are flexible, allowing a wide range of variables and virtual experiments to be tested in the 

model, thereby increasing our fundamental understanding of the physical behavior of the studied 

system. 

4. They represent virtual instruments, allowing close-up (virtual microscope), distant (virtual 

telescope), or spectral (virtual spectrometer) views of the studied system. 

Development of computational models for multiple scattering in particulate media is the focus of 

this research.  Although such models have been developed in the past, opportunities for improvements in 

both theory and implementation exist that can increase their versatility, accuracy, and usefulness.  

Additionally, the exponential growth in computer capabilities and increasing access to those capabilities 

over the past two decades has made the first-principles modeling of wave propagation in extended 

particulate media inexpensive and practical. 

This dissertation presents the development of analytical expressions and numerical algorithms for 

computation of multiple scattering in particulate media.  These computational models are based on a 

Vector Multipole Iterative Scattering Technique (VMIST).  The models simulate particle-filled media with 

mixed, arbitrary particle sizes, particle properties, and packing structures.  The particles are modeled as 
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spheres, with vector spherical harmonics used as basis functions for the fundamental excitations of the 

particles.  These functions are general in character and can be applied to both electromagnetic and elastic 

waves.  The VMIST models compute the propagation of waves through a particulate medium by using 

single-particle scattering solutions to obtain the primary scattered fields.  The scattered fields are then 

translated from one particle to another using translational addition theorems.  The single-particle scattering 

solutions are then applied again to yield the secondary scattering contributions.  This process of scattering-

translating-scattering is repeated over and over again via iteration until the scattered field solutions 

converge to a specified criterium. 

 
B. Objectives 
 

The primary objective of this research was to develop ab initio computational models to describe 

how elastic and electromagnetic waves propagate through a particle-filled medium.  The models developed 

were intended to be used as tools for various purposes, and were designed with generality to address the 

broad-ranging media and applications that can be profitably addressed with this approach.  This generality 

includes the ability to model a three-dimensional system of particles with various sizes, properties, and 

packing densities.  The particles can also be arranged in any arbitrary configuration including periodic, 

quasicrystalline, and random.  The generality also extends to a full range of wavelengths—no long or short 

wavelength approximations are made. 

Important questions this research was intended to address included the following: 

1. Can elastic and electromagnetic waves be modeled using the same mathematical formalisms, 

solution methods, and program code structure? 

2. Does the use of pure-orbital vector spherical harmonics confer an advantage in the development 

of the multiple-scattering theory? 

3. How efficient and accurate are the translational addition theorems, and how do they vary as a 

function of the spherical particle configurations (radii, distances, and angular orientations)? 

4. Are the translational addition theorems fast and accurate enough for media and material 

simulations containing large numbers of particles (103-105)? 
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5. How well do simulations using nearest-neighbor and single-scatterer approximations compare to 

multiple-scattering simulations? 

Scattering models are tools used for a wide variety of purposes in many scientific and engineering 

disciplines.  From a broad perspective, there are three reasons for developing scattering models for 

particulate media: 

1. To discover the interactions of matter with energy as a function of structure.   

By determining how waves behave in an arbitrary arrangement of particles, we can discover new 

phenomena and physics by studying configurations with varying degrees of order-disorder, complexity, 

anisotropy, and packing density (particle concentration).  Currently such studies are limited by the types of 

experimental samples that can be manufactured and tested, or by the accuracy of approximation or 

statistical approaches.  Computational methods based on first principles are necessary for pushing our 

knowledge of these physical systems and their interactions with classical fields further. 

2. To determine the structure of remote or inaccessible matter. 

By modeling how waves are altered as they travel through a particle-filled material or medium, we 

can find out more about the structure and properties of that material or medium.  This is the goal in 

nondestructive evaluation, remote sensing, seismic exploration, astrophysical observations, and medical 

imaging.  The properties we wish to discover include internal variations in elastic or electromagnetic 

properties, particle size distributions, particle number densities, and microstructure.  Knowing such 

properties allows the discovery of tumors and disease in people, petroleum or gas in rocks, plankton 

blooms in the ocean, material degradation and aging in particulate composites, precipitation in clouds, and 

dust particles in deep space. 

3. To modify the structure of matter for new materials and tools.   

By predicting how waves will behave in a particle-filled material or medium, we can custom 

design such a material or medium to have useful and unique electromagnetic and acoustic properties.  This 

is the goal in the development of photonic and acoustic band gap materials, radiation-absorbing paints and 

coatings, advanced or multi-functional particulate composites, nanocomposites, ultrasonic transducers and 

contrast agents, nano-dusts (collections of very small sensors or robotic elements), nonlinear optical and 
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laser materials, and new biomaterials.  Having the capability to predict how waves interact in a particle-

filled medium will allow us to computationally design these new materials and devices based on the 

complex physical interactions that occur in particle-filled materials. 

 
C.  Scope 
 

The approach for developing the VMIST computational models involved three steps: 

1. Derive the mathematical expressions for single-particle scattering from the fundamental field 

equations. 

2. Derive and test the equations for translating the scattered fields from one particle to another. 

3. Design, build, and test iterative algorithms for computing the multiple scattering.   

Both elastic and electromagnetic fields were modeled in this work since they are both vector fields arising 

from the vector Helmholtz equation.  The scattering theories for both types of fields can therefore use the 

same wave functions, translational addition theorems, and mathematical methods. 

Several key areas were central in developing and improving upon the scattering models.  These 

areas included (1) a review of the vector spherical wave functions used to date for scattering, (2) a 

reformulation of the single-sphere scattering problem using pure-orbital vector spherical harmonics, (3) 

rigorous solution of the scattered and transmitted field amplitude coefficients using appropriate boundary 

conditions, (4) rederivation of the translational addition theorems using pure-orbital spherical harmonics 

and an integral approach, (5) numerical testing and comparison of the rederived addition theorems with 

previously published versions, and (6) coding, testing, and demonstration of the scattering models in 

Fortran programs.  Each of these topics will be presented in the following chapters in the indicated order. 

For the purposes of this monograph, a particulate medium is defined as a collection of particles of 

one or more material compositions, dispersed in a medium (the matrix) of different composition, structure, 

or phase (Figure 1-1, left).  The microstructure of such a particulate state is known as a dispersion 

microstructure.  A dispersion microstructure can be differentiated from the granular state by the 

observation the granular state is characterized by closely packed particles in contact and without a 

substantial matrix affecting the particle behavior (Figure 1-1, middle).  It is the nature of the physical 
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contacts, packing structure, and resultant dynamics that are of interest in granular physics.  A particulate 

medium can also be differentiated from the polycrystalline state typical of metals, ceramics, and many 

rocks (Figure 1-1, right).  The polycrystalline state is comprised of a mosaic of individual, interlocking 

grains of various crystalline phase and/or composition.  Although this definition for particulate media 

appears restrictive and limited in application, there exists numerous materials and states of matter that are 

described well with a dispersion microstructure (see Chapter 7). 

The scattering models developed in this work are limited to dispersion microstructures consisting 

of spherical particles embedded in a matrix.  They are therefore not applicable to polycrystalline 

microstructures such as found in most metals, or to granular materials such as sand.  The material 

properties of the particles are assumed to be isotropic, homogeneous, and linear within the particle 

(although extension of the models to concentrically layered spheres would be straightforward).  The 

material properties of the matrix are also isotropic, homogeneous, and linear. 

 
D.  Originality and significance of contribution 
 

The use of multipole translations and iteration to model multiple scattering in many-particle 

systems is not new, and has been reported by several groups over the past 30 years.  Many opportunities 

exist, however, to improve upon the previously published approaches, to extend the application of the 

models to more complex material systems or wave propagation modes, and to test the accuracy and 

convergence of such approaches.  Such improvements, applications, and evaluations comprise the original 

contributions of this work.  These contributions include the following: 
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FIG. 1-1.  Illustrations of dispersion (left), granular (middle), and polycrystalline (right) microstructures. 
1. Reformulation of the multiple-scattering formalism using the more efficient and elegant pure-

orbital vector spherical harmonics and associated vector multipole fields. 

2. A comparison of vector multipole functions used for spherical scattering, and introduction of a 

modification that reconciles the two most widely used definitions and is congruent with the use of 

translational addition theorems. 

3. A clear and rigorous solution of the boundary conditions for spherical scattering using pure-

orbital vector spherical harmonics, showing that solution of the boundary conditions requires 

application of orthogonality conditions for vector functions as opposed to scalar functions. 

4. A new and more straightforward derivation of the translational addition theorems for vector 

multipole fields based on pure-orbital vector spherical harmonics and an integral method. 

5. Two new and numerically equivalent methods for deriving and computing the field translation 

coefficients, based (1) on direct translation of the fields, and (2) on translation of the potentials 

and subsequent calculation of the fields using the gradient and curl operators. 

6. A numerical comparison of published addition theorems, showing the equivalence of this work’s 

rederived form with the most widely cited theorems, but showing significant numerical 

inaccuracies for other recently published theorems.  (These tests appear to be the first comparisons 

of addition theorems in the literature.) 

7. Evaluation of the convergence behavior of the addition theorems in a more direct and accurate 

manner than presented in the literature.  The results indicate other researchers have significantly 

underestimated the number of multipole expansion terms (maximum multipole order) required for 

convergence. 

8. Application of the multiple-scattering formalism to the scattering of full elastic waves 

(longitudinal + shear modes) and electromagnetic waves in random particle systems (previous 

studies were limited to either longitudinal waves or ordered particle systems). 



 

9

9. Comparison of scattering model results for multiple scattering with those using single-particle 

scattering and nearest-neighbor approximations, and preliminary determination of the limits of 

validity for the multiple-scattering models. 

10. Quantitative testing of the multiple-scattering theory and identification of deficiencies in the 

approach, with emphasis on convergence and multipole expansion truncation errors. 
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CHAPTER 2 
 

REVIEW OF PREVIOUS WORK 
 
 

A.  Single-sphere scattering 
 

Although Mie is credited with having solved the problem of electromagnetic scattering by a sphere 

in 1908 (and hence given immortal status with the universal use of the term Mie scattering), other 

prominent scientists made important contributions to the problem prior to 1900, most notably Lorenz and 

Thompson.4-6  Debye also published solutions in 1909.7  Stratton established the modern form of the 

solution with the use of the vector spherical wave functions M and N, and later solutions follow this 

format.8-14  Logan presents the early history of the electromagnetic solution for the single sphere, with 

emphasis on the contributions prior to and concurrent with Mie’s work.15,16

The scattering of elastic waves by a single sphere also had beginnings in the 19th century, starting 

with Clebsch and Lord Rayleigh.17,18  These early attempts were only partial solutions, however, in that 

they were constrained to acoustic (sound) waves in a fluid such as air, which can only support longitudinal 

waves.  Clebsch’s work, although forgotten and lost for a century, established the foundations for solving 

this class of problems in 1863 with the use of separation of variables and boundary conditions.16  In 1877, 

Lord Rayleigh (John William Strut) introduced the concepts of spherical surface harmonics Sn and 

spherical harmonics ψn; however, the forms of these functions are unfamiliar to modern physicists.  He also 

used normal Bessel functions and Legendre polynomials.  The specific problems Lord Rayleigh solved 

included air vibrations emitted by a vibrating sphere, air vibrations inside a spherical enclosure, air 

vibrations between concentric spherical shells, and the scattering of plane wave air vibrations from a 

spherical obstacle. 

Progress was slow, however, for the single-sphere elastic wave problem.  In the mid-20th century 

Faran extended the scattering work to solid spheres within which both shear and longitudinal waves can 

exist.19  Substantial progress was not seen for the single-sphere elastic scattering problem until 1956, when 

Ying and Truell published their benchmark paper.20  Ying and Truell’s paper became the most cited and 

well-known work on the scattering of elastic waves by a spherical particle.  The article solved the scattering 

problem for a sphere within an elastic solid, and treated three cases:  scattering by a rigid sphere, an elastic 
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sphere, and a spherical cavity.  Their work was based on methods used for the solution of Mie scattering—

boundary condition solutions and wave functions based on spherical Bessel functions and Legendre 

polynomials.  Their work also addressed important issues in particle scattering such as mode conversion 

and the frequency dependence of the scattering.  Numerous subsequent papers published up to the 1990’s 

have verified, extended, and generalized this work.21-34  Other approaches to the single-sphere elastic wave 

scattering problem have included resonance and ray tracing methods.35-39

Although the sum of the work on single-sphere scattering ranks as a substantial and important 

contribution to science, much of it is presented with cumbersome notation and definitions.  Specifically, 

there is a widespread reliance on the vector spherical wave functions defined by Stratton (L, M, and N for 

the longitudinal and two transverse modes of propagation), which are constructed from scalar functions 

(spherical Bessel, Legendre, and trigonometric functions).  Very little work has been found in the literature 

that solves the single-sphere scattering problem with the use of more modern (pure-orbital or pure-spin) 

vector spherical harmonics.  The value of such an approach will be demonstrated in following chapters. 

 
B.  Mathematical tools 
 
 The vector spherical wave functions presented by Stratton—L, M, and N—have been and are still 

widely used for both electromagnetic and elastic (acoustic) scattering theories for spherical coordinate 

systems.9  These definitions have also been used in such venerable texts as Morse and Feshbach, and 

Jackson.40,41  Closely-related functions are those defined by Hill.42,43

A more elegant definition for these functions are the vector multipoles presented by Rose in 1957, 

and used by Greiner and Maruhn.44,45  Whereas the vector spherical wave functions L, M, and N are 

defined component-by-component using scalar spherical harmonics (or Legendre functions + sine/cosine 

functions), the vector multipoles are more simply expressed using vector spherical harmonics.  There are 

several types of vector spherical harmonics, the most useful being the pure-spin and pure-orbital 

harmonics.46,47  Pure-spin and pure-orbital denote the vector spherical harmonics are eigenfunctions of the 

spin and orbital angular momentum operators, respectively.  The pure-orbital vector spherical harmonics 

were defined by Edmonds in 1957, and are presented in current mathematical physics texts.48,49
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Greiner and Maruhn present a very good discourse and introduction to vector spherical harmonics 

and vector multipole fields (longitudinal, electric, and magnetic) in terms of modern vector spherical 

harmonic notation (pure-orbital harmonics).45  Thorne presents a very good review of vector spherical 

harmonics with modern notation (pure-spin and pure-orbital harmonics) and vector multipole fields.46  

Varshalovich et al. is also a very useful reference providing extensive detail on the relationships, 

properties, and forms of scalar, vector, and tensor spherical harmonics.47   Varshalovich et al. additionally 

includes chapters on Clebsch-Gordan coefficients, Wigner’s 3-j (or 3jm) symbols, and other mathematical 

forms useful in describing spherical functions in classical theory and angular momentum in quantum 

theory.  Arfken and Weber has been updated with fairly good sections on vector spherical harmonics, 

spherical Bessel functions, and solution of the Helmholtz equation.49

The use of both Stratton’s vector spherical wave functions (L, M, and N) and Rose’s vector 

multipoles in the literature raises the following questions that are addressed by this dissertation: 

1. Which formalism is most useful and concise for both electromagnetic and elastic wave scattering 

problems? 

2. What is the relationship between these two formalisms, and would it be useful to modify one or 

the other to make them more compatible? 

 The radial functions in both the vector spherical wave functions and vector multipoles are the 

spherical Bessel functions.  These are defined in numerous texts.49,50  Abramowitz and Stegun are an 

indispensable resource for mathematical formulae, especially recursive relations for calculating spherical 

Bessel functions.50  Gillman and Fiebig present a simple computer program that resolves the growth of 

large errors for large n in the spherical Bessel function jn(x) by using a downward instead of upward 

recursion algorithm.51  This algorithm was found essential in the programming of the VMIST 

computations. 

Translational addition theorems for vector spherical wave functions are the core mathematical 

tools for a multipole approach to multiple scattering.  Addition theorems for the scalar spherical wave 

functions were first derived by Friedman and Russek, and were also presented by Rose.52,53  Stein corrected 

the scalar addition theorems of Friedman and Russek, and also introduced addition theorems for the vector 
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spherical wave functions M and N.54   Cruzan furthered the development of the vector addition theorems 

and essentially rederived them in 1962 (however, still in the cumbersome notation of Stratton’s M and N 

multipoles).55

 Numerous papers have been published since Cruzan that rederive or reformulate the scalar and 

vector translational addition theorems.56-69  However, Cruzan’s derivations remain the benchmark and are 

the most widely used form of the translational addition theorems.  Although the scalar addition theorem 

presented by Cruzan is straightforward, other published versions are not as approachable.  The confusion in 

the literature for the vector addition theorems is even worse.  The number and variety of translational 

addition theorems published over the past 50 years introduces the following problems: 

1. Most of the theorems, including Cruzan’s, use notation and functions specific only to the paper.  

This specialized notation makes comparison of the different theorems difficult, and the inability to 

adhere to standard mathematical usage impedes their interpretation. 

2. Much of the notation used in the theorems is unwieldy, cumbersome, unfamiliar, or vague. 

3. Many of the theorems use uncommon spherical harmonic definitions and normalizations, or 

alternate vector spherical harmonic definitions. 

4. Many of the theorems differ both in derivation method and mathematical content.  Even a cursory 

examination reveals discrepancies between theorems that can only be interpreted as errors in some 

of the published theorems. 

A review of the literature revealed that the following work was needed to resolve these issues: 

1. A new, more straightforward, and mathematically rigorous derivation method for the vector 

addition theorems. 

2. Vector addition theorems faithful to standard mathematical usage. 

3. Vector addition theorems applicable to both Stratton’s vector spherical wave functions and Rose’s 

vector multipole notation. 

4. Verification and comparison testing of the theorems to test their correctness, convergence, and 

computational efficiency. 
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Since having correct and compatible translational addition theorems are necessary for constructing a 

multiple-scattering computational model, these tasks were each addressed in this dissertation. 

 
C.  Two-sphere and sphere-plane scattering 
 
 Liang and Lo were one of the first groups to solve the two-sphere problem for electromagnetic 

scattering using multipole translations.70  They applied Cruzan’s translational addition theorems for vector 

spherical wave functions, but limited the problem to spheres along the z-axis to simplify the addition 

theorems.  Bruning and Lo generalized the solution to spheres with arbitrary orientation and distance.71,72  

New and Eisler solved the two-sphere problem for acoustic scattering (pressure or longitudinal waves only) 

using Green’s functions and Sack’s addition theorems.56,73  Other two-sphere solution methods have used 

Green’s function in bispherical coordinates, the generalized multipole technique, far-field approximations, 

dipole approximations, model analysis, and the T-matrix (transfer matrix) approach.74-79  Other multipole 

solution methods for the acoustic scattering by two spheres have also been presented.80,81

 A closely related problem is the scattering by a sphere close to a plane boundary or surface.  

Gaunaurd and Huang solved this problem for acoustic (longitudinal) scattering using the scalar addition 

theorem, and applied it to the scattering of sound by air bubbles near the ocean surface.82,83  A ray-acoustic 

(analogous to ray-optic) approach has also been applied to near-surface ocean bubbles.84  Electromagnetic 

scattering of spherical particles near surfaces have been modeled as well, and an interesting application is 

the detection of contaminants and defects on electronic materials.85,86

 
D.  Multiple scattering with multipoles 
 
 There are many computational methods that use multipole expansions for the multiple scattering 

of waves from a collection of spheres.  In addition to the iterative approach, there are the order-of-

scattering, matrix, fast multipole, multiple multipole, and dipole approximation methods.  Comberg and 

Wriedt review the various multipole methods and compare three of them (order-of-scattering, multiple 

multipole, and dipole approximation methods).87

 Iterative computation of multiple scattering for electromagnetic waves has been reported by 

Hamid et al., Mackowski, and de Daran et al. using Cruzan’s vector addition theorems and Stratton’s N and 
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M wave functions.88-92  Mackowski rederived the addition theorems and found recursive expressions to 

simplify their computation.91  Fuller and Kattawar use the order-of-scattering method, which is also an 

iterative solution, but one that separates the scattered fields into first reflection, second reflection, etc. and 

sums the scattered field coefficients separately based on this order of reflection.93,94   

Borghese et al. first reported a scalar approach using Debye potentials, but shifted to vector 

functions and a matrix solution approach in subsequent studies.95-98  The matrix approach essentially treats 

the particle-to-particle interactions and their scattered field coefficients as a linear algebra problem.  With N 

spheres and two scattered field components (N and M) for each sphere, the problem becomes one of 

solving 2N equations with 2N unknowns.  As expected, solutions for large N are problematic, and Borghese 

et al. limited their models to small (two to four) clusters of spheres.  Quinten and Krebig also use a linear 

solution approach for small (two to five) clusters of spheres.99  Mackowski also adopts the matrix 

approach.100

It is clear from the number of respective articles published for each method the matrix approach 

has been much more thoroughly studied and applied than the iterative approach.  The matrix approach sees 

full implementation in the T-matrix (transfer matrix) method developed by Waterman for both 

electromagnetic and elastic wave scattering.101-104  Again, the T-matrix approach uses multipole expansions 

and translations via addition theorems.  However, the T-matrix method is more generalized, and allows 

arbitrary scattering geometries to be formulated and solved, including layered particles, nonspherical 

particles, and point scatterers.105-117  Again, the drawbacks of the T-matrix approach are the matrices 

become intractable for large numbers of particles and are often sparse.  This makes inversion and solution 

of the matrices difficult for realistic simulations of a particulate medium.  Stout et al. address these 

problems and present a remedy with a recursive T-matrix method.118

 The most relevant application of the T-matrix approach to the problem addressed by this 

dissertation (the scattering of elastic and electromagnetic waves in a random particulate media) was 

recently published by Gumerov and Duraiswami.119  However, their work only addresses acoustic (sound) 

waves in air, and therefore only requires the scalar addition theorem to translate the potential of the 

longitudinal (compressional) field.  A computational solution for full (longitudinal + shear) elastic wave 
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scattering in a random ensemble of spheres was not found after a thorough literature search.  Part of the 

reason for this is the full elastic wave solution is more complicated than that for either purely 

compressional sound waves or electromagnetic waves.  Elastic waves have three fields to be specified (one 

longitudinal + two shear), whereas sound waves in fluids only have one field (longitudinal) and 

electromagnetic waves have two (electric + magnetic).  Additionally, the longitudinal field is coupled in the 

solution matrix by the boundary conditions to one of the shear fields.  This coupling is minimized in the 

case of sound scattering in fluids (the only shear fields are inside the particle), and absent in 

electromagnetic scattering. 

Another reason for the absence of elastic wave scattering models for particulate media is due to 

the emphasis on the T-matrix approach in the literature.  Solution of the elastic wave scattering problem for 

large numbers of particles is currently not practical with the T-matrix approach due to the large size and 

complexity of the matrices (3N × 3N since there are three external fields for each particle).  The iterative 

approach does not have this limitation, however, and can be advantageously applied to the elastic wave 

scattering problem (as will be shown in this work). 

The limitations of the T-matrix approach have spurred the development of more efficient but less 

exact multipole computation methods.  The fast multipole method (FMM) is one such example.120-124  The 

FMM uses a hierarchal approach that first models a small ensemble of particles and computes the scattered 

fields for the particle-to-particle interactions.  The FMM then constructs a second-order ensemble using the 

small ensemble as the building blocks.  The scattered fields from the small ensemble interact with the 

scattered fields from other small ensembles to yield the scattered fields for the second-order ensemble.  

Even higher-order ensembles can then be constructed and the computational process continued until the 

total scattering field is calculated.  Note the FMM is an approximation in that the scattering interactions are 

approximated by progressively increasing the scale of the scattering volume/entity. 

Another approximate multipole method is the multiple multipole method.125-128  In this method, the 

scatterers are much smaller than the wavelength.  Therefore, multiple scattering is treated with simplified, 

non-orthogonal multipole expansions from various expansion points distributed throughout the medium.  
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The advantage of the multiple multipole method is it converges faster than methods that use conventional 

multipole moments tied to the particles. 

 There are various other multipole approximation methods.  The discrete dipole approximation uses 

the superposition of dipole fields from a large array of dipoles to model the scattered fields from arbitrarily 

shaped objects and particles.129  Other methods include indirect mode matching (IMM) of the multipole 

fields, far-field dipole-dipole coupling approximations, and ray theory.130-133  

 
E.  Non-multipole multiple-scattering methods 
 
1.  Other computational methods 
 
 The most popular computation methods in engineering disciplines are the finite element and finite 

difference methods, so it is not surprising these have been applied to multiple scattering in particulate 

media.134-140  The primary drawback of these methods is the amount of computation required to perform 

simulations of even modest microstructures.  For example, to model a collection of spherical particles in a 

material, both the spheres and the matrix must first be divided (discretized) into polyhedral cells or volume 

units (the grid mesh) that approximate the microstructure.  An enormous number of cells are required to 

model three-dimension problems.  Even with the problem reduced to two dimensions, the number of cells 

for a single particle ranges in the hundreds.  There are trade-offs involved in selecting a mesh size as 

well—a finer mesh will provide a higher fidelity solution, but at the cost of an increased computational 

burden. 

To date, most finite methods have been applied to only single-particle scattering or to scattering in 

lattices where the microstructure can be simplified with repeating structural units.136,137  To retain 

computational tractability, scattering in random microstructures has been limited to either two-dimensional 

simulations or the use of a repeating disordered cell containing only a few particles.134,138-140  A related 

method, the boundary element method, has been used extensively in ultrasonic scattering, but has yet found 

utility in the multiple-scattering problem.141

An interesting and unusual computational method to be applied to multiple scattering in 

heterogeneous media is the lattice-Boltzmann approach.142-144  This approach models the particles on a 

discrete lattice with both wave and phonon-like interactions, and has been used to simulate seismic wave 
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propagation through rock.  The approach greatly simplifies the microphysical interactions, but may be 

applicable to studying how microfractures, pores, and grain texture in rocks affect macroscopic wave 

properties such as anisotropy and attenuation. 

 
2.  Statistical and approximation methods 
 

Due to the complexity of the multiple-scattering problem, the lack of computational capability, 

and a desire for elegant, practical solutions, numerous statistical, approximation, and integral methods were 

devised in the mid-20th century and continue to be developed up to the present.145-187  Since these methods 

are not multipole-based simulations but do present competing solutions to the multiple-scattering problem, 

they will be briefly summarized.  

Foldy was one of the first to address the problem of the multiple scattering of scalar waves from 

randomly distributed particles based on a simple statistical approach that averaged over particle 

configurations using probability distribution functions.145  Lax obtained an effective field description using 

a proportionality constant (instead of an iterative equation with successive scattering terms) and a quasi-

crystalline approximation (named such since it is only rigorously valid for crystalline particle 

configurations).146-147

Epstein and Carhart calculated the attenuation of acoustic waves in fog due to viscosity and 

thermal losses as well as scattering losses.148  The scattering losses, however, were determined from single-

particle scattering, and no multiple scattering was assumed.  Waterman and Truell, and Fikioris and 

Waterman, also used a configurational averaging approach to obtain the complex propagation constant 

(wave vector κ(ω,ρ), from which velocity and attenuation can be obtained) for a medium with randomly 

distributed scatterers.149,150  Devaney used the self-consistent method of Lax and ensemble averaged over 

the Green tensor.151

Drolen and Tien treated multiple scattering using the form factor technique from X-ray scattering 

theory.  The technique uses a pair distribution function to correlate the relative positions of the particles in 

the system.152  Yuen and Dunaway described multiple scattering with a successive approximation 

procedure that is valid for very generalized scattering.153  Sabina and Willis used an embedding scheme 
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with approximate solutions for the single-particle scattering and explicit equations for the multiple 

scattering that are solved by iteration.154

Beltzer presented an effective medium approach for acoustic waves in random composites that 

used a differential scheme.156  The method first computes the effective properties for small particles in the 

matrix, thus generating a first-order effective matrix.  Effective properties for particles of larger size 

embedded in this first-order effective matrix are then computed, yielding a second-order effective matrix.  

The process is continued until the macroscopic effective properties are acquired. 

Some of the other more significant multiple-scattering theories include those based on the density-

of-states approach,157-161 variational/quantum mechanical approaches,162-165 radiative transfer and Dyson 

equations,166-171 diffusion approaches,172-174 path integral approaches,175-182 and the Lippmann-Schwinger 

equation.183-185  The most notable density-of-states approach is by Lloyd and Berry, whose scattering 

expressions are used frequently for acoustic applications.160  The radiative transfer/Dyson equation 

approach is analogous to electromagnetic (optical) radiative transfer theory, but assumes weak material 

heterogeneity.166-171

van Rossum and Nieuwenhuizen developed a multiple-scattering description using diffusion 

theory plus corrections derived from radiative transfer equations for mesoscopic scales.172  They also 

discussed the relationship of diffusion-type multiple scattering to weak localization and Anderson 

localization.  Feynman introduced the path integral approach to quantum mechanics, which has been 

applied to the multiple scattering of classical waves.175  Flatté et al. applied the path integral approach to 

scattering environments where the variations in acoustic properties are smooth and not large, including 

ocean and seismic scattering.176,177

 Several researchers use a combination of multiple-scattering theories and approaches to refine the 

approximation.  For example, Mishchenko developed a statistical approach to electromagnetic scattering in 

particulate media by first beginning with the Lippmann-Schwinger equations.185  He then uses the 

averaging equations developed by Foldy and Lax, and further applies other approximations such as the far-

field approximation.  Although such a course may improve upon previous statistical theories and 

approximations, one wonders how far from physical reality it may take us. 
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Two very good reviews on multiple-scattering theories for ultrasound are found in Povey and 

McClements, and Povey.186,187  Povey and McClements present a wide range of contributed articles on the 

theory, applications, and experimental measurements of ultrasound propagation through suspensions and 

other heterogeneous systems.186  The theories focus on effective medium and statistical approaches such as 

those by Foldy, Lax, and Lloyd and Berry.  Povey also presents a review of the theory, experimental 

methods, and applications of ultrasonic propagation specifically through suspensions.187  The theory is 

based on the development and results from Ying and Truell for single-particle scattering along with 

expressions for multiple scattering from Waterman and Truell, Fikioris and Waterman, and Lloyd and 

Berry. 

 Table 2-1 summarizes the state of the art for some of the more popular scattering models 

reviewed, and compares them to the accomplishments and limitations revealed by this work. 

 
TABLE 2-1.  State of the art for electromagnetic and elastic wave scattering models, and achievements and 
limitations of this work. 
 

Model Type 
 

State of the Art 2004 Achievements and Limitations 
of this Work 

Effective medium and 
integral approaches 

Approximations valid for 

• Dilute particle concentrations 

• Uniform particle size and type 

• No viscoelastic or shear 
properties 

 

Finite element and 
finite difference 
methods 

Computationally intractable 
without simplified microstructure 
(repeating cell, etc.) 

 

Multipole approaches Current results: 

• Longitudinal waves in dilute 
disordered media 

• Longitudinal and shear waves 
in simple lattices 

• Electromagnetic waves for 
modest clusters and particle 
packings 
 

T-matrix, fast multipole, and 
recursion methods increase 
computation speed 

Electromagnetic and both longitudinal 
and shear waves modeled for 

• Dense packings (up to 50%) 

• Large packings (up to 12,800 
particles) 

• Highly disordered 

• Variable particle sizes and types 
 

Methods are slow due to direct 
translation of fields and iteration 
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CHAPTER 3 
 

APPROACH 
 
 
A.  First principles:  The fundamental equations 
 
1.  Electromagnetic waves from the Maxwell equations 
 
 VMIST is a first-principles approach.  It is therefore appropriate we begin with the fundamental 

equations of physics and develop the theory that underlies the VMIST computations.  The fundamental 

equations for classical electromagnetism are the Maxwell equations.  The Maxwell equations for a 

dielectric medium with no free charges or currents are the following: 

tc ∂
∂

=×∇
DH 1

, (3.1) 

tc ∂
∂

−=×∇
BE 1

, (3.2) 

0=⋅∇ D , (3.3) 

0=⋅∇ B . (3.4) 

E, H, D, and B are the electric field, magnetic field, electric displacement, and magnetic induction, 

respectively, and c is the speed of light.  Equations 3.1-3.4 are Maxwell’s macroscopic equations, where 

ED ε=  and BH
µ
1

=  (ε and µ are the electric permittivity and magnetic permeability).  Taking the 

curl of Eqs. 3.1 and 3.2 yields 

)(1)( DH ×∇
∂
∂

=×∇×∇
tc

, (3.5) 

)(1)( BE ×∇
∂
∂

−=×∇×∇
tc

. (3.6) 

Substituting Eqs. 3.1 and 3.2 back into Eqs. 3.5 and 3.6, and converting D to E and B to H, gives 

2

2

2)(
tc ∂

∂
−=×∇×∇

HH εµ
, (3.7) 
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2

2

2)(
tc ∂

∂
−=×∇×∇

EE εµ
. (3.8) 

Finally, we use the vector identity  and Eqs. 3.3 and 3.4 to arrive at 

wave equations for the electric and magnetic fields: 
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∂
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HH εµ

, (3.9) 
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2

2
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∂
∂

−∇
tc
EE εµ

. (3.10) 

Assuming a purely sinusoidal, steady-state time dependence for the electric and magnetic fields of 

the form , Eqs. 3.9 and 3.10 become the familiar Helmholtz equations: tiet ω−= )(),( xExE

0)( 22 =+∇ Hk , (3.11) 

0)( 22 =+∇ Ek . (3.12) 

The wave vector k is defined as εµω
c

k = .  We can also define an index of refraction η as 
µ
εη = . 

Solutions to Eqs. 3.11 and 3.12 traditionally take the form of vector spherical wave functions.  

Substituting the time dependence back into the Maxwell equations (Eqs. 3.1 and 3.2) yields conditions that 

must be satisfied by the form of the vector spherical wave functions that are used: 

EEH ηωε ik
c
i

−=
−

=×∇ , (3.13) 

HHE
η

ωµ ki
c

i
==×∇ . (3.14) 

 
2.  Elastic waves from the Navier equation 

The fundamental equation for elastic waves is the Navier or elastic wave equation.  The elastic 

wave equation for linear, homogeneous materials is the following: 

)()()2(2

2

uuu
×∇×∇−⋅∇∇+=

∂
∂ µµλρ

t
. (3.15) 
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The constants λ and µ are the Lamé constants that describe the mechanical properties of an elastic medium, 

and ρ is the density.  For small deformations, the vector u is the displacement.  Helmholtz’s theorem allows 

the vector u to be separated into a longitudinal (irrotational or dilatational) part, uL, and a shear (solenoidal 

or transverse) part, uS:49,188

SL uuu += . (3.16) 

Since uL and uS can be expressed as the gradient of a scalar potential and curl of a vector potential, 

respectively, they have the following properties: 

0=×∇ Lu , (3.17) 

0=⋅∇ Su . (3.18) 

These properties allow the Navier equation to be separated into two equations that reduce to the classical 

wave equation.  Substituting uL and uS back into the Navier equation (Eq. 3.15) we get 
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Making use of Eqs. 3.17 and 3.18 yields the following: 
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We again use the vector identity  and the conditions given by 

Eqs. 3.17 and 3.18 to convert Eqs. 3.21 and 3.22 into the following differential equations: 
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For time-independent (static) problems, we get the Laplace equation for the longitudinal field 

( ) and for the shear field ( ).  For time-dependent problems we get wave equations 

for the two vectors.  Here, c

02 =∇ Lu 02 =∇ Su

L and cS are the longitudinal and shear wave speeds, respectively. 

 02

2
22 =

∂
∂

−∇
t

c L
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uu , (3.25) 
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=Lc , (3.27) 
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=2
Sc . (3.28) 

As in the electromagnetic case, we assume a purely sinusoidal, steady-state time dependence for 

uL and uS of the form .  Equations 3.25 and 3.26 then become the familiar Helmholtz 

equations, where k

tiet ω−= )(),( xuxu

L and kS are the longitudinal and shear wave vectors, respectively. 

 , (3.29) 0)( 22 =+∇ LLk u

 , (3.30) 0)( 22 =+∇ SSk u

 2

2
2

L
L c

k ω
= , (3.31) 

 2

2
2

S
S c

k ω
= . (3.32) 

In contrast to the electromagnetic vector Helmholtz equations, Eqs. 3.29 and 3.30 are usually not 

solved using vector functions.  Rather, the vectors uL and uS are expressed as a scalar potential Φ and 

vector potential Ψ:   

 , (3.33) Φ∇=Lu

 Ψu ×∇=S . (3.34) 



 

25

Waves of the shear displacement field uS are transverse waves and are therefore polarized in one 

direction.  This implies two shear displacement fields can exist perpendicular to and independent of each 

other.  We can therefore define a second shear displacement field from the vector potential Ψ that is 

perpendicular to the one defined in Eq. 3.34: 

 )( Ψu ×∇×∇=′S . (3.35) 

These two shear fields are analogous to the electric and magnetic fields since they are transverse 

and usually perpendicular to one another.  In most applications, these two shear fields are denoted as the 

vertical shear field and horizontal shear field.  These names arose from a very important problem in elastic 

wave scattering—reflection and refraction from a planar boundary, where the shear wave components are 

either vertical or horizontal to the plane.  This distinction is meaningless, however, when considering 

reflections and refractions from spheres.  Due to the analogy with electromagnetism, and the lack of any 

other designation that would make sense, we will therefore refer to the two shear fields as the shear-electric 

(SE) field and shear-magnetic (SM) field.  These designations will become more meaningful when the 

vector spherical wave functions are assigned.  The electric and SE multipole fields will use the same vector 

spherical wave function, as will the magnetic and SM multipole fields. 

For most acoustic scattering problems, the vector potential Ψ is further reduced to one or two 

scalar functions using symmetry or other conveniences of the particular problem.  Although this simplifies 

the mathematics to some extent, generality is also lost since the fields are now constrained to a particular 

(e.g., azimuthal) symmetry.  Additionally, solution of the boundary conditions requires the potentials to be 

re-transformed back into the components of the displacements.  The boundary condition calculations 

therefore become unwieldy due to the presence of derivatives and cross products (gradients and curls) in 

the solutions. 

To solve Eqs. 3.29 and 3.30 using vector functions, we need to express uL and uS in the 

appropriate basis.  Since our coordinate system is spherical polar, the solutions to the Helmholtz equation 

are spherical harmonics for the angular part and spherical Bessel functions for the radial part.  Vectors uL 

and uS will therefore be comprised of a product of spherical Bessel functions and vector spherical 
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harmonics, and are known as vector spherical wave functions.  Note the vector spherical wave functions 

must also satisfy the conditions in Eqs. 3.17 and 3.18. 

Since we have removed the time dependence from the fundamental equations, our solutions will 

be steady-state solutions.  This means the solutions—the vector spherical wave functions—will intrinsically 

contain both the amplitude and phase information of the waves (the phase information is usually carried by 

the kr argument in the spherical Bessel functions).  This is an important feature to remember when we start 

scattering waves from one sphere to another—the wave functions and translation equations will take care of 

the phase factors, so no extra effort will be required to account for the phase of the waves. 

 
B.  Spherical wave functions for the vector Helmholtz equation 
 

A goal in developing the VMIST computational model was to develop scattering theories for both 

electromagnetic and elastic waves based on a compatible mathematical formalism.  This goal required 

finding a set of spherical wave functions that solved the Helmholtz equations and other conditions for both 

types of waves, were consistent with the translational addition theorems, were consistent with previous 

usage, and were in a generalized vector form. 

The terms vector spherical harmonic, vector spherical wave function, and vector multipole 

function have been used interchangeably in the literature, which may give rise to confusion.  In this work 

we will be more precise and reserve the use of the term vector spherical harmonic for functions with only 

an angular dependence, primarily the pure-orbital and pure-spin vector spherical harmonics.  Vector 

spherical wave functions are oscillatory functions with both angular and radial dependencies, but are not 

necessarily constructed from vector spherical harmonics.  For example, Stratton constructed the L, M, and 

N vector spherical wave functions using only Legendre polynomials, sines, and cosines.9  Finally, vector 

multipole functions will refer to a specific type of vector spherical wave function comprised of vector 

spherical harmonics as defined above.  This usage is consistent with many modern authorities on the 

subject.41,45-47,49

Although the vector spherical wave functions have taken many forms in the literature, there is 

universal agreement as to the form of the scalar spherical wave functions.  The scalar spherical wave 
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functions are simply defined as expansions of the product of a spherical radial function with a spherical 

harmonic: 

 . (3.36) ∑ ∑
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The zn(kr) represents a spherical radial function dependent on the type of waves to be described [a spherical 

Bessel function jn(kr) for standing waves, a spherical Hankel function of the first kind hn
(1)(kr) for outward 

propagating waves, or a spherical Hankel function of the second kind hn
(2)(kr) for inward propagating 

waves].  The spherical harmonic can alternately be replaced with Legendre polynomials for the θ 

dependence and sine-cosine expansions for the ϕ dependence.  The scalar spherical wave functions are 

most useful for modeling scalar potentials. 

There are two sets of definitions for vector spherical wave function that have been extensively 

used in the literature and for which translational addition theorems have been derived.  The L, N, and M 

wave functions defined by Stratton are the older of the two sets, but are still in wide use today, especially in 

the field of optical scattering.9  (For brevity, these functions will be referred to collectively as LNM wave 

functions.)  In spherical polar coordinates these functions are given as 
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For convenience we have replaced the original even and odd function notation—cos(mϕ) and 

sin(mϕ)—with the more modern exponential notation—exp(imϕ).  Stratton defined the LNM wave 

functions as solutions to the vector Helmholtz equation for electromagnetic fields.9  The electric and 

magnetic fields are given by a linear combination of the N and M wave functions. 

The more modern solutions for the vector Helmholtz equation in spherical coordinates are the 

vector multipole fields that use pure-orbital vector spherical harmonics.  The spherical wave functions 

defined by the vector multipole fields are the longitudinal, electric, and magnetic multipole fields, 

respectively:44,45
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The notation for the multipole fields are from Greiner and Maruhn,45 and for the vector spherical 

harmonics from Varshalovich.47  In the literature, these vector spherical harmonics are either equivalent or 

closely related to the V vector spherical harmonics of Edmonds,48 the T vector spherical harmonics of 

Rose,44 and the X vector spherical harmonics of Jackson.41  The vector multipole fields are directly related 

to the electromagnetic vector potential.  In terms of the vector multipole fields, the electric and magnetic 

fields are the following: 
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By converting the Legendre and exponential functions in the LNM wave functions to spherical 

harmonics, we find the vector multipole fields are related to the LNM wave functions by the following 

normalization constants: 

 
)!(
)!(

4
12)1(1);(

mn
mnn

k
Lr m

nmnm +
−+

−=
π

LA , (3.45) 

 
)!(
)!(

4
12)1(

)1)((
1);(

mn
mnn

nn
Er m

nmnm +
−+

−
+

=
π

NA , (3.46) 

 
)!(
)!(

4
12)1(

)1)((
);(

mn
mnn

nn
iMr m

nmnm +
−+

−
+

=
π

MA . (3.47) 

Note the normalization constants differ for each of the fields, rising from the differences in definitions 

between the two formulations.  In particular, the normalization constant for N (Eq. 3.46) and M (Eq. 3.47) 

differ by a factor of i.  As will be shown, this difference gives rise to inconsistencies in the theory and 

subsequent numerical problems. 

Both the LNM wave functions and vector multipole fields are suitable for electromagnetic wave 

functions.  The vector multipole formulation is preferred, however, since the vector spherical harmonics are 

more concise and have useful orthogonality properties, vector differentiation formulas, and integral 

solutions in the form of Clebsch-Gordan coefficients.  Both Stratton’s LNM wave functions and Rose’s 

vector multipole fields have been used for elastic wave functions as well, but mostly for simple scattering 

problems such as that for a single sphere.  Consistency problems arise, however, when both sets of 

formalisms are applied simultaneously to electromagnetic and elastic scattering theory, or when they are 

combined with translational addition theorems.   

The first inconsistency arises from our definition of the shear displacement fields as derived from 

the Navier equation: 
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Note the inclusion of the 1/k and 1/k2 factors to normalize the derivatives of the spherical Bessel functions.  

To have uSE and uSM in vector multipole form, we start from a definition for the vector potential Ψ that uses 

a vector spherical harmonic and a form similar to that of the scalar potential Φ (Eq. 3.36): 
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This vector potential does not, however, give rise to the standard vector multipole fields when put 

into the definitions for the shear displacement fields.  Although uSM results in the same magnetic multipole 

field (Eq. 3.52), uSE results in a modified form where the Anm(r;E) is multiplied by an i (Eq. 3.51): 
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The second inconsistency arises from the translational addition theorems.  The translation of the N 

and M vector spherical wave functions from one coordinate system to another is expressed in the following 

symmetric form: 
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The  coefficient is a direct translation coefficient, expanding field N in terms of N′, and field 

M in terms of M′.  The  coefficient is an indirect translation coefficient, expanding field N in terms of 

M′, and field M in terms of N′.  Note this transformation is symmetric with respect to N and M.  This 

symmetry is not preserved, however, with the vector multipole definitions of Eqs. 3.40-3.42.  For the 

standard vector multipole field formalism, two independent indirect translation coefficients (differing by a 

factor of i) are required to translate between electric and magnetic multipole fields. 

nmSνµ

nmTνµ
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This conclusion has been verified with numerical testing of the translational addition theorems, 

which has shown the symmetric form of the theorems is consistent with the definition of the L, N, and M 

wave functions, but not with the original definition of Rose’s vector multipole fields.  This is significant 

because the symmetric translational addition theorems are universally employed in multiple-scattering 

models (i.e., no asymmetric theorems have been published to date), yet will yield incorrect solutions when 

applied to the widely used vector multipole functions. 

To be consistent with definitions for both the electromagnetic fields and shear displacement fields, 

and to be able to use the translational addition theorems in the simpler symmetric form, we need to modify 

the definitions for the vector multipoles as follows: 

 Φ∇=
k
1U , (3.55) 

 ΨV ×∇=
k
1

, (3.56) 

 ( ΨW ×∇×∇= 2

1 )
k

. (3.57) 

To avoid confusion with the LNM wave functions and vector multipoles in Eqs. 3.40-3.42, we 

shall call these functions UVW multipole fields.  They are solutions to the Navier equation as well as the 

Maxwell equations.  The electric (V) and magnetic (W) multipole fields correspond to the SE and SM 

shear displacement fields in the elastic wave problem, Figure 3-1, whereas the longitudinal multipole field 

(U) naturally corresponds to a dilatational displacement field, Figure 3-2. 

The form of the scalar potential is the same as for the scalar wave function (Eq. 3.36), and the 

resulting longitudinal UVW multipole field is the following: 
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The forms for the electric and magnetic (SE and SM) UVW multipole fields are the following: 
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FIG. 3-1.  Electric or V multipole fields (top), and magnetic or W multipole fields (bottom).  Adapted from 
Mie (1908).6
 
 
 

 
 
 
FIG. 3-2.  Longitudinal or U multipole fields of order n, shown as deformations of a spherical surface.  
Adapted from Greiner and Maruhn (1996).45
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),()( ϕθn
nmnnm krz YW = . (3.60) 

The UVW multipole fields are identical to the vector multipole fields of Rose44 and Greiner and 

Maruhn45 (Eqs. 40-42), except for a factor of i multiplying the electric multipole field: 

 , (3.61) );( Lrnmnm AU =

 , (3.62) );( Eri nmnm AV =

 . (3.63) );( Mrnmnm AW =

We find the multipole fields V and W are also essentially the N and M wave functions, but now 

with the same normalization constant: 
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The UVW multipole fields (Eqs. 3.58-3.60) are therefore valid for electromagnetic waves and 

consistent with the traditional solution approach for the Navier equation.  Because of the relative merits of 

the vector multipole formalism, the modified vector multipole fields are also more attractive as a set of 

spherical wave functions than the LNM wave functions. 

Using Eqs. 3.43-3.44 and Eqs. 3.61-3.63, we find the UVW multipole fields are related to the 

electric and magnetic fields as follows: 

 , (3.66) [ )()()( rirkr WVE += ]

] . (3.67) [ )()()( rirkr WVH −=

Because the vector multipole fields were modified to be consistent with the definitions for the 

shear fields, the UVW multipole fields are related to the elastic displacement fields in a more direct and 

simple manner: 

 , (3.68) )()( rrL Uu =

 , (3.69) )()( rrSE Vu =
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 )()( rrSM Wu = . (3.70) 

Finally, we note the UVW Navier multipole fields as defined in this monograph differ from the V, 

W, and X vector spherical wave functions defined by Hill (which are not presented here due to their lack of 

general use in the physics literature).43  It is unfortunate only a limited supply of appropriate symbols exists 

for naming functions that have a plurality of definitions and usages in the literature.  The accidental re-use 

of some vector field symbols is unavoidable in such a case. 

 
C.  Boundary condition solutions for single-sphere scattering 
 
1.  Solution method 

With the multipole fields U, V, and W we can now formulate both the electromagnetic and elastic 

wave fields in spherical coordinates.  For scattering from a single sphere, the wave fields can be divided 

into an incoming (incident) external field, a refracted internal field, and an outgoing (scattered) external 

field.  The forms of the spherical Bessel functions in U, V, and W for each of these fields are listed in Table 

3-1.  Each of the wave fields will also have amplitude coefficients associated with them.  These amplitude 

coefficients are designated in Table 3-2 and shown schematically in Figure 3-3 for elastic waves. 

 Given the incident field, the amplitude coefficients of the refracted and scattered fields can be 

found by solving the boundary conditions on the surface of the sphere.  For electromagnetic waves, the 

boundary conditions are continuity of the tangential components of E and H.  For elastic waves, the 

boundary conditions are continuity of the displacements and stresses.  The general form of the boundary 

conditions is therefore 

 , (3.71) refractedscatteredincident FFF =+

where F is a general vector multipole field. 

 These boundary conditions are typically presented in the literature as scalar equations and the 

solutions given without the intermediate steps.  This is misleading, however, since rigorous solution of the 

boundary condition equations requires they are solved in vector form.  Although this point is not often 

addressed in the literature, it is important since some incorrect or rather vague statements and derivations 

have been published.13,23,24
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TABLE 3-1.  Spherical Bessel functions for wave fields in the single-sphere scattering problem. 
 

Region and Wave Type Spherical Bessel Function 

Exterior to sphere; Incident )()2( rkh extn   Spherical Hankel function of 2nd kind 

Interior to sphere; Refracted )( int rkjn   Spherical Bessel function 

Exterior to sphere; Scattered )()1( rkh extn   Spherical Hankel function of 1st kind 

 
 
TABLE 3-2.  Amplitude coefficients for wave fields in the single-sphere scattering problem. 
 

 Incident Field Refracted Field Scattered Field 

Elastic Waves 

Longitudinal (uL) Anm Dnm Gnm

Shear-electric (uSE) Bnm Enm Hnm

Shear-magnetic (uSM) Cnm Fnm Inm

Electromagnetic Waves 

Electric multipole (V) anm cnm enm

Magnetic multipole (W) bnm dnm fnm

 
 

Bnm

Cnm

Anm Gnm

Hnm

I nm

EnmDnm Fnm

Incident
Waves

Refracted
(Interior)
Waves

Scattered
Waves

Longitudinal
(red)

Electric
(or t-shear, green)

Magnetic
(or r-shear, blue)

 
 
 
FIG. 3-3.  Diagram of incident, refracted, and scattered elastic waves for single-particle scattering, with 
associated amplitude coefficients. 
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 Mie scattering will be used as an example, although the arguments apply to elastic wave scattering 

as well.  Although the Mie solutions are well established, the mathematical procedure for arriving at the 

solutions from the boundary conditions has sometimes been obscurely or incorrectly published.  The 

widespread use of the LNM wave functions has additionally created confusion due to their cumbersome 

form and orthogonality relationships, and the confusion remains when spherical harmonic functions are 

also used to solve the Mie scattering problem. 

The problem arises over the use of orthogonality to solve the boundary condition equations for 

spherically symmetric scattering problems.  A simplified version of the mathematics is presented in order 

to get to the core of the problem.  Rendered into scalar components, the boundary condition equations are 

of the form 

 , (3.72) refracted
x

scattered
x

incident
x FFF =+

where Fx denotes the x scalar component of the field.  The incident, scattered, and refracted (interior) fields 

are comprised of multipole expansions of spherical wave functions: 

 . (3.73) ∑ ∑
∞

=

+∞

−∞=

=
0

),()(
n m

nmnnmx YkrzAF ϕθ

Here, Anm is the amplitude coefficient and  represents a spherical Bessel or Hankel function 

appropriate to whether the wave is traveling toward, away from, or inside the sphere (see Table 3-1).  An 

example of such boundary conditions include the tangential components of the electric and magnetic fields 

in Mie scattering, here broken down into scalar components as presented in the literature: 

)(krzn

 , (3.74) refractedscatteredincident EEE θθθ =+

 , (3.75) refractedscatteredincident EEE ϕϕϕ =+

 ,  (3.76) refractedscatteredincident HHH θθθ =+

 . (3.77) refractedscatteredincident HHH ϕϕϕ =+
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There is no problem and the solutions are straightforward if all of the fields have spherical 

harmonic terms of the same multipole order (n,m).  In terms of the multipole expansions, the boundary 

condition equation is 

 

. (3.78)
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To solve this equation, we first multiply all of the terms in the expansions by  and then 

integrate over θ and ϕ.  The spherical Bessel and Hankel functions are evaluated at the sphere’s surface (r 

= a).  Integration over the surface of the sphere removes the summations and spherical harmonic terms due 

to orthogonality: 

),( ϕθ∗
NMY
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The indices n and m are now N and M, resulting from multiplying the field expansions by  and 

integrating over θ and ϕ.  This effectively pulls the amplitude coefficients out of the expansions and allows 

them to be directly related in an equation: 

),( ϕθ∗
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0)()()(

),(),()(

),(),()(

),(),()(

)1()2(
0

0

)1(

0

)2(

=−+

=Ω

−Ω

+Ω

∑ ∑ ∫∫

∑ ∑ ∫∫

∑ ∑ ∫∫

∞

=

∞+

−∞=

∗
=

∞

=

∞+

−∞=

∗
=

∞

=

+∞

−∞=

∗
=

kajBkahCkahA

YYdkrjB

YYdkrhC

YYdkrhA

NNMNNMNNM

n m
nmNMarnnm

n m
nmNMarnnm

n m
nmNMarnnm

ϕθϕθ

ϕθϕθ

ϕθϕθ

The final equation relating the amplitude coefficients is 

 . (3.81) )()()( )1()2( kajBkahCkahA NNMNNMNNM =+

A problem arises, however, when some of the fields have spherical harmonic terms of different 

(n,m) order than the others.  This occurs in both electromagnetic (Mie) scattering and elastic wave 

scattering.  A simplified example is the following: 
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. (3.82)
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Note the spherical harmonic terms of order (n+1,m) and (n-1,m) in the field expansions.  Multiplying all of 

the terms in the expansions by  and then integrating over θ and ϕ does not, however, cause 

these terms and their associated amplitude coefficients to disappear.  Rather, the integrations will be of the 

form 

),( ϕθ∗
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. (3.84)
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Note the integrations pull out amplitude coefficients of either lower or higher multipole order, but 

they do not force the terms to vanish.  Because we are performing an integration within an expansion of 

many terms, the integral pulls out a coefficient appropriate for the spherical harmonic order it is associated 

with.  In other words, because we have to integrate all of the terms in all of the expansions, we must pull 

out each of the coefficients independently of the coefficients in the other expansions.  We are therefore 

required to pull out coefficients of different (N,M) order due to the spherical harmonic they are associated 

with, but not due to the spherical harmonics in the other expansions.  The resulting boundary condition 

equation is therefore 
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. (3.85)
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Note the delta functions also change the multipole order of the radial functions.  The resultant 

coefficient equation is  

 . (3.86) )()()( 1,1
)1(
1,1

)2( kajBkahCkahA NMNNMNNNM ++−− =+

This equation relates coefficients of one multipole order (N) with coefficients of higher and lower order 

(N+1 and N-1).  In other words, the equation mixes coefficients of different moments, resulting in recursive 

equations for the coefficients.  For brevity, the coefficients of higher and lower multipole order will be 

called cross-order coefficients.  

The cross-order coefficients in the solutions are problematic since they make the boundary 

conditions unsolvable.  There are now more unknowns than there are equations to solve, and the scattering 

problem can therefore not be solved in closed form.  However, many published presentations of this 

solution method seem to disregard the cross-order coefficients by using the orthogonality argument.  An 

example of such a justification is the following:  “The summation sign in these expressions is removed by 

making use of the orthogonality properties of the trigonometric and Legendre functions.  As a result only 

coefficients of the same order have to be compared.”13  Such an application of orthogonality is equivalent 

to what was demonstrated above with the scalar spherical harmonics, and is therefore not a correct 

approach for dispensing with the cross-coefficient terms.  Similar errors have appeared in the solution for 

elastic waves.  Einspruch and Truell, and Einspruch et al. err in that they ignore the infinite summation of 

terms in the boundary conditions for elastic wave scattering, but nonetheless arrive at correct solutions by 

misapplying the orthogonality conditions for the Legendre functions.23,24

The classical solutions for Mie and elastic wave scattering do not contain cross-order coefficients, 

and can be shown to be numerically correct to the precision of modern computers.  Yet, as has been shown, 
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the cross-order coefficients cannot be eliminated with only the use of orthogonality conditions for scalar 

functions.  Since the cross-order terms in Eq. 3.86 must vanish in order to arrive at a solvable scattering 

problem (i.e., with the same number of equations and unknowns) and in order to be numerically correct, 

one may argue the cross-order terms should either cancel each other out or are numerically equivalent to 

zero.  We have found such results cannot be demonstrated either analytically or numerically.  Since the 

original approach of applying orthogonality must be kept in order to extract the coefficients from the 

summations, another mathematical method or procedure must exist to force the cross-order coefficients to 

vanish. 

To eliminate the cross-order terms, the boundary conditions require an extra constraint that is not 

available with the use of the orthogonality of the scalar components.  Fortuitously, the orthogonality of the 

vector spherical harmonics (Eq. 3.87) provides such an extra constraint (the δLl) that critically forces the 

cross-order terms to vanish. 

 . (3.87) MmNnLl
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nm
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2

0

YY

Therefore, by retaining the vector form of the boundary condition equations and applying orthogonality of 

the vector spherical harmonics, the Mie scattering solutions can be derived in a rigorous and unambiguous 

manner. 

The vector solution method for Mie scattering is summarized here as an example.  In vector form, 

the tangential electric and magnetic field boundary conditions are the following: 

 ltangentiarefltangentiasctltangentiainc ,,, EEE =+ , (3.88) 

 ltangentiarefltangentiasctltangentiainc ,,, HHH =+ . (3.89) 

To find the vector form of the tangential electric and magnetic fields, without resorting to the scalar θ and ϕ 

components, we first rewrite E and H in terms of our multipole fields V and W: 
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Instead of breaking up the full vector equations into scalar transverse components, we will retain 

the vector character of the equations and therefore gain advantage of using the additional orthogonality 

condition attendant with the vector spherical harmonics.  Since the magnetic multipole field W has no 

radial components, it is already fully tangential.  We can find the tangential vector associated with the 

electric multipole field V by taking two successive cross products with a normal radial vector nr: 
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The Etangential and Htangential fields in the boundary conditions (Eqs. 3.88 and 3.89) are now replaced 

with the expanded forms of the Vtangential and Wtangential fields containing the spherical Bessel functions and 

vector spherical harmonics (Eqs. 3.96 and 3.60).  After some algebraic manipulations, the orthogonality 

conditions for the vector spherical harmonics are applied twice to each boundary condition.  The first 

application involves multiplication and integration with , and yields an independent 

coefficient equation for each of the two boundary conditions: 
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NMY
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The second application involves multiplication and integration with , and also 

yields an independent equation for each of the two boundary conditions: 

),(* ϕθN
NMY

 , (3.99) 0)()()( intint
)1()2( =−+ akjkdakhkfakhkb NNMextNextNMextNextNM

 . (3.100) 0)()()( intintint
)1()2( =−+ akjkcakhkeakhka NNMextNextextNMextNextextNM ηηη

The above four equations are the correct equations for solution of the Mie scattering coefficients.  

Note none of these equations contain the cross-order coefficient terms that would remain if we would have 

used only the scalar equations.  The extra constraint provided by the orthogonality of the vector spherical 

harmonics allows a rigorous method for removing the cross-order terms. 

The solution of the Mie scattering problem with the use of pure-orbital vector spherical harmonics 

is not a common approach, and few references have been found that use this method or show how the 

orthogonality of the these functions are necessary for solving the boundary conditions.  It should be noted 

Bohren and Huffman state the use of the orthogonality of the LNM vector wave functions is required to 

solve the Mie boundary conditions, but do not show the details of the solution.14  Knopoff also mentions 

integration over the vector wave functions L, M, and N is required to solve for the scattering of shear 

elastic waves by a sphere.21



 

43

In comparison to the LNM vector wave functions, vector wave functions constructed from pure-

orbital vector spherical harmonics (such as the UVW multipoles) have advantages in providing an elegant 

and rigorous solution to the Mie boundary conditions.  The orthogonality conditions for the vector spherical 

harmonics are simpler, and the manipulation of the functions is more straightforward.  Of additional 

importance is the fact the pure-orbital vector spherical harmonics are harmonious with the mathematical 

descriptions of continuum mechanics, quantum mechanics, and gravitational radiation. 

 
2.  Solutions for electromagnetic wave scattering 

The boundary condition solutions for electromagnetic wave scattering from a sphere are given by 

Eqs. 3.97-3.100.  The results for electromagnetic scattering yield four linear equations with four unknowns.  

In matrix format these equations are 
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The indices of refraction are ηint for inside the sphere and ηext for outside the sphere.  The notation shortcuts 

are the following, where a is the sphere’s radius: 
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Solution of this matrix is readily accomplished, yielding the famous Mie coefficient solutions for 

the internal refracted fields and external scattered fields: 
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3.  Solutions for elastic wave scattering 

Solution of the boundary conditions for elastic wave scattering are more involved, presenting a set 

of six linear equations for six unknowns.  Three of these equations evolve from the continuity of 

displacement boundary condition, which is a simple equality between the sum of the incident and scattered 

waves and the sum of the interior refracted waves.  Although these equations are solved (incorrectly) in 

scalar form in most published articles, they are also readily solvable in vector form, and yield the same 

three linear equations. 

The other three linear equations for elastic wave scattering come from the continuity of the 

stresses, which is trickier since the stress is a tensor and not a vector.  Using the old (incorrect) approach, 

one can equate the scalar stress components in spherical coordinates, which are complex but available from 

Graff and others.188,189  Although the approach is incorrect, it yields the correct three linear equations if 

cross-order terms are thrown out. 

The correct approach would be to derive boundary conditions preserving the vector properties of 

the displacement.  This is difficult since the equation relating stress and displacement is the tensor equation 

klijklij C εσ = , where ijσ  is the stress tensor,  is the three-dimensional stiffness tensor, and ijklC klε  is 

the strain.190  The strain tensor derives from the displacement by 
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Since we are concerned with isotropic solids, the stress-strain relationship reduces to Cauchy’s law: 

 ijijkkij µεδλεσ 2+= . (3.113) 

However, we are still confronted with a tensor equation that is difficult to reduce to one or more 

vector equations (which would be necessary to use the orthogonality of the vector spherical harmonics).  

One possibility would be to use tensor spherical harmonics to solve the stress boundary conditions, but that 

would imply a serious overhaul of our spherical wave function forms. 

We are confident a rigorously correct solution method will eventually be found for the stress 

boundary conditions.  Until this is accomplished, the three linear equations derived from the scalar stress 

components, minus the cross-order terms, will be used.  The final solution matrix has the following form: 
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Fortunately, the solution matrix separates into two smaller matrices: 
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The j, h, and g in the T-functions refer to the type of spherical Bessel function that is in the function {j = 

, g = , h = }.  The 2×2 matrix is readily solved with simple algebra.  The 4×4 

matrix was solved for a generic matrix on Mathematica.  The algebraic expressions were then programmed 

into the VMIST algorithm. 

)(krjn )()2( krhn )()1( krhn

The T-symbols are complex functions of spherical Bessel functions, multipole order N, the wave 

vectors kL and kS, and the sphere radius a: 
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D.  Translation of scattered fields 
 
1.  Vector addition theorem 
 
 A realistic description of multiple scattering at the microscopic level requires the scattered fields 

from each particle interact with the other particles (Figure 3-4).  Since the coordinates of the wave 

functions are specific to each particle, the fields scattered from particle α will be in α’s coordinate system.  

However, fields incident on particle β need to be in β’s coordinate system in order to calculate the 

interaction with particle β via the single-particle scattering solutions.  Therefore, particle α’s scattered 

wave fields need to be transformed into particle β’s coordinate system.  This is accomplished with the use 

of translational addition theorems.  These theorems are the main engine driving the VMIST multiple-

scattering algorithm. 

 As summarized in Chapter 2, many versions of the translational addition theorems have been 

derived.  Most are mathematically awkward or were derived for specific wave functions such as the LNM 

vector spherical wave functions.  For the VMIST approach, addition theorems for wave functions based on 

pure-orbital vector spherical harmonics were desired.  It was also desired the addition theorems be in a 

more elegant form, and use commonly recognized functions and symbols such as Clebsch-Gordan 

 
 

Initial
Wave

Final
Wave

 
 
 
FIG. 3-4.  Diagram of multiple scattering of vector multipole fields, showing how each of the three fields U 
(red), V (green), and W (blue) require translation from each sphere to every other sphere. 
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coefficients.  Finally, the complex nature of the addition theorems and their importance in the algorithm 

demanded they be rederived and tested for correctness and convergence.  The addition theorems were 

therefore rederived using a straightforward integral transform approach that has not been reported 

previously in the literature for vector spherical wave functions. 

 In Section 3-C, the coefficients for the scattered fields (two for the electromagnetic case, three for 

the elastic wave case) were solved for a single sphere.  In order to compute multiple scattering using these 

vector fields, we need to translate the fields from the coordinate system of the scattering sphere to those of 

another sphere located at an arbitrary position.  The first scattering sphere will be subsequently denoted as 

the “transmitting” or α sphere, and the second sphere as the “receiving” or β sphere.  The coefficients, 

coordinates, radius, and elastic properties for each sphere are denoted in Table 3-3. 

 The global position vectors for the two spheres are Rα and Rβ.  The position of sphere α with 

respect to sphere β is therefore Rαβ= Rα - Rβ.  Figure 3-5 displays these position vectors.  The coordinate 

systems for the α and β spheres are local coordinate systems, and are denoted in the above table and shown 

in Figure 3-6 along with the global coordinates of spheres α and β. 

 

 
 
TABLE 3-3.  Coefficients, coordinates, and properties for the transmitting (α) sphere and the receiving (β) 
sphere. 
 

Outgoing Waves Incoming Waves Properties Wave Vectors 
Region 

EM Elastic EM Elastic 
Coord Radius 

EM Elastic EM Elastic 

Sphere 
α 

enm
α

fnm
α

Gnm
α

Hnm
α

Inm
α

  
rα
θα
ϕα

aα ηα λα 

µα kα kL
α 

kS
α

Sphere 
β   avw

β

bvw
β

Avw
β

Bvw
β

Cvw
β

rβ
θβ
ϕβ

aβ ηβ λβ 

µβ
kβ 

 
kL

β 

kS
β

Matrix       ηext λext

µext kext kL
ext kS

ext
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FIG. 3-5.  Relative and global position vectors for spheres α and β. 
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FIG. 3-6.  Local and global coordinates for spheres α and β. 
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To solve for the scattered field coefficients of sphere β we need to find the incident field 

coefficients for sphere β.  The incident waves for β, however, are the scattered waves from α.  We 

therefore need to translate the multipole fields from the α coordinate system into the β coordinate system.  

First we note the scattered α fields contain vector multipole terms of the following forms: 
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The addition theorem for these terms will have the following form: 
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The expansion coefficients  are functions only of the relative position vector R)(,,
,, αβµνλ RmnlΠ αβ, and can be 

calculated in the same manner as one would calculate the coefficients for a Fourier series.  The coefficients 

are calculated from the following integral: 
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The values of the scattered α/incident β multipole fields are only relevant at the surface of sphere β; 

therefore, we integrate over the surface of sphere β with θβ and ϕβ as our variables of integration. 

To evaluate this integral we first expand the dot product between the two vector spherical 

harmonics by rewriting the complex conjugate of a vector spherical harmonic as given by Greiner and 

Maruhn:45
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We then expand the vector spherical harmonics into their scalar components using helicity basis vectors 

and the compact notation of Clebsch-Gordan coefficients as defined by Varshalovich et al.:47

 . (3.133) 11,
,

1,1,1,0,
,

0,1,,11,
,

1,1,1,),( +−−−+−+ ++= eeeY ml
mn

mlml
mn

mlml
mn

ml
l
nm YCYCYCϕθ



 

51

The scalar components of the two vector spherical harmonics are then multiplied together based 

on their helicity basis vectors.  This involves computing the dot product of the helicity basis vectors, which 

does not yield the same result as one would expect from our experience with Cartesian basis vectors.  

Whereas 01111 =⋅=⋅ −−++ eeee , we find that 1** 1111 =⋅=⋅ −−++ eeee .  However, 

.  The dot product between two vector spherical harmonics is therefore not as 

simple as separately multiplying the , , and  components.  Rather, the  components multiply 

with the  components.  The e

1*0000 =⋅=⋅ eeee

1+e 0e 1−e 1+e

1−e 0 components can still be separately multiplied, however.  The vector 

spherical harmonic dot product in our integral therefore becomes the following: 

 
. (3.134)
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We now use two expansion identities from Varshalovich et al. to finish the integration.47  The first 

is the expansion of spherical waves in terms of bipolar spherical harmonics of rank L, valid for r1 < r2:  
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The second is the expansion for the bipolar spherical harmonics themselves: 
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Substituting Eq. 3.136 into Eq. 3.135, the spherical wave expansion becomes 
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 Note this is just the translational addition theorem for the scalar wave function 

),()( ϕθLML Ykrz .  We now rewrite this theorem in terms of our coordinate systems (Figures 3-5 and 3-

6).  Since r = r1 - r2 and the vector from the α-sphere terminates on the surface of the β-sphere (rα = aβ – 

Rαβ), we have the following correspondences between the particle coordinate systems and the notation in 

Varshalovich et al.:47
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Note the condition r1< r2 is satisfied as long as the two spheres do not interpenetrate.  Our spherical wave 

expansion can therefore be written as 
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We now combine the spherical wave expansion with the dot product expansion: 
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(3.140) 

The above expression is now integrated over the surface of sphere β (θβ and ϕβ).   Orthogonality 

dictates that l1 = λ, m1 = µ + 1, m1 = µ, and m1 = µ -1, respectively, eliminating the summations over l1 and 

m1.  The l2 and m2 indices persist, and are renamed p and q for simplicity: 
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We can adjust the indices on the Clebsch-Gordan coefficients in our addition theorem using the 

following relationship: 
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Furthermore, the angular momentum vector addition rules for the Clebsch-Gordan coefficients impose 

conditions on the values for q, specifically q = m – µ, thus eliminating one summation.  There are no 

restrictions on the index p that would remove the summation over p, so it remains.  However, since by the 

vector addition rules the last Clebsch-Gordan coefficient term implies λ + p = l , therefore p = l - λ, we can 

deduce that p ≤ l + λ and the lower limit on p is |l – λ|.  These simplifications result in the following for the 

addition theorem: 
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One final simplification is to incorporate a summation over τ to simplify the Clebsch-Gordan 

coefficient sums in the bracket: 
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This results in a very compact form for the translational addition theorem for vector spherical wave 

functions. 

 The Clebsch-Gordan coefficients can be evaluated using many expressions.  A representation by 

Wigner in the form of algebraic sums is given in Varshalovich et al.:47
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where 
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This was the expression used to compute the Clebsch-Gordan coefficients in the VMIST algorithm. 

 
2.  Scalar addition theorem 
 

Although the scalar addition theorem cannot be used to translate vector fields, it can be useful for 

translating scalar potentials.  It can therefore be used to translate the potential for the longitudinal field in 

elastic wave scattering.  The scalar addition theorem has been published extensively, and is of the form 
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3.  Direct translation of vector fields 
 
 The vector translation theorem (Eqs. 3.130 and 3.144) allows us to translate individual terms in 

the UVW multipole functions, but is not sufficient for translating the elastic or electromagnetic fields 

themselves.  Further expressions therefore needed to be derived to translate the entire field expressions as 

given by Eqs. 3.58-3.60. 

In the course of this research two methods were found for translating the vector fields from sphere 

α to sphere β.  First, the vector fields can be translated directly using the vector addition theorem (Eq. 

3.144).  Second, since the fields can be derived from scalar and vector potentials, the potentials of the fields 

can be translated using a combination of the scalar (Eqs. 3.147, 3.148) and vector (Eqs. 3.130, 3.144) 

addition theorems.  Although the first approach is straightforward and therefore attractive, the second 

approach should be more computationally efficient since the scalar addition theorem is less complex and 

takes less time to calculate. 

Both the direct translation method and potential translation method were developed and tested in 

this work for two reasons.  First, development of both methods helped to identify and resolve problems in 

the derivations.  Since each method is developed from a different starting point in the theory, they result in 

mathematically different expressions.  Additionally, the longitudinal field is translated using the vector 

addition theorem in the direct approach, but with the scalar addition theorem in the potential approach.  

However, the numerical results should be the same.  The methods therefore worked as a check against each 

other—if the numerical results did not agree then there was an error either in the wave function definitions 

or in the addition theorems.  Second, the computational speed of each method could be tested and 

compared to verify the potential method was indeed more efficient. 

 Although the incoming spherical wave fields will, in general, be comprised of terms of the form 
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expansions of the incoming spherical wave fields can also be comprised of terms of the form 
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where the spherical Bessel function jl (kr) replaces the Hankel function of the second kind hl
 (2)(kr).  This is 

the case for the spherical wave expansions for vector plane waves (see Section 3-E).  Similarly, the addition 

theorems restrict the form of the radial function to a spherical Bessel function, and not a Hankel function of 

the second kind.  Recall that our vector addition theorem is 
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To obtain UVW multipole fields from the addition theorems, we must express the addition 

theorems in terms of spherical wave functions of order λ.  To do this we pull the jλ(kaβ) term out of the 

translation coefficient and define a new translation coefficient : )(,,
,, αβµνλ RmnlZ
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Note aβ is just rβ evaluated at the surface of the receiving sphere.  The new translation coefficient is 
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We are now in a position to compute how the longitudinal field U translates from one sphere to 

another.  The outgoing wave field from the transmitting sphere is 
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and the incoming wave field to the receiving sphere is 
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Expanding the  terms in the outgoing field (Eq. 3.155) with the addition theorem 

produces six terms.  We regroup the translated terms and equate them to the incoming field (Eq. 3.156) 

according to their vector spherical harmonic components.  After some lengthy algebra we arrive at the 

following three simultaneous equations: 
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Note there are two equations for the incident wave field coefficient  in terms of translation 

coefficients and the scattered wave field coefficient .  We therefore have two solutions for translation 

of the longitudinal field.  Numerical testing has verified these two equations are equal.  The following 

condition can therefore be derived for the translation coefficients (along with Eq. 3.158, which is a second 

condition on the translation coefficients): 

nmAνµ

nmG
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We note the above conditions can be used to build recursion relations for the vector addition theorem. 

 Using the same approach for the electric (V) and magnetic (W) multipole fields, we will derive the 

incoming wave field coefficients from the translation expansions of the outgoing coefficients.  The 

outgoing electric and magnetic (or SE and SM) wave fields from the transmitting sphere are 
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The corresponding incoming wave fields to the receiving sphere are 
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Similar to expansion of the longitudinal field, expanding the outgoing electric and magnetic fields 

with the addition theorem produces nine terms.  Again we regroup the translated terms and equate them to 

the incoming fields (Eqs. 3.163, 3.164) according to their vector spherical harmonic components.  Again, 

after the necessary algebra, we arrive at the following three simultaneous equations for the incident wave 

field coefficients  and : νµB νµC

 ⎥
⎦

⎤
⎢
⎣

⎡

+
−−

+
+

+
+

= +
−−

−
−

mnn
nm

mnn
nm

mnn
nm

nm Z
n
nHZiIZ

n
nHB ,,1

,,1
,,

,,1
,,1
,,1 1212

1
1
12

µννµννµνννµ ν
ν

, (3.165) 



 

59

 mnn
nm

mnn
nm

mnn
nm

nm Z
n
niHZIZ

n
niHC ,,1

,,
,,
,,

,,1
,, 1212

1 +−

+
−+

+
+

= µννµννµνννµ , (3.166) 

 ⎥
⎦

⎤
⎢
⎣

⎡

+
−−

+
++

−= +
++

−
+

mnn
nm

mnn
nm

mnn
nm

nm Z
n
nHZiIZ

n
nHB ,,1

,,1
,,

,,1
,,1
,,1 1212

112
µννµννµνννµ ν

ν
. (3.167) 

There is only one equation for the  coefficient (Eq. 3.166).  Again, the two equations for the 

 coefficient have been shown to be equivalent with numerical testing, and therefore require the 

following condition to hold true: 
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Since the coefficients Hnm and Inm are independent, the condition in Eq. 3.168 is actually two conditions that 

again may be useful for recursion formulas: 
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In the more traditional S and T translation coefficient notation (Eqs. 3.53, 3.54), we have the 

following for the direct electric-to-electric field (E→E) translation: 
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or 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+
++

−= +
+

−
+→

mnnmnnnm
EE Z

n
nZ

n
nS ,,1

,,1
,,1
,,1)( 1212

112
µννµνννµ ν

ν
. (3.172) 

For the direct magnetic-to-magnetic field (M→M) translation, we have the following: 
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For the indirect magnetic-to-electric field (M→E) translation, we have 
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Finally, for the indirect electric-to-magnetic field (E→M) translation, we have 
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Due to the symmetry of our addition theorems, Eqs. 3.171, 3.172, and 3.173 are equivalent.  

Equations 3.174, 3.175, and 3.176 are also equal to each other.  Again, these equivalencies allow us to 

construct recursion relations for the vector addition theorem that may be more computationally efficient. 

 
4.  Translation of vector fields using potentials 

Since the electromagnetic and elastic wave fields can be derived from potentials, these vector 

fields can also be translated via their potentials.  To do this we first express the (vector fields + amplitude 

coefficients) as (potential fields + amplitude coefficients).  The potential fields are then translated into the 

new coordinate system.  Equating the translated outgoing potential fields with the incoming potential fields 

allows the addition theorem relationships to be derived for the amplitude coefficients.  The potential 

method for translating the vector fields is better than the vector method for one reason:  computation of the 

scalar addition theorem for the longitudinal waves is more efficient than computation using the vector 

addition theorem. 

We first start with the longitudinal field U.  Recall that the vector fields for longitudinal waves can 

be expressed as the gradient of a scalar potential  : ),()()1(
ααα ϕθnmnnmnm YkrhG=Φ
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We expand the scalar potential and derive the translated vector field by taking the gradient of the translated 

potential in the β coordinate system.  Since the scalar addition theorem is of the form 
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Summing over n and m yields the total outgoing wave field potential: 
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The incoming wave field potential for the β particle is of the following form: 
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Finally, we sum over ν and µ to get the total incoming wave field potential: 
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Equating Φα and Φβ at the surface of sphere β yields the following translation equation for the 

wave field coefficients: 
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We solve for the  sub-coefficients by inspection: nmAνµ
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Summing the  sub-coefficients over n and m yields the  coefficients: nmAνµ νµA
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The coefficients for the electric and magnetic multipole fields can be translated in a similar 

manner.  Recall the vector fields for the electric (SE) and magnetic (SM) waves can be expressed 

respectively as the curl and curl-curl of a vector potential : ∑ ∑
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We now use the vector addition theorem.   Note, however, the vector potential has only one vector 

spherical harmonic with l = n, therefore simplifying the expansions.  The outgoing wave field potentials are 

 
, (3.189)
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Again we sum over n and m to produce the total outgoing wave field potential: 
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Note Eqs. 3.189-3.192 have λ = ν+1, λ = ν, and λ = ν-1 expansion coefficients.  The λ = ν 

coefficients represent direct translations of the electric and magnetic fields.  That is, the electric potential 

translates to an electric potential (electric→electric), and the magnetic potential translates to a magnetic 

potential (magnetic→magnetic).  The λ = ν+1 and λ = ν-1 coefficients represent indirect or conversion 

translations, where the electric field translates to a magnetic field (electric→magnetic), and the magnetic 

field translates to an electric field (magnetic→electric).  This arises from the form of the vector field 

solutions when the curl (or curl-curl) is taken of the Yνµ
ν+1 and  Yνµ

ν-1  vector spherical harmonic terms. 

The λ = ν condition results in incoming wave field potentials of the form 
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Since these vector potentials are of the same form as the original, untranslated vector potentials, they will 

produce the analogous fields (electric → electric and magnetic → magnetic) when the curl and curl-curl 

operations are performed on them.  The addition theorem translation coefficient is simplified in this case to 

.  As in the longitudinal wave field case, we split the  and  coefficients into  

and  sub-coefficients for the incoming wave field potential: 
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Finally, we sum over ν and µ to arrive at the total incoming wave field potential: 
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We now equate the outgoing wave field potentials (from sphere α) to the incoming wave field 

potentials (to sphere β) at the surface of sphere β to arrive at the following translation equations for the 

wave field coefficients: 

 , (3.199) mnn
nm
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EE ZHB ,,

,,)( µνννµ =→

 . (3.200) mnn
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MM ZIC ,,

,,)( µνννµ =→

This result is equivalent to the direct translation result in Eq. 3.173.  As used before, the (E→E) and 

(M→M) subscripts denote these sub-coefficients come from a direct translation of the vector potential.  

Again, summing over n and m yields the  and  coefficients: νµB νµC
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There will also be sub-coefficients that will come from a conversion translation of the vector 

potential, denoted with (E→M) and (M→E) subscripts.  The λ = ν-1 and λ = ν+1 conditions result in 

incoming wave field potentials of the form 
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Note the amplitude coefficients  and  are separated into sub-coefficients based on whether they 

are associated with a ν-1 or ν+1 multipole term.  Since these vector potentials are different from the 

original, untranslated vector potentials, they will produce different fields (electric→magnetic and 

magnetic→electric) when the curl and curl-curl operations are performed on them, respectively.  We get 

the following for the ν-1 component: 

νµB νµC
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Note the curl of the ν-1 component yields a multipole field of the magnetic form, whereas the curl-curl of 

the ν-1 component yields a multipole field of the electric form.   

For the ν+1 component we get 
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Similar to the ν-1 component, the curl of the ν+1 component again yields a multipole field of the magnetic 

form, whereas the curl-curl of the ν+1 component again yields a multipole field of the electric form. 

We now look at the individual potentials.  The incoming magnetic wave field evolves from the 

outgoing electric potential (E→M): 
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We now define a new magnetic field sub-coefficient : nm
MEC )( →νµ
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Similarly, the incoming electric field evolves from the outgoing magnetic potential (M→E): 
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The new electric field sub-coefficient  is similar to the magnetic field sub-coefficient: nm
EMB )( →νµ
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To summarize our electric and magnetic field sub-coefficients, we have: 
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Again, we put them into the traditional S and T translation coefficient notation of Eqs. 3.53, 3.54: 
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E.  Multiple-scattering computations 
 

The single-sphere scattering solutions (Section 3-C) and translation addition theorems (Section 3-

D) provide the algorithmic core of the VMIST program.  However, to simulate the multiple scattering in 

toto for a particle ensemble and calculate the macroscopic field properties (amplitude and direction as a 

function of position and frequency), the computations must be performed in a specific sequence of steps.  

The sequence of steps in the VMIST computation are the following, and are also displayed as a flow 

diagram in Figure 3-7: 

1. Input: 

• Maximum multipole order nmax; 

• maximum number of iterations imax to stop program if it does not converge; 

• content of initial plane wave (only for elastic waves; ratio of longitudinal to shear component). 

2. Set up frequency loop to scan frequency range for frequency-domain computations, or image grid for 

spatial-domain computations. 

3. Irradiate all of the particles in the ensemble with polarized, phase-corrected plane waves propagating in 

the z direction. 

4. Calculate the scattered wave fields for each particle due to the plane waves (first-order scattering) 

using the single-sphere scattering algorithm. 

5. Compute the translation coefficients for all possible particle pairs in the ensemble using the translation 

addition theorem algorithms. 

6. Start iterations—Translate the scattered waves for all particles and sum the translated fields incident on 

each particle. 

7. Calculate the scattered wave fields for each sphere due to the translated waves (second and higher-

order scattering) using the single-sphere scattering algorithm. 
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8. Compare new scattered wave field coefficients (new iterated values) with old (previous iterated values) 

for convergence. 

9. If wave field coefficients have not converged to the user-specified criteria, loop back to step 6 and 

continue computation. 

10. If wave field coefficients have converged to the user-specified criteria, convert wave fields to Cartesian 

coordinates and evaluate fields at evaluation or grid point. 

11. Loop back to step 2 for frequency-domain computations, step 10 for spatial domain computations. 

12. Output individual wave field amplitudes— longitudinal, electric (SE), and magnetic (SM)—for the 

specified point (frequency domain) or image grid (spatial domain). 

The plane wave, scattered wave, and addition theorem expansions are computed to a maximum 

multipole order nmax specified by the user.  The value nmax truncates these normally infinite expansions, and 

thereby introduces error into the models.  Selection of appropriate nmax values for the calculations is 

therefore critical since the selection will always be a compromise between computation time and accuracy.  

Although higher nmax values provide greater accuracy, they do so at the price of increasing the computation 

time polynomially as nmax
5 to nmax

6.  Because of the importance of nmax in the simulations, this parameter 

was examined in detail with respect to convergence, accuracy, and total computation time for the models 

(Sections 4-C, 5-B, 5-C, and 6-C). 

The vector spherical wave expansion for a longitudinal plane wave can be derived from the 

expansion of the scalar potential given by Stratton9 and Jackson.41  The coefficients used in the VMIST 

code for constructing a longitudinal plane wave propagating in the z direction were the following: 

 0,
0

1 )12(4 n
n

nikz
z nie Ue ∑

∞

=

− += π . (3.221) 

Numerical testing verified the above expression converges to a longitudinal plane wave for a wide range of 

frequencies and positions in space.  By convention, vector spherical wave expansions for electromagnetic 

plane waves (also called partial wave expansions) produce an electric field polarized in the x direction and 

a magnetic field polarized in the y direction.  Three different sets of expansions for electromagnetic plane 

waves have been published in the literature.9,41,45   
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1.  Input nmax, imax, and plane wave type

2.  Start frequency loop or build image grid

3-4.  Illuminate spheres with plane wave
and calculate scattered waves

5.  Calculate translation coefficients

6.  Iterate:  Translate scattered
waves and sum new incident waves

7.  Calculate scattered waves from spheres

8-9.  Compare coefficients for convergence.
If no convergence, continue iterations

10.  Calculate field components at grid point

11.  Loop back for next frequency or grid point

12.  Output wavefield amplitudes

Input-output process (main program)

Decision or loop process (main program)

Calculation process (subroutines)

Frequency Loop

Spatial
G

rid Loop
Iteration Loop

 
 
 
FIG. 3-7.  Flow diagram of computation steps performed in the VMIST algorithm. 
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A fourth set of partial wave expansions was discovered in the course of this research by trial and 

error.  Extensive numerical testing showed that the trial-and-error partial wave expansions displayed better 

convergence properties than the three published versions for a wide range of frequencies and locations.  

These trial-and-error expansions were therefore used in the VMIST algorithm. 

The trial-and-error expansions for electromagnetic plane waves propagating in the z direction were 

the following: 

 [ ]1,1,1,1,)12(4 −−++ −−++= ∑ nnnn
n

nikz
x nie VWVWe π , (3.222) 

 [ ]1,1,1,1,)12(4)( −−++ ++++−= ∑ nnnn
n

nikz
y niie VWVWe π . (3.223) 

Vector spherical wave expansions for shear elastic plane waves propagating in the z direction were also 

arrived at through trial and error.  These expansions produce shear-electric waves polarized in the x 

direction and shear-magnetic waves polarized in the y direction: 

 [ ]1,1,)12(4 −+ −+= ∑ nn
n

nikz
x nie VVe π , (3.224) 

 [ ]1,1,)12(4)( −+ −+−= ∑ nn
n

nikz
y niie WWe π . (3.225) 

Although both sets of trial-and-error expansions display better convergence behavior than the 

published expansions, they still do not converge for a wide range of frequencies, locations, and nmax values.  

The cause of this anomalous convergence behavior is unknown and beyond the scope of this dissertation, 

but will be examined in future studies. 

The partial wave expansions describe plane waves with a fixed phase with respect to the z = 0 

plane.  Using the partial wave expansions as incident coefficients for each particle is therefore problematic, 

since the incident coefficients are in terms of the particle’s local coordinate system, but their global position 

along the z axis determines what the plane wave phase is when it hits the particle.  In other words, using the 

partial wave expansion coefficients as is for the incident coefficients effectively puts all of the particles on 

the z = 0 plane for the initial scattering event.  This is not a correct way to model multiple scattering since 

we have to be concerned with phase interactions and interference effects.  Although the phases are 
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automatically taken care of in the translation of the spherical wave fields, they have to be accounted for in 

the initial plane wave.  This is readily accomplished by multiplying the expansion coefficients by a phase 

factor of eikR(z), where R(z) is the distance of the particle from the z = 0 plane (i.e., its global z coordinate). 

After VMIST computes the initial scattering of the plane waves by the particles, the program then 

computes the translational expansion coefficients for all possible particle pairs.  Since the coefficients are a 

function of the wave vector k in the spherical Bessel functions, they have to be recomputed for each 

frequency step in a frequency-domain computation.  This makes the frequency domain computations much 

more time-consuming than the spatial domain computations, where the frequency is fixed but the fields are 

evaluated at several points in an image grid. 

Once the translation coefficients are computed the iterations begin (see Figure 3-8).  During an 

iteration step, the outgoing scattered wave fields from each particle are translated into incident wave fields 

for all other particles.  For a particle ensemble of N particles, there will be 2(N-1) or 3(N-1) 

(electromagnetic or elastic fields, respectively) new incident wave field coefficients for each particle.  

These new incident coefficients are summed and added to the old coefficients.  Each i-th iteration 

represents an i+1 multiple-scattering order (first-order scattering being the initial plane wave scattering), 

and each new contribution to the field coefficients gets smaller and smaller until the field coefficients for 

all of the particles converge to a stable value. 

Convergence is measured by comparing the sum total of all of the field coefficients between two 

successive iteration steps.  If the relative difference between the two coefficient sums is less than the 

specified convergence criteria (for example, a change of less than 10-6), then the iteration procedure stops.  

The coefficients are then used to compute the fields at an evaluation point.  The fields for each particle are 

converted into Cartesian coordinates and evaluated at the evaluation point using the position vector 

between the particle and the point.  The fields for all of the particles are summed at the evaluation point to 

yield the total vector field strength.  The longitudinal, shear-electric (electric), and shear-magnetic 

(magnetic) fields are kept separate, however, to ascertain the contribution of each to the total field at that 

point. 

 



 

72

AB

 

AB

 
 
 
FIG. 3-8.  Illustration showing how each particle interacts with (N-1) particles in an N-particle dispersion, 
resulting in N(N-1) total interactions.  The interactions are iterated through all of the particles, first A, then 
B, etc.—until all interactions have been accounted for.  The iterations then continue with A again, B, etc. 
until the scattered field amplitudes from all particles converge. 
 
 
 If a frequency-domain analysis (spectrum) is desired, only a single evaluation point is used, but 

the entire computation—from initial plane wave to final evaluation of converged coefficients—must be 

repeated for each frequency step.  As previously mentioned, this is a rather time-consuming process.  If a 

spatial-domain analysis (image) is desired, then a planar grid of evaluation points is used.  The fields are 

evaluated at each of the grid points to construct an image of the wave field amplitudes and directions on the 

image plane.  The Cartesian expansions of the UVW multipole fields are rather long and therefore not 

presented here. 

 The VMIST algorithms were written, debugged, and compiled in Fortran 90.  The programs were 

compiled on both a Microsoft Fortran Power Station compiler and a Compaq Fortran compiler, and 

displayed no difference in performance.  The translational addition theorem tests and VMIST simulations 

were performed on a personal desktop computer with 256 MB RAM and an AMD Athalon XP 2000+ 

processor running at 1.679 GHz.  Typical runtimes for spectral computations (nmax = 5, 100 frequency 

steps) were two hours for a system of eight particles, five hours for a system of 12 particles, and 10 hours 

for a system of 16 particles.  Computation time was found to be directly related to processor speed.  It is 

expected that parallel processing using multiple central processing units (CPU’s) or multiple processor 

machines would significantly reduce computation time.  Section 5-B(4) discusses computation runtimes for 

the VMIST simulations in greater detail. 
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CHAPTER 4 
 

RESULTS:  TRANSLATIONAL ADDITION THEOREMS 
 
 
A.  Mathematical review and comparisons 
 
 Convergence tests were performed for the vector addition theorem derived in Section 3-D(1) and 

the scalar addition theorem presented in Section 3-D(2).  For review, the vector addition theorem derived 

for pure-orbital vector spherical harmonics using an integral transform method is the following: 
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This theorem will henceforth be called the pure-orbital addition theorem, since it is formulated for 

the translation of vector multipoles containing pure-orbital vector spherical harmonics.  Using the direct 

and indirect translation coefficient notation of  and , respectively, we have nmSνµ
nmTνµ

 , (4.3) mnnnm ZS ,,
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= ]. (4.4) 

Eqs. 4.2-4.4 comprise the set of pure-orbital addition theorems for translating vector spherical wave 

functions from one coordinate system to another. 

The scalar addition theorem adapted from Varshalovich et al.47 is the following: 
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 Testing of the pure-orbital addition theorems was necessary to evaluate their convergence (How 

fast do they converge?) and correctness (Do they converge to the actual translated field values?).  Also, 

since alternate expressions for the addition theorems have been published, a comparison between the pure-

orbital theorems derived in this work and those derived by others was a useful and interesting exercise.  

Such a comparison has not been previously reported in the open literature despite the variety of expressions 

that have been put forward for the addition theorems. 

 Two sets of scalar and vector addition theorems were selected for comparison.  The first set was 

by Cruzan.55  Cruzan’s theorems are essentially the gold standard for addition theorems due to the number 

of times they have been cited and used.  Many recursion formulas have also been derived to more 

efficiently compute Cruzan’s addition theorems.61-64, 91

The Cruzan vector addition theorems are also significantly mathematically different from those 

derived in this work.  For a fairer comparison and easier programming, the Cruzan theorems were adjusted 

by converting Wigner’s 3-j symbols to Clebsch-Gordan coefficients, converting Legendre polynomials and 

trigonometric functions to spherical harmonic notation, and normalizing to convert from N and M spherical 

wave functions to V and W spherical wave functions.  After these changes, the Cruzan vector addition 

theorems are still mathematically distinct from this work’s theorems: 
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 After the required conversions, the Cruzan scalar addition theorem is the same as Eq. 4.4.  A 

minor difference is that Cruzan’s coordinate system is inverted, with the displacement vector Rαβ pointing 

in the opposite direction (from sphere α to sphere β, instead from sphere β to sphere α as in this work).  

This only leads to a change in the sign of p in the exponent of the factor  in Eq. 4.4, and similarly 

for the  factor in Eqs. 4.9 and 4.10. 

npi −−λ

npi −+ν

The second set of addition theorems were from Liu et al.69  Their theorems were selected for the 

following reasons: 

1. Liu et al. is a recent publication, and therefore should reflect the latest and most accurate 

information. 

2. Since Liu et al. apply the addition theorems to elastic wave scattering, they present both scalar and 

vector addition theorems.  Most other papers present only the scalar theorem for acoustic 

(longitudinal wave only) scattering, or only the vector theorems for electromagnetic scattering. 

3. The theorems presented by Liu et al. are close in form to the pure-orbital addition theorems, with 

Clebsch-Gordan coefficients and spherical harmonic notation.  However, they still differ in 

content from this work’s theorems. 

Liu et al. use vector wave functions Jnm1, Jnm2, and Jnm3 that are close in form to the L, M, and N 

wave functions, and therefore related to the U, V, and W vector multipole fields, except for a factor of -i 

for the transverse functions: 
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Liu et al. call their addition theorems structure constants, and denote them with capital G’s.  The 

Liu et al. scalar addition theorem is 
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Again, inversion of the coordinate system leads to a change in the sign of p in the factor .  However, 

Eq. 4.14 differs from Eq. 4.4 by the absence of the factor 
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which is a significant departure from our scalar addition theorem. 

The vector addition theorems in Liu et al. were originally presented by Wang et al.65  Their direct 

translation coefficient or structure factor is 
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Their indirect translation coefficient or structure factor is 
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 (4.17)

 

 As with the Cruzan addition theorems, the Liu et al. structure constants also differ by a sign 

change in p for the factor , again attributable to a coordinate inversion.  However, the differences 

between the Liu et al. structure constants and the pure-orbital vector addition theorems are significant: 

npi −+ν

1. A factor of 0,
0,,0,12

)12)(12( l
pC

l
p

λ
λ

×
+

++
 in the pure-orbital addition theorems is absent from 

Liu et al.’s structure constants. 

2. Liu et al.’s  indirect structure constant only has a λ = ν-1 expansion term, whereas the indirect 

pure-orbital translation coefficient of Eq. 4.4 has both λ = ν-1 and λ = ν+1 expansion terms. 

3. Liu et al.’s  indirect structure constant also differs from the λ = ν-1 term of the indirect pure-

orbital translation coefficient by a factor of ⎟
⎠
⎞

⎜
⎝
⎛

+
+

12
12

l
λ

. 

Although the published addition theorems differ from the pure-orbital addition theorems in 

analytic form, do they differ numerically when put to the test?  The following sections describe how the 

comparison tests were performed and the results. 

 
B.  Numerical test methods 
 
 The numerical tests were performed by creating a longitudinal (U) field, electric (V) field, and 

magnetic (W) field each with a (n=2, m=1) quadrupole moment.  The fields were translated from the origin 

(sphere α) to an evaluation point on the surface of a test sphere (sphere β) using the addition theorems and 

translation coefficients for the fields.  The radius, distance, and angular orientation of the test sphere with 

respect to the origin were varied in the tests, as was the position of the evaluation point on the test sphere 

(sphere β).  These variations were incorporated to determine the convergence and accuracy of the addition 

theorems for a variety of geometries.  Five surface position-radius-distance-orientation variations were 
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tested, and are summarized in Table 4-1.  A radius for sphere α (the origin of the translated fields) did not 

have to be specified since it does not contribute to the translation coefficient computations. 

The position of sphere β and of the evaluation point on sphere β’s surface were varied to cover 

different quadrants with respect to the origin and sphere β’s coordinate system respectively (Table 4-2).  

Table 4-3 shows how each of the parameters in Table 4-1 were varied to provide an unbiased sampling of 

the performance of the addition theorems.  Figure 4-1 displays the relative distances of sphere β and the 

positions of the evaluation points per test (angular orientation is not shown). 

 
TABLE 4-1.  Parameters for five test conditions for the addition theorem comparison tests with sphere β as 
the test sphere. 
 

Sphere β position 
(angular orientation with 
respect to origin) 

Evaluation point position 
with respect to sphere β 
coordinates 

Test Sphere β 
distance Rαβ

Sphere β 
radius aβ

Rαβ/aβ

180° - Θαβ 180° + Φαβ θβ ϕβ

1 3.4 cm 0.5 cm 6.8 37° 53° 151° 233° 
2 1.4 0.5 2.8 146 115 163 320 
3 3.4 0.1 34 71 304 44 9 
4 14.0 0.5 28 146 115 163 320 
5 3.4 1.0 3.4 71 304 44 9 

*  Note that the direction of Rαβ is opposite to that of the position vector for sphere β with respect to the 
origin. 
 
 
TABLE 4-2.  Position of sphere β and evaluation point by quadrant. 
 

Test Quadrant position of sphere β with respect to 
origin 

Quadrant position of evaluation point with 
respect to sphere β 

1 +x, +y, +z quadrant –x, -y, -z quadrant 
2 -x, +y, -z quadrant +x, -y, -z 
3 +x, -y, +z quadrant +x, +y, +z 
4 -x, +y, -z quadrant +x, -y, -z 
5 +x, -y, +z quadrant +x, +y, +z 

 
 
TABLE 4-3.  Parameters varied by test. 
 

 Test Distance Rαβ varied Radius aβ varied Θαβ, Φαβ varied θβ, ϕβ varied 
1     
2 × 0.412 from test 1 same as 1 yes yes 
3 same as 1 × 0.200 from test 1 yes yes 
4 × 10 from test 2 same as 1 same as 2 same as 2 
5 same as 1 × 10 from test 3 same as 3 same as 3 
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FIG. 4-1.  Distances and radii of sphere β (solid circle) from sphere α (dashed circle), and the relative 
positions of evaluation points on sphere β’s surface (small filled diamonds) for each addition theorem 
comparison test. 
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The fields were translated out to the evaluation points using the pure-orbital, Cruzan, and Liu et al. 

addition theorems as discussed in the previous section.55,69  The maximum multipole order, nmax, the 

expansions were computed to was also continuously varied from nmax = 2 to nmax = 16.  There were 

therefore 15 simulations run for each of the three addition theorem versions and for each of the five test 

positions as described in Table 4-1. 

The Cartesian components of the fields were evaluated directly at the point on the sphere where 

they were translated, first for the direct, untranslated (2,1) quadrupole field emanating from the origin, 

second from the fields translated to sphere β’s surface.  This allowed direct comparison of the translated 

fields with the untranslated fields as a function of frequency and field component (x, y, or z of the 

longitudinal, electric, or magnetic fields).  The deviation of the translated fields from the untranslated fields 

was quantified by calculating the difference between the magnitudes of the fields (by summing the squares 

of the cartesian components and taking the square root) and by averaging over the frequency band.  The 

results were then plotted as convergence curves as a function of nmax. 

The comparison tests were performed in the frequency domain.  The range of parameters and how 

they translate to elastic and electromagnetic wavelengths for the comparison tests are listed in Table 4-4.  

The longitudinal and shear wave speeds were based on water ice as the matrix, since ice has elastic wave 

properties intermediate between those of a soft solid, such as plastic, and a hard solid, such as steel.191  The 

corresponding electromagnetic frequency range is based on the shear elastic wavelength, since the shear 

multipole fields correspond to the electromagnetic multipole fields. 

 
TABLE 4-4.  Range of frequency-dependent parameters for the addition theorem comparison tests. 
 

Parameter Start End 
frequency 10 kHz 1 MHz 
wavelength, longitudinal 39.8 cm 0.398 cm 
wavelength, shear 19.9 cm 0.199 cm 
k, longitudinal 0.15787 cm-1 15.787 cm-1

k, shear 0.31574 cm-1 31.574 cm-1

kr (r = 0.5), longitudinal 0.0789 7.89 
kr (r = 0.5), shear 0.158 15.8 
equivalent EM wavelengths 20 cm (1.5 GHz) 0.20 cm (150 GHz) 
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Computation time was also measured for each of the theorems and as a function of nmax and test 

geometries.  The next section discusses the convergence results from the comparison tests. 

 
C.  Numerical test results 
 
1.  Convergence results 
 
 Convergence of the addition theorems was quantified by calculating the magnitude of the 

difference vector between each of the untranslated U, V, and W multipole fields and the corresponding 

translated fields (Figure 4-2).  By using the magnitude of the difference vector, instead of the difference 

between the two vector magnitudes, the comparisons can account for variations in angle as well as 

magnitude between the translated and untranslated fields.  The difference vector magnitudes were then 

averaged over the frequency range and plotted as a function of nmax.  
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FIG. 4-2.  Diagram of difference vector between untranslated and translated field component F 
(representative of either U, V, or W).  The magnitude of this vector was used to quantify the convergence 
and accuracy of the addition theorem results. 
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Error values for convergence plots were calculated by dividing the frequency-averaged difference 

vector magnitude by the frequency-averaged magnitude of the untranslated multipole field.  An error of 1.0 

(or 100 percent) therefore corresponds to a difference vector having the same magnitude as the multipole 

field (i.e., the error is equal to the field being translated). 

One of the first results to be noted was the theorems by Cruzan produced numerically identical 

results to the pure-orbital theorems.  The only difference between the two sets of theorems was the time 

required to compute the results.  Table 4-5 displays the time required to compute the translated fields for 

n  = 16. 

As can be seen from the Table 4-5, the theorems of Cruzan were fastest, with the theorems of Liu 

et al. second, and the pure-orbital theorems the slowest.  These results can be attributed to the fact both the 

theorems of Cruzan and Liu et al. have fewer Clebsch-Gordan coefficients in the expressions.  The 

computation of the Clebsch-Gordan coefficients is most likely less computationally efficient, and therefore 

takes longer (possibly due to the computation of multiple factorial terms—see Eqs. 3.145 and 3.146).  The 

theorems of Cruzan substitute algebraic expressions for some of the Clebsch-Gordan coefficients, whereas 

Liu et al. just leave them out of the equations with no apparent substitution.  The algebraic expressions of 

Cruzan are faster than calculating the equivalent Clebsch-Gordan coefficients.  However, although the 

omission of Clebsch-Gordan terms in the expressions of Liu et al. also increases computational speed, they 

do not demonstrate the same accuracy as the pure-orbital (or Cruzan’s) theorems, as will be shown in the 

following pages. 

 
ABLE 4-5.  Computation time in hours to translate the UVW multipole fields for each test configuration. 

max

T
 

Addition Theorems 
Test 

Pure-Orbital Cruzan Liu et al. 

1 11.09 6.85 7.28 

2 10.06 6.15 6.55 

3 10.93 6.79 7.28 

4 16.95 11 11.09 .60 

5 11.03 6.80 7.29 
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Another observation from Table 4-5 is the computation time is directly related to Rαβ, the distance 

between sphere β and sphere α.  The only function in the addition theorems that contains Rαβ explicitly is 

the spherical Hankel function .  Therefore, it appears calculation of the spherical Hankel 

function is a major contributor to the computation efficiency in addition to the Clebsch-Gordan 

coefficients. 

)()1(
αβkRhp

The computation time for the addition theorems as a function of nmax assumes a power-law form.  

Modeling the power law as 

 , (4.19) KncTime )( max⋅=

the constant c and exponent K can be determined from the data using least squares fitting.  Table 4-6 shows 

the results of this fitting, and Figure 4-3 displays this power-law behavior.  The power-law results indicate 

that, for each test, all three theorems scale to nmax by approximately the same power-law exponent.  

However, the linear constant can vary by as much as two times between the theorems.  So, although the 

theorems differ in computational speed, they differ linearly with nmax and not exponentially. 

Figures 4-4 to 4-9 display the convergence results for the theorems of Cruzan (and therefore the 

pure-orbital theorems as well) and Liu et al. as a function of nmax.  The vertical scale for each of the plots is 

logarithmic due to the wide range of error.  As can be seen from all six figures, the theorems of Liu et al. 

either diverge or show no change in convergence for all three multipole fields, all five test conditions, and 

nmax = 2-16.  The errors are also consistently higher for the Liu et al. theorems, often by an order of 

magnitude or more.  In contrast, the Cruzan/pure-orbital theorems show convergence for about half of the 

tests.  The best convergence trends are for the longitudinal multipole field U for Tests 1, 2, and 5 (Figures 

4-4 and 4-5).   

 
TABLE 4-6.  Results of least-squares fit to computation time vs nmax. 
 

Constant c (× 10-6) Exponent K Test 
Pure-Orbital Cruzan Liu et al. Pure-Orbital Cruzan Liu et al. 

1 1.28 0.631 0.713 5.76 5.84 5.82 
2 0.537 0.228 0.288 6.04 6.17 6.11 
3 1.42 0.625 0.735 5.72 5.84 5.81 
4 10.4 7.76 6.71 5.16 5.11 5.18 
5 0.822 0.609 0.695 5.92 5.85 5.83 
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FIG. 4-3.  Power-law behavior of computational time as a function of nmax. 
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FIG. 4-4.  Convergence of longitudinal multipole field U for Tests 1, 3, and 5 for the Cruzan/pure-orbital 
and Liu et al. theorems. 
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FIG. 4-5.  Convergence of longitudinal multipole field U for Tests 2 and 4 for the Cruzan/pure-orbital and 
Liu et al. theorems. 
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FIG. 4-6.  Convergence of electric multipole field V for Tests 1, 3, and 5 for the Cruzan/pure-orbital and 
Liu et al. theorems.  
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FIG. 4-7.  Convergence of electric multipole field V for Tests 2 and 4 for the Cruzan/pure-orbital and Liu et 
al. theorems. 
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FIG. 4-8.  Convergence of magnetic multipole field W for Tests 1, 3, and 5 for the Cruzan/pure-orbital and 
Liu et al. theorems. 
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FIG. 4-9.  Convergence of magnetic multipole field W for Tests 2 and 4 for the Cruzan/pure-orbital and 
Liu et al. theorems. 
 

The electric (V) and magnetic (W) multipole fields display less convergence in their trends 

(Figures 4-6 to 4-9).  The worst convergence trends are seen for the magnetic multipole field W, where 

only Test 1 shows any convergence behavior (Figure 4-8).   

Although the Cruzan/pure-orbital theorems show greater convergence over the range of tested 

configurations, it is still disconcerting to note the poor convergence for some of the test geometries and 

multipole fields.  Although the testing was only conducted to nmax = 16 due to computation time, it appears 

from many of the convergence trends that further testing to higher nmax would not improve the results 

significantly.  The next section will examine the accuracy of the translation operation associated with these 

convergence trends. 

 
2.  Accuracy results 

 The accuracy of the addition theorems was first qualitatively judged by comparing the frequency 

spectra of the untranslated field with the translated fields at various nmax values.  The accuracy was also 
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quantitatively assessed as a function of frequency (kd) by using the magnitude of the difference vector as 

described in the previous section. 

Figures 4-10 and 4-11 show the spectra of the y components of the longitudinal and electric 

multipole fields respectively (Uy and Vy) for Test 1 of the Cruzan/pure-orbital theorems.  The magnetic 

multipole field results are similar to those of the electric multipole field, shown in Figure 4-11.  The 

translated and untranslated spectra show fairly good agreement (≤ 30 percent) as far as periodicity and 

amplitude as a function of frequency.  Excellent agreement is seen at specific frequencies where the 

translated and untranslated curves overlap, such as at kd = 30 for the longitudinal field and kd = 100 for the 

electric field.  The x and z components of the fields display the same general periodicity and amplitudes, 

but less agreement between the translated and untranslated fields as seen for the y components. 

 The results from the other tests are less promising, however.  Figures 4-12 and 4-13 display the 

frequency (kd) spectra of the y components of the longitudinal and electric multipole fields, respectively, 

(Uy and Vy) for Test 2 of the Cruzan/pure-orbital theorems. 
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FIG. 4-10.  Spectra of the y components of the longitudinal multipole field U for Test 1, using the 
Cruzan/pure-orbital theorems. 
 



 

89

0 20 40 60 80 100
kd

0.00

0.50

1.00

Fi
el

d 
A

m
pl

itu
de

Untranslated
nmax = 8
nmax = 16

Test 1, Vy-component
Cruzan/Pure-Orbital

 
FIG. 4-11.  Spectra of the y components of the electric multipole field V for Test 1, using the Cruzan/pure-
orbital theorems. 
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FIG. 4-12.  Spectra of the y components of the longitudinal multipole field U for Test 2, using the 
Cruzan/pure-orbital theorems. 
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FIG. 4-13.  Spectra of the y components of the electric multipole field V for Test 2, using the Cruzan/pure-
orbital theorems. 
 
 

Again, the magnetic multipole field results are similar to those of the electric multipole field, as 

shown in Figure 4-13.  The results are still good for the longitudinal field, but very poor for both the 

electric and magnetic fields.  Again, specific frequencies show excellent agreement for the longitudinal 

field, particularly at low frequency (kd < 2) and kd = 13.  The electric field shows agreement between the 

translated and untranslated field only at low frequency (kd < 1).  No agreement is observed at any 

frequency for the magnetic field.  The results become even poorer for Tests 3, 4, and 5. 

The results from the Liu et al. theorems do not show any agreement for any of the multipole fields 

(U, V, or W) or multipole field components (x, y, or z).  Figures 4-14 and 4-15 display the frequency 

spectra of the y components of the longitudinal and electric multipole fields respectively (Uy and Vy) for 

Test 1 of the Liu et al. theorems.  As with the Cruzan/pure-orbital theorem results, the magnetic multipole 

field results are similar to those of the electric multipole field, Figure 4-15.  The results for the five test 

geometries show that the Liu et al. forms of the translational addition theorems are not accurate at any 

frequency at nmax = 16. 
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FIG. 4-14.  Spectra of the y components of the longitudinal multipole field U for Test 1, using the Liu et al. 
theorems. 
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FIG. 4-15.  Spectra of the y components of the electric multipole field V for Test 1, using the Liu et al. 
theorems. 
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To quantitatively measure the degree of accuracy, the magnitude of the difference vector between 

the untranslated and translated fields (Figure 4-2) was computed as a function of frequency (kd).  In orderto 

compare various multipole fields and test geometries, the magnitude of the difference vector was 

normalized to yield a percent deviation.  The most straightforward normalization would be to divide the 

difference vector magnitude with the untranslated vector magnitude at each frequency step.  This, however, 

produces extremely large deviation values at frequencies where the untranslated vector magnitude 

approaches zero.  Where the untranslated vector magnitude is zero, the deviation is infinite.  At frequencies 

where the untranslated vector magnitude is large, the deviation can appear small.  Therefore, to achieve a 

more even normalization, the difference vector magnitude for each frequency step was divided by the 

frequency-averaged untranslated vector magnitude. 

The results for the longitudinal and electric multipole fields are displayed in Figures 4-16 and 4-

17, respectively, for the Cruzan/pure-orbital theorems, Test 1.  The deviations for the magnetic multipole 

field are similar to those for the electric multipole field in Figure 4-17.  The vertical scale on the plot shows 

the magnitude of the difference vector with respect to the frequency-averaged untranslated field vector, and 

is given in percent. 

Note the magnitude of the difference vector goes to zero for particular frequency bands of the 

longitudinal field, but increases up to 20 percent for other frequency bands.  The bands of zero magnitude 

represent spectral regions where the addition theorem is in very good agreement with the untranslated field.  

The bands of high magnitude represent regions where the addition theorem fails to converge to the 

untranslated field for nmax = 16. 

The magnitude of the difference vector for the electric and magnetic multipole fields never goes to 

zero.  The minimum magnitude at nmax = 16 is approximately 20 percent for both multipole fields, and 

ranges up to 500 percent in the low frequency range. 

The difference vector magnitudes for the other tests show the same type of behavior as for Test 1, 

but with smaller ranges of deviation for the electric and magnetic multipole fields.  Figures 4-18 and 4-19 

show the longitudinal and electric multipole field deviations as a function of frequency for Test 2.     
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FIG. 4-16.  Percent deviation of translated longitudinal multipole field U from untranslated field, for the 
Cruzan/pure-orbital theorems, Test 1. 

0 20 40 60 80 100
kd

0

40

80

120

D
ev

ia
tio

n 
(%

)

V Multipole Field
Test 1, nmax = 16
Cruzan/Pure-Orbital

 
FIG. 4-17.  Percent deviation of translated electric multipole field V from untranslated field, for the 
Cruzan/pure-orbital theorems, Test 1. 
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FIG. 4-18.  Percent deviation of translated longitudinal multipole field U from untranslated field, for the 
Cruzan/pure-orbital theorems, Test 2. 
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FIG. 4-19.  Percent deviation of translated electric multipole field V from untranslated field, for the 
Cruzan/pure-orbital theorems, Test 2. 
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Note in Figures 4-18 and 4-19 the longitudinal multipole field again displays narrow frequency 

bands of good agreement (deviation ≈ 0 percent) and broader frequency bands of poorer agreement 

(deviation 5-15 percent).  The electric and magnetic multipole fields have overall higher deviations, but 

within a tighter range across the spectrum. 

As expected, the deviations for the multipole fields from the Liu et al. theorems are extremely 

high.  The results for the longitudinal and electric multipole fields are displayed in Figures 4-20 and 4-21, 

respectively, for the Liu et al. theorems, Test 1.   Table 4-7 lists the deviations for each test and multipole 

field at nmax = 16 for the Cruzan/pure-orbital and Liu et al. theorems.  The deviations are also averaged over 

all five tests.  The conclusions from Table 4-7 are dismal.  Using the Cruzan/pure-orbital scalar addition 

theorem, the translated longitudinal multipole field will deviate on average about 11 percent.  The results 

are worse for the vector addition theorem and translation coefficients for the electric and magnetic 

multipole fields.  On average, the translated electric and magnetic multipole fields will deviate 90-100 

percent.  As bad as these results are, the addition theorems from Liu et al. are much worse, with average 

deviations in the translated fields ranging from 260 percent to 420 percent. 
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FIG. 4-20.  Percent deviation of translated longitudinal multipole field U from untranslated field, for the 
Liu et al. theorems, Test 1. 
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FIG. 4-21.  Percent deviation of translated electric multipole field V from untranslated field, for the Liu et 
al. theorems, Test 1. 
 
 
TABLE 4-7.  Average deviation of translated field from frequency-averaged untranslated field for each 
multipole field and test at nmax = 16. 
 

Test U (% dev) V (% dev) W (% dev) 

Cruzan/Pure-Orbital Theorems 

1 6.4 54 57 

2 4.3 68 98 

3 15 100 110 

4 21 120 120 

5 11 100 110 

Averaged over tests 11 89 99 

Liu et al. Theorems 

1 180 210 200 

2 970 760 250 

3 280 480 330 

4 150 220 160 

5 410 420 350 

Averaged over tests 400 420 260 
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 Further analysis of the addition theorem test results indicates the error in the translated multipole 

fields arises equally from deviations in the amplitude of the vector field and deviations in the orientation 

(angle) of the vector field.  Deviations in amplitude can vary up to 400 percent, while deviations in 

orientation (vector angle) can vary up to a full 180° (for the Cruzan/pure-orbital theorems).  Interestingly, 

the translated longitudinal fields have greater amplitude deviations, while the translated electric and 

magnetic fields have greater angular deviations. 

 Although numerical testing of the addition theorems was not exhaustive (more sphere geometries 

and multipole moments could have been tested) the results are consistent for the five tests.  The results of 

the numerical testing can be summarized as follows: 

1. Although the theorems of Cruzan differ mathematically—principally in formalism—from the 

pure-orbital theorems derived in this work, they are numerically equivalent and superior with 

regards to computational speed. 

2. Although the theorems of Liu et al. use the same formalism as the pure-orbital theorems, they 

differ mathematically.  Since the pure-orbital theorems were rigorously derived, it can be 

concluded that errors exist in the Liu et al. theorems. 

3. Numerical testing verifies the theorems of Liu et al. do not even approximately translate the three 

multipole fields for the five geometries tested.  It can therefore be concluded, in comparison to the 

Cruzan/pure-orbital theorems, the Liu et al. theorems are in error. 

4. For specific sphere geometries (e.g., Test 1), the Cruzan/pure-orbital theorems approximate the 

translated fields as a function of frequency.  However, for most frequencies and scattering 

geometries, the theorems miscalculate the translated fields with errors up to several hundred 

percent, possibly because of insufficiently high nmax. 

The results are fairly stark:  For current practical applications, translational addition theorems are 

neither efficient nor accurate for the modeling of multiple scattering over a range of frequencies and 

particle configurations.  Why is this the case?  The addition theorems have been rigorously derived by 

Cruzan.  This work rederived the addition theorems through an independent method (integral transform) 

and formalism (UVW multipole fields vs LNM spherical wave functions), and arrived at expressions that 
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are numerically identical to Cruzan’s.  Since no approximations were made in either derivation, the 

addition theorems must be considered as exact expressions.  Yet the numerical tests show far from accurate 

results for nmax up to 16. 

The most probable answer is the addition theorems have not converged by nmax = 16, and are just 

not accurate unless the expansions are carried out to high multipole orders, possibly on the order of nmax = 

50-500.  Since the computations take so long for even small values of nmax and scale as nmax
K (see Eq. 4.19), 

we cannot determine whether this is true or not with current computer hardware.  However, we can look at 

other multipole expansions and their convergence behavior. 

 
3.  Results for partial wave expansions of vector plane waves 
 

For a comparison to the addition theorem expansions, the partial wave expansions in Eqs. 3.221, 

3.224, and 3.225 were numerically tested in the same frequency range and with the same material 

properties as were the addition theorems.  The evaluation point for the partial wave expansions was placed 

on the z axis at 3.4 cm from the origin.  This was the same distance as sphere β in Test 1 of the addition 

theorem tests.  To determine convergence and accuracy, the partial wave expansions were compared to the 

exact plane wave expression (cos kd) as a function of frequency (kd) and nmax.  Due to the simplicity of the 

expansions, the computations were fast (from a few seconds to several minutes).  However, beyond nmax = 

84 the test program failed due to factorial terms in the Clebsch-Gordan coefficients exceeding the 

numerical range allowed by Fortran 90. 

Figures 4-22 and 4-23 show the convergence behavior of the partial wave expansions for the 

UVW vector multipole fields, with error expressed as fractions instead of percents.  Figure 4-22 displays 

the convergence from nmax = 2 to nmax = 16, whereas Figure 4-23 displays the convergence from nmax = 10 to 

nmax = 80.  For comparison, the convergence curves for the Cruzan/pure-orbital addition theorems from 

Test 1 are shown in Figure 4-24 with the same linear scale. 

Comparison of the addition theorem convergence curves with the partial wave expansion 

convergence curves demonstrates the slow convergence of the addition theorems is not unusual, but   

may be a general feature of multipole expansions.  In fact, the addition theorems appear to converge faster 
 
than partial wave expansions.  
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FIG. 4-22.  Convergence for the partial wave expansions of the UVW vector multipole fields, from nmax = 2 
to nmax = 16. 
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FIG. 4-23.  Convergence for the partial wave expansions of the UVW vector multipole fields, from nmax = 
10 to nmax = 80. 
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FIG. 4-24.  Convergence for the Cruzan/pure-orbital addition theorem, Test 1, from nmax = 2 to nmax = 16. 
 
 

Figures 4-25 and 4-26 display the spectra (field amplitudes as a function of frequency) for the 

partial wave expansions of the longitudinal multipole field U and magnetic multipole field W.  Spectra for 

nmax = 16 and nmax = 84 are shown and compared with the exact value for the plane wave (cos kd). 

At nmax = 16, the longitudinal partial wave expansion converges at low frequency (< 0.2 MHz), but 

deviates at higher frequencies.  At nmax = 60, the longitudinal partial wave expansion (Figure 4-23) 

converges to the exact values (cos kd) for the entire frequency range, and completely overlays the cos kd 

curve in Figure 4-25.  The magnetic partial wave expansion (Figure 4-26) shows large deviations at nmax = 

16, but converges for nmax = 84 to the cos kd curve at low and mid frequencies (kd < 80).  Interestingly, the 

deviations at high frequencies (kd > 80) grow with increasing nmax, resulting in a poor fit for these 

frequencies.  It is reasonable to expect, however, the magnetic partial wave expansion will converge even at 

these frequencies for higher (>84) nmax values. 

Figures 4-27 and 4-28 display the percent deviation of the partial wave expansion amplitudes from 

the exact plane wave amplitude.  The longitudinal and magnetic fields are shown for nmax = 16, 50, and 84.  
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FIG. 4-25.  Spectra of the partial wave expansion of the longitudinal multipole field U.  Expansion at nmax = 
84 overlays cos kd to within resolution of plot. 
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FIG. 4-26.  Spectra of the partial wave expansion of the magnetic multipole field W. 
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FIG. 4-27.  Percent deviation of the partial wave expansion of the longitudinal multipole field U from the 
exact value cos kd averaged over frequency band. 
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FIG. 4-28.  Percent deviation of the partial wave expansion of the magnetic multipole field W from the 
exact value cos kd averaged over frequency band. 
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The percent deviation for Figures 4-27 and 4-28 was calculated the same as for Figures 4-16 to 4-

21, by dividing the difference vector magnitude at each frequency with the frequency-averaged plane wave 

magnitude Mavg: 

  [∑
=

⋅=
max

0max

)(cos1 ν

ν

ν
ν

dkM avg ] . (4.20) 

Figures 4-27 and 4-28 clearly show how the partial wave expansions converge at low frequencies 

first, and how the convergence progresses to higher frequencies with increasing nmax.  Figure 4-28 also 

displays how the deviation grows with increasing nmax before convergence. 

Table 4-8 tabulates the average percent deviation of the partial wave expansions for nmax = 16, 50, 

and 84, showing the improvement in convergence with higher nmax.  Table 4-8 also shows the percent 

deviation results from two other test geometries (distances) placed on the z axis.  Table 4-9 compares the 

average deviations from the partial wave expansions with those from the addition theorem tests 

(Cruzan/pure-orbital theorems) for nmax = 16. 

 
TABLE 4-8.  Average deviation of partial wave expansion from the exact value cos kd for each multipole 
field and three nmax values. 
 

Partial Wave Expansions 

nmax U (% dev) V (% dev) W (% dev) 

Test 1:  d = 3.4 cm 

16 64 82 96 

50 4.9 51 75 

84 7.9 × 10-5 20 44 

Test 2:  d = 1.4 cm 

16 23 66 99 

50 6.9 × 10-5 12 12 

84 6.9 × 10-5 12 12 

Test 4:  d = 14.0 cm 

16 92 97 98 

50 73 86 99 

84 54 80 88 
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TABLE 4-9.  Comparison of deviations between partial wave expansions and addition theorems for nmax = 
16. 
 

Test U (% dev) V (% dev) W (% dev) 
Partial Wave Expansions (nmax = 16) 

1 64 82 96 
2 23 66 89 
4 92 97 98 

Average 60 82 94 
Cruzan/Pure-Orbital Addition Theorems (nmax = 16) 

1 6.4 54 57 
2 4.3 68 98 
4 21 120 120 

Average 10 81 92 
 
 
 The results from numerical testing of the partial wave expansions tells us that we should not be too 

surprised the addition theorems do not converge at nmax = 16.  Tables 4-8 and 4-9 indicate the partial wave 

expansions and addition theorems have similar convergence behavior.  Similarities include the following: 

1. For both partial wave and addition theorem expansions, the longitudinal multipole field converges 

faster than either the electric or magnetic multipole fields. 

2. Although the longitudinal multipole field converges faster for the addition theorems, the electric 

and magnetic multipole fields show about the same convergence results (deviations) at nmax = 16 

for both partial wave and addition theorem expansions. 

3. The convergence for the partial wave expansions, and to some extent the addition theorems, is 

proportional to the distance of the evaluation point or target sphere.  (Test 4, which is the farthest 

at 14.0 cm, displayed the slowest convergence for both the partial wave and addition theorem 

expansions.) 

 
4.  Discussion 
 

The results indicate the addition theorems converge too slowly for practical application to 

multiple-scattering algorithms.  This slow convergence is not due to algorithmic errors, but is inherent in 

the general nature of vector multipole expansions.  It should be noted part of the slow convergence for the 

addition theorems in this work is due to the fact the computations are performed for 100 separate frequency 
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steps in order to determine their behavior as a function of frequency.  Most published work using addition 

theorems confine their simulations to one or a few frequencies, and are therefore able to compute the 

results up to 100 times faster. 

Although many researchers resort to recurrence relations to compute the addition theorems and 

subsequent field translations much more quickly, their computations severely underestimate nmax.  Borghese 

et al. only went to nmax = 3 with their vector field translations.96  Fuller justifies this by noting the wave 

frequency, sphere sizes, and sphere separations were in the Rayleigh region of scattering (kd < 1).94  

Similarly, Mackowski claimed convergence of electromagnetic field translations at nmax = 2-10 for kd = 0.1, 

nmax = 3-6 for kd = 1, and nmax = 14 for kd = 10.100  Gumerov and Duraiswami also indicate the addition 

theorem expansions for the longitudinal field can be truncated at nmax ≈ 10 for kd ≤ 10.119  In comparison, 

none of the addition theorems in the numerical tests of this work converge by nmax = 16 for the kd < 1 

region, as shown by Figures 4-16 through 4-21. 

Why is there such a large discrepancy between the published results and the results of this work?  

A closer look at the published results reveals four reasons: 

1. The criteria for convergence in the published results appears to be a relative flattening of the 

translated field values as a function of nmax.94,96,100,119  Figures 4-4 through 4-9 show several of the 

translated field values do indeed flatten in the nmax = 2-16 range.  However, this flattening is not a 

convergence to what the values should be (the untranslated field), as shown in Figures 4-10 

through 4-13, and Figures 4-16 through 4-19.  Rather, the flattening is most likely a transient 

plateau region, where the higher expansion terms contribute little to the translation much like that 

for the electric multipole field in Figure 4-24. 

2. None of the published results found to date compare the addition theorem results themselves to the 

actual, untranslated field results.  Rather, the addition theorems are used to calculate the sphere-to-

sphere scattering coefficients, and the scattering results are used to determine convergence.  This 

is not a good test for the accuracy and convergence of the addition theorems, as it can be shown 

the scattering solutions can plateau (flatten) at low nmax, although the addition theorems are grossly 
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inaccurate at those nmax values.  Again, there is confusion between convergence and a transient 

plateau region, which leads to accuracy errors. 

3. Several of the published results are for spheres in a geometric configuration that may bias the 

convergence (for example, along the x, y, or z axis).70,100  In comparison, the configurations for this 

work’s numerical tests were chosen at random and represent arbitrary distances and orientations. 

4. Only a few of the published results found to date look at convergence of the addition theorems 

across a sufficiently wide and detailed frequency (or kd) range.70,71  Rather, only a few values for 

kd are selected and analyzed.  As noted, the longitudinal multipole field converges to the actual 

(untranslated) values at certain frequency values, but widely diverges at others. 

Some of the most detailed studies of the addition theorems are by Liang and Lo, and Bruning and 

Lo.70,71  Although they did not directly evaluate the addition theorems, but rather looked at two-sphere 

scattering solutions, they did evaluate their results across a broad range of frequencies (kd) and sphere 

spacings.  They also compared their results to ray-optics solutions and experimental measurements.  

Although the addition theorem approach predicted the overall characteristics of the scattering cross 

sections, discrepancies were present between the addition theorems and ray-optics solutions (up to 40 

percent),71 and between the addition theorems and experimental data (up to 100 percent).70

It should be noted single-sphere scattering provides a very good approximation of the general 

scattering characteristics for either small or dilute collections of spheres.  Therefore, testing the addition 

theorems by using multiple-sphere scattering may not be a good approach since the single-sphere scattering 

contribution is not separated out in the solutions.  This is probably the primary reason why approaches that 

use addition theorems continue to be researched and published with little acknowledgement of their poor 

accuracy and convergence.  The single-scatterer contribution overwhelms any errors introduced by the 

addition theorem translations for small clusters or dilute sphere packings. 

From the results of the numerical testing of the translational addition theorems derived in this 

work, the following conclusions and recommendations are made: 
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1. The convergence and accuracy of the addition theorems vary as a function of frequency, distance, 

target (β) sphere size, and orientation.  Therefore, all of these parameters must be considered in 

determining convergence and accuracy. 

2. The convergence and accuracy of the addition theorems vary differently for each of the three 

multipole fields. 

3. Convergence for the addition theorems cannot be determined from the shape of the convergence 

curves.  Although the convergence curves flatten with nmax, large deviations (up to several hundred 

percent) are still present between the translated vector fields and actual, untranslated vector fields.  

This flattening is therefore probably a plateau region, and not a true convergence. 

4. The addition theorems do not converge for a variety of translation geometries, a wide range of 

frequencies, and for nmax values up to 16. 

5. Convergence of multiple-scattering solutions is not a test for convergence of translational addition 

theorems due to the false convergence regions for the addition theorems and the large 

contributions from single scattering. 

6. The partial wave expansions for the initial plane waves in multiple-scattering problems exhibit 

similar convergence behavior as the addition theorems, and must therefore also be closely 

evaluated with respect to convergence and accuracy. 

The convergence and accuracy problems presented by the use of addition theorem expansions will 

probably only be remedied by either finding mathematical methods to accelerate the addition theorem 

convergence or foregoing addition theorem expansions altogether in the multiple-scattering theory.  

Chapter 8 presents a few ideas of how both of these approaches may be achieved. 

 



 

108

CHAPTER 5 
 

RESULTS:  SCATTERING MODELS FOR MULTIPLE SPHERES 
 
 

Although numerical testing showed the translational addition theorems had significant 

convergence and accuracy limitations, scattering models were nonetheless constructed and tested with the 

theorems to demonstrate the general concept of the approach.  Additionally, previous work has shown such 

an approach produces results that are close to expected and experimental values.70-72,88-100  We were 

therefore curious as to how such results could be obtained in light of the deficiencies of the addition 

theorems. 

Three types of scattering models were developed and tested.  These models were the following: 

1. Elastic wave scattering in the spatial domain, yielding scattered wave field images. 

2. Elastic wave scattering in the frequency domain, yielding scattered wave field spectra. 

3. Electromagnetic scattering in the frequency domain, yielding scattered wave field spectra. 

The spatial domain models represent a virtual microscope where the computer model creates images of the 

fields and their Cartesian components at the microscopic or particle size level.  Likewise, the frequency 

domain models create a virtual spectrometer where the behavior of the fields as a function of frequency is 

examined.  The results of these models for various particle configurations will now be presented. 

 
A.  Elastic wave scattering in the spatial domain 
 

Spatial domain models for elastic wave scattering were constructed according to the flow diagram 

in Figure 3-7.  The Cartesian components of the longitudinal, shear-electric, and shear-magnetic fields were 

evaluated at points comprising a square lattice of user-selected size and resolution.  This grid constituted 

the image plane of the model with each point as a pixel.  The multiple-scattering models, employing wave 

field translations and iteration, were compared to single-scatterer models, where the initial plane waves are 

scattered only once by each particle and the scattered fields superimposed at the evaluation points. 

The simplest particle configuration examined was a pair of identical spheres aligned along the 

direction of the plane wave propagation.  For the following figures, the two spheres were quartz particles 

(rocks) in ice, with diameters of 1.0 cm and separated by 2.0 cm center-to-center.  The acoustic properties 
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of ice and quartz were sufficiently different to clearly show scattering phenomena such as reflection, but 

not too different to preclude some types of wave propagation (refraction through the particle, for instance).  

The acoustic properties were obtained from Ensminger.191

Figures 5-1 through 5-6 show scattered wave field images of the two-particle configuration with 

an elastic wave frequency of 0.5 MHz.  (Note these images could also correspond to other particle 

size/frequency range combinations, such as 0.5 cm/1.0 MHz, 0.1 cm/5.0 MHz, and so forth.)  The images 

are 200×200 pixels, with a pixel size of 0.02×0.02 cm.  Various wave fields and components are presented 

to show how the models reproduce physical phenomena such as focusing and mode conversion.  To 

highlight the scattering behavior and any differences between the multiple-scatterer and single-scatterer 

models, only the scattered wave fields are imaged without the superposition of the incident plane wave. 

Figures 5-1 and 5-2 display the wave field images arising from the interaction of a purely 

longitudinal plane wave (propagating from left to right in the z direction) with the two quartz spheres.  

Figure 5-1 shows the z component of the scattered longitudinal field, illustrating the focusing of the 

longitudinal wave by the two spheres.  The color corresponds to the displacement vector amplitude.  Blue 

corresponds to high positive displacement, red to high negative displacement.  The multiple-scattering 

model (left image) and single-scattering model (right image) are plotted to the same color scale, and show 

subtle differences in scattered field intensity.  The overall patterns of the scattered fields, however, are 

similar for the multiple-scattering and single-scattering models. 

Figure 5-2 shows the y component of the shear-electric field arising from mode conversion of the 

pure longitudinal incident plane wave from the two quartz spheres.  This is an in-plane displacement since 

the image grid is in the y-z plane.  Again, the wave field patterns appear nearly identical, but the amplitudes 

vary to some extent.  Figures 5-1 and 5-2 also faithfully reproduce other features of elastic wave scattering 

such as the forward scattering of the longitudinal wave and the more sideward scattering of the shear wave.  

Two other interesting features in Figure 5-2 are the apparent absence of backscatter from the two spheres, 

and the shear waves in the top half of the images appear to be 180° out of phase with the shear waves in the 

bottom half of the images. 
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FIG. 5-1.  Color plots from the multiple-scattering model (left) and single-scattering model (right) of the 
scattered longitudinal wave z component arising from an incident longitudinal wave. 
 
 

   
 
FIG. 5-2.  Color plots from the multiple-scattering model (left) and single-scattering model (right) of the 
scattered shear-electric wave y component arising from mode conversion from an incident longitudinal 
wave. 
 
 

The apparent lack of backscatter in Figure 2 is due to the forward scattering dominating the 

scattering process.  The backscattering is present (note the region to the left of the first or left particle), but 

much weaker than, and therefore obscured by, the forward scattering.  The out-of-phase appearance of the 

forward scattered shear waves is due to an azimuthal polarization of the shear waves around the z axis.  

Since the incident longitudinal waves are propagating in the z direction, the forward scattered shear waves 

should be symmetric about the z axis.  An azimuthally polarized shear wave provides a higher degree of 

symmetry than a shear wave polarized in either the x or y directions. 
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Figure 5-3 displays images of the displacement differences between the multiple-scattering and 

single-scattering models shown in Figures 5-1 and 5-2 for an incident longitudinal wave.  The image on the 

left is a difference plot of the scattered longitudinal waves, and the image on the right is a difference plot of 

the scattered shear-electric waves.  The difference plots highlight the spatial regions that show the poorest 

agreement between the multiple and single scattering (i.e., those regions where multiple scattering has the 

largest contribution to the wave fields).  The images in Figure 5-3 clearly show the primary effect of 

multiple scattering in this two-sphere configuration is the shielding of the second (right) sphere by the first 

(left) sphere. 

Figures 5-4 and 5-5 display wave field images arising from the interaction of a mixed incident 

plane wave (50 percent longitudinal, 50 percent shear) with the two quartz spheres.  Figure 5-4 again shows 

the z component of the scattered longitudinal field, illustrating the focusing of the longitudinal wave by the 

two spheres.  However, for this case, the wave fields from the multiple-scattering model and single-

scattering model differ in both intensity and pattern.  The asymmetry displayed in the multiple-scattering 

image arises from translation of the asymmetric shear-magnetic field, which changes it to a shear-electric 

field.  The translated field is subsequently mode converted to a longitudinal field upon rescattering.  This 

feature is absent from the single-scattering image since the shear-magnetic field can only be converted into 

another field by translation.  

 

   
 
FIG. 5-3.  Color plots of the displacement differences between multiple-scattering and single-scattering 
models for an incident longitudinal wave, showing a scattered longitudinal wave, z component (left), and a 
scattered shear-electric wave, y component (right). 
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FIG. 5-4.  Color plots from the multiple-scattering model (left) and single-scattering model (right) of the 
scattered longitudinal wave z component arising from an incident mixed longitudinal-shear wave. 
 
 

   
 
FIG. 5-5.  Color plots from the multiple-scattering model (left) and single-scattering model (right) of the 
scattered displacement wave z component (longitudinal + shear) arising from an incident mixed 
longitudinal-shear wave. 
 
 

Note the shear-magnetic field is normally decoupled from the shear-electric and longitudinal fields 

in the single-particle scattering solutions.  It is only through the mechanism of multiple scattering that the 

shear-magnetic field can couple with the other two fields, as demonstrated in Figure 5-4. 

Figure 5-5 displays the z component of the entire scattered displacement field (longitudinal + 

shear waves), with the more isotropic scattering of the shear waves dominating.  Here, both the multiple 

and single-scattering models show asymmetric field patterns due to the inclusion of the shear-magnetic 

waves in the total displacement field.  Variations in intensity between the two models are again evident. 
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Figure 5-6 displays images of the displacement differences between the multiple-scattering and 

single-scattering models shown in Figures 5-4 and 5-5 for an incident mixed longitudinal-shear wave.  The 

image on the left is a difference plot of the scattered longitudinal waves, and the image on the right is a 

difference plot of the scattered displacement waves.  Again, the difference plots highlight the spatial 

regions that show the poorest agreement between the multiple and single scattering (i.e., those regions 

where multiple scattering has the largest contribution to the wave fields).  The images in Figure 5-6 show 

the primary effect of multiple scattering for an incident mixed longitudinal-shear wave is interconversion of 

shear-electric/shear-magnetic waves when translated from one particle to another.  This translation 

conversion is particularly evident in the difference image for the total displacement field (Figure 5-6, right).  

The asymmetric longitudinal wave differences (Figure 5-6, left) are localized near the sphere surfaces, and 

arise from mode conversion of multiple scattered shear-electric/shear-magnetic waves. 

The results from the two-particle simulations reproduced expected behavior for both single and 

multiple scattering.  Processes such as refraction (focusing) and mode conversion of longitudinal to shear-

electric waves were demonstrated, as well as mode conversion of shear-magnetic waves to shear-electric 

and longitudinal waves due to translation and multiple scattering.  These results verified the models were 

performing as intended and producing physically realistic effects. 

 
 

   
 
FIG. 5-6.  Color plots of the displacement differences between multiple-scattering and single-scattering 
models for an incident mixed longitudinal-shear wave, showing a scattered longitudinal wave, z component 
(left), and a scattered shear-electric wave, y component (right). 
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The similarity of the wave field patterns between the single-scattering and multiple-scattering 

results additionally supports the conclusion at the end of Chapter 4 that small or dilute packings of spheres 

are dominated by single-particle scattering.  Note the similarity is only qualitative, however, since the 

average variations between the imaged areas in Figures 3-1, 3-2, 3-4, and 3-5 range from 35 to 60 percent 

[and therefore in the same ballpark as the two-sphere results from Liang and Lo70 (~100 percent) and 

Bruning and Lo71 (~40 percent)]. 

The spatial domain elastic wave models were further tested with simulations of two-dimensional 

configurations of 16 particles (Figure 5-7).  The first particle configuration was a 4x4 square lattice of 

quartz particles of 1.0-cm diameter and spaced every 2.0 cm (Figure 5-7, left).  The second particle 

configuration consisted of a manually constructed random dispersion of quartz particles with diameters 

varying from 0.8 to 1.4 cm (Figure 5-7, right). 

The 16-particle configurations were tested at various frequencies, and results are shown for 0.1 

MHz.  A mixed plane wave (50 percent longitudinal + 50 percent shear) was used in the simulations, and 

was superimposed on the scattered wave fields to give a truer representation of the elastic fields in the 

material system.  Figure 5-8 shows the z component of the longitudinal fields from the ordered (left image) 

and random (right image) particle configurations.  Both images are plotted to the same color scale.  Again, 

color corresponds to the displacement vector amplitude, with blue corresponding to high positive 

displacement and red to high negative displacement. 

 

   
 
FIG. 5-7.  Two-dimensional, 16-particle configurations for spatial domain simulations, ordered lattice 
structure (left) and random structure (right). 
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FIG. 5-8.  Color plots of the total longitudinal wave z component from an ordered (left) and random (right) 
configuration of 16 quartz particles in ice, with an incident mixed longitudinal-shear wave. 
 
 

It is readily apparent from the images in Figure 5-8 the higher elastic wave velocities of the 

particles shorten the field wavelengths inside the particles.  This wavelength squeezing inside the particles 

is also accompanied with an increase in field amplitude within the particles.  Additionally, the random 

particle configuration displays higher localized wave field concentrations than the ordered configuration.  

The higher amplitudes are only associated with some particles, however, and other particles in the random 

configuration show lower amplitudes than present in the matrix.  The localized wave fields may be due to 

resonant behavior between wavelength and particle size. 

Figure 5-9 displays the x component of the shear-electric fields in the ordered (left) and random 

(right) particle configurations.  This is an out-of-plane displacement for the y-z image plane.  Again, both 

images are plotted to the same color scale, and the particles for both ordered and random arrangements 

show wave field amplitude enhancements.  As with the longitudinal wave, specific particles within the 

random configuration significantly concentrate the wave field energy more than others. 

An unexpected observation from Figure 5-9 is the shear-electric wave appears to be attenuating as 

it progress through the ordered lattice from left to right.  This result probably arises from mode conversion 

of the shear-electric fields to longitudinal fields.  However, multiple-scattering effects must also be 

responsible for this attenuation since mode conversion from single-particle scattering would be uniform 

throughout the particle configuration, and would therefore results in a uniform (non-attenuating) shear- 
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FIG. 5-9.  Color plots of the total shear-electric wave x component from an ordered (left) and random 
(right) configuration of 16 quartz particles in ice, with an incident mixed longitudinal-shear wave. 
 
 
electric wave.  It is also interesting to also note such an attenuation is not observed for the longitudinal 

wave in Figure 5-8.  It is also not apparent in the random dispersion, so it may be associated with a type of 

band-gap phenomenon for ordered lattices since the wavelength coincides with lattice spacing. 

Finally, Figure 5-10 displays the z component of the total displacement field (longitudinal + shear 

waves) for the two 16-particle configurations.  As with Figures 5-8 and 5-9, the particles in the random 

dispersion show significant concentrations of field energy.  The nonuniformity of the random particle 

configuration also gives rise to localized areas of higher wave field amplitudes in the matrix. 

  The results from the 16-particle simulations show random particle dispersions may produce 

higher field concentrations both within and outside the particles due to the nonuniform structure and 

resultant scattering interactions.  An additional result is the scattering interactions by themselves can lead to 

attenuation mechanisms not associated with the inherent absorption properties of the materials comprising 

the matrix or particles.  Such attenuation may be related to band-gap phenomena for elastic waves in 

ordered particle arrays.  These acoustic band gaps are analogous to photonic band gaps, and arise from the 

same wave interference principles.  Further studies in the frequency domain would be required to determine 

whether the attenuation in Figure 5-9 is an acoustic band gap, however (see Section 5-D for more results of 

band-gap behavior in ordered lattices). 
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FIG. 5-10.  Color plots of the total displacement in the z direction for an ordered (left) and random (right) 
configuration of 16 quartz particles in ice, with an incident mixed longitudinal-shear wave. 
 
 
B.  Elastic wave scattering in the frequency domain 
 
1.  Results for small dispersions 
 

Frequency domain models for elastic wave scattering were constructed according to the flow 

diagram in Figure 3-7.  Each of the fields (longitudinal, shear-electric, and shear-magnetic) and their 

Cartesian components were evaluated at a single point located a fixed distance from the particle 

configuration.  This distance was set equal to the longest wavelength evaluated—the longitudinal 

wavelength at the lowest frequency.  Placing the evaluation point here eliminated interference effects 

between the wavelength of the scattered waves and the free propagation length. 

The scattering computations were performed for 100 equally spaced frequencies.  The frequency 

step size was 0.01 MHz and the range was 0.01 to 1.00 MHz.  The frequency was converted to the 

dimensionless parameter kd in the spectra, where k is the wave vector of the longitudinal or shear wave, 

and d is the average particle diameter.  The kd parameter is more physically insightful since the 

wavelengths of the longitudinal and shear waves differ for the same frequency due to the differences in 

wave velocities. 

As with the spatial domain models, multiple-scattering simulations were compared to single-

scatterer simulations to determine the influence of the multiple-scattering interactions.  Comparisons were 

also drawn between ordered and random particle configurations.  The materials were again ice for the 
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matrix and quartz for the particles.  These materials were found to be a good compromise for providing 

particles with neither too low or too high matrix contrast.  These materials were additionally a fair 

approximation for many industrially useful metals, ceramics, and hard plastics. 

Both two- and three-dimensional particle configurations were simulated.  The two-dimensional 

dispersions included 16-particle configurations similar to those already examined with the spatial domain 

methods.  Figure 5-11 shows an ordered lattice of 16 particles already used in the spatial domain 

simulations (left), and a manually constructed random arrangement (right) similar to the one previously 

studied (Figure 5-5, right), but with uniform particle sizes.  For both configurations the particle diameters 

were 1.0 cm.  The lattice particles were separated by 2.0 cm center-to-center. 

The particle diameter was varied for the particle configurations in Figure 5-11 to test the effect of 

particle size on the simulations.  Two-dimensional square lattices containing 12, eight, and four particles 

were also tested.  The three-dimensional particle configurations included eight particles positioned at the 

corners of a cube (Figure 5-12, left) and eight particles with manually selected random positions (Figure 5-

12, right).  The particles in both configurations had 1.0-cm diameters.  The cubically ordered particles were 

separated by 2.0 cm center-to-center. 

 

 

   
 
 
FIG. 5-11.  Two-dimensional, 16-particle configurations for frequency domain simulations, ordered lattice 
structure (left) and random structure (right). 
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FIG. 5-12.  Three-dimensional, 8-particle configuration for frequency domain simulations with cubic (left) 
and random (right) structures. 
 
  

Figures 5-13, 5-14, and 5-15 display the spectra for the longitudinal, shear-electric, and shear-

magnetic fields respectively for the 16-particle square lattice configuration.  The spectra contain gaps 

where the computations failed to converge within a preset (250) iteration limit.  It is unlikely setting a 

higher iteration limit would have yielded convergence since the wave field coefficients showed no 

convergence behavior within the 250 iterations.  Where the computations converged they converged 

rapidly, usually within less than 30 iterations.  The spectra for the longitudinal and shear-electric fields 

particularly display significant changes with increasing nmax.  Due to the length of time for performing the 

computations (about 10 hours for nmax = 5), computations for nmax > 5 would have been impractical.  

Spectral convergence across the entire frequency range therefore could not be achieved, but was observed 

for frequencies of kd ≤ 6. 
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FIG. 5-13.  Power spectra for longitudinal waves propagating through a 16-particle, two-dimensional 
square lattice of 1.0-cm quartz particles in an ice matrix. 
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FIG. 5-14.  Power spectra for shear-electric waves propagating through a 16-particle, two-dimensional 
square lattice of 1.0-cm quartz particles in an ice matrix. 
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FIG. 5-15.  Power spectra for shear-magnetic waves propagating through a 16-particle, two-dimensional 
square lattice of 1.0-cm quartz particles in an ice matrix. 
 
 

Figures 5-16, 5-17, and 5-18 display the spectra for the longitudinal, shear-electric, and shear-

magnetic fields respectively for the 8-particle cubic configuration.  Again, the spectra contain significant 

gaps where the computations failed to converge within a preset (250) iteration limit.  The computations for 

the 8-particle 3D configurations could be carried out to higher nmax, however, since the number of particles 

were less than for the 16-particle 2D configurations.  It is readily seen that the spectra converge in the kd ≤ 

10 region at nmax = 7. 

The spectra in Figures 5-13 through 5-18 indicate the longitudinal, shear-electric, and shear-

magnetic fields produce different and distinctive spectra.  The shear-electric field appears to peak at higher 

kd values than the longitudinal field, and displays broader features.  The longitudinal spectra contains sharp 

features superimposed on broad peaks, for example at kd = 7.5.  Most interesting, however, is the high-

resolution structure in the shear-magnetic spectra, displaying many more peaks than either longitudinal or 

shear-electric spectra.  
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FIG. 5-16.  Power spectra for longitudinal waves propagating through an 8-particle, three-dimensional cube 
of 1.0-cm quartz particles in an ice matrix. 
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FIG. 5-17.  Power spectra for shear-electric waves propagating through an 8-particle, three-dimensional 
cube of 1.0-cm quartz particles in an ice matrix. 
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FIG. 5-18.  Power spectra for shear-magnetic waves propagating through an 8-particle, three-dimensional 
cube of 1.0-cm quartz particles in an ice matrix. 
 
 
2.  Ordered vs random structures 
 
 Figures 5-19 and 5-20 compare the longitudinal and shear-electric spectra of the 16-particle square 

lattice configuration with the 16-particle random configuration.  Although small, overall amplitude changes 

are seen, the general characteristics of the spectra are the same.   Similar results are observed for the 8-

particle cube and random configurations (Figures 5-21 and 5-22).  The similarity between the spectra is 

probably due to single-particle scattering dominating the characteristics of the spectra.  The particle 

configurations tested may additionally be too small to show any significant order-disorder differences.  

However, the amount of iterative nonconvergence does appear to be a function of order-disorder. 

 
  3.  Multiple-scattering vs single-scattering computations 
 

In addition to the multiple-scattering computations, single-scattering computations were 

performed to determine whether single scattering was the dominant contributing factor to the spectra as 

suggested by the ordered structure-random structure comparisons above.   
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FIG. 5-19.  Power spectra for longitudinal waves comparing 16-particle ordered and random configurations 
of 1.0-cm quartz particles in an ice matrix. 
 

0 10 20 30
kd

0.0

0.2

0.4

0.6

S
pe

ct
ra

l P
ow

er

Lattice
Random16-Particle 2D Configuration

Shear-Electric Field, nmax = 5

 
FIG. 5-20.  Power spectra for shear-electric waves comparing 16-particle ordered and random 
configurations of 1.0-cm quartz particles in an ice matrix. 
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FIG. 5-21.  Power spectra for longitudinal waves comparing 8-particle cubic and random configurations of 
1.0-cm quartz particles in an ice matrix. 
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FIG. 5-22.  Power spectra for shear-electric waves comparing 8-particle cubic and random configurations 
of 1.0-cm quartz particles in an ice matrix. 
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For the single-scattering simulations, the incident plane wave is scattered only once by each 

particle and the resultant scattered waves are added at the evaluation point.  Figures 5-23 through 5-26 

compare spectra from multiple and single-scattering computations.  Again, the longitudinal and shear-

electric fields are shown for the 16-particle 2D square lattice and 8-particle 3D cube. 

The results from the multiple-scattering vs single-scattering comparisons indicate except for the 

regions of nonconvergence in the multiple scattering, the spectra are virtually identical.  This clearly 

demonstrates single-particle scattering overwhelmingly dominates the spectral characteristics for these 

particle configurations, material properties, spectral region, and nmax values.  Since convergence of the 

spectra is observed for low kd (kd ≤ 6 at nmax = 5 and kd ≤ 10 at nmax = 7), we can conclude convergence of 

the computations is not a factor in the dominance of the single-particle scattering.  The primary effect of the 

multiple scattering is to produce bands in the spectra where the iterative solutions do not converge.  These 

nonconvergent bands are absent in the single-scattering simulations since these computations do not have 

an iterative step.  
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FIG. 5-23.  Power spectra for longitudinal waves comparing multiple-scatterer vs single-scatterer 
computations for the 16-particle random configuration of 1.0-cm particles. 
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FIG. 5-24.  Power spectra for shear-electric waves comparing multiple-scatterer vs single-scatterer 
computations for the 16-particle random configuration of 1.0-cm particles. 
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FIG. 5-25.  Power spectra for longitudinal waves comparing multiple-scatterer vs single-scatterer 
computations for the 8-particle random configuration of 1.0-cm particles. 
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FIG. 5-26.  Power spectra for shear-electric waves comparing multiple-scatterer vs single-scatterer 
computations for the 8-particle random configuration of 1.0-cm particles. 
 
 
4.  Convergence and efficiency of computations 
 
 The appearance of bands representing nonconvergent solutions in the spectral simulations is 

problematic.  Initially, the width of the bands increase with increasing nmax, indicating the percent of 

nonconvergent solutions is increasing.  This is counter-intuitive since higher nmax should yield more 

accurate solutions to the scattering.  Further simulations with the 4-particle 2D square configuration shows, 

however, the nonconvergence bands peak at nmax = 5 and then either plateau or start to decrease slightly 

with higher nmax values (Figure 5-27).  It is possible if the simulations were continued to higher nmax values 

(currently not practical due to the slow speed of the computations), the nonconvergence bands would 

continue to decrease and eventually disappear. 

Another interesting feature of the nonconvergence bands is they appear independent of particle 

number in the configuration, but are dependent on structure and particle size.  Tables 5-1 and 5-2 list the 

percent spectral coverage of the nonconvergence bands as functions of particle configuration (number of 

particles, ordered vs disordered structure, and 2D vs 3D structure) and nmax.   
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FIG. 5-27.  Percent of iterative computations not converging across spectral range. 
 
  
TABLE 5-1.  Percent of iterative computations not converging across spectral range (d is particle diameters 
in cm). 
 

nmax

16-particle 
2D lattice 

d = 1.0 

16-particle 
2D random 

d = 1.0 

16-particle 
2D lattice 

d = 1.5 

16-particle 
2D random 
d = 0.8-1.4 

8-particle 
3D cube 
d = 1.0 

8-particle 
3D random 

d = 1.0 
2 3 6 8 4 3 6 
3 7 12 13 6 7 13 
4 13 19 25 19 13 19 
5 17 28 36 39 17 32 
6     15 37 
7     15 42 

 
 
TABLE 5-2.  Percent of iterative computations not converging across spectral range (particle diameters are 
a constant 1.0 cm). 
 

nmax
16-particle 
2D lattice 

12-particle 
2D lattice 

8-particle 
2D lattice 

4-particle 
2D lattice 

2 3 3 3 2 
3 7 7 7 6 
4 13 13 13 13 
5 17 17 17 17 
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In Table 5-1, both the 16-particle 2D lattice and 8-particle 3D cube have identical nonconvergence 

coverage (percent) values.  The random analogs to these structures show higher nonconvergence coverage 

values, as does the 16-particle lattice with larger (d = 1.5 cm) particles.  Table 5-2, however, shows there is 

almost no dependence of the nonconvergence bands on the particle number in the configuration. 

It is difficult to draw definitive conclusions from this data, other than the nonconvergence of the 

multiple-scattering computations is 

1. Frequency dependent. 

2. Structure dependent (random structures yield higher nonconvergence). 

3. Dependent on particle size. 

4. Independent of particle number. 

It is possible the dependence on particle size is actually a dependence on particle-particle separation, since 

larger particles are closer together in a lattice with fixed particle spacings.  This dependence will be 

explored in more depth in the next section. 

Spectral convergence of the single-scattering interactions was also investigated.  Additional 

single-scatterer simulations were performed for the 8-particle 3D random configuration in order to 

determine the convergence behavior of the fields across the spectral range tested.  Since the single-scatterer 

computations were extremely rapid due to the omission of multiple-scattering interactions, the simulations 

were run to higher nmax values than possible with the multiple-scattering computations.  Figure 5-28 

displays the results of these simulations, and shows plots of the convergence frequency as a function of 

nmax.  The convergence frequency was defined to be the highest frequency at which the field did not vary by 

more than one percent from the comparison.  The comparison was chosen to be the spectral results for nmax 

= 20, since at that nmax value all the fields converged to within one percent across the entire spectral range. 

Figure 5-28 indicates the longitudinal and shear-electric fields converge at the same rate, and the 

shear-magnetic field converges faster.  The convergence behavior for all three fields is fairly uniform.  The 

results demonstrate convergence is strongly frequency dependent.  They also show the single-particle 

scattering does not converge for the entire frequency range until nmax = 19 (mainly for the shear-electric 

field—the others converge faster).   
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FIG. 5-28.  Convergence frequency vs nmax, showing frequency at which 99 percent convergence is 
achieved with respect to nmax = 20.  
 
 

The results from Figure 5-28 indicate the multiple-scattering computations should be performed at 

nmax = 19 to achieve spectral convergence across the selected frequency range (kd = 0-16 for longitudinal 

waves; kd = 0-32 for shear waves).  Note the simulations were run within the same frequency range for all 

three fields (e.g., 0.01-1.00 MHz).  However, since the wave vector k is different for longitudinal and shear 

waves, this translates to different kd limits in the simulations.  Therefore, although the two shear curves in 

Figure 5-28 stop at kd = 32, the longitudinal field curve stops at kd = 16. 

 Running the preceding simulations using the multiple-scattering method at nmax = 19 would 

unfortunately take much too long for practical considerations.  Table 5-3 lists the computation times for the 

various particle configurations and how they vary with respect to nmax when modeled with a power law.  

The power law fit was extremely good for the time-nmax relationship, and the results definitively show 

computation time scales as the fourth power of nmax for 2D particle configurations, and as the 4.6 power of 

nmax for 3D particle configurations.  
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TABLE 5-3.  Computation time for various particle configurations as a function of nmax modeled with the 
power law . KngT )(* max=
 

Particle Configuration T for nmax = 5 
(hours) K g 

Two-dimensional 

16-particle lattice, d = 1.0 10.22 3.98 0.017 

16-particle random, d = 1.0 10.41 4.16 0.013 

16-particle lattice, d = 1.5 10.78 4.04 0.016 

16-particle random, d = 0.8-1.4 10.60 4.23 0.012 

12-particle lattice, d = 1.0 5.15 4.04 7.73 x 10-3

8-particle lattice, d = 1.0 2.10 4.07 3.00 x 10-3

4-particle lattice, d = 1.0 0.35 3.99 5.69 x 10-4

Three-dimensional 

8-particle cube, d = 1.0 1.77 4.61 1.02 x 10-3

8-particle random, d = 1.0 1.71 4.66 9.12 x 10-4

  

From the results in Table 5-3 we can calculate even for the 4-particle 2D square dispersion, 

performing a frequency-domain simulation at nmax = 19 would take 74 hours.  For the 16-particle square 

lattice, the nmax = 19 computations would require 2215 hours or approximately 92 days. 

With regards to the number of particles (p) in the dispersion, multiple-scattering computations are 

expected to scale as p2.  This is easy to see since there are p(p-1) non-redundant interactions, and therefore 

p(p-1) translation coefficients to compute.  To check this assumption, Table 5-4 lists the results of 

modeling the computation time as a power law function of p. 

Two observations may be noted from Table 5-4.  First, J is not two as would be expected for the 

multiple-scattering computations scaling to the square of the particle number p.  This is due to other 

computations performed by the program, such as the single-particle scattering calculations.  These 

overhead computations are more apparent due to the small number of particles we are simulating.  

Secondly, J is decreasing with increasing nmax.  It is probably a reasonable assumption as nmax gets very 

large, J will asymptotically approach two.  Again, this is due to the multiple-scattering computations 

overshadowing the background overhead computations as nmax increases. 
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TABLE 5-4.  Coefficients for a power law model of the form , for the computation time T as 
a function of particle number p for two-dimensional square lattice particle configurations. 

JphT )(*=

 
nmax J h 

2 2.47 3.93 x 10-4

3 2.40 1.84 x 10-3

4 2.38 5.60 x 10-3

5 2.34 0.016 
 
 
5.  Results for 91-particle bcc dispersion 
 
 A larger particle configuration was tested to determine if multiple scattering would have a more 

pronounced effect with a larger number of particles.  The particle configuration was a 91-particle lattice in 

the shape of a cube and with a body-centered cubic (bcc) structure (Figure 5-29, left).  Since the 

computation time for multiple scattering roughly scales as p2, accounting for all of the multiple-scattering 

interactions would have been impractical.  Instead, a nearest-neighbor approximation was used, where 

multiple-scattering contributions were calculated for only the nearest 14 neighbors to any particle (Figure 

5-29, right).  The translational symmetry of the bcc structure was also used to advantage.  Since the 

translational addition coefficients would be the same for each of the nearest neighbors, independent of 

which particle the fields were being translated to, only 14 sets of translation coefficients required 

computation. 

 

   
 
 
FIG. 5-29.  Body-centered cubic 91-particle configuration (left) and the 14 nearest neighbors (right) used to 
compute the multiple-scattering interactions. 
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 Note no special approximations or periodic boundary conditions were used to account for edge 

effects (i.e., particles at or near the faces, edges, or corners of the cube).  Instead, only the actual number of 

nearest neighbors within a fixed distance from the particle was used to reflect the environment of the face, 

edge, and corner particles as depicted in Figure 5-29, left.  The multiple scattering was therefore 

representative of a 91-particle cube, and not of an infinite lattice. 

The particles were again 1.0-cm diameter quartz spheres in an ice matrix.  Simulations were run 

for three different particle-particle separations (lattice constants c) to produce particle volume fractions of 

10 percent (c = 2.188 cm), 25 percent (c = 1.612 cm), and 40 percent (c = 1.378 cm).  Figure 5-30 displays 

the percent of the spectral frequencies not converging in the iterative process for the three particle 

separations and at various nmax values.  Nonconvergence clearly increases as the particle separation 

decreases.  The iterative nonconvergence of the 10 percent volume fraction lattice is similar to that of the 

2D square lattice configurations with 1.0-cm particle diameters.  Likewise, the iterative nonconvergence of 

the 25 percent and 40 percent lattices are similar to those of the random 2D configurations and 2D 

configurations with larger particle diameters. 
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FIG. 5-30.  Percent of iterative computations not converging across spectral range for three 91-particle 
body-centered cubic configurations with particle volume fractions of 10, 25, and 40 percent. 
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Figures 5-31 and 5-32 display longitudinal and shear-electric field spectra for the 91-particle bcc 

configurations.  The spectra are very similar to those of the 8-particle 3D cube (Figures 5-16 and 5-17), but 

are significantly more marred with spectral bands of nonconvergent solutions.  Figures 5-33 and 5-34 

display single-particle scattering simulations of the 91-particle bcc lattice.  Comparison with Figures 5-31 

and 5-32 again shows the single-particle scattering dominates the behavior of the waves, even for the 

relatively close pack of 40 percent. 

The high degree of nonconvergence for the lattices with 25 percent and 40 percent particle 

volumes strongly indicates particle-particle separation is a primary factor for convergence of the multiple-

scattering calculations.  Additional simulations were performed with the 91-particle bcc lattice with the 

particle properties changed to those of Plexiglas.  This provided a particle-matrix combination with low 

contrast in acoustic properties.  These simulations produced spectra with 100 percent convergent solutions.  

The results suggest the factors that increase the degree of multiple scattering—small particle-particle 

separations and high acoustic property contrasts—also lead to nonconverging solutions for multiple bands 

of frequencies. 
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FIG. 5-31.  Power spectrum for longitudinal wave propagating through a 91-particle bcc-ordered lattice of 
1.0-cm quartz particles in an ice matrix and for three different lattice constants (particle volume fractions). 
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FIG. 5-32.  Power spectrum for shear-electric wave propagating through a 91-particle bcc-ordered lattice of 
1.0-cm quartz particles in an ice matrix and for three different lattice constants (particle volume fractions). 
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FIG. 5-33.  Power spectrum for longitudinal wave propagating through a 91-particle bcc-ordered lattice of 
1.0-cm quartz particles in an ice matrix and for three different lattice constants (particle volume fractions). 
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FIG. 5-34.  Power spectrum for shear-electric wave propagating through a 91-particle bcc-ordered lattice of 
1.0-cm quartz particles in an ice matrix and for three different lattice constants (particle volume fractions). 
 
 
 Finally, the close resemblance between spectra from multiple-scattering computations and spectra 

from single-scattering computations suggests one or both of the following conclusions: 

1. Single-particle scattering dominates the scattering behavior of particle configurations with up to 

40 percent particle volume fractions; 

2. The multiple-scattering computations do not contribute significantly to the final scattering 

solutions for nmax values below those required for convergence of the translational addition 

theorems. 

As shown in Chapter 4, convergence of the translation coefficients for all three multipole fields cannot be 

achieved for nmax ≤ 16, and would most likely require nmax values in the range of 50-100 (based on plane 

wave convergence results).  With the inefficiency of the current computation method it is not possible to 

perform multiple-scattering simulations at such high nmax values. 
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C.  Preliminary ultrasonic scattering model for a composite material 
 

The frequency domain elastic wave scattering model was applied to the simulation of a particulate 

composite material to investigate the feasibility of using such models for industrial applications such as 

nondestructive evaluation.  A polymer rubber filled with inorganic particles was selected as the test 

material.  Such materials find uses as tires, thermal insulation, and solid propellants.  The density and 

elastic properties of sodium chloride (salt) were used as a generic model for the inorganic solid filler.192  

The rubber also had generic properties typical of lightly cross-linked, highly attenuating polymers with 

longitudinal wave velocity and density close to that of water (cL = 1.45 x 105 cm/s, ρ = 1.0 g/cm3).193,194  

Using a Poisson’s ratio of 0.49, which is typical for rubber materials, a shear wave velocity of cS = 2.0 x 

104 cm/s was derived for use in the computations. 

The particles were 200-µm spheres with volume packing fractions of 10 percent, 30 percent, and 

50 percent.  The particle microgeometries were both ordered (body-centered cubic) and random.  The 

random particle configurations were provided by ATK-Thiokol Propulsion, and were created with the use 

of a proprietary particle packing code.195  The random particle microstructures provided by ATK-Thiokol 

Propulsion were spherical conglomerations comprised of 12,820 particles (Figure 5-35).  Equivalent 

particle conglomerations were constructed with a crystalline bcc structure to test the effects of periodicity 

and multiple scattering (Figure 5-36). 

Since the number of particles in the supplied random microstructures and constructed bcc lattices 

was constant, the diameters of the conglomerate spheres decreased with volume packing fraction.  This 

change in overall sample size was found to have an effect on the simulations.  Therefore, disks of uniform 

size were extracted from the spherical packs and used for the scattering simulations to eliminate sample 

size effects.  The excised disks have a 5.0-mm diameter and 2.5-mm thickness (Figures 5-37 and 5-38). 

Multiple-scattering simulations were found to be much too time intensive and inefficient to be 

performed on the random particle packs.  Multiple-scattering simulations were possible with the ordered 

particle packs, however, using the translational symmetry of the bcc cubic crystal and the nearest-neighbor 

approximation.  Single-scattering computations were also run for comparison.   
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FIG. 5-35.  Spherical collection of 12,820 particles with a random microstructure. 
 

 
FIG. 5-36.  Spherical collection of 12,820 particles with an ordered bcc microstructure. 
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FIG. 5-37.  Disk-shaped collections of 1191 particles (10 percent packing fraction, left) and 5885 particles 
(50 percent packing fraction, right) with random microstructures. 
 

   
 
FIG. 5-38.  Disk-shaped collections of 1177 particles (10 percent packing fraction, left) and 5637 particles 
(50 percent packing fraction, right) with ordered bcc microstructures. 
 
 

As an example of the difference in computation times between multiple-scatterer and single-

scatterer simulations, the computation time for the multiple-scatterer simulation required 33.34 hours, 

whereas the single-scatterer simulation required 0.25 hours (5637-particle pack, nmax = 3).  Although higher 

nmax values are desirable for convergence, the long computation time limited the nmax to three or less. 

Figures 5-39 and 5-40 display comparisons between spectra from multiple-scattering and single-

scattering computations.  The spectra are plotted as functions of actual frequencies (0-2.0 MHz) that are  

used in ultrasonic inspection and evaluation of materials.  Equivalent kd values (where d is the particle 

diameter) for 2.0 MHz are 1.73 for the longitudinal field and 12.6 for the shear fields. 
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FIG. 5-39.  Comparison of longitudinal field power spectra for multiple-scattering vs single-scattering 
computations for a bcc crystal with 50 percent volume packing fraction. 
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FIG. 5-40.  Comparison of shear-electric field power spectra for multiple-scattering vs single-scattering 
computations for a bcc crystal with 50 percent volume packing fraction. 
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The spectra in Figures 5-39 and 5-40 show the single-scatterer approximation captures the general 

features of the ultrasonic spectra reasonably well.  Although there are some differences in fine detail, the 

match is good, especially at low frequencies (< 0.5 MHz).  Of most importance is the single-scatterer 

approximation shortens the computation time by about 100 times, and works just as fast for random as for 

ordered particle packings. 

Since single-scatterer computations are not limited by iterative or addition theorem convergence, 

the optimal choice for nmax is governed by spectral convergence.  To test the nmax criterium necessary for 

convergence of the single-scattering computations, scattering computations were performed for a single 

200-µm NaCl sphere in the rubber matrix and run to high nmax values.  Figure 5-41 shows the results of this 

test.  The main conclusion is single-sphere scattering converges by nmax = 6 for ultrasonic frequencies of 

practical use in these materials—0-1.0 MHz.  Extending the nmax value to 7 widens the spectral region of 

convergence to 0-1.5 MHz. 
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FIG. 5-41.  Shear-electric field power spectra for scattering from a single 200-µm NaCl sphere in a rubber 
matrix, showing convergence behavior for various nmax values. 
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For the small particle configurations examined in Section 5-B, the fields were evaluated at a single 

point located a large distance from the pack equal to the longest wavelength associated with the lowest 

frequency.  This was done to eliminate phase interference effects in the spectra due to the interplay between 

the field wavelength and evaluation point distance.  For the larger particle packs of the particle-filled rubber 

simulations, placing the evaluation point a distance from the particle pack introduced additional spurious 

effects in the spectra due to the overall shape of the conglomeration (i.e., the particle pack shape in toto—

disk, sphere, etc.—introduces a unique scattering signature onto the spectra). 

To eliminate this shape effect the evaluation point was placed close (1.25 mm) to the disk’s 

circular face.  Although this eliminated the particle pack shape effects, it reintroduced interference effects 

arising from the relationship between the field wavelengths and evaluation distance.  These interference 

effects manifested themselves as a periodicity in the spectra analogous to interference fringes.  To reduce 

this effect, the fields were evaluated over several spatially separated points.  Figure 5-42 shows spectra 

from a single point, from a cross-shaped configuration of nine points, and from a square grid of 25 points.  

Each of the evaluation point configurations was 1.25 mm from the disk. 
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FIG. 5-42.  Comparison of longitudinal field power spectra evaluated at a point, at a cross comprised of 
nine points, and at a square grid comprised of 25 points. 
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 As can be seen in Figure 5-42, evaluating all of the fields at a single point produces position-

dependent structure in the spectrum.  The use of multiple evaluation points, however, clearly resolves the 

interference effects in the spectra and removes the position bias associated with using a single evaluation 

point.  Interestingly, the 9-point cross configuration is almost as good at removing the interference effects 

as the 25-point square grid.  This is probably due to the cross being able to span the same spatial distance as 

the grid but without requiring as many points.  Although the 25-point grid was very good at averaging out 

the position-dependent spectral structure, it proved to be too time-consuming to implement.  Instead, the 9-

point cross proved to be a good compromise between computation time and position bias. 

The testing of a simulated particle-filled rubber provided insight into the most efficient and 

accurate method for modeling its ultrasonic properties.  For particle packs up to 50 percent particle volume 

fraction, the single-scatterer approximation works just as well as the current multiple-scattering 

computations.  Additionally, the single-scattering calculations converge at low nmax (≈ 7) for most of the 

frequency range for practical ultrasonic measurements.  Finally, evaluating the fields at a single point 

introduces position-dependent interference effects that can be reduced by evaluating the fields over a grid 

or cross configuration of points. 

 
D.  Electromagnetic wave scattering in the frequency domain 
 

Frequency domain models for electromagnetic wave scattering were constructed by appropriately 

modifying the scattering equations and material properties in the elastic wave models.  Instead of 

calculating three fields (longitudinal, shear-electric, and shear-magnetic) as in the elastic wave model, only 

two fields (electric and magnetic) require computation in the electromagnetic case.  For material properties, 

the Lame elastic constants (λ and µ) are replaced with the dielectric permittivity (ε) and magnetic 

susceptibility (µMAGNETIC).  These properties, as well as particle size, were varied to simulate a variety of 

particulate systems.  All of the simulations were of the 91-particle bcc configuration pictured in Figure 5-29 

or of larger bcc lattices.  Spectra were computed for both the individual field components and for the total 

energy of the wave (the amplitude of the Poynting vector). 
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Like the elastic wave simulations, multiple-scattering computations for electromagnetic waves 

were nearly identical to single-scattering computations.  The electromagnetic simulations, however, 

displayed much better iteration convergence for multiple scattering than the more complex elastic wave 

simulations.  Most of the electromagnetic computations converged within 10 iterations for the frequency 

ranges and nmax values tested.  Iterative nonconvergence was observed for only close particle packings (50-

60 percent particle volume), high nmax (≥ 8), and high electromagnetic property contrasts (for example, 

water droplets in air).  However, the nonconvergence covered only a small percent of the spectral 

frequencies (about one percent) as compared to the elastic wave simulations (up to 42 percent). 

A striking feature of the electromagnetic wave simulations was the appearance of band gaps in the 

spectra.  The frequency position of these band gaps was a function of the bcc lattice constant and not of the 

particle diameter, indicating they were photonic band gaps arising from interference and localization effects 

in the lattice.  The lattice constants were a function of the particle volume fraction, and are listed in Table 

5-5 for six volume fraction values. 

Figure 5-43 is the total energy spectrum of 1.0-µm diameter quartz spheres in an ice matrix, 

plotted with respect to wavelength.  The frequency range tested was in the optical (infrared and visible) 

region of the electromagnetic spectrum, and varied from 10-1000 THz (0.3-30 µm wavelength in air or 

vacuum).  The optical properties were obtained from two well-known physics textbooks.196,197  The six 

plots represent 91-particle bcc lattices with various particle volume fractions. 

 
TABLE 5-5.  Lattice constants for each of the particle volume fractions in the 91-particle bcc lattice 
simulations. 

 
Particle Volume Fraction (percent) Lattice Constant (µm) 

10 2.188 

20 1.736 

30 1.517 

40 1.378 

50 1.279 

60 1.204 
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FIG. 5-43.  Simulated total energy spectrum vs wavelength for light passing through a 91-particle bcc 
lattice of 1.0-µm quartz particles in ice. 
 
 

It is clear from Figure 5-43 the position of the band gap regions vary with particle volume fraction 

and therefore with lattice constant.  Replotting the quartz-ice spectrum as a function of ka, where k is the 

wave vector and a is the lattice constant, reveals a direct relationship between the band gaps and lattice 

constants (Figure 5-44).  The band gap at ka = 14 is particularly consistent for the six particle 

configurations (lattice constants), and it appears a band gap at approximately ka = 47 is also a general 

feature of the spectra as well.  The ka = 14 band gap is close to the value of 4.5π, indicating this band gap is 

occurring where the wavelength is equal to 0.44 times the lattice constant.  Experimental data from bcc 

colloidal crystals show strong band gaps near wavelengths of 0.7, 0.8, and 0.88 a.198  The colloidal crystals, 

however, had a very low particle volume fraction of 1.3 percent, and photonic band gaps have been shown 

to have a very strong dependence on the ratio between particle radius and lattice constant (r/a).199  For two-

dimensional lattices of dielectric columns, as r/a increases the wavelength of photonic band gap decreases, 

which is consistent with our simulation results and the experimental results of reference 198. 
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FIG. 5-44.  Simulated total energy spectrum vs parameter ka for light passing through a 91-particle bcc 
lattice of 1.0-µm quartz particles in ice. 
 
 

Although the quartz-in-ice simulations are at optical frequencies and micrometer scales, they 

could be readily rescaled to microwave frequencies (1-100 GHz) and centimeter scales (1.0-cm diameter 

particles).  Figures 5-43 and 5-44 would therefore be applicable to these longer wavelengths and larger 

particle sizes if the optical properties of ice and quartz were assumed to be constant into the microwave 

bands.  However, this is not a good assumption.  The electromagnetic properties of water and ice change 

appreciably with frequency, and therefore have to be accurately modeled in order to obtain reliable results 

for microwaves.  

 Since the microwave properties of quartz were difficult to find, water droplets in air were modeled 

to test the electromagnetic simulations at microwave frequencies.  The particles were 1.0-cm diameter 

water droplets arranged in a 91-particle bcc lattice.  Although a random lattice would have been more 

appropriate for modeling atmospheric precipitation such as rain, the bcc lattice was convenient due to the 

translational order and nearest-neighbor approximation providing a considerable reduction in computation 
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time.  The frequency range of the simulations was 1-100 GHz.  The microwave properties of the water 

droplets were modeled as a function of frequency using the Cole-Cole equation.200

 Figures 5-45 and 5-46 display the computed spectra for water drop configurations at various 

particle concentrations.  Due to the difference in electromagnetic properties, the spectra do not look like 

those of the quartz-ice configurations in Figures 5-43 and 5-44, but rather exhibit much more fine structure 

and sharp peaks.  The existence of photonic band gaps is also not apparent from the results in Figures 5-45 

and 5-46.  Although several absorption-like structures exist in the ka =4-14 region in Figure 5-46, an 

expanded view of this region (Figure 5-47) shows they do not overlap or trend with particle concentration 

(lattice constant) as in Figure 5-44. 

  The excellent iteration convergence and prediction of photonic band gap structures by the 

electromagnetic simulations are encouraging.  However, it must still be realized the simulations are 

essentially operating in the single-scattering approximation since the multiple-scattering calculations do not 

differ significantly from the single-scattering calculations.  The insufficiency of convergence for the 

translation coefficients remains a major problem, as does the inefficiency of the computations. 
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FIG. 5-45.  Simulated total energy spectrum vs wavelength for microwaves passing through a 91-particle 
bcc lattice of 1.0-cm water particles in air. 
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FIG. 5-46.  Simulated total energy spectrum vs parameter ka for microwaves passing through a 91-particle 
bcc lattice of 1.0-cm water particles in air. 
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FIG. 5-47.  Close-up of simulated total energy spectrum for microwaves passing through a 91-particle bcc 
lattice of 1.0-cm water particles in air. 
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CHAPTER 6 
 

DISCUSSION 
 
 
A.  Prediction of real wave propagation behavior 
 

One method for determining the fidelity and accuracy of scattering models is to determine if they 

can predict physically realistic phenomena.  Although not quantitative, such an approach can provide 

information on the model’s qualitative correctness (i.e., the soundness of the basic equations and 

algorithmic approach of the model). 

The results of the elastic and electromagnetic scattering computations exhibit such real world 

phenomena.  The spatial domain images for elastic wave scattering reveal focusing effects for longitudinal 

waves (Figures 5-1 and 5-4), mode conversion and a higher degree of sideward scattering for shear waves 

(Figure 5-2), changes in the field wavelength as it passes through media of different elastic properties 

(Figures 5-8 and 5-9), and amplification of fields in localized regions of disorder (Figures 5-8 and 5-9).  

Such effects are based on common acoustic (or wave propagation) principles, and their prediction by the 

elastic wave models is reassuring evidence the models are functioning in a qualitatively correct manner. 

Of even greater interest is the appearance of photonic band gaps in frequency domain spectra of 

the electromagnetic scattering models.  Photonic crystals, also called photonic band gap materials, have 

been identified and studied only in the last 15 years.199  They are inhomogeneous materials comprised of an 

ordered lattice of microscopic particles, inclusions, or columns embedded in an optical medium.  The 

ordering of the inhomogeneities gives photonic crystals amazing properties such as near perfect reflectivity, 

suppression of spontaneous emission, photon localization, and the ability to guide and channel the path of 

light.  These properties arise from band gaps that forbid the propagation of light at certain wavelengths.  

These photonic band gaps are analogous to the electronic band gaps in semiconductors and lie in the 

infrared and visible parts of the spectrum. 

The electromagnetic scattering models predicted band gaps for crystalline bcc particle 

configurations.  The band gaps were direct functions of the crystal’s lattice constant, indicating they arise 

from the crystalline arrangement of the particles (Figure 5-44).  The band gap positions predicted by the 

scattering models lie close to those found experimentally in colloidal crystals.  Discrepancies between the 
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simulated and observed band gap positions can be attributed to the differences in particle concentration 

between the simulated and experimental photonic crystals, which will shift the band positions closer due to 

the dispersion relationships.199

The ability of the multipole-based scattering models to predict both conventional wave 

propagation phenomena (focusing, mode conversion, etc.) and exotic wave propagation phenomena 

(localization, photonic band gaps, etc.) is solid evidence the models are working correctly at a qualitative 

level.  The models, however, appear to have deficiencies which prevent them from operating at a 

quantitative level.  These deficiencies will now be explored in the following section. 

 
B.  Deviations from real wave propagation behavior 
 
1.  Additive effect of scattering from increasing numbers of particles 
 

The VMIST algorithms employ the principle of superposition to derive the total wave field after 

interacting with the particle dispersion.  The incident plane wave and scattered wave fields from all of the 

particles are added linearly to arrive at the final field amplitude.  Linear superposition predicts both 

constructive and destructive interference would alter the wave fields in a physically realistic manner to 

produce results that would be consistent with natural laws such as conservation of energy.  Therefore, the 

incident plane wave was not artificially attenuated in any fashion by the algorithm when it interacted with 

each of the particles, regardless of how far into the dispersion the particle was.  Again, the principle of 

superposition and the multiple-scattering interactions should take care of the amplitudes in a physically 

meaningful manner. 

The results of the scattering simulations demonstrated the VMIST models could not achieve full 

convergence (specifically, addition theorem convergence) with realistic computation times and nmax values 

to enable superposition to function properly.  For example, Figure 6-1 displays the maximum spectral 

amplitude as a function of particle number for the composite simulations of 200-µm NaCl particles in a 

rubber matrix.  Since the size of the disk-shaped sample remained constant, the particle numbers varied due 

to changes in the particle volume fraction (10 percent, 30 percent, and 50 percent).  Figure 6-1 clearly 

shows the wave field amplitudes increase linearly with particle number.  This result is strongly counter- 
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FIG. 6-1.  Maximum spectral power as a function of particle number for composite material simulations. 
 
  
intuitive since back and side scattering from the particles should lead to an overall decrease in field 

amplitude with increasing particle number. 

It is evident from Figure 6-1 the forward scattering is additive as a function of particle number.  

On introspection this result should be obvious with the use of a single-scatterer approximation.  Since the 

incident waves are not attenuated or modified in the simulations (except for phase), all of the particles see 

the same incident wave field where the amplitude is only controlled by the phase of the incident wave at the 

particle position.  For long wavelengths, as in the composite simulations, all of the particles therefore have 

approximately the same forward scattering amplitudes.  Since these forward scattering contributions are 

added linearly, as the number of particles increases, so does the amount of contribution to the fields from 

forward scattering in a direct linear fashion.  This is why the single-scatterer approximation fails for 

dispersions with even modest (>15 percent) particle volume fractions.1,2

Similar additive effects are seen for the multiple-scattering computations (e.g., Figures 5-31 and 5-

32), indicating that the VMIST algorithm is not calculating a large enough multiple-scattering contribution 
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to destructively interfere with the incident and singly scattered waves.  Note an incorrect computation of 

the phase of the multiply scattered fields could have an equivalent or greater effect as an incorrect 

computation of amplitude.  The evidence strongly suggests the vector multipole-based iterative scattering 

method cannot sufficiently simulate multiple scattering in particulate dispersions for reasonable 

computation times (i.e., low nmax values) without significant efficiency improvements.  The next section 

provides further evidence for this conclusion and an explanation why the VMIST models are not 

performing at a quantitative level at low (≤16) nmax values.   

 
2.  Similarity between single-scattering and multiple-scattering models 
 
 One of the more surprising and perplexing results from the scattering simulations was no 

significant difference existed between computations employing a single-scatterer approximation and full 

multiple scattering.  This result held for small (4-particle), large (91-particle), and very large (5,637-

particle) simulations, and was also independent of particle concentration (tested for particle volume 

fractions up to 60 percent).   

One explanation for these results is the multiple-scattering contributions are naturally much 

smaller than the single-scattering contributions.  This is probably true for dilute packings, but cannot be 

valid for dense packings where wave propagation should assume diffusive characteristics.  A more 

probable explanation is the multiple-scattering contributions are very small since the simulations are 

running with insufficient nmax values for convergence of the addition theorems.  This explanation would 

hold even if the translated field amplitudes were of the same order of magnitude as the convergent values 

since the phase of the translated fields (i.e., direction) is just as influential in wave interference and 

superposition effects. 

Interestingly, the similarity between the single and multiple-scattering computations may be 

attributable to the same lack of multiply scattered waves that causes an unnatural additive effect on the 

scattering [see Section 6-B(1)].  Without the destructive interference of multiple scattering, each particle 

experiences the same incident wave (varied only by phase).  The strongest fields, aside from the incident 

wave, are therefore the first, singly scattered waves.  Due to the lack of destructive interference by multiple 

scattering, these fields themselves are not diminished as they propagate through the particle dispersion.  
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The secondary multiple-scattered waves will always be significantly smaller than the incident and singly 

scattered waves since the incident and singly scattered waves are not significantly attenuated by 

interference as they progress through the dispersion. 

As a result of the under-evaluation of the multiple-scattering contributions, the particle dispersion 

behaves as a dilute medium in the computations, independent of particle concentration.  In this case, the 

original incident and singly scattered waves pass through the dispersion without attenuation.  In an actual 

densely packed particle dispersion, the incident waves are quickly converted to scattered waves in the first 

few particle layers.  The only waves reaching the interior particles are those that have been scattered from 

other particles.  By the time the waves pass completely through the dispersion they have scattered multiple 

times from many particles, and little trace of the original plane wave or singly scattered wave is present. 

Little research or discussion has been found in the literature that quantitatively evaluates the 

single-scattering vs multiple-scattering contributions in multipole-based multiple-scattering computations.  

It is evident, however, under-evaluation of multiple scattering leads to nonphysical wave propagation 

behavior.  Resolution of this problem is therefore of highest priority in further development of multiple-

scattering models. 

 
C.  Computational inefficiencies 
 

Computational inefficiencies arise from two sources in the multiple-scattering computations.  The 

first is the laborious calculations required to compute such functions as spherical Bessel functions, 

spherical harmonics, and Clebsch-Gordan coefficients, and then assembling these basic functions into more 

complex functions such as vector multipole expansions and translational addition theorem coefficients.  

Many shortcuts have been published for computing these functions faster and more efficiently, mostly with 

better and more refined recursion formulas. A careful investigation and implementation of these methods in 

the VMIST algorithm would be of obvious benefit. 

 The second source for the computational inefficiencies resides in the convergence behavior of 

many of VMIST’s components and the entire algorithm as a whole.  The need for convergence forces us to 

higher nmax values, thus increasing the computation time dramatically since the computation time scales as 

nmax to the fourth power and greater (Table 5-3).  Aside from the convergence issues associated with 
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computing basic functions from recursion formulas (such as spherical Bessel functions), there are four 

primary convergences that affect the performance of VMIST.  These are the following: 

1. Convergence of the translational addition theorems. 

2. Convergence of the partial wave expansions for the initial plane waves. 

3. Convergence of the single-sphere scattering solutions. 

4. Convergence of the multiple-scattering iterations. 

Since the convergence of the multiple-scattering iterations is the most obvious convergence criteria (since 

lack of convergence here means the lack of a solution), it is discussed first. 

The multiple-scattering computations arrive at a solution when the iterations over the scattered 

field amplitudes converge.  As the results of Section 5-B show, for large particles (1 cm) compared with the 

shortest wavelength in the matrix (0.2 cm for shear waves at 1 MHz), the elastic wave computations do not 

converge within certain spectral bands.  These bands grow as nmax increases, then appear to plateau or 

perhaps even decrease (see Figures 5-27 and 5-30).  For frequencies not within these bands, the iterations 

converge fairly fast (< 30 iterations for elastic waves; < 10 iterations for electromagnetic waves). 

The origin of the nonconvergence is not known, but one speculation is the nonconvergent 

frequencies correspond to resonances either associated with the particle sizes or the particle-particle 

separations (since changing both alters the degree of nonconvergence in the spectra).  The resonances could 

also arise from mode couplings between the longitudinal and shear modes.  As mode conversion at the 

particle’s surface converts longitudinal and shear-electric waves back and forth, translation of the shear 

fields convert shear-electric and shear-magnetic waves back and forth as well.  It is easy to imagine 

resonant instabilities being set up in such a situation. 

Note in the electromagnetic models the electric and magnetic fields do not couple by scattering, 

only by translation.  There is no longitudinal mode to give rise to mode conversion from scattering.  Not 

surprisingly, the electromagnetic models do not display iterative nonconvergence except for extreme 

conditions such as dense particle packings and highly contrasting material properties. 

 The composite material simulations (Section 5-C) did not exhibit nonconvergent behavior, 

possibly due to the small size of the particles (200 µm) compared with the shortest wavelength in the 
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matrix (100 µm for shear waves at 2 MHz).  The excellent convergence behavior of the computations could 

also be attributable to the large disparity between the longitudinal and shear velocities in the matrix (1450 

m/s vs 200 m/s).  This difference could reduce any resonant coupling between the shear and longitudinal 

modes and thereby prevent instabilities. 

Other possible explanations for the nonconvergences are the computations are unstable in some 

other fashion, the translation coefficients behave anomalously in these frequency regions, or the 

computations exhibit chaos-like behavior (e.g., sensitivity to initial conditions).  More testing of various 

particle sizes, particle separations, and elastic properties may help to resolve the source of the 

nonconvergence.  A detailed, step-by-step examination of the computations—specifically the evolution of 

the multipole field coefficients with each iterative step and the multiple scattering contributions—may also 

be required to more fully understand the problem.  Finally, the incorporation of damping (attenuative 

elastic properties) would not only provide more physically realistic simulations, but may also damp out 

resonances and instabilities that are the most like source of the iterative nonconvergence. 

 A remarkable feature of the multiple-scattering computations is the ability of the iterations to 

converge at all.  As we have seen in Chapter 4, the translational addition theorems do not converge at the 

low nmax values we are forced to work with.  The partial wave expansions for the initial plane waves are 

mostly nonconvergent for these nmax values as well, as are the single-sphere scattering solutions (Figures 5-

31, 5-32, and 5-39).  In spite of this, the scattered wave field coefficients converge readily in the iterative 

process for the majority of frequencies.   

These differences in convergence behaviors between the various parts of the algorithm can be 

misleading.  For example, other researchers have taken convergence of the iterative process as an indication 

the translational addition theorem coefficients have converged as well.  Recently, some researchers have 

looked at the convergence issues separately.  However, it is clear the ability of the scattering algorithm to 

converge, although individual components of the algorithm—specifically the translation coefficients and 

plane waves—are not near convergence, is a double-edged sword that has lead to a significant 

underestimation of the convergence problem. 
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The lack of convergence for the translational addition theorems for modestly high nmax values 

(∼16), and indications convergence may not even be achievable for exceptionally high nmax values (∼80), is 

of utmost concern for the multiple-scattering computations.  The accuracy of even modest multiple-

scattering computations is dubious without accurate (i.e., converged) translation coefficients.  Resolving 

the translational addition theorem convergence problem will be perhaps the most challenging task in 

furthering and improving the VMIST approach. 

One method for approaching this task is to obtain a better understanding of the convergence 

behavior of the addition theorems.  This can be achieved with more detailed testing of the convergence as a 

function of angular orientation, size, and distance of the receiving (β) sphere and evaluation point.  Testing 

the theorems on multiprocessor computers, computer clusters/arrays, or on a supercomputer would allow 

higher nmax values to be reached, thereby extending the convergence curves and our knowledge of the 

convergence behavior.  This comprehensive testing could also be applied to the partial wave expansions for 

vector plane waves, which exhibit similar convergence behaviors as the addition theorems.  Analytical 

methods for testing the convergence of series could be applied to the addition theorems as well.  Finally, 

methods for accelerating the convergence could also be investigated.  Some of these methods are discussed 

in Section 8-A, along with other approaches for increasing the efficiency and accuracy of multiple-

scattering computations. 
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CHAPTER 7 
 

APPLICATIONS 
 
 

The applications of wave propagation in particulate media are legion.  From the dancing of 

starlight among interstellar dust grains to the probing of ultrasound in the human body, the mathematical 

description for the interaction of waves with an ensemble of particles is the same.  Therefore, 

computational models developed for solving the general case of vector wave scattering in a particle-filled 

medium will have wide use and appeal. 

Table 7-1 presents examples of particulate systems classified by the state of matter for the matrix 

and particles.  These systems embody a variety of interests, including: 

• Scientific (basic understanding of matter, energy, and the universe). 

• Economic (materials evaluation, geophysical exploration, weather radar). 

• Defense (ocean acoustics, radar surveillance). 

• Environmental (remote sensing, atmospheric scattering). 

• Human health (medical imaging and diagnostics, food quality and safety). 

 
TABLE 7-1.  A sampling of particulate systems that exhibit multiple scattering of elastic or 
electromagnetic waves. 
 

Matrix 
Particles 

Gas Liquid Solid 

 
 
Gas 
 
 

 
Turbulent eddies 

Thermal “bubbles” 
Plasma structures 

 
Liquid foams 

Bubbly liquids 
Ocean bubbles 

 
Solid foams 

Photonic crystals 
Porous rocks 

 
 
Liquid 
 
 

 
Mists 

Clouds 
Rain 

 
Emulsions 

Immiscible melts 
Ocean inhomogeneities 

 
Biological tissue 

Semisolids 
Fluid-bearing rocks 

 
 
Solid 
 
 

 
Smoke 
Dusts 

Snow and ice 
 

 
Suspensions 

Slurries 
Ocean plankton 

 
Composites 

Precipitates/inclusions 
Rocks 
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Table 7-2 lists some of the fields of study applicable to the particulate systems listed in Table 7-1 

and categorized by matrix state.  These fields encompass a wide breadth of disciplines and interests. 

In its present form VMIST can be applied to many of the physical systems listed in Table 7.1.  In 

particular, VMIST is currently structured to model solid particles in a solid matrix for elastic waves, and 

dielectric particles in a dielectric matrix for electromagnetic waves.  Although the VMIST algorithm would 

have to be modified for other forms of matter, the changes would not be extensive or difficult.  For 

example, the current VMIST simulations encounter problems for elastic waves in fluids (gases and solids) 

since the shear velocity in these materials is zero.  This corresponds to an infinite wave vector kS.  This is 

physically realistic since it mathematically forces the spherical Bessel and Hankel functions to go to zero in 

the shear field solutions.  However, the VMIST code cannot handle an infinite value for kS because it leads 

to an infinite computation in the spherical Bessel function subroutine.  Even modestly large kS values give 

rise to unacceptable computation times.  Instead, the boundary condition solutions in the code must be 

changed by omitting those terms that contain kS (in fact, all computations involving kS must be modified or 

omitted).  Similar modifications would be necessary for electromagnetic scattering of conductive or 

magnetic materials.  

Table 7-3 lists specific applications for particulate scattering models, the corresponding 

experimental or measurement methods for the material systems, and references for these applications.  The 

references listed are intended only to be representative, not exhaustive, of the extensive knowledge base 

that exists on the applications of electromagnetic and elastic wave scattering. 

 
TABLE 7-2.  Scientific and technological fields of study applicable to particulate systems. 
 

 
Matrix 

 
Gas Liquid Solid 

Field of study 

 
Meteorology 
Climatology 
Planetology 
Astrophysics 

 

 
Chemistry 

Chemical processing 
Food science 

Oceanography 
 

 
Materials science 

Medicine 
Biophysics 
Geophysics 
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TABLE 7-3.  Specific applications of particulate scattering models that could benefit from the VMIST 
approach. 
 

Field Application 
 

Measurement Method References 

Particulate composites (particle-
filled plastics and rubber, concrete, 
ceramics) 

Ultrasound 
Microwaves 
Eddy current methods 

201-206 

Detection and quantification of 
porosity, voids, and inclusions in 
materials 

Ultrasound 
Microwaves 
Eddy current methods 

207-214 

Nondestructive 
Evaluation 

Process control of suspensions 
(paints, precipitates, etc.) 

Ultrasound 
Optical scattering 
 

215-229 

Photonic and acoustic band gap 
materials 

Microwaves 
Infrared and visible light 
Ultrasound 

69, 199, 
230-245 

Composites, nanocomposites, and 
metal foams 

Ultrasound 
Microwaves 
Diffuse visible and IR scattering 

201-206, 
246-249 

Materials 
Engineering 
and Design 

Multiphase suspensions (colloidal 
systems, electrorheological 
materials, liquid crystals, etc.)  

Coupled electromagnetic, 
acoustic, and mechanical fields 

215-229 

Milk, oils, processed foods, and 
other suspensions 

Ultrasound 
Optical scattering 

186, 187, 
250, 251 

Fruits, vegetables, and meat Ultrasound and acoustics 
 

186, 252, 
253 

Soil characterization Acoustics 
Microwaves 

254 

Remote sensing of forest, crop, 
and vegetation health 

Optical scattering 255-260 

Agriculture, 
Forestry, and 
Natural 
Resources 

Fish schools Sonar 
 

186, 187 

Biophysics and 
Medical 
Physics 

Cell, tissue, and organ 
characterization 
Blood and contrast agent scattering 

Ultrasound 
Optical tomography 
Diffuse visible and IR scattering 

261-274 

Geophysics Rocks and geologic formations 
Marine sediments 
Soils 

Seismic and sonar exploration 
Subsurface radar 
EM and resistivity tomography 

142-144, 
275-289 

Oceanography Ocean acoustics 
Plankton research 

Sonar 
Surface optical scattering 
 

176, 177, 
290-309 

Meteorology Cloud, fog, and precipitation 
scattering 
Dust and aerosol scattering 

Microwave radar 
IR, visible, and UV scattering 
 

310-316 

Astrophysics Dusty plasmas 
Interstellar dust clouds 
Planetary atmospheres 

Electromagnetic radiation 317-327 
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CHAPTER 8 
 

FUTURE DIRECTIONS 
 
 
A.  Efficiency improvements 
 

A major conclusion of this research is the use of addition theorems for the translation of vector 

spherical wave functions is too inefficient (or inaccurate) for the practical modeling of multiple scattering 

with the use of current desktop computers.   One method for avoiding the use of addition theorems has 

already been investigated in a preliminary fashion.  This is the single-scatterer approximation, and it 

appears to be valid for scattering in particle dispersions as long as the material property contrast between 

particle and matrix is not too great, the particle volume fraction is low, or the number of particles is small.  

However, the single-scatterer approximation is not a general approach, and cannot be used for closely 

packed, strongly scattering particulate media. 

The nearest-neighbor approximation addresses the addition theorem efficiency problem by 

minimizing the computation of translation coefficients.  This approximation is not an effective efficiency 

measure, however, for resolution of the slow addition theorem convergence since the computation time 

scales only as the particle number squared (p2), but as the fourth (or greater) power of the maximum 

multipole order (nmax
≥4).  Since the convergence of the addition theorems will, at the least, require nmax 

values a magnitude larger than currently practical, the computation time will increase by 104-105 times.  A 

nearest-neighbor approximation will at most provide a 102 decrease in computation time for a 103-particle 

dispersion (using the 10 nearest neighbors to each particle).  For ordered particle arrays, translational 

symmetry can provide another 10-fold decrease in time, but still leaves nmax the dominant parameter 

controlling the computation speed. 

Other approaches have also been considered for either reducing or completely avoiding the 

addition theorem computations.  These include: 

• Asymptotic approaches for close particle pairs. 

• Long-wavelength approximation. 

• Simplification of addition theorem translations using coordinate rotations. 



 

162

• Convergence acceleration methods. 

• Statistical wave propagation methods. 

Asymptotic methods model the interactions between close particle pairs by approximating the 

spherical surfaces of the particles (Figure 8-1, black circles) as parabolic surfaces (Figure 8-1, blue curves).  

The method assumes adjacent particle interactions will dominate, and therefore approximate, the 

microstructure’s effect on the overall field properties.  This method has been successfully employed in 

mechanical property (static elastic) models for particulates.328  The paraboloid approximation leads to 

simpler analytic expressions for the elastic field interactions that decrease the computation time by several 

orders of magnitude.  Asymptotic solutions for dynamic (wave) fields have not yet been attempted, but the 

substantial benefits that have been realized by incorporating asymptotic solutions in static field models 

warrants further investigation into their suitability for wave propagation models. 

In the long-wavelength approximation, the wavelength of the elastic and electromagnetic waves 

are much greater than the diameters and separations of the particles.  For this approximation, both elastic 

and electromagnetic waves can be treated as static fields.  As the testing in this research indicates, both the 

scalar and vector addition theorems are more accurate and quickly computed for low frequencies (long 

wavelengths).  At the static limit where the frequency drops to zero and the wavelength increases to infinity  
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FIG. 8-1.  Asymptotic solutions using parabolic surfaces (blue) as first order approximations to spherical 
interactions. 
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(i.e., k→0), the spherical Bessel and Neumann functions [and therefore the spherical Hankel functions, 

which are just a combination of  and ] become simple power-law functions of r:)(krjn )(kryn
50

 n
n kr

n
krj )(

!)!12(
1)(
+

≈ . (8.1) 

 1)(
1!)!12()( +−−≈ nn kr

nkry . (8.2) 

Eqs. 8.1 and 8.2 transform the addition theorems from a wave function form containing spherical 

Bessel functions to a static field form containing powers of r.  This simplification significantly increases 

the computational speed and accuracy of the boundary condition solutions and addition theorems, as 

evidenced by the use of this method for the modeling of static elastic fields in particulate media containing 

104-105 particles.329  The method eliminates the computation of spherical Bessel functions and the 

inaccuracies of using the wave function form of the addition theorems.  Although we lose the generality 

that was one of the goals of this research by going to a long-wavelength approximation, this approach could 

be a useful intermediate step in developing a more efficient multiple-scattering method. 

 Finally, it has been shown the addition theorems can be modestly simplified by restricting the 

translations to along the z axis.70  This would moderately improve the computational efficiency, and 

possibly accuracy, of the addition theorems.  However, for random particle packings where the majority of 

particles are not ordered along parallel axes, extra calculations would be necessary to rotate the multipole 

fields for each particle pair using Wigner D-functions.47  It is currently not known whether the 

improvement in addition theorem computation would make up for these extra calculations.  Mathematical 

methods for accelerating the convergence of the addition theorems, such as transforming the summations 

into integrals and solving, may also be a possibility. 

 Other methods of interest for future research and that avoid the use of addition theorem 

expansions include path integral and Monte Carlo random walk methods for modeling wave diffusion.  In 

the random walk method, the multipole single-scatterer solutions determine the scattering angle and 
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amplitude probabilities.  They have been successfully employed in light scattering and radiative transfer 

models for clouds.330

 
B.  Fidelity improvements 
 

Fidelity improvements would comprise modeling the microstructure of particulate materials more 

realistically.  These improvements include more faithful models of random particle arrangements, material 

properties, particle shapes, and particle structure.   

Algorithms and statistical methods for constructing three-dimensional particle packs for close-

packed particulates with uniform particle sizes have been developed in the ceramics and composites 

communities.331-339  However, such models are often not applicable to particulates with large particle size 

distributions.  Careful design of particle packing models are crucial, however, to avoid introducing 

periodicities or artificial structures not seen in truly random, real-world particulates.  Such care is necessary 

for predicting the properties of such materials.340  One such particle packing approach builds the particle 

microstructure using a Monte Carlo particle-dropping method.341  To model particle sizes that may differ by 

up to 100 times, the approach uses a concentric can model that builds the microstructure by filling the large 

cans with only large particles and the small cans with only small particles.  This eliminates the need to 

model the large number of small particles that fill in the interstices between the large particles. 

A different approach to specifying the particle pack microstructure is to reconstruct it from 

observations of real materials.342-344  Such an approach would provide microstructural models based on 

images acquired from two-dimensional slices of the material of interest, and would also be a good check 

for particle packing programs as described above.  Particle packing programs are still necessary, however, 

since the reconstructions are computationally intensive, imperfect, and cannot provide microstructures for a 

wide range of materials without representative samples and testing. 

More accurate and extended models also need to be developed for material properties not 

addressed by the present work.  These properties include conductive particles for electromagnetic 

scattering, and viscoelastic properties for elastic wave scattering.  Both would entail the use of complex 

wave vectors, with a complex permittivity for electromagnetic scattering, and complex Lamé constants for 

elastic wave scattering.  Foreseeing this need, the VMIST programs were written to accommodate complex 
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variables in the scattering computations.  The use of complex variables does not impact the current 

computational efficiencies, however. 

To represent true particle shapes we need to model nonspherical particle shapes.  The first 

approximation to nonspherical particles is the spheroid (Figure 8-2).  A spheroid is capable of modeling 

both highly elongated, needle-like particles (prolate spheroids) and highly flattened, pancake-like particles 

(oblate spheroids).  This would allow the modeling of many particle types such as the long needle-like 

crystals of many minerals or compounds, or the flat flake-like crystals of clays or snowflakes. 

An advantage of using spheroidal particle models is the Helmholtz wave equation is separable in 

spheroidal coordinate systems.345-349  (The Helmholtz equation is also separable in cylindrical and 

ellipsoidal coordinate systems as well.346)  It is therefore possible to construct solutions for scattering from 

spheroidal particles.  As in the spherical particle case, such solutions consist of expansions of spherical 

harmonics (spheroidal angular functions) and spherical Bessel functions (spheroidal radial functions).  

Although more complex, these functions offer complete solutions to the scattering problem. 

A sizable number of references have covered electromagnetic scattering from spheroids, with a 

large emphasis on light scattering.350-378  Spheroidal models have been used for various particulate media 

including biological cells, soils, atmospheric dust, clouds, and interstellar grains.  Electromagnetic 

scattering from collections of spheroidal particles has also been modeled, necessitating the derivation of 

both translational and rotational addition theorems for spheroidal wave functions.379-387  The scattering of  

 
 

 
 
 
FIG. 8-2.  Dispersion of long, needle-shaped and flat, plate-shaped spheroidal particles. 
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elastic waves from spheroids has been researched less, but the literature includes scattering from spheroidal 

cavities and rigid particles.388-393

 Spheroidal particle and void representations would be very useful for a number of modeling 

applications.  For example, the open-cell structure of a metal foam or porous rock, Figure 8-3 (a), could be 

simulated using a network of spheroids, Figure 8-3 (b).  Specific rock pore models would include those for 

rocks with flat, layered structure such as shale or slate, Figure 8-4 (a), or for rocks with equiaxial grains 

such as sandstone, Figure 8-4 (b).  Spheroids would also be very useful for modeling plant and animal cells 

with either columnar (elongated) or squamous (flattened) shapes. 

The next level of increasing nonsphericity would be the modeling of ellipsoidal particles with the 

use of ellipsoidal wave functions.  Expressing the Helmholtz equation in ellipsoidal coordinates yields the 

ellipsoidal wave equation, also called the Lamé wave equation.  This is the most general equation that can 

be derived from the Helmholtz equation in confocal coordinates and that can be solved by separation of 

variables.  The solutions are ellipsoidal (or Lamé) wave functions, and are also referred to as ellipsoidal 

harmonics.42  Although enticing because of their generality, ellipsoidal wave functions are very complex 

and difficult to evaluate analytically.  Only a few hardy pioneers have had the fortitude to research and 

apply ellipsoidal wave functions in scattering and electromagnetic problems.394-400

 
 

   
 

(a)      (b) 
 
 
FIG. 8-3.  Open-cell porous microstructure for rocks and metal foams (a), and scattering model 
representation using spheroids for the pore spaces (b). 
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(a)     (b) 
 
FIG. 8-4.  Porous rock representations using spheroids for the pore spaces, (a) for shales and slates, and (b) 
for sandstones. 
 

The modeling of particles of arbitrary, nonsymmetric shape is particularly challenging, but has 

been achieved with a variety of methods.  Perturbation approaches have been developed which treat 

nonsphericity as a perturbation from spherical particles, and scattering solutions have been derived.401-405  

Elliptic cylinders have been used for particle shapes since the Helmholtz equation is also separable in 

elliptic cylindrical coordinates.406  Particle symmetries have also been investigated, as well as modeling the 

shape of a particle as a spherical harmonic expansion superimposed on a sphere (for example, a cuboid 

would be comprised of spherical harmonic terms ),(4,4 ϕθY , ),(8,8 ϕθY  and so on).407-409  Figure 8-5 

shows in two dimensions how such successive multipole terms can be used to construct a cubic particle.  

Accurate modeling of irregularly shaped particles is important since it has been shown light scattering from 

simple shapes (spheres, spheroids, and cylinders) can deviate significantly from that of hexagonal ice 

crystals, particle clusters, and other atmospheric aerosols.410

Since the Helmholtz equation is separable in cylindrical coordinates, multipole methods have been 

employed in the modeling of fiber-reinforced composites.411-415  These methods have only addressed 

unidirectional composites, however, where all of the fibers are parallel.  Translation of the fields between 

parallel fibers is relatively straightforward with the use of addition theorems for regular (cylindrical) Bessel 

functions.   Additionally, the parallel fiber model reduces to a two-dimensional problem.  Most 
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5 Multipole Terms 20 Multipole Terms1 Multipole Term  

 
FIG. 8-5.  Construction of a cubic particle (red line) from a spherical harmonic multipole expansion of 

),(4,4 ϕθ×× nnY  terms. 
 
 
manufactured fiber composites, unfortunately, are not unidirectional but rather have cross-ply and three-

dimensional weave structures (Figure 8-6).  Modeling such microstructures with multipoles would require a 

mathematical method for translating fields between nonparallel fibers (Figure 8-7).  Surprisingly, literature 

searches for a translational + rotational addition theorem that would translate fields between skewed 

cylinders have not yielded any results to date.  Additionally, current multipole methods can only model 

straight fibers of infinite length.  Modeling methods for curved and finite fibers would be very useful for 

simulating composites with defects such as fiber breaks and fiber wrinkles. 

 

 
 
 

(a)     (b) 
 
FIG. 8-6.  Idealized microstructures for cross-ply (a) and 3-D weave (b) fiber-reinforced composites. 
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FIG. 8-7.  Nonparallel fiber geometry requiring translation and rotation of multipole fields from one fiber 
to another. 
 

The final level of fidelity that can be addressed by scattering models is the representation of 

particles with an inhomogeneous internal structure.  This includes layered and multilayered particles, 

particles with anisotropic or heterogeneous properties, and particles with internal inclusions.416-435  Again, 

as with spheroidal scattering, most of the research has been performed for light scattering.416-432  One paper, 

however, looks at the scattering of elastic waves from a partially-filled cavity.433  Quite recently, 

simulations of light scattering from layered particles has focused on the photonic band gap nature of the 

scattering.434,435

 
C.  A unified approach to multipole fields in particulate media 
 

As mentioned in Section 8-A, in the long-wavelength limit (k→0) both the elastic wave and 

electromagnetic scattering models become models for the static properties of the medium.  These static 

models are of great interest since the understanding and prediction of electrical and mechanical properties 

in particulate materials has direct application to material strength, durability, performance, service life, and 

failure.  Also, in concert with the wave scattering models, they would provide a more complete and unified 

description of particulate material properties and behavior.  They would additionally comprise a good test 

for the general approach in the k→0 limiting case. 

Models for electrical conduction in collections of spheres have a venerable history, starting with 

Maxwell and Rayleigh in the 19th century, and developed further by McPhedran and McKenzie and others 

in the later half of the 20th century.436-442  The principal method employed for solving the electrical 
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conduction problem involves multipole expansions of the potential in a lattice of particles.  The periodicity 

of the lattice allows solution of the problem analytically. 

The same multipole expansions of the potentials can also be used to model the electrostatic fields 

in particulate media.443-446  For random media, Davis rederived the translational addition theorem for static 

scalar fields using an integral method, and employed an iterative solution for the electrostatic field that was 

used as the blueprint for the scattering models in this work.443  With extension to static vector fields, the 

multipole method has also been applied to elastostatic fields.328,329,447  The use of elastostatic models for 

composites and other particulate materials are of keen interest to engineers who want to predict the 

mechanical properties of these materials as a function of microstructure. 

Models for thermal properties and heat conduction in particulate media have also been developed 

using multipole approaches.448,449  Again, these approaches start from the lattice approximation, but could 

also be generalized to random dispersions of particles. 

Although it has been shown the translational addition theorems converge too slowly and are too 

computationally inefficient for current wave scattering models, addition theorems for static models do not 

share this fate since the spherical Bessel functions in the wave models are replaced with power-law and 

inverse-power-law functions of r.  These functions do not have the convergence problems the spherical 

Bessel functions do, and convergence of the addition theorems are both quicker and more computationally 

efficient.329  Extending the VMIST wave scattering models to static fields would therefore be a 

straightforward exercise, and may allow the computation of both low-frequency waves and static fields in a 

unified approach. 

Additionally, the ability to model material properties on a continuum from static behavior to 

dynamic behavior would have substantial technical benefit.  Often, the wave propagation properties of a 

material differ from its static properties, which is a problem for nondestructive characterization methods 

that seek to determine a material’s physical state and properties from the wave properties.  A continuum 

model, however, would allow such a determination by providing the missing link between static material 

properties (e.g., mechanical) with dynamic material properties (e.g., ultrasonic). 
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Finally, the VMIST approach could be expanded to encompass tensor as well as vector and scalar 

fields.  One application of tensor fields has already been mentioned in Section 3-C with regards to stress 

and strain fields.  Tensor fields might be more appropriate descriptions for stress and strain in anisotropic 

materials, and expansions of tensor spherical harmonics have already been used to describe crystal 

orientation effects in seismic wave propagation through rocks.450  The other physical application of tensor 

fields is gravitational radiation.  Again, tensor spherical harmonics have been formulated for gravity 

waves.46,451  Although one is hard put to imagine a multiple-scattering scenario for gravity waves, one 

possible application of a gravity wave scattering or interaction model is in the design of novel gravitational 

radiation detectors that convert gravity waves to acoustic vibrations in solid materials.452  
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CHAPTER 9 
 

CONCLUSIONS 
 
 

The goal of this dissertation was to develop and test ab initio computational models for the 

multiple scattering of elastic and electromagnetic waves in particulate media.  The purposes for such 

models would be to (1) determine how the structure of a particle-filled medium influences the propagation 

and scattering of elastic and electromagnetic waves; (2) predict the structure and properties of a particle-

filled medium from the measured wave properties; and (3) design particle-filled materials with new or 

enhanced properties for technological applications.  This work was limited to the development of forward 

models—models that describe the interaction of waves in a given particle-filled microstructure.  However, 

having the capability to predict how waves interact in a particle-filled medium (the forward model) is the 

first step in developing models that can predict the properties and structure of a medium from the measured 

wave properties (the inverse model). 

The approach for developing the computational models was comprised of the following steps: 

1. Recast the fundamental Maxwell and Navier equations as vector Helmholtz equations and define 

vector multipole functions appropriate for solution of both equations in a spherical coordinate 

system. 

2. Solve the equations for single-particle scattering using boundary conditions and orthogonality of 

the vector multipoles. 

3. Derive translational addition theorems that allow the scattered wave fields from one particle to be 

recast in the coordinate system of a second particle.  This allows the waves to be translated from 

one particle to another, which is necessary for a first-principles computation of multiple scattering. 

4. Design an algorithm to account for all particle-particle interactions in the computations by 

iterating through the particle configuration. 

5. Test the derived translational addition theorems for computational efficiency, accuracy, and 

convergence, and compare to previously published theorems in the literature. 

6. Test the multiple-scattering simulations with a variety of particle numbers and configurations, and 

identify areas for improvement in the models. 
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7. Compare multiple-scattering simulation results with those using single-scatterer and nearest-

neighbor approximations. 

The original and significant contributions of the presented work consist of (1) review and 

reformulation of current theory to achieve greater consistency, elegance, and accuracy; (2) extension of 

current capabilities to create scattering models with increased generality and greater utility; and (3) 

quantitative testing of the multiple-scattering theory and identification of deficiencies.  

The mathematical foundations and theory for the iterative solution of multiple scattering in a 

particle-filled medium were investigated, and many areas for improvement were discovered.  First, several 

different forms of vector spherical wave functions have been employed in the past to solve spherically 

symmetric scattering problems.  This work has shown the choice of vector spherical wave functions is 

important in simplifying the problem and in deriving the correct form of the translational addition 

theorems.  To address this issue, modified vector wave functions were presented, compared to those 

previously used, and implemented in this work.  

Second, the solution of the boundary conditions for the scattering from a single sphere has often 

been given cursory treatment in the literature, and yet contains pitfalls and apparent inconsistencies if not 

properly addressed, specifically in the application of orthogonality to simplify the equations.  This issue 

was resolved by showing how the boundary condition solutions can be elegantly solved in vector form with 

the use of the orthogonality of the pure-orbital vector spherical harmonics. 

Recasting the equations with spherical wave functions built from pure-orbital vector spherical 

harmonics provided several advantages, both in the solution of the boundary condition equations and in the 

derivation of the translational addition theorems.  The pure-orbital vector spherical harmonics provide a set 

of vector spherical wave functions that simplify both single sphere scattering and multiple scattering with 

addition theorems.  It was shown the boundary conditions for electromagnetic scattering could be readily 

solved by retaining the vector form of the equations, and by applying orthogonality of the vector spherical 

harmonics.  This same method also works for the displacement boundary conditions for acoustic scattering.  

The stress boundary conditions, however, are tensor equations of second and fourth-rank tensors, and a 

rigorous method for solving them with vector spherical harmonic orthogonality has not yet been found. 
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Third, various forms of translational addition theorems have been published with differing 

computational results.  Some of these theorems produce poor results and their correctness is suspect.  Such 

results can introduce significant error into multiple-scattering solutions.  To resolve this issue, the addition 

theorems were rederived in pure-orbital vector spherical harmonic form with an integral approach.  A test 

procedure was also devised to assess the accuracy and convergence of the translation coefficients 

independent of either single-scattering or multiple-scattering convergence. 

The results confirmed the pure-orbital addition theorems were numerically equivalent to the most 

well known theorems in the literature.  The results also showed, however, some published theorems are 

incorrect and do not converge.  The pure-orbital addition theorems were shown to converge much more 

slowly than reported in the literature.  Their convergence was comparable, however, to partial wave 

expansions for vector plane waves.  Addition theorem translation coefficients have therefore been severely 

underestimated in previous articles.  The convergence of the theorems for some geometries was also shown 

to exhibit extensive flat or plateau-like regions across wide nmax values.  These plateau regions can give 

false impressions of convergence when encountered in multiple-scattering computations, and may 

contribute to inaccuracies in the model results. 

Using the above mathematical tools, elastic and electromagnetic wave scattering models were 

constructed to simulate the scattered wave fields as a function of both frequency and spatial distribution 

from an ensemble of particles.  Numerous simulations were generated for particle configurations ranging 

from four to 5,000 particles, and with both ordered and disordered arrangements.  The results correctly 

predicted many physical phenomena including focusing effects, shear wave scattering behavior, 

wavelength changes in various materials, and the formation of photonic band gaps.  The models can 

therefore be considered valid at a qualitative level 

The computations performed in this work were not quantitatively accurate, however.  The lack of 

addition theorem convergence was shown to produce physically unrealistic results.  Specifically, the 

multiple-scattering contributions were much smaller than the single-scattering contributions, even for dense 

dispersions of up to 60 percent particle volume.  The inability to accurately calculate the multiple-scattering 

contribution also resulted in an unrealistic increase in forward scattering with particle number.  Without 
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sufficient multiple scattering to destructively interfere with the incident and singly scattered waves, the 

amplitudes of the transmitted waves increased linearly with particle number and therefore violated 

conservation of energy.   

The testing performed with both the translational addition theorems and scattering models have 

revealed nonconvergence of the addition theorems is the most critical problem for the multiple-scattering 

simulations.  This problem has not been identified or addressed in the published literature due to the lack of 

real testing for the translational addition theorems independent of scattering, and due to their plateau-like 

convergence behavior for wide nmax ranges and various geometries. 

In addition to the lack of convergence for the translational addition theorems at computationally 

practical values for nmax, the primary computational problems encountered in the development and testing 

of the particulate media scattering models were the overall slowness and inefficiency of the computations, 

and the rapid scaling of computation time with particle number and nmax.  These problems remain 

unresolved, and yet their solutions are critical for the successful development of multipole-based multiple-

scattering models. 

An estimated increase of 108-109 in computation speed will be required to accurately model 

multiple scattering in physically realistic particulate media.  Such an estimate is based on a 104-105 increase 

to achieve addition theorem convergence (Section 8-A), and a 104 increase to expand the multiple-

scattering simulations from small particle clusters (<100 particles) to physically representative particulate 

systems (104 particles).  Although at first overwhelming, such increases appear reachable.  A factor of 106 

increase in computation speed is currently practical using a combination of technology enhancements 

(parallel processing, supercomputer clusters, etc.), readily attainable improvements to computational 

algorithms (algorithmic streamlining, recursion methods, etc.), and implementation of the nearest-neighbor 

scattering approximation.  Use of the nearest-neighbor scattering approximation alone has allowed the 

multiple-scattering simulation of a 5000-particle system (Section 5-C) at low nmax values (nmax ≤ 4).  

Additional increases from development of asymptotic methods, convergence acceleration methods, and 

other efficiency improvements could reasonably bridge the remaining 102-103 gap in computation speed.  
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Given these estimates, it is realistic to expect a more fundamental approach to multiple scattering in particle 

packs, such as the VMIST approach, will be realized in the foreseeable future. 
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