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Abstract: The Xiaoxinganling Mountains–Sanjiang Plain region represents a crucial ecological security
barrier for the Northeast China Plain and serves as a vital region for national grain production.
Over the past two decades, the region has undergone numerous ecological restoration projects.
Nevertheless, the combined impact of enhanced vegetation greening and global climate change
on the regional hydrological cycle remains inadequately understood. This study employed the
distributed hydrological model ESSI-3, reanalysis datasets, and multi-source satellite remote sensing
data to quantitatively evaluate the influences of climate change and vegetation dynamics on regional
hydrological processes. The study period spans from 2000 to 2020, during which there were significant
increases in regional precipitation and leaf area index (p < 0.05). The hydrological simulation
results exhibited strong agreement with observed river discharge, evapotranspiration, and terrestrial
water storage anomalies, thereby affirming the ESSI-3 model’s reliability in hydrological change
assessment. By employing both a constant scenario that solely considered climate change and a
dynamic scenario that integrated vegetation dynamics, the findings reveal that: (1) Regionally, climate
change driven by increased precipitation significantly augmented runoff fluxes (0.4 mm/year) and
water storage components (2.57 mm/year), while evapotranspiration trends downward, attributed
primarily to reductions in solar radiation and wind speed; (2) Vegetation greening reversed the
decreasing trend in evapotranspiration to an increasing trend, thus exerting a negative impact on
runoff and water storage. However, long-term simulations demonstrated that regional runoff fluxes
(0.38 mm/year) and water storage components (2.21 mm/year) continue to increase, mainly due to
precipitation increments surpassing those of evapotranspiration; (3) Spatially, vegetation greening
altered the surface soil moisture content trend in the eastern forested areas from an increase to
a decrease. These findings suggested that sub-regional ecological restoration initiatives, such as
afforestation, significantly influence the hydrological cycle, especially in areas with higher vegetation
greening. Nevertheless, persistent increases in precipitation could effectively mitigate the moisture
deficits induced by vegetation greening. The study’s outcomes provide a basis for alleviating
concerns regarding potential water consumption risks associated with future ecological restoration
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and extensive vegetation greening projects, thereby offering scientific guidance for sustainable water
resource management.

Keywords: hydrological response; climate change; vegetation greening; scenario simulation; Xiaoxin-
ganling Mountains–Sanjiang Plain

1. Introduction

Global climate change, particularly global warming, along with pronounced spatiotem-
poral variations in factors such as precipitation and solar radiation, are driving significant
changes in the terrestrial water cycle [1]. Furthermore, land use changes critically influ-
ence the regulation of water cycle systems across various temporal and spatial scales by
altering climate–vegetation–water interactions. Land use management and changes drive
alterations in surface vegetation [2]. Acting as a link between the hydrosphere, biosphere,
and atmosphere, vegetation plays a crucial role in regulating the terrestrial water cycle [3].
Climate change affects the distribution of vegetation, and the transpiration of vegetation
further regulates climatic conditions, especially by changing precipitation patterns [4]. The
complex relationship between water-mediated climate and vegetation changes further
exacerbates the uncertainty in hydrological process transformations [5].

Recent research demonstrates that from 2001 to 2017, one-third of the global vegetated
areas exhibited increased greening, with China being one of the few countries to experience
significant vegetation greening during this period [6]. Satellite observations have verified
that changes in land use management and natural climate variability over the past two
decades have together driven the substantial greening of vegetation in China [7]. Although
vegetation greening can enhance terrestrial carbon sequestration, the substantial changes
in climate and vegetation, which are intricately linked through various hydrological pro-
cesses, have concurrently heightened the challenges in water resource management [8].
Consequently, investigating the impacts of climate and vegetation greening on hydrolog-
ical processes, along with identifying their driving factors, becomes fundamental. This
knowledge aids in managing our planet’s ecosystem more effectively, supporting environ-
mental sustainability, and ensuring agricultural production safety—issues at the forefront
of environmental studies [9].

In light of the intricate environment characterized by vegetation greening through
ecological restoration and climate change, elucidating the primary factors that drive al-
terations in regional hydrological cycles is of paramount importance. Prior studies have
primarily concentrated on the responses of specific hydrological processes, such as runoff
or evapotranspiration to environmental variations [10]. However, these studies often over-
look the interrelationships among these processes. Hydrological components encompass
precipitation, interception, infiltration, evapotranspiration, soil moisture, runoff, ground-
water flow, and groundwater storage. The integration of water sources from traditional
surface, subsurface, and ecological systems, along with the quantification of each compo-
nent, remains a formidable challenge [11,12]. Furthermore, the spatiotemporal distribution
of hydrological components is susceptible to changes in climate and underlying surface
conditions [13]. The current comprehension of the interactions among hydrological sys-
tems, vegetation dynamics, and climatic factors is still constrained and requires further
investigation. Hydrological models offer an alternative to studying the impact of climate
and underlying surface changes on various hydrological components.

Hydrological models, in combination with climate, vegetation, and land use/land
cover (LULC) data, provide quantitative insights into various hydrological processes [14].
The choice of a model depends on data availability, problem scale, region characteristics,
desired spatiotemporal resolution, uncertainty in simulations, allowable error, and model
robustness [15]. Among various land surface models, the ESSI model, a physically based
distributed hydrological model, stands out for its ability to consider spatial variability in
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catchment characteristics and meteorological forcings, making it suitable for the study
region [16–20]. Additionally, reliable input model parameters are crucial for a robust esti-
mation of the regional hydrology system. The utilization of remote-sensing-derived data in
both model inputs and validation processes, encompassing climate variables, land surface
characteristics (e.g., meteorological inputs, soil properties, land use/cover classifications,
and leaf area index), as well as water budget components (e.g., evapotranspiration and
terrestrial water storage), has demonstrated its efficacy in enriching our comprehension
of water resource availability and evolving patterns [18,21]. This approach contributes
significantly to meeting the imperatives of sustainable development in regional study.

In China, adopting a holistic approach to the conservation of mountains, rivers, forests,
farmlands, lakes, and grasslands holds significant importance for ecological protection and
restoration practices [22]. The Xiaoxinganling Mountains–Sanjiang Plain (XM-SP) region in
Heilongjiang Province, Northeast China, is a pivotal area for pilot projects for the ecological
protection and restoration of these diverse ecosystems. In the past 20 years, this region has
seen the implementation of a series of national ecological restoration initiatives, including
the Natural Forest Protection Program, the Grain for Green Program, and the Three-North
Shelterbelt Development Program. These initiatives have significantly contributed to the
national trend of increased vegetation cover [23]. However, the greening associated with
ecological restoration is sometimes perceived as “trading water for biocarbon sequestra-
tion,” which can potentially disrupt regional water budgets and lead to water resource
challenges due to increased evaporative demand [24]. Recent research also indicates that
in Northeast China, vegetation greening is more significantly influenced by temperature
and precipitation than the direct implementation of ecological restoration projects [7]. Fur-
thermore, in China, farmland and forest areas contribute approximately 32% and 42%,
respectively, to surface vegetation greening [6]. Specifically, the ecosystems of the XM-SP
are notable, serving as a critical ecological barrier for Northern China and a major national
grain production base. The contributions of crop growth in the Sanjiang Plain and afforesta-
tion in the Xiaoxinganling Mountains are particularly significant in enhancing regional
vegetation cover. The documented discrepancies between agricultural crop production
and afforestation with water resource availability have emerged as primary constraints
on regional sustainable development [25]. Nonetheless, the effects of regional vegetation
greening on water resources, mediated through alterations in the hydrological cycle, remain
insufficiently understood. In addition, the local government recently plans to invest billions
of RMB in an ‘Ecological Conservation and Restoration Pilot Project for Mountains, Waters,
Forests, Farmlands, Lakes, and Grasslands’. Consequently, it is imperative to advance our
understanding of the current hydrological systems and evaluate the impacts of climatic
variations and surface changes linked to vegetation dynamics for effective water resource
planning, management, and sustainable development.

Trend analysis of hydrological variables provides valuable information on data behav-
ior, reflecting changes in the hydrological cycle [26]. Such analysis is necessary to detect
long-term changes and statistics of variables like runoff fluxes, evaporation fluxes, and
terrestrial water storage components. This study aimed to assess the impacts of vegetation-
related LULC dynamics and climate change on regional-scale hydrological cycles. The
study focused on the period from 2000 to 2020, during which ecological restoration projects
and natural climate variability around the year 2000 significantly increased regional vege-
tation dynamics [27]. To achieve this objective, the multisource remote sensing data and
reanalysis datasets were utilized to analyze the spatiotemporal changes in climate and LAI.
The LAI data, which reflected long-term vegetation dynamics, along with gridded climate
data, was incorporated into the ESSI-3 model to quantify the influence of various factors.
LAI is a crucial parameter for simulating terrestrial ecological processes and the cycles
of water and energy fluxes, serving as a key variable related to water conditions in the
driving model. Through process-based model simulations and the establishment of various
simulation scenarios, the contributions and impacts of LAI on hydrological variables are
distinguished from those of other climate variables (such as temperature and precipitation).
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This study offers valuable insights into the efficient management and sustainable utilization
of water resources in a changing environment.

2. Materials and Methods
2.1. Study Area

The XM-SP (127◦37′–135◦05′E, 44◦51′–49◦26′N), situated in Northeast China (as shown
in Figure 1), serves as a critical ecological security barrier, water conservation area, bio-
diversity region, and food production base for the country [22]. Covering approximately
99,600 km2, it constitutes 21.6% of Heilongjiang Province. The Heilongjiang, Songhua, and
Wusuli Rivers collectively form the river framework of the region’s water system. The
Xiaoxinganling Mountains and the Wanda Mountains, two important ecological barriers,
are located in the eastern and southern regions of the area, while the central and western
areas contain the Sanjiang Plain, which is characterized by fertile black soil and dense
wetlands [28].
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Figure 1. The localization (a) and hypsometry (c) of the study area and spatial distribution of average
LAI (b) from 2000 to 2020 within the study region.

The Xiaoxinganling Mountains typically range in elevation from 300 to 800 m above
sea level, exhibiting higher relief in the southeast and lower relief in the northwest. Geomor-
phologically, the region displays a stratified pattern, characterized predominantly by hills
and ridges [29]. The area has been shaped by numerous volcanic eruptions, resulting in the
formation of volcanic cones and lava plateau landscapes. The prevailing soil type is dark
brown soil, with forests predominating as the typical land cover [22]. The Sanjiang Plain
represents China’s least densely populated plain [28]. Sloping from southwest to northeast,
its topography transitions from piedmont plateaus to alluvial plains. Alluvial plains consti-
tute over 60% of the region, with elevations averaging approximately 50–60 m above sea
level. Primary soil types include black soil, meadow soil, and solonchak, positioning it as
one of the world’s four most significant original black soil zones [18].

This region experiences a temperate humid and sub-humid monsoon climate, charac-
terized by an average annual temperature ranging from 1.4 to 3.6 ◦C and average annual
precipitation between 537.8 and 810.9 mm [29]. The rainy season spans from June to
September, contributing to around 80% of the annual rainfall. The region receives 2400 to
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2500 h of sunshine annually, with an average temperature of −21 to −18 ◦C in January
and 21–22 ◦C in July [30]. These conditions are conducive to agricultural development
during the rainy and hot seasons. Therefore, the Sanjiang Plain is indeed recognized as
one of China’s most significant commercial grain-producing regions [18]. Positioned as a
natural barrier in the northeast, the dominant forest types in the Xiaoxinganling Mountains
region include temperate coniferous and broad-leaved mixed forests, featuring Korean pine,
spruce, fir, and some deciduous broad-leaved forests with Mongolian oak and birch [31].

2.2. Hydrological Model and Driving Datasets

In this study, we employed a revised distributed hydrological model, ESSI-3, with a
spatial resolution of 30 arcseconds (~1 km at the equator) to assess water storage and hy-
drological processes within the study region. The original ESSI model described watershed
hydrology as 1-D fluxes, wherein precipitation is partitioned into canopy-intercepted and
effective precipitation. The latter is further partitioned into direct runoff, infiltrates into
deep soils (partly stored to support evapotranspiration), and flows into channels as river
baseflow [16]. A key feature of the model is its capability to account for both infiltration
and saturation-excess water-yielding mechanisms based on spatial and temporal variations
in rainfall intensity and underlying surface conditions [17].

Recent enhancements were made to the ESSI model, as detailed in several works [16–20].
Notably, a three-layer soil water balance module and a remote sensing-based two-leaf Jarvis-
type canopy conductance model (RST-Gc) were incorporated to simulate discharge and water
exchange in soil water storage over the vertical soil column. Additionally, a first-order linear
reservoir approach was employed to model groundwater storage and discharge. These
modifications aimed to improve simulations of spatial heterogeneity in hydrological processes,
reducing uncertainties and enabling reliable quantification of the influences of underlying
surfaces and climate changes on the hydrological regime of the study region. The structural
diagram of the ESSI-3 hydrological model is shown in Figure 2.
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Figure 2. The structure diagram of the ESSI-3 hydrological model.

For model setup, Table 1 provides a summary of necessary datasets, including data
type, spatial and temporal resolution, and duration. Model simulations were conducted at
a 1 km × 1 km resolution from 2000 to 2020, with the first year for model state initialization
and the subsequent years for calibration and validation. To account for varying spatial
resolutions in input gridded datasets, appropriate interpolation methods, such as bilinear
interpolation, were employed to upscale or downscale various datasets to a consistent
spatial resolution.
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Table 1. Summary of the datasets utilized in this study.

Type Variable Data Source Spatial and Temporal
Resolution, Time Span Reference

Meteorological
forcing Precipitation ERA-5 (https://cds.climate.copernicus.eu,

accessed on 1 December 2023)
0.25◦ × 0.25◦, daily,

2000–2020

[32]

Temperature
Wind speed

Relative humidity
Surface air pressure

Surface net solar
radiation

Surface solar radiation
downwards

Soil property Bulk density
SoilGrids

(https://www.soilgrids.org/, accessed on
10 December 2023)

1 km × 1 km, fixed [33]

Clay content mass
fraction

Silt content mass
fraction

Sand content mass
fraction

Vegetation
parameter Leaf area index (LAI) GLOBMAP-based (https://zenodo.org/,

accessed on 15 December 2023) 8 km, 8-day, 2000–2020 [34]

Tree cover fraction
MODIS (https:

//appeears.earthdatacloud.nasa.gov/,
accessed on 15 December 2023)

500 m × 500 m, fixed,
2008 [35]

Land use/cover
(LULC)

MCD12Q1 (https:
//appeears.earthdatacloud.nasa.gov/,

accessed on 15 December 2023)

500 m × 500 m, yearly,
2000–2020 [36]

Others DEM
HydroSHED

(https://www.hydrosheds.org/,
accessed on 15 December 2023)

30 arc-second, fixed [37]

Streamflow at Jiamusi
Station Water Yearbook Daily, 2008–2016,

monthly, 2001–2007

Evapotranspiration
MOD16A2 (https:

//appeears.earthdatacloud.nasa.gov/,
accessed on 1 March 2024)

500 m × 500 m, yearly,
2000–2020 [38]

Terrestrial water
storage

JPL-Mascon GRACE
(https://podaac.jpl.nasa.gov/, accessed

on 1 March 2024)

0.25◦ × 0.25◦,
monthly,

2003–2016
[39]

2.3. Simulation Scenario Design and Model Evaluation

Two simulation scenarios were established for the period 2000–2020 to quantitatively
assess the impact of climate and vegetation changes on hydrological components. The first
scenario, termed the dynamic scenario, utilized dynamic LULC (2000–2020, yearly) and LAI
data (2000–2020, daily). The second scenario, termed the constant scenario, employed fixed
LULC (2000, yearly) and fixed LAI (2000, daily) data. Two scenarios were implemented over
the 2000–2020 period using consistent meteorological forcings, distinguished primarily
by variations in vegetation-related inputs such as LAI and LULC data. The constant
simulation scenario assumed static vegetation conditions in XM-SP throughout 2000–2020,
thereby isolating hydrological responses to climate variability alone. In contrast, the
dynamic simulation scenario introduced spatiotemporal vegetation dynamics, integrating
dynamically evolving vegetation data to simulate hydrological processes from 2000 to 2020.
Disparities in hydrological responses between these two scenarios were analyzed in terms
of their attribution to changes in vegetation dynamics.

The model setup using dynamic map data was employed for calibration and valida-
tion processes. Once model performance was deemed satisfactory, the same calibrated

https://cds.climate.copernicus.eu
https://www.soilgrids.org/
https://zenodo.org/
https://appeears.earthdatacloud.nasa.gov/
https://appeears.earthdatacloud.nasa.gov/
https://appeears.earthdatacloud.nasa.gov/
https://appeears.earthdatacloud.nasa.gov/
https://www.hydrosheds.org/
https://appeears.earthdatacloud.nasa.gov/
https://appeears.earthdatacloud.nasa.gov/
https://podaac.jpl.nasa.gov/
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parameter set was utilized to evaluate model performance on LULC changes using the
constant simulation scenario.

For model calibration, daily observed streamflow data at Jiamusi Station (130◦21′ E,
46◦49′ N) from 2008 to 2016 were employed, while monthly observed streamflow data from
2001 to 2007 were used for model validation. At the grid scale, due to the lack of actual
observed values of evapotranspiration, the ETMOD16 product sequence was used as a
reference value to evaluate the ESSI-3 model’s performance. The MOD16A2 product, based
on MODIS terrestrial ET budgeting, provides estimates of actual evapotranspiration on
the land surface, facilitating the evaluation of simulated evapotranspiration by the model.
Additionally, GRACE-based Terrestrial Water Storage (TWS) data were utilized to evaluate
the ESSI-3 model’s performance in simulating terrestrial water storage components.

The evaluation employed four common indicators, namely the correlation coefficient
(R), Nash–Sutcliffe efficiency (NSE), bias, and determination coefficient (R²), as described in
previous studies [19]. The ESSI-3 model was further employed to investigate the influence
of climate and vegetation changes on hydrological components, categorizing them into
three groups: runoff fluxes (including saturation excess surface runoff, interflow, base-
flow, and groundwater recharge (GWR)); water storage components (including snow water
equivalent (SWE), three soil reservoir water storages (SWC1, SWC2, and SWC3) and ground-
water storage (GWS)); and evapotranspiration fluxes, including actual evapotranspiration
(AET), potential evaporation (PET), and canopy transpiration (ETC).

2.4. Terrestrial Water Storage

TWS encompasses all forms of water held above and below the Earth’s land surfaces,
including soil moisture, snow, groundwater, and water within biomass [40]. Generally, the
change in TWS (∆TWS), according to Xu et al. [18], can be calculated as:

∆TWS = ∆SMS + ∆GWS + ∆CWS + ∆SWE (1)

Here, SMS represents soil moisture storage, SWE is snow water equivalent, CWS is
total canopy water storage, and GWS is groundwater storage. In this study, ∆TWS and
its individual components simulated by the ESSI-3 model are calculated as (referring to
Xu et al. [18]):

∆TWSESSI3 = ∆SWC1 + ∆SWC2 + ∆SWC3 + ∆GWS + ∆CWS + ∆SWE (2)

Here, SWC1, SWC2, and SWC3 represent the first, second, and third soil moisture
storage layers, respectively. The study characterizes ∆TWS using Gravity Recovery and
Climate Experiment (GRACE) data. GRACE, leveraging precise Earth gravitational field
measurements, has provided monthly variations in TWS since April 2002 [41]. The JPL
RL06M.MSCNv02 GRACE mascon solutions were employed, offering 0.5◦ × 0.5◦ sampling
resolution for global water storage anomalies [39]. Within the study region, these mascon
solutions were extracted for ∆TWS investigation.

Scaling factors were applied to adjust the corresponding mascon grids for enhanced
comparison between GRACE-TWS and ESSI-3 model data. Additionally, statistical anal-
ysis of ∆SWC1, ∆SWC2, ∆SWC3, ∆SWE, and ∆GWS simulated by the ESSI-3 model was
conducted. These components were summed to obtain the monthly simulated ∆TWS time
series. GRACE-TWS was computed relative to a time-mean baseline (Jan 2004 to Dec 2009)
for all months. To facilitate comparisons with GRACE-TWS, the baseline values of each
model-TWS individual component over 2004–2009 were computed and subtracted from all
time steps.

2.5. Contribution Index and Statistical Analysis

To investigate the inter-annual variations (IAVs) in different vegetation types, the
MCD12Q1 spanning from 2000 to 2020 was acquired and processed. Initially, unchanged
vegetation cover pixels from 2001 to 2020 were isolated, and those pixels with a predom-
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inant land cover fraction were selected for further analysis. Five major land use/cover
classes were identified, with water bodies and urban areas collectively constituting less than
2% of the study region and consequently excluded. Thus, three predominant vegetation
types with substantial coverage were identified in the study region: forest/woodland,
grass/shrubs, and croplands. The hydrological variable patterns of these different vegeta-
tion types and their influencing factors were explored based on this preliminary map.

To quantify the contribution of individual regions (i.e., climate zones) and hydrolog-
ical components to the regional IAV, a contribution index (f j) was calculated using the
methodology outlined in Ahlström et al. [42]. The contribution index (f j) is expressed as:

f j = IAVj/Total IVA (3)

where IAVj represents the IAV of a specific region or hydrological component. Total IAV is
the sum of IAV across all regions or hydrological components.

This index was employed to score individual geographic locations based on their
consistency. Furthermore, spatiotemporal trends during the study period (2000–2020) were
analyzed using Mann–Kendall statistical tests [43,44].

3. Results
3.1. Evaluation of the ESSI-3 Model Performance

Figure 3 illustrates the evaluation of model performance through multivariate and
multiscale approaches. Hydrological responses, particularly streamflow, offer high accu-
racy. Daily observed stream flows at the Jiamusi runoff gauging station (2008–2016) were
compared with the daily flows simulated using the ESSI-3 model through the routing model
with the river network. Throughout the calibration period, the daily streamflow exhibited
commendable simulation outcomes (Figure 3b), characterized by an NSE of 0.79, R² of 0.79,
and a bias of 27.61 m³/s. Routing parameters determined during calibration were then used
for validation. The monthly streamflow during the validation periods (2001–2007) consis-
tently maintained NSE and R² values above 0.82, thus achieving satisfactory simulation
results (Figure 3c).

Furthermore, additional validations were conducted for the simulated actual evap-
otranspiration and terrestrial water storage. Figure 3a illustrates the spatial distribution
of the correlation coefficient between ESSI-3 (ETESSI3) and MODIS ETMOD16 from 2000 to
2020. Notably, over 80% of the study region exhibited a correlation coefficient exceeding
0.8. Regions with lower correlation, predominantly characterized by croplands, revealed
challenges in distinguishing C3 and C4 crops by MOD16, leading to diminished correlation.
Conversely, the ESSI-3 model, designed with distinct parameterization methods for C3 and
C4 crops, exhibited refined and more realistic evapotranspiration simulations.

Understanding dynamic changes in terrestrial water storage is pivotal in studying
regional water cycle variations. Many global land surface models, such as the four main
models of the Global Land Surface Data Assimilation System (GLDAS)—the VIC, CLM,
MOSAIC, and NOAH models—lack parameterization on detailed groundwater exchange
with surface hydrologic processes, limiting their applicability to a certain extent in detailed
groundwater reserve estimations [45]. In this study, the ESSI-3 model, employing a simple
linear reservoir scheme to describe the dynamics of groundwater reserves, addressed
this limitation. Figure 3d displays monthly ∆TWSGRACE and ∆TWSESSI-3 from 2003 to
2016, revealing a coherent trend with a significant correlation coefficient of 0.63 (p < 0.01).
This alignment suggests that the ESSI-3 model provides reliable estimates of terrestrial
water storage components, offering a valuable tool for assessing responses to climate and
land use/land cover changes, although the changes in terrestrial water storage caused
by anthropogenic factors and changes in surface water storage such as lakes, rivers, and
reservoirs are not taken into account in the ESSI-3 model.
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In summary, despite some biases and uncertainties in specific seasons, the ESSI-3 model
effectively reproduced runoff hydrographs, indicating its capability to estimate long-term
ET and TWS, aligning with observed precipitation and runoff. The improved physically
based distributed hydrological model lays a robust foundation for estimating hydrological
components and exploring their variations and potential influencing factors.

3.2. The Dynamics of Climate, Vegetation, and Terrestrial Water Storage Observed through Remote
Sensing and Reanalysis Data
3.2.1. Climate Changes

Figure 4 illustrates the annual variations in climate variables, including mean tem-
perature (Tas), net radiation (Rn), downward shortwave radiation (Rsds), precipitation
(Pr), relative humidity (RH), and wind speed (WS), over the study region for the past
20 years. To discern trends and abrupt changes in climate variables at an annual scale,
the Mann–Kendall test was applied to analyze these indices from 2000 to 2020 at a con-
fidence level of 95%. Throughout the study period, the annual mean Tas in the region
fluctuated from a minimum of 2.18 ◦C in 2000 to a maximum of 4.10 °C in 2008, showing a
statistically non-significant increase of about 0.006 ◦C/yr (p > 0.05). Regarding indicators
representing changes in surface energy input at land surfaces, i.e., Rn and net Rsds, a gen-
eral declining trend (p > 0.05) was observed, with multi-year average rates of change being
−3.32 W/(m²·yr) and −1.82 W/(m²·yr), respectively. Changes in area-averaged annual
mean Pr and RH during the same period demonstrated a statistically significant increasing
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trend (p < 0.05), with rates of increase measured at 8.17 mm/yr and 0.24%/yr, respectively.
A relatively stable inter-annual fluctuation for WS was observed (0.001 ms−1 /yr, p > 0.05).
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Figure 5 illustrates the spatial variation of six climatic factors in XM-SP. Firstly, it was
noteworthy that the spatial patterns of Pr, Rsds, and RH demonstrated a consistent trend
across the entire region (Figure 5c,d). In contrast, other climatic variables exhibited mixed
trends of increase and decrease with pronounced spatial disparities. Pr and RH generally
increased throughout the region, whereas Rsds showed an overall decline. Hotspots
of increased Pr were predominantly found in the western Xiaoxinganling Mountains,
coinciding with notable increases in RH and decreases in Tas, Rn, Rsds, and WS in these
areas. This suggested a potential positive correlation among these climatic variables in
the eastern part of the region. Conversely, climatic changes observed in the central and
western plains were more intricate, likely influenced by a combination of natural factors
and anthropogenic activities.
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3.2.2. LULC Changes

Using the MCD12Q1 LULC dataset based on remote sensing observations, the changes
in the five main land use/cover types from 2000 to 2020 were investigated (as illustrated in
Figure 6), including forest/woodland, grass/shrubs, cropland, urban land, and water. In
2000, cropland, forest/woodland, and grass/shrubs dominated the study region, covering
approximately 53.8%, 36.2%, and 8.6% of the total area, respectively. By 2020, cropland had
decreased to cover 50.9% of the area, while forest/woodland and grass/shrubs expanded
to cover 37.6% and 10.0%, respectively. The decrease in agricultural land was mainly due
to conversion to forest/woodland and grass/shrubs.
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While the loss of cropland and expansion of forest/woodland and grass/shrubs may
influence hydrological components, significant changes were not observed at the regional-
average scale. However, changes in land use/cover may have significant impacts at smaller
scales, such as sub-watershed levels. In addition, it is important to emphasize that the
hydrological model utilizes LULC data based on MCD12Q1, which is annually updated.
From this perspective, the changes are more substantial, exhibiting a variety of trends
including sharp declines, monotonic increases, and gradual shifts. Nevertheless, focusing
solely on the magnitude of LULC changes may not yield conclusive insights into their
impact on hydrological processes. Therefore, to further explore the significant changes in
this region, a spatiotemporal analysis of the regional LAI and TWSA was conducted.
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3.2.3. Changes in LAI and TWSA

Using the GLASS LAI and GRACE Mascon datasets based on remote sensing ob-
servations, we investigated the spatiotemporal dynamics of regional vegetation greening
spanning 2000 to 2020, alongside TWSA from 2003 to 2016 (see Figure 7). The results re-
vealed a statistically significant upward trend in LAI throughout the study period (p < 0.05).
Specifically, regions experiencing significant (p < 0.05, slope > 0) and slight increases
(p > 0.05, slope > 0) in LAI constituted 28.2% and 48.3% of the study area, respectively.
Conversely, areas exhibiting a decreasing trend in LAI accounted for less than 24%, with
only 3.4% demonstrating a statistically significant decrease. Significant increases in LAI
were predominantly observed in the eastern mountainous areas and central Sanjiang Plain,
while decreases were concentrated along the main stem of the Songhua River, Naoli River,
and Heilongjiang River. From 2003 to 2016, there was a statistically significant increasing
trend in regional TWSA over the temporal scale. Spatially, the trends indicated consistent
increases across the entire region, ranging from 1.17 mm/yr to 4.95 mm/yr. Moreover, the
spatial distribution of multi-year means and trends demonstrated a gradual increase from
southeast to northwest, aligning with patterns observed in precipitation, temperature, and
vegetation dynamics.
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3.3. Dynamics and Responses of Hydrological Components at Regional Scale

Figure 8 illustrates the interannual variations of twelve hydrological components in
the study region under the dynamic scenario, encompassing four runoff fluxes, five water
storage components, and three evapotranspiration fluxes. As depicted in Figure 8a–d,
the results revealed a statistically significant upward trend (p < 0.05) in all four runoff
fluxes throughout the study period. Specifically, surface runoff, interflow, baseflow, and
GWR exhibited annual increases of 0.04 mm/year, 0.09 mm/year, 0.41 mm/year, and
0.38 mm/year, respectively, over the past 20 years. Similarly, a statistically significant
upward trend (p < 0.05) was observed in all five water storage components throughout
the study period. The slopes ranged from 0.02 mm/year to 1.91 mm/year for the five
water storage components (Figure 8e–i). For three evapotranspiration fluxes, PET and ETC
exhibited a decreasing trend with slopes of −4.25 mm/year and −0.12 mm/year, respec-
tively, over the past 20 years. Conversely, AET increased with a slope of 0.62 mm/year
(Figure 8j–l). However, the trends in the absolute change of three evapotranspiration fluxes
were statistically non-significant (p > 0.05).
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To reveal the impact of vegetation greening on regional hydrological processes, the
changes in total runoff (the sum of four runoff fluxes), total water storage (the sum of
five water storage components), and total evapotranspiration (the sum of three evapotran-
spiration fluxes) under two simulated scenarios were analyzed, as illustrated in Figure 9.
The results indicated that vegetation greening resulted in a reduction in the annual trend
slopes for total runoff and total water storage from 0.40 mm/year and 2.57 mm/year to
0.38 mm/year and 2.21 mm/year, respectively, over the period from 2000 to 2020. Con-
currently, the annual decline trend slope for total evapotranspiration decelerated from
−4.04 mm/year to −2.25 mm/year. Hence, from a regional perspective, the annual varia-
tion trends in both fluxes and storages were predominantly influenced by climate changes.
Although vegetation changes alone could not reverse the annual trends of hydrological
variables, the dynamics of vegetation greening promoted an increase in total evapotran-
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spiration (Figure 9c) while attenuating the increase in total runoff (Figure 9a), thereby
ultimately suppressing the rise in total water storage (Figure 9b).
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Figure 10 provides a detailed analysis of the correlations between each hydrological
variable under the dynamic scenario and various climate and vegetation factors. The
results revealed that, with the exception of SWE and AET, all other hydrological variables
generally exhibited strong correlations with various climate factors, excluding WS. Out of
50 correlation coefficients examined, 41 were found to be statistically significant (p < 0.05).
Runoff fluxes and water storage components showed significant positive correlations with
Pr and relative humidity RH, as well as significant negative correlations with Tas, Rn, and
incoming Rsds. Conversely, evapotranspiration fluxes demonstrated inverse correlations
with these climate variables. The correlations between SWE and AET with climate factors
were generally low. This can be attributed to SWE being notably influenced by topography,
snow accumulation dates, and seasonal melting patterns, whereas AET is influenced
by a combination of climate conditions, soil moisture content, and vegetation dynamics.
Among all climate factors, Pr showed the strongest correlations with hydrological variables,
with most correlation coefficients exceeding 0.8. This underscored Pr as the primary
climate factor influencing the hydrological cycle in the region. While vegetation factors
exhibited weaker correlations with most hydrological variables, the results indicated that
dynamic changes in vegetation contributed to increased evapotranspiration and reduced



Remote Sens. 2024, 16, 2709 15 of 29

runoff. Furthermore, correlation analysis between GRACE-derived TWSA and hydrological
variables indicated that variations in deep soil water predominantly drove changes in
regional TWS.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 30 
 

 

runoff. Furthermore, correlation analysis between GRACE-derived TWSA and hydrolog-
ical variables indicated that variations in deep soil water predominantly drove changes in 
regional TWS. 

 
Figure 10. Correlation coefficients of hydrological components under dynamic scenario with cli-
matic and vegetation factors. Note: * indicates statistical significance at the p < 0.05 level. 

3.4. The Spatial Impacts of Climate Variations and Vegetation Dynamics on Hydrological 
Processes 

Figure 11 depicts the spatial distribution of variation trends in 12 hydrological com-
ponents within the study region under the dynamic scenario during 2000–2020. The re-
sults indicated that despite the overall regional-scale consistency and statistical signifi-
cance in the increasing trends of most hydrological components, significant spatial varia-
bility is observed in the grid-scale trends of each hydrological variable. With the exception 
of interflow and PET, diverse hydrological indicators exhibited mixed trends, indicating 
changes in regional hydrology likely aĴributed to climatic fluctuations and vegetation dy-
namics. Interflow demonstrated general stability with minor fluctuations, although some 
regions in the eastern mountainous areas exhibited an increase. PET exhibited considera-
ble spatial variability with predominantly negative trends. Variations in SWE highlighted 
pronounced regional disparities, characterized by an increasing trend in the eastern 
mountainous areas and a decreasing trend in the central and western plains regions. The 
spatial dynamics of shallow surface fluxes (e.g., surface runoff, AET, and ETC) and stor-
ages (e.g., SWC1 and SWC2) exhibited complexity, particularly in the vegetated eastern 
mountain regions. SWC1 and SWC2 displayed a clear declining trend, while surface runoff, 
AET, and ETC showed mixed spatial variability. Conversely, deeper subsurface fluxes 
(e.g., baseflow and GWR) and storages (e.g., SWC3 and GWS) exhibited more uniform 
spatial trends. 

Figure 10. Correlation coefficients of hydrological components under dynamic scenario with climatic
and vegetation factors. Note: * indicates statistical significance at the p < 0.05 level.

3.4. The Spatial Impacts of Climate Variations and Vegetation Dynamics on Hydrological Processes

Figure 11 depicts the spatial distribution of variation trends in 12 hydrological compo-
nents within the study region under the dynamic scenario during 2000–2020. The results
indicated that despite the overall regional-scale consistency and statistical significance
in the increasing trends of most hydrological components, significant spatial variability
is observed in the grid-scale trends of each hydrological variable. With the exception
of interflow and PET, diverse hydrological indicators exhibited mixed trends, indicating
changes in regional hydrology likely attributed to climatic fluctuations and vegetation
dynamics. Interflow demonstrated general stability with minor fluctuations, although some
regions in the eastern mountainous areas exhibited an increase. PET exhibited considerable
spatial variability with predominantly negative trends. Variations in SWE highlighted
pronounced regional disparities, characterized by an increasing trend in the eastern moun-
tainous areas and a decreasing trend in the central and western plains regions. The spatial
dynamics of shallow surface fluxes (e.g., surface runoff, AET, and ETC) and storages (e.g.,
SWC1 and SWC2) exhibited complexity, particularly in the vegetated eastern mountain
regions. SWC1 and SWC2 displayed a clear declining trend, while surface runoff, AET, and
ETC showed mixed spatial variability. Conversely, deeper subsurface fluxes (e.g., baseflow
and GWR) and storages (e.g., SWC3 and GWS) exhibited more uniform spatial trends.
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Figure 11. The spatial distribution of variation trends in runoff fluxes (a–d), water storage
components (e–i), and evapotranspiration fluxes (j–l) during 2000–2020 over the XM-SP region
(units: mm/year).

Figure 12 depicts the spatial patterns of significance trends computed at a 95% signifi-
cance level over the XM-SP under the dynamic and constant scenarios for 12 hydrological
variables. Significant spatial heterogeneity in the changes of these variables was observed.
For runoff fluxes, surface runoff and interflow exhibited complex spatial heterogeneity,
while baseflow and GWR showed similar spatial patterns in significance and trend slope.
This led to synergistic spatial heterogeneity in SWC3 and GWS, which were influenced
by baseflow and GWR. Moreover, evaporation fluxes, such as AET, were found to be the
dominant factor influencing the spatial heterogeneity of superficial water storage compo-
nents (SWE, SWC1, and SWC2), while deep water storage components were associated
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with the spatial heterogeneity of deep runoff fluxes under climate change. Additionally,
vegetation changes intensified the complexity of spatial heterogeneity in hydrological vari-
ables. Following the consideration of vegetation greening effects, the eastern mountainous
regions emerged as spatial focal points where increased LAI influences both surface fluxes
and water storage components. Across the entire eastern mountainous area, the trend
in surface soil water content (SWC1, and SWC2), previously increasing under constant
scenarios, had shifted to a declining trend. Concurrently, AET had transitioned from a
markedly decreasing trend to an increasing trend under dynamic conditions. In the plains,
elevated LAI had similarly caused a shift in surface soil water content trends from signif-
icant increases observed under constant scenarios to trends of non-significant increases.
Additionally, AET and ETC had moved from decreasing trends to increasing trends under
dynamic scenarios. Spatially, the impact of vegetation greening on deeper fluxes and water
storage components was notably concentrated in the southern regions. Whether examining
fluxes such as baseflow, GWR, or water storage components like SWC3 and GWS, there was
a consistent shift from increasing trends to decreasing trends under dynamic conditions.
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Figure 12. Spatial patterns of variation of 12 hydrological variables over the XM-SP under the
dynamic and constant scenarios over the 20 years studied.

Figure 13 illustrates the statistical outcomes of 12 hydrological variables under two simulation
scenarios. For the water storage components over the past 20 years, areas with an increasing
tendency accounted for 99.36%, 99.16%, and 95.04% of the area in SWC1, SWC2, and SWC3,
respectively, under the constant scenario. Among these, 31.43%, 23.53%, and 53.42% exhibited a
significant increasing trend. Under the dynamic scenario, 62.45%, 70.08%, and 81.83% exhibited
an insignificantly increasing trend, and pixels with an insignificantly decreasing trend comprised
about 36.88%, 27.11%, and 17.41% for SWC1, SWC2, and SWC3, respectively. This phenomenon
suggests that climate change over 20 years led to an increase in three-layer soil water content,
while LULC changes contributed to a reduction.
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For SWE under the constant scenario, 95.3% of the region exhibited an insignificantly
increasing trend, primarily influenced by climate change. Under the dynamic scenario,
areas with an insignificantly increasing trend constituted 76.67%, and 23.16% exhibited an
insignificantly decreasing trend, indicating that LULC changes caused SWE to shift from an
insignificantly upward to an insignificantly downward trend. Regarding SWS, areas with
an increasing tendency comprised 94.93% of the region, with 38.14% showing a significant
increase under the constant scenario. Conversely, under the dynamic scenario, approx-
imately 99% displayed a decreasing trend, of which 22.29% demonstrated a significant
increase. This implies that climate change led to an SWS increase, while LULC changes
caused a shift from a significantly upward to an insignificantly upward trend.

In the constant scenario over the past 20 years, 80.12% of the study region displayed
an insignificantly increasing trend in surface runoff. Pixels with a significantly increasing
trend covered about 11.42% of the area, while those with an insignificantly decreasing
trend comprised 8.45%. Notably, climate change predominantly contributed to an increase
in surface runoff. Conversely, under the dynamic scenario, areas with an insignificantly
increasing trend constituted 88.93%, and only 2.43% exhibited a significantly increasing
trend, indicating that LULC changes altered surface runoff from a significantly upward
to an insignificantly upward trend. The trends of interflow under the two scenarios were
similar, highlighting climate factors as dominant influencers, with little impact from LULC
changes. Concerning baseflow, areas with an increasing trend comprised 94.94% of the
region, with 38.5% showing a significant increase under the constant scenario. Conversely,
under the dynamic scenario, approximately 98% displayed a decreasing trend, of which
22.23% demonstrated a significant increase. This suggests that climate change led to a
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baseflow increase, while LULC changes caused a shift from a significantly upward to an
insignificantly upward trend.

For evaporation components over the past 20 years, 96.38% and 92.32% of the region
exhibited a decreasing trend in AET and ETc under the constant scenario, with 60.94%
and 77.57% showing an insignificantly decreasing trend. Conversely, under the dynamic
scenario, areas with an increasing trend accounted for 86.06% and 52.76% for AET and ETc,
suggesting that LULC changes led to an increase in AET and ETc. The trend of ET0 under
the constant and dynamic scenarios was displayed similarly, indicating that LULC changes
had little impact on ET0.

3.5. Contributions of Different Land Use/Cover to the IAV of Hydrological Components

To assess the influence of various land use/cover classes on hydrological variables
within the study region, we examined the contributions of these classes to the IAV of
each hydrological component. This approach aimed to elucidate the relationship between
land use/cover classes and the IAV of hydrological variables across different geographic
locations and time periods.

The spatial distributions of relative contributions to the IAV at the pixel scale under
dynamic and constant scenarios are presented in Figure 14. Given the considerable spatial
variability in climate and land use/cover changes across the study area, the relative contri-
butions of grids to the IAV exhibited significant spatial heterogeneity. While differences
between the two scenarios were not overly pronounced, a general trend in IAV was evi-
dent. For fluxes, surface runoff and interflow showed less spatial heterogeneity, whereas
GWR, baseflow, AET, ET0, and ETC exhibited relatively higher spatial heterogeneity. This
resulted in SWC2 and SWC3 showing less spatial heterogeneity, while SWC1, GWS, and
SWE displayed relatively higher spatial heterogeneity.
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The statistical results of explanatory contributions in each hydrological variable under
both simulation scenarios are depicted in Figure 15. Cropland and forest/woodland
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consistently emerged as the dominant land use/cover factors influencing the IAV of each
hydrological component. This pattern aligned with the overall characteristics of the study
region. Specifically, for runoff flux components, forest/woodland played a leading role
in the IAV of surface runoff (50%) and interflow (87%), while cropland was dominant in
baseflow (61%) and GWR (59%). Among water storage components, forest/woodland was
significant for SWC2 (46%) and GWS (48%), while cropland prevailed in SWC1 (54%), SWC3
(61%), and GWR (53%). Regarding evapotranspiration flux components, cropland exerted
primary influence on AET (57%) and ETC (64%), while forest/woodland was dominant in
ET0 (49%).
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We further investigated the impact of spatial distribution changes in each land
use/cover class on the IAV of hydrological variables based on the differences between
the two simulation scenarios. For evapotranspiration fluxes, cropland dominated the IAV
of AET and ETc in the entire study region, contributing 56.05% and 63.61% to AET and
ETc, respectively, under the constant scenario, and 57.78% and 64.54%, respectively, under
the dynamic scenario. Meanwhile, forest/woodland dominated the IAV of ET0 in the
entire study region, contributing 49.06% under the dynamic scenario and 48.39% under
the constant scenario. A slight decrease in cropland area (2.92%) resulted in a proportional
decrease in the IAV, affecting AET (1.73%), ET0 (0.61%), and ETC (0.94%). Notably, the
impact of cropland change was relatively more substantial on AET than on ETC. A slight
increase in forest/woodland area (1.35%) and grass/shrubs area (1.40%) caused a relative
increase in the IAV, affecting AET (0.61% and 1.08%), ET0 (0.67% and 1.33%), and ETC
(−0.76% and 1.93%). The relative contribution of grass/shrubs to ET0 was greater than to
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AET and ETC; however, the impact of grass/shrubs change was relatively more substantial
on ETC than on ET0 and AET.

For runoff fluxes, cropland dominated the IAV of baseflow and GWR in the entire
study region, contributing 60.78% and 58.73% to baseflow and GWR, respectively, under
the dynamic scenario, and 62.51% and 60.29%, respectively, under the constant scenario.
Forest/woodland dominated the IAV of surface runoff and interflow in the entire study
region, contributing 50.61% and 87.64% to surface runoff and interflow, respectively, under
the dynamic scenario, and 50.18% and 87.05%, respectively, under the constant scenario.
A slight decrease in cropland area (2.92%) caused a relative decrease in the IAV, affecting
surface runoff (1.27%), interflow (0.56%), baseflow (1.73%), and GWR (1.55%). The relative
contribution of cropland to baseflow and GWR was greater than to surface runoff and
interflow, indicating a more substantial impact of cropland change on baseflow and GWR.
A slight increase in forest/woodland area (1.35%) and grass/shrubs area (1.40%) caused a
relative increase in the IAV, affecting surface runoff (0.43% and 1.51%), interflow (0.59% and
0.05%), baseflow (0.03% and 1.71%), and GWR (0.02% and 1.46%). The relative contribution
of forest/woodland to baseflow and GWR was greater than to surface runoff and interflow,
indicating a more substantial impact of forest/woodland change on baseflow and GWR.
The relative contribution of grass/shrubs to baseflow was greater than to others, indicating
a more substantial impact of grass/shrubs change on baseflow than on others.

For water storage components, cropland dominated the IAV of SWC1, SWC3, and
SWE in the entire study region, contributing 53.52%, 60.32%, and 52.18% to SWC1, SWC3,
and SWE, respectively, under the dynamic scenario, and 55.38%, 61.60%, and 53.83%,
respectively, under the constant scenario. Meanwhile, forest/woodland dominated the IAV
of SWC2 and GWS in the entire study region, contributing 46.63% and 48.77% to SWC2
and GWS, respectively, under the dynamic scenario, and 46.18% and 48.95%, respectively,
under the constant scenario. A slight decrease in cropland area (2.92%) caused a relative
decrease in the IAV, affecting SWC1 (1.86%), SWC2 (1.12%), SWC3 (1.28%), SWE (1.66%),
and GWS (1.37%). Although the relative contribution of cropland to SWC3 was greater
than to others, the impact of cropland change was relatively more substantial on SWC1
than on others. A slight increase in forest/woodland area (1.35%) and grass/shrubs area
(1.40%) caused a relative increase in the IAV, affecting SWC1 (0.20% and 1.43%), SWC2
(0.46% and 0.81%), SWC3 (0.65% and 1.23%), SWE (0.28% and 1.31%), and GWS (−0.18%
and 1.55%). Although the relative contribution of forest/woodland and grass/shrubs to
GWS was greater than to others, the impact of forest/woodland change was relatively
more substantial on SWC3 than on others.

In summary, cropland and forest/woodland played pivotal roles in the annual hy-
drological activity, both in terms of explanatory ability and area percentage in the study
region. These findings underscore the critical impact of these land use/cover classes on
hydrological processes. Notably, despite the greater proportion of forest/woodland (36.2%)
compared to grass/shrubs (8.6%) in the study region, grass/shrubs exhibited a more sensi-
tive response to temporal and spatial pattern changes, influencing inter-annual variations
in hydrological variables. Therefore, the role of grass/shrubs in affecting hydrological vari-
ability deserves heightened attention in future studies and ecological restoration projects.

4. Discussion
4.1. Increased Background Precipitation as the Dominant Driver of Regional Hydrological
Process Dynamics

Research on the evolution of regional climate conditions indicated that between
2000 and 2020, the region experienced a significant upward trend in precipitation and
relative humidity, both temporally and spatially, while temperature and solar radiation
showed a slight decline in most areas. Previous studies on climate change in this region and
the broader Amur River Basin have demonstrated that around the year 2000, the regional
climate transitioned from warm–dry to warm–wet conditions [46]. Despite slight variations
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in the magnitude of changes in climate factors, the findings of this study are consistent
with previous research on the overall trends in climate change.

The significant changes in precipitation in this region can be attributed to multiple
factors, including alterations in atmospheric circulation patterns and ocean–atmosphere
interactions, such as the El Niño phenomenon. Li et al. [47] found that over recent decades,
precipitation in Northeast China has notably increased, particularly during the summer.
This increase is closely linked to adjustments of the position and intensity in atmospheric
circulation patterns, such as the North Pacific Oscillation (NPO), the Western Pacific Sub-
tropical High (WPSH), and the East Asian summer monsoon [48]. For example, the positive
phase of the NPO has enhanced the transport of water vapor from the Pacific to Northeast
China. Additionally, Zhu et al. [49] reported that the El Niño–Southern Oscillation (ENSO),
especially strong El Niño events, leads to anomalous rises in sea surface temperature in
the tropical Pacific, thereby modifying global atmospheric circulation patterns. The El
Niño phenomenon intensifies circulation in the mid-to-high latitudes of the Northern
Hemisphere, facilitating increased water vapor transport to Northeast China [49].

Under the climate change scenario characterized by a significant increase in precipita-
tion, hydrological simulation results considering only climate change (Constant Scenario)
demonstrated that simulated runoff fluxes and water storage components showed a con-
sistent increasing trend both temporally and spatially. The correlation analysis between
climate variables and hydrological variables further confirms that precipitation has been the
dominant factor driving the dynamic changes in regional hydrological processes. Further-
more, previous studies based on ten CMIP6 models under three SSP scenarios for climate
change in the Sanjiang Plain from 2025 to 2100 [20], along with other researchers’ predic-
tions on precipitation changes in Northeast China’s ecosystem [24], indicate that regional
precipitation will significantly increase under all future scenarios, suggesting a wetter
climate over the next 80 years. Consequently, we propose that concerns about potential
water shortages due to continuous increases in crop growth in XM-SP’s grain-producing
regions may be alleviated.

Climate warming undeniably speeds up the evaporation of soil moisture and the
transpiration of vegetation. However, many researchers have identified a period from
1998 to 2012 where the global warming rate was lower than that from 1951 to 2012, a
phenomenon referred to as the “hiatus”, “pause”, or “slowdown” in global warming,
which has garnered significant global attention [50]. Zhou et al. [51] also discovered a
significant cooling trend in spring temperatures in Northeast China when comparing global
and mainland China’s temperature changes, concluding that this hiatus phenomenon is
more pronounced in Northeast China. The Arctic Oscillation (AO) is considered a key factor
influencing temperature and solar radiation changes in this region, while the Pacific Decadal
Oscillation (PDO) is another closely related climate factor that may have contributed to
this hiatus period. In addition, the overall decline in solar radiation and wind speed has
led to a reduction in measured water surface evaporation at the majority of meteorological
and hydrological stations in China, which also suppresses vegetation transpiration [52–54].
Similar conclusions were drawn from the simulation results of this project. During the study
period (2000–2020), temperature changes exhibited fluctuations without a clear upward
trend, while both solar radiation and wind speed showed a weakening trend across the
entire region (as shown in Figures 4 and 5), leading to a corresponding decrease in actual
evapotranspiration and vegetation transpiration levels under constant simulation scenario.
This could be good news for agricultural cultivation activities in the Sanjiang Plain.

4.2. Increased Background Precipitation Has Obscured the Hydrological Deficit Resulting from
Vegetation Greening in XM-SP Region

To balance the relationship between the ecological environment and economic devel-
opment, the Chinese government has implemented and will continue to propose ambitious
national ecological conservation and restoration projects [55,56]. For example, policies
such as ‘returning farmland to forests’, which have been implemented in the past, as well
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as the strategy of ‘integrating the protection and restoration of mountains, rivers, forests,
farmlands, lakes, grasslands, and sands’ proposed in recent years [57,58]. Clearly defin-
ing the key tasks and objectives of large-scale ecological restoration plans, especially in
regions characterized by complex environments, variable climates, limited water resources,
and intensive human activities, can significantly enhance the effectiveness of ecological
construction efforts [59,60]. Against the backdrop of global climate warming, several large-
scale ecological restoration plans implemented since 1998 have driven vegetation greening
across the entire XM-SJ region (as shown in Figure 7). Most of the regions displaying a
significant upward trend were located over the Xiaoxinganling Mountains and Wandashan
Mountains, characterized by the expansion of grass/shrubs and forests/woodland, often
at the cost of cropland. Meanwhile, the vegetation greening in the agricultural regions of
the Sanjiang Plain is predominantly influenced by factors such as climate change, human
land-use management practices, CO2 fertilization, and nitrogen deposition [6].

Numerous scholars have investigated the impact of vegetation greening on water
responses at both regional and global scales. Certain studies indicate that vegetation
greening, by enhancing evapotranspiration and decreasing surface water yield, leads to
a gradual increase in soil water content [61], as observed in the Hanjiang River Basin of
China [10]. Conversely, some research suggests that vegetation greening increases ET,
thereby reducing soil moisture and runoff [62], as observed in the Three-North region and
the Loess Plateau of China [8,63].

By formulating dynamic scenarios that incorporated vegetation change information
and constant scenarios that considered only climate change, this study contrasted the
hydrological simulation differences between the two scenarios. The results revealed an
overall increasing trend in the water storage components and runoff fluxes over XM-SP.
This trend can be mainly attributed to regional climate change, particularly the rise in
precipitation levels. Despite the observed increasing trends in hydrological factors over
XM-SP due to regional climate change, our analysis also revealed a significant factor
counteracting this trend. Widespread vegetation greening over the years has led to an
inevitable increase in water demand, resulting in substantial water use stress. This finding
was further supported by our hydrological simulation results under a dynamic scenario,
where the use of dynamic LAI indicated that areas experiencing significant vegetation
greening phenomena exhibited a slowdown or even reversal of the increasing trends
in water storage components and runoff fluxes. This reversal often transitioned into a
non-significant decreasing trend.

Specifically, in the Xiaoxinganling Mountains region, characterized by forested land-
scapes, surface runoff and surface soil water content (SWC1 and SWC2) shifted from
increasing to decreasing trends. Conversely, in the Sanjiang Plain, dominated by farm-
land, the interannual variations in runoff and water storage components transition from
significant to non-significant increasing trends. These simulation results suggest that while
afforestation and vegetation greening negatively impact runoff and soil moisture, the rel-
ative scale of this impact depends on the extent of vegetation increase and the scale of
the study area [64]. For humid and semi-humid regions like the XM-SP, the results from
both simulation scenarios underscore the dominant role of background climate change
in determining the overall direction of regional water cycle changes. This is primarily be-
cause the increase in regional precipitation exceeds the increase in ET driven by vegetation
greening. However, on a local scale, the water cycle’s response to vegetation greening
may be more significant than the background climate. For instance, in the Xiaoxinganling
Mountains, vegetation change, rather than increased precipitation, is the main contributor
to soil moisture changes in the forest ecosystem. In the Sanjiang Plain, dominated by
farmland, although vegetation greening due to crop growth significantly increases ET
and slows the trend towards more humid soil, continued increases in precipitation can
effectively compensate for the water deficit caused by increased ET, thereby alleviating the
conflict between agriculture and water resources.
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4.3. Implications for Subsequent Implementation of Ecological Restoration Projects

The primary intention of ecological projects such as afforestation and vegetation
restoration is to mitigate soil erosion and protect water resources [65]. However, it should
be noted this study reveals that while regional water yield and water storage components
generally increase, they may decline on a local scale. For example, soil moisture is de-
creasing in the forest-dominated Xiaoxinganling Mountains region. This suggests that
ongoing vegetation greening will promote water consumption in forest soils through the
evaporation process. With future climate change intensification and extreme events like
droughts, this will pose a risk of water scarcity in these areas. Field experiments also show
that soil moisture in forests is significantly lower than that in grasslands and shrubs, and
the decline in soil moisture is more pronounced in afforested areas [66]. This indicates
that compared to grass and shrub planting, afforestation typically leads to higher water
consumption and has a greater negative impact on surface water supply due to higher
canopy coverage and more developed root systems [67]. This raises a warning for future
vegetation restoration projects in the XM-SP regions. Future efforts should aim to maintain
or reduce the trend of soil moisture shifting to evapotranspiration and adopt measures to
improve the effective use of water resources to meet the increasing water demand.

In terms of vegetation-hydrological responses to different land cover types, this study
found that, under the current background of climate changes, hydrological variables are
more sensitive to grass/shrubs. This suggests that in undertaking ecological restoration
efforts in this region, placing greater emphasis on restoring grasslands may yield more
effective outcomes in soil and water conservation and regional management. Therefore, it
is worth considering increasing the proportion of grassland restoration and reducing the
interference of human activities in the Xiaoxinganling Mountains and Wanda Mountains
regions, thereby implementing vegetation greening projects. For the Sanjiang Plain, with
agricultural development as its goal, the extensive afforestation efforts may limit the space
available for agricultural expansion. Hence, vegetation expansion driven by ecological
restoration projects over this region should focus on natural restoration methods, such
as prohibiting land clearing for cropland and reducing deforestation, rather than imple-
menting intensive LULC changes. Those suggestions have already been adopted by the
local government, and measures to enhance the protection and restoration of grasslands
have been implemented in several pilot ecological restoration projects within the region (as
shown in Figure 16a–h).

Following the approach of integrating optimized ecological spatial control with precise
restoration zoning, and considering the significant natural geographical boundaries such
as lakes, mountains, and rivers within the region, this study proposes constructing an eco-
logical security pattern centered around the “Two Mountains” (Xiaoxinganling Mountains
and Wanda Mountains), “Three Belts” (Heilongjiang River, Songhua River, and Ussuri
River), and “Multiple Points” (national-level nature reserves and national forest parks).
This framework aims to establish an overall layout termed the “Two Barriers, One Belt,
One Zone” (as shown in Figure 16i).
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following the recommendations of this study (a–h), and the proposed zoning map (i) for the ecological
conservation and restoration functional areas in XM-SP. (a–h) represents the on-site comparison before
and after ecological measures.

5. Conclusions

This research initially delineated the notable characteristics of climate and vegetation
changes within the region, based on reanalysis data and remote sensing observations,
which revealed significant increases in regional precipitation and LAI. By employing both
a constant scenario that solely considers climate change and a dynamic scenario that inte-
grates vegetation dynamics, the ESSI-3 model was utilized to analyze the impacts of climate
change and vegetation dynamics on the XM-SP hydrological cycle from 2000 to 2020.

The findings indicated that the dynamic variations in regional hydrological processes
were predominantly driven by increased background precipitation, which masked the
hydrological deficits induced by regional vegetation greening. On a regional scale, although
vegetation greening significantly enhanced evapotranspiration, adversely affecting runoff
fluxes and water storage components, these effects were overshadowed by changes in
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precipitation. As the increase in precipitation exceeded the increase in evapotranspiration,
hydrological factors exhibited a continuous upward trend. Moreover, the study highlighted
that on a local scale, vegetation greening might exert a more significant influence on
hydrological responses than background climate change. For instance, in highly vegetated
sub-regions such as the forested eastern area, hydrological factors were more responsive to
vegetation greening.

These findings suggest that, to ensure sustainable water resource management in
the XM-SP region, particular attention should be directed towards the impacts of climate
change on hydrological processes. Additionally, the study emphasizes that future ecolog-
ical restoration projects should prioritize the planting of herbaceous plants and shrubs
over large-scale afforestation to maintain or reduce the conversion of soil moisture to
evapotranspiration, thus mitigating potential water consumption risks.

One limitation of this study is the exclusion of the impact of climate change on
vegetation greening and the feedback effect of vegetation greening on regional climate
change. It also does not distinguish between the contributions of ecological restoration
projects, land use management changes, and natural climate variability to vegetation
greening. Future research should aim to further quantify the contributions of ecological
restoration projects and climate change to vegetation greening by enhancing empirical and
modeling methodologies and developing higher-resolution ecological restoration project
datasets, thereby more precisely isolating their impacts on regional hydrological processes.
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