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ABSTRACT 

Functional Ontologies and Their Application to Hydrologic Modeling: Development of an 

Integrated Semantic and Procedural Knowledge Model and Reasoning Engine 

by 

Aaron Range Byrd, Doctor of Philosophy 

Utah State University, 2013 

Major Professor: Dr. David G. Tarboton 
Department: Civil and Environmental Engineering 

This dissertation represents the research and development of new concepts and 

techniques for modeling the knowledge about the many concepts we as hydrologists must 

understand such that we can execute models that operate in terms of conceptual 

abstractions and have those abstractions translate to the data, tools, and models we use 

every day. This hydrologic knowledge includes conceptual (i.e. semantic) knowledge, such as 

the hydrologic cycle concepts and relationships, as well as functional (i.e. procedural) 

knowledge, such as how to compute the area of a watershed polygon, average basin slope or 

topographic wetness index. 

This dissertation is presented as three papers and a reference manual for the 

software created. Because hydrologic knowledge includes both semantic aspects as well as 

procedural aspects, we have developed, in the first paper, a new form of reasoning engine 

and knowledge base that extends the general-purpose analysis and problem-solving 

capability of reasoning engines by incorporating procedural knowledge, represented as 



iv 
computer source code, into the knowledge base. The reasoning engine is able to compile the 

code and then, if need be, execute the procedural code as part of a query. The potential 

advantage to this approach is that it simplifies the description of procedural knowledge in a 

form that can be readily utilized by the reasoning engine to answer a query. Further, since 

the form of representation of the procedural knowledge is source code, the procedural 

knowledge has the full capabilities of the underlying language. We use the term “functional 

ontology” to refer to the new semantic and procedural knowledge models. The first paper 

applies the new knowledge model to describing and analyzing polygons. 

The second and third papers address the application of the new functional ontology 

reasoning engine and knowledge model to hydrologic applications. The second paper models 

concepts and procedures, including running external software, related to watershed 

delineation. The third paper models a project scenario that includes integrating several 

models. A key advance demonstrated in this paper is the use of functional ontologies to 

apply metamodeling concepts in a manner that both abstracts and fully utilizes 

computational models and data sets as part of the project modeling process. 

 (189 pages) 
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PUBLIC ABSTRACT 

Functional Ontologies and Their Application to Hydrologic Modeling: Development of an 

Integrated Semantic and Procedural Knowledge Model and Reasoning Engine  

by 

Aaron Range Byrd, Doctor of Philosophy 

Utah State University, 2013 

Major Professor: Dr. David G. Tarboton 
Department: Civil and Environmental Engineering 

In hydrology we straddle the domains of science and engineering. As hydrologists our 

goal is to predict the movement and volume of water. As scientists we seek to improve our 

understanding of water-related processes and how to model them. As engineers we seek to 

be able answer specific water-related questions to provide protection and an essential 

resource for the people we serve. Underlying all of our work is a body of knowledge that we 

have developed and continue to develop. This knowledge involves many aspects, such as the 

role of various hydrologic processes, how to obtain data, computational models that have 

been developed, and many other things. Knowing this body of knowledge is the key to being 

a hydrologist.  The goal of this work is to enable a computer to begin to think as we do, to 

reason over hydrologic processes, to deduce what tasks need to be accomplished to answer 

the hydrologic questions we are asked. To do that we must be able to model how we think as 

hydrologists, to capture the concepts and procedures we use in a form that a computer can 

understand. 
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This dissertation creates a reasoning engine that is able to include both semantic 

(concept) knowledge as well as procedural knowledge. This new form of knowledge model is 

called a “functional ontology.” To demonstrate the utility and power of the reasoning engine 

several functional ontologies are created that capture knowledge about delineating 

watersheds, knowing how to set up and run computational models, as well as how to create 

a chain of models to answer the “what-if” questions we are asked. The work shown in this 

dissertation demonstrates how, through a reasoning engine that combines semantic and 

procedural knowledge, we can actually model many of the concepts and simple tasks we do 

as hydrologists in a form that enables the reasoning engine to use deductive logic and 

automate many of the tasks we do as hydrologists. The focus of this work has been to 

enhance the use of the tools we as hydrologist use now to examine and engineer solutions to 

hydrologic problems. We hope that in the future the reasoning tools and knowledge models 

are further developed to enable a wide range of automated watershed analysis and model 

creation processes. 
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CHAPTER 1 

INTRODUCTION 

The modeling of water resource phenomena is currently undergoing a significant 

transformation. Several intersecting factors are driving this change. First, access to public 

water resource databases using web-enabled tools has made vast quantities of data available 

in near real-time (Piasecki  et al., 2010; NWIS, 2013). Second, computational tools, including 

faster multi-core hardware and better, physics-based algorithms have drastically reduced the 

time necessary to compute extremely complex multi-dimensional solutions covering 

extremely large physical domains (Downer and Ogden, 2004; Kollet and Maxwell, 2006; Qu 

and Duffy, 2007). Third, there has been a drive to integrate; either through model coupling or 

algorithmic inclusion; environmental, ecological and atmospheric and other physical 

processes to create software that better simulates the interconnected physical processes 

that drive real world decisions (Merritt  et al., 2009; Lawrence et al., 2011). Fourth, there has 

been a significant amount of both research and application of hydrologic processes, such 

that many processes and their applicability are well understood. These factors are driving 

model developers to create modeling tools that are vastly more effective at representing the 

real world. The increase in effective real-world representation spurs the acceptance of the 

models which in turn pushes the modelers towards the creation of models with larger and 

larger extent.  

Despite the many data collection and computational advances that have occurred, 

creating large-extent, high-resolution, multi-faceted hydrologic models can be prohibitively 

expensive, time consuming, and error-prone, especially in light of the trend towards larger 

and increasingly complex models. This is compounded by challenges manipulating the 
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complex data required to simulate a complex water resource problem.  In spite of our 

modeling capabilities, concern about project time-to-completion is often just as important as 

concerns of model appropriateness. In hydrology, just as in most other fields, experience 

with model development, along with experience in identifying key hydrologic processes in 

the field, generally results in better models.  The hydrologist must integrate knowledge 

about hydrologic processes, the many techniques of modeling those processes, an 

understanding of the increasingly many publicly available data sources (and their accuracy), 

what and how to obtain required data that does not exist (e.g. how to go out and survey 

data), the implications of the project purpose and project timeline on the quality of the 

model, techniques for formatting, transforming, and extracting information from data, as 

well as the particular foibles of the chosen numerical model. The advances in data collection 

and computational abilities, while yielding advances in our overall capability to study 

increasingly complex situations, has multiplied the amount of information hydrologists must 

be able to integrate in order to successfully tackle the larger, more complex problems.  

1.1 Research Objectives and Overview 

The goal of this dissertation is to research and develop new concepts and techniques 

for modeling the knowledge about the many concepts we as hydrologists must understand 

such that we can execute models that operate in terms of conceptual abstractions and have 

those abstractions translate to the data, tools, and models we use every day. This hydrologic 

knowledge includes conceptual (i.e. semantic) knowledge, such as the hydrologic cycle 

concepts and relationships, as well as functional (i.e. procedural) knowledge, such as how to 

compute the area of a watershed polygon, average basin slope or topographic wetness 

index. Further, I want to develop technologies that allow for the hydrologic knowledge, both 
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semantic and procedural aspects, to be represented together in a form that enables 

integrated semantic reasoning and procedural analysis. For example, the reasoning about 

which hydrologic concepts are applicable to a project could include a procedural analysis of 

the topographic wetness index. The ultimate, long-term, goal is to be able to represent 

hydrologic knowledge about processes, implications of project purposes, methods of data 

investigation, as well as mathematical and numerical models, in order to enable a computer 

program to reason, using logical and procedural operations on this knowledge, through the 

process of creating a hydrologic model that is sufficient to answer the questions posed of the 

system.  

Currently, the use of computers to assist in hydrologic analysis is generally confined 

to the sphere of functional analysis, data conversion, and numerical modeling. Computerized 

reasoning, on the other hand, over hydrologic concepts is not generally used to enable 

efficient hydrologic analysis. The primary problem I wish to address is how to use 

computerized reasoning along with functional analysis to enable an increased range of 

automated hydrologic analyses.  

The specific hypothesis of this research is that knowledge modeling is able to deduce 

required models and data inputs and facilitate computational model integration in order to 

compute a desired result based on a specified objective. To test this hypothesis, five sub-

hypothesis will need to be demonstrated to be true: 

1. Knowledge models can represent and use the forms of knowledge we 

(hydrologists) use when doing computational modeling; 

2. Knowledge models are able to describe and execute computational models; 
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3. Knowledge models are able to take into account the setting or project 

purpose when setting up the model execution; 

4. Knowledge models are able to represent and integrate a range of 

computational models 

5. Knowledge models are able to deduce which computational models are 

needful to compute a desired data set 

The first four chapters of this work address these five sub-hypotheses. This chapter, 

Chapter 1, reviews some of the background work and concepts from the field of artificial 

intelligence. Chapters 1 and 2 discuss current capabilities in the field of knowledge modeling 

and conclude that, while there are many knowledge modeling tools that have many required 

knowledge representation aspects, there is no reasoning engine and knowledge model that 

is able to include the range of knowledge forms used by hydrologists. The specific 

shortcoming is that there is no mechanism to relate the meaning of procedural knowledge in 

a manner usable by the reasoning engine.  

In order to address this shortcoming, and create a knowledge model that can fulfill 

the requirements of sub-hypothesis 1, a new knowledge model and reasoning engine is 

created. Chapter 2 is a paper that presents a new method to integrate semantic and 

procedural knowledge into a single formal knowledge base.   We refer to this as a “Functional 

Ontology.” The chapter also introduces the reasoning engine developed to operate on this 

new knowledge base. The reasoning engine, meant to be a proof-of-concept, couples some 

of the deductive logic capabilities used in other reasoning engines along with an ability to 

compile and execute procedural knowledge in the form of source code.  
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Chapters 3 and 4 are papers that demonstrate progressively more complex use cases 

of the semantic and procedural reasoning engine and knowledge base. Chapter 3 

demonstrates how the semantic and procedural knowledge can be used together to model 

knowledge about watershed delineation. A semantic knowledge base is created to represent 

the knowledge required to define inputs and execute in the correct sequence tools in the 

TauDEM watershed delineation toolset, to obtain results appropriate for the given 

contextual setting and available inputs.  This is combined with a procedural knowledge base 

about creating and running command-line functions which is applied to the execution of 

TauDEM tools. The knowledge base also includes functionality for transient knowledge and 

uses it to customize the command line parameters for a set of simple project purposes.  

Chapters 2 and 3 together demonstrate that the new functional ontology knowledge 

model is able to 1) represent and use both procedural and semantic knowledge, the two 

fundamental forms of knowledge we use as hydrologists, 2) describe and execute 

computational models, and 3) take into account the purpose of the project when deducing 

new knowledge.  

Chapter 4 details a more complex use case for the reasoning engine, the creation of a 

logical infrastructure of multiple computational models and data sets, which are referred to 

as metamodels (De Virgilio, 2010). The purpose of the set of functional ontologies developed 

for chapter four is to enable computational model integration. The model integration is a 

loosely coupled paradigm where data is passed from one model to another in sequence and 

at the end of each model run. The model integration functional ontology is centered around 

developing one data set from another. Computational models are viewed as the means of 

transforming one data set into another. Data sets are considered to be windows into actual 
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data and have several identifying dimensions, including space and time scales, scenario 

(historic or project alternative), and data type. The data set definition is built on several 

modular functional ontologies and allows the reasoning engine to deduce which data sets 

can be created from others, taking into account the many data set dimensions.  

The functional ontologies in Chapter 4 create the logical infrastructure for model 

integration by bringing together the concepts of metamodeling and semantic modeling. The 

logical infrastructure consists of 1) a metamodel of computational models, 2) a metamodel 

of data sets, and 3) a metamodel of a typical engineering hydrology project. The logical 

infrastructure abstracts the data creation process by generalizing the properties of 

computational models and data sets to create a uniform method of viewing and operating on 

them. Combining the metamodeling logical infrastructure approach with semantic and 

procedural knowledge representations of computational models enables the reasoning 

engine to also be a powerful deductive workflow engine.  

The data-centric view of Chapter 4 is in line with decision making processes. 

Fundamentally, decisions are made based on information we have. Computational models 

are merely a means to illuminate the implications of data. Because decisions are based on 

information and the meaning of that information, semantic and procedural models of that 

information are a viable means to generally inform decisions, rather than just run an analysis. 

The metamodeling approach for computational models enables the computational models to 

be a link in the deductive analysis chain for decision making. In the end, it is the decision that 

changes lives; all of the deductive and analytical powers of the reasoning engine and 

functional ontologies should be aimed at providing knowledge to inform the decision making 

process. The demonstration of Chapter 4 is really about creating a process for decision 
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making that is more than just letting a user pick a model and quickly run it (such as the ARIES 

models described below), but rather allowing the user to identify the decision data they 

would like to know about and letting the reasoning engine sort through the process of 

picking the right set of models to transform existing knowledge into the data used for 

decisions. 

Chapter 4 addresses the fourth and fifth sub-hypotheses, specifically demonstrating 

a concrete and complex example of when functional ontologies are able to represent and 

integrate a range of computational models as well as deduce which computational models 

are needed to compute a desired data set, including taking into account data sufficiency. 

Together Chapters 1 through 4 demonstrate that functional ontology knowledge models are 

able to deduce required computational models and facilitate integration between 

computational models in order to compute a desired result as part of a project. 

The fifth chapter is a reference manual for the reasoning engine. It describes the 

reasoning engine deductive logic process and procedural execution methods. It also specifies 

the several functional ontology reasoning engine and answer set class methods that can be 

called by the procedural code in the functional ontology. The final chapter summarizes and 

discusses the results of the research.  

1.2 Background Concepts 

The study of how to represent, store, and reason over information in an automated 

manner has long been the scope of the field of artificial intelligence (Turing, 1950). In 

hydrology we frequently deal with large amounts of “structured” information, or data.  

Structured data is data that has a large-scale internal form that is consistent and repetitive. 
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The other end of the data spectrum is unstructured data, for example the text of a book. It 

contains a lot of information but not in any regular, pre-defined format.  

1.2.1 Data as Declarative Information 

Structuring data allows the information to be neatly organized such that it is 

amenable for automated querying and processing. This data represents specific knowledge 

about, for example, stream flow or land surface elevation and is termed declarative 

information. Declarative information is information “about” something and takes the form of 

statements, but not necessarily in the strictest sense. Figure 1-1, for example, illustrates the 

output from the USGS’s Water Watch data processing algorithms that work on the volumes 

of stored stream flow data that the USGS measures. The data are “about” stream stage and 

flow levels.  

 

 
Figure 1-1. Graphical representation of data and data-derived products on the USGS Water 
Watch web page. Data and imagery from 22 February 2013, http://waterwatch.usgs.gov/. 

 

http://waterwatch.usgs.gov/
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This approach of relying on a data store (or, more formally, a database) that is 

queried and interpreted by code that then produces a response is illustrated in Figure 1-1. An 

advantage of structured data is that, because its form is repetitive, the information about the 

data, the metadata, can be described separately (and typically only once) from each data 

item. Systems that use the data in their products are typically built around providing 

procedures to display and interpret the data (the context, from the metadata sources). This 

represents the value added by the system. For example, Figure 1-1 illustrates how the USGS, 

drawing on the same data, can analyze the data using its water watch system to produce 

graphical depictions of streamflow (and a relative scale of the stream depth), drought 

indicators, flood indicators, and a comparison of recent data to historical data. The code that 

displays, processes, and interprets the data can be termed Procedural Knowledge. This is 

knowledge that encodes the fundamental steps about processing the data. 

1.2.2 Declarative Information vs. Procedural Information 

The key concept I wish to point out is that data processing and interpretation may be 

regarded as distinct from the database. All processing and analysis occurs separately from 

the data. The procedural information represented by a program (or rather the source code 

for the program) is where information about how to interpret and analyze the data is stored. 

This procedural information is quite critical to the usefulness of the declarative knowledge. 

As a simple, somewhat mundane, example let’s consider a program that reads Digital 

Elevation Model (DEM) data. It could read 1001 DEM file formats and even download DEM 

data from the web but if someone was to invent a new DEM format (say for enhanced 

parallel processing of large files) then the program would not have the procedural 

information it needed to use the data. As another example, say someone invented an 
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algorithm that calculated a new value that is not part of the existing program, such as the 

parts of the DEM visible to an orbiting satellite or the accuracy of Global Positioning Satellite 

(GPS) data based on the satellite’s positions, time of day, and topography. A user might need 

to use this algorithm but would have no way to directly use it without having someone 

modify the source code of the software they used for working with DEMs, which may or may 

not be feasible.  

The functional ontology approach developed here provides a logical infrastructure 

foundation that could incrementally encode procedural and declarative knowledge about the 

new DEM format or new algorithm in order to integrate them into the reasoning engine 

driven data analysis. Functional ontologies enable the creation of the underlying logical 

infrastructure for a new class of software that allows for this type of incremental procedural 

knowledge improvement. 

1.2.3 Concept-structured Data 

When we think of structured data we often think of data in a database or some 

similar template-based format such as shapefiles, Digital Elevation Model data, etc. There is 

another type of structured data, one that makes explicit the relationship between the 

declarative meaning of the data and the data itself, rather than rely on an implicit 

relationship between the data and its declarative meaning from its position in the overall 

data structure (e.g. what is the declarative meaning of the 313th floating point value in an 

ASCII grid file and where is it located in the real world?)  An example of this data format, 

which I am calling concept-structured data, is Extensible Markup Language (XML) data. 
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XML can store any data, and has definitions and structure regarding how to describe 

the information about data (i.e. XML is self-decribing), but is completely open when it comes 

to what data you want to store, how to name it, and what all can be in the data set. An XML 

file could just as easily store a stream flow value, a description of a stream bed, a set of 

points describing contours of a mountain, and your neighbors shoe size, all in one file. The 

key point here, though, is that the XML tags are used to describe the data – the format 

facilitates an explicitly defined relationship between the information and its declarative 

meaning which, in turn, is also “data” in a sense that it is also declratative information. An 

XML file can hold any type of data, but the data must be enclosed in tags that describe what 

Figure 1-2. Schematic of the data or database query information processing paradigm. The 
user interacts with a program (either local or remote) that queries the data or database and, 
once the data is returned, performs value-added processing that interprets and processes the 
data. 
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it is. These tags are the declarative meaning of the data but are also a form of declarative 

information themselves (they are data, too, just a different “type” of data – concept data). 

To make XML files more amenable to automated processing, XML schemas (W3C) 

were created to impose structure on the data. These schemas define the types of 

information that the XML files will hold and also creates a standard set of terminology for the 

types of information. Examples of these are HyperText Markup Language (HTML) files and 

the OpenGIS® KML Encoding Standard (OGC). (KML formorly was an acronym for Keyhole 

Markup Language but now the schema is just called KML.) The structure that these schemas 

impose on XML documents allows them to be used in an automated fashion by web 

browsers, in the case of HTML files, and Geographic Information Systems, in the case of KML 

files. These schemes essentially impose a structure on an XML file and turn it into a 

structured data set such that Figure 1-3 applies.  

An important point, though, is that while the XML schema describes what data goes 

together and begins to create relationships between one data and another, the 

interpretation of the meaning of this data is still left to the external program that reads the 

data. The schema approach also limits what can be in the file in the interest of imposing the 

advantages of a structure on the concept-based knowledge.  

Structurally, the same procedural information limitations apply as before, since it is 

still separate from the declarative information. For example, a KML file may list the points for 

a polygon but the procedural information in a GIS can check to see if one polygon overlaps 

another, intersect the two, and compute the resulting areas of all the polygons. If someone 

were to invent a better algorithm that could process thousands of polygons in a fraction of 

the time it takes for the original algorithm to do one polygon, there is no direct way to 
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incorporate this into the procedural information, or procedural knowledge base, without 

rewriting portions of the GIS code. 

1.2.4 Reasoning Logic and Knowledge Models 

Knowledge models are a type of structured data about concepts. Unlike the concept-

structured data, the concepts themselves are the data. For example, a data “model” of 

stream flow could list a set of flow values and their connectivity over time.  A knowledge 

“model” would list a set of concepts and how they are related. 

Knowledge models are a form of declarative knowledge, just as data about stream 

flow is. They, however, also have a logic undergirding them that allows for a reasoning 

engine to not only perform queries but also perform deductive reasoning. The reasoning 

engine itself has procedural knowledge encoded in it that can interpret the logic terms rather 

than simply return values to be interpreted by the calling program. For example, software for 

working with time series of flow values has the implicit knowledge that the flow values are 

sequentially connected by time and that they are flow values. Because of this implicit 

knowledge it can display hydrographs and discover (via a computational algorithm) the total 

flow volume. This knowledge and the data relationships are utilized by the program 

interacting with the user, not whatever querying engine or algorithm is used.  

A reasoning engine, on the other hand, could, independent of the software 

interacting with the user, perform analyses that discover data that is not explicitly 

represented in the knowledge model. Consider the following example (Table 1-1) pseudo 

knowledge model. Note that the data is organized into sentences with a subject, a predicate, 

and an object. The subject, predicate (verb), and object are all concepts – declarative 

information – but the form of the statement creates a relationship between them. We use  
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Table 1-1. Example pseudo knowledge model about hydrologic processes and storages. The 
data are sentences in the form of simple statements. 

<Subject> <Predicate> <Object> 
 Hydrologic Process "is a" "Class" 
 Hydrologic Storage "is a" "Class" 
 Moves Water From "has Domain" Hydrologic Process 
 Moves Water From "has Range" Hydrologic Storage 
 Moves Water To "has Domain" Hydrologic Process 
 Moves Water To "has Range" Hydrologic Storage 
 Precipitation Moves Water From Atmosphere 
 Precipitation Moves Water To Overland Surface 
 Infiltration Moves Water From Overland Surface 
 Infiltration Moves Water To Vadose Zone 
 Percolation Moves Water From Vadose Zone 
 Percolation Moves Water To Groundwater 
 Exfiltration Moves Water From Groundwater  

Exfiltration Moves Water To Overland Surface 
 Subsurface Discharge Moves Water From Groundwater 
 Subsurface Discharge Moves Water To Streams 
 Subsurface Discharge Moves Water To Ocean 
 Stream Flow Moves Water From Streams 
 Stream Flow Moves Water To Ocean 
 Evaporation Moves Water From Ocean  

Evaporation Moves Water From Streams  

Evaporation Moves Water From Overland Surface  

Evaporation Moves Water From Vadose Zone  

Evaporation Moves Water To Atmosphere  
 

this form every day in our speech and thoughts to convey complex information that includes 

relationships between concepts.  

 Without going into details at the moment, a reasoning engine operating on this 

knowledge model could answer questions such as “What are hydrologic processes?” and 

“What are hydrologic storages?” that are not explicitly stated in the knowledge model as well 

as questions like “what processes move water to and from groundwater?” that are explicitly 

stated. The ability of the reasoning engine to interpret and deduce new information is due to 
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both the logic algorithms built into the reasoning engine and the logic concepts built into the 

knowledge model, in this case the “has Domain,” “has Range,” “is a,” and “Class” concepts. 

The goal of constructing a knowledge model is to enable a computer to glean and 

deduce information in answer to a query. Reasoning engine Applications Programming 

Interfaces (APIs) are built to operate on formalized knowledge models and attempt to 

answer user submitted queries. In essence queries are simple questions asked of the 

reasoning engine such as <A P ?B> which means “Given a subject a and a predicate p, what is 

the set of concepts B (with members bi) that are true statements <a p bi>.”  The reasoning 

engine uses pattern matching and the logic statements to deduce the set of concepts that 

match the given query parameters. The result is a set of concepts B = {b1, b2, …, bn.}. Another 

type of query is a truth-test. In this case the query returns whether or not the query triple 

has been asserted as a truth.    

 The reasoning engine model of interaction with an end-user program is similar to the 

database model.  In Figure 1-3 the database from Figure 1-2 has been replaced by a 

formalized knowledge base (e.g. OWL) and query engine replaced by a reasoning engine.  In 

other respects the paradigms are the same. The strength of the knowledge model and 

reasoning engine approach to information processing is two-fold: it deals with abstractions 

of concepts as well as it is able to augment the data in the knowledge base through the 

reasoning logic algorithm. There are a few shortcomings of knowledge models, though. 

Knowledge models are excellent at working with abstractions but not effective at applying 

the meaning of the abstractions outside of the logic terms programmed into the reasoning 

algorithm. Additionally, there are questions about knowledge model logic forms even being 

able to adequately describe the breadth of knowledge representations of interest. For  
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example, Freitas and Lins (2012) discuss the limitations of current knowledge models to 

capture mathematical formulations in ontologies. 

1.2.5 Terminology  

In semantic modeling, knowledge (information) is encoded using a group of concepts 

linked in a graph or web-like manner to represent relationships between the concepts. 

Reasoning engines are created to operate on these concepts and relationships and logically 

deduce consequent knowledge from the existing knowledge. In a general sense a group of 

concepts, whether in a semantic model or some other form, can be termed a knowledge 

base or knowledge model. A set of concepts and relationships between the concepts, 

formalized and expressed as a semantic model, is termed an ontology. Ontologies in 

computer science stem from the philosophical study of “being” or in other words, what 

Figure 1-3. Reasoning engine query information processing paradigm. This paradigm is similar 
to the database information processing paradigm with the primary difference that the 
reasoning engine can interpret and augment the knowledge base through the reasoning logic 
algorithm. 
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something is. Related to ontology is mereology, or the study of part-whole relationships. In 

computer science, ontologies are used to represent and store knowledge about objects, 

things, or general concepts. The fundamental goal of an ontology is to represent and define 

relationships between concepts. Reasoning engines depend on formalized semantic logic 

terms, derived from first-order logic, to deduce consequent knowledge. For example, from 

the statements (“A is a class of things,” “All A’s have color Red,” “B is a type of A”) a 

reasoning engine could deduce that “B has color Red.” 

1.2.6 A Brief Primer on Semantic Modeling 

Semantic modeling focuses on developing models of concepts and the relationships 

between them. There are several advantages to using semantic models to represent 

geophysical knowledge: semantic models provide a common language for scientific 

interoperability of digital products, semantic models can capture knowledge in a framework 

that allows for automated, reproducible reasoning, and the reasoning logic capabilities can 

deduce knowledge not readily apparent, especially with cross-discipline knowledge. 

The underlying philosophy of semantic modeling is that “meaning” is entirely a 

function of the relationships between concepts. Semantic modeling utilizes graph theory 

(which began with Euler, 1741) to represent the relationships between concepts in order to 

inform automated reasoning tools how to infer additional relationships between concepts. 

Undergirding the reasoning tools is a logic called descriptive logic (Ceccato, 1961; 

Masterman, 1961; Brachman, 1979; Sattler  et al., 2009) (see Sowa, 1992) which is derived 

from first order logic (Peirce, 1885; Frege, 1879; Gödel, 1929). 
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1.2.6.1 The Semantic Web World-view 

One of the primary groups of ontology standards and tools in use today comprises 

the Semantic Web (Berners–Lee  et al., 2001). According to Berners-Lee, the Semantic Web is 

a way of classifying information into ontological descriptions such that ontology-enabled web 

tools can search and find data related to other data in a meaningful way. The components of 

the Semantic Web can be described as being similar to layers of a cake (Berners-Lee,  2007). 

The upper layers, such as the semantic languages, user applications, etc., serve to add 

meaning and functionality to the lower, foundational layers (such as URL/URIs, XML, RDF.) 

The lower layers create the ontology framework while the upper layers work to infer 

information from the ontology and utilize it in some fashion. Ontologies use a knowledge 

description format that is built on URIs, XML, and RDF. Functionality is created by reasoning 

engines (RDF-S, OWL) that work through queries (SPARQL) and apply rules (RIF). The unifying 

logic, proof, trust, and cryptography components are important to the semantic web but 

external to the workings of the ontology. The User Interface and Applications utilize the 

ontology to do the designated tasks. 

1.2.6.2 Creating Concepts  

The foundations of the Semantic Web are Uniform Resource Identifiers (URI) and 

Uniform Resource Locators (URL).  URIs are a method of creating unique identifiers for a 

resource. If that resource happens to be on the web then the URI created is a URL, such as 

http://www.w3.org/2000/01/rdf-schema#subClassOf. The URL relates a resource (a text 

document in this case) to a unique identifier. URIs, though, are very general in nature. A URI 

for a book, for example, would be the ISBN number.  
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XML statements function as a mechanism to associate groups of concepts together 

and to assign names and a simple hierarchy to the members of the group. XML Metadata 

standards, such as the Dublin Core Metadata Initiative (DCMI, 2012), facilitate reuse of 

information by defining the meaning of terms. Name spaces in XML are a particularly useful 

concept in that a whole group of statements or concepts can be associated together and 

referenced in a remote location without having to duplicate the original information.  

The goal of an ontology is to model concepts. Hopefully this is done in a manner that 

facilitates modularity and re-use of the ontologies (see Grau  et al., 2008). One of the key 

aspects of making an ontology modular is to create a reference set of concepts and to 

publish those concepts such that they are globally available and unique. Uniform Resource 

Identifiers (URIs), Uniform Resource Locator (URLs), and XML namespaces are a means of 

creating and referencing globally unique concepts. The “tag” URL format is used to create 

globally unique identifiers, such as http://www.example.org/MyOntology.rdf#Concept. Using 

an XML namespace (ex = http://www.example.org/MyOntology.rdf#) further simplifies the 

formatting and enhances the human readability of the concept (ex:Concept.) A benefit of 

using URLs is that there can actually be a web page at the URL that describes the concepts in 

human terms and as well as host a file to be downloaded and used by a computer. Table 1-2 

and Table 1-3 show some example namespaces, including the namespaces used in the 

examples and test cases for this research. Resource Description Framework (RDF) (Klyne and 

Carroll, 2004), Resource Description Framework – Schema (RDF-S) (Brickley and Guha, 2004), 

and Web Ontology Language (OWL) (Patel-Schneider  et al., 2004) are description logic 

languages used in the Semantic Web (Berners–Lee  et al., 2001).  
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Table 1-2. Example namespaces and namespace URLs used in this research. 

Namespace Symbol Namespace URL Reference 

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# 

rdfs http://www.w3.org/2000/01/rdf-schema# 

owl http://www.w3.org/2002/07/owl# 

 
 

Table 1-3. Description of the namespaces referenced in Table 1-2. 

Namespace Symbol Description 

rdf Resource Description Framework (RDF) is a description logic standard 
that include some basic logic and the specification of the triple format 
for storing logic statements. Also specifies an XML file format for 
ontologies denoted RDF/XML. 

rdfs Builds upon the RDF specification, Resource Description Framework – 
Schema (RDF-S) includes additional logic for class / subclass 
relationships 

owl An advanced description logic standard used throughout the semantic 
web. OWL stands for Web Ontology Language. Includes class / 
subclass, inverse, equivalence, restrictions, cardinality, and many 
other types of logic. Often serialized in RDF/XML format. 

 

Since URIs are used for ontologies, both in keywords for ontological standards and 

general ontology terms created for a particular application, it is generally encouraged that if 

the URI is a web page reference then it should resolve to an actual web page with a written 

description of the concept. 

1.2.6.3 Community Logic Standards 

The Resource Description Framework (RDF) (Brickley and Guha, 2004) encodes all of 

the information in the ontology in a subject-predicate-object relationship referred to as a 

“triple.”  For the semantic web, the RDF encoding is in XML. One of the rules about the 

Semantic Web is that “Anyone can say Anything about Any Topic” (Allemang and Hendler, 

2008). In RDF this translates to allowing any subject, predicate, and object as part of the 

triple.  
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Besides being a triple form for encoding connections between concepts, RDF, along 

with the Resource Description Framework – Schema (RDF-S), has a set of defined predicates 

and objects that facilitates inference by RDF reasoners. RDF has a relatively simple lexicon, 

such as being able to define “is a” relationships. RDF-S simply extends the defined set of key 

words to include class/subclass relationships, along with domain and range descriptors for 

predicates. The Web Ontology Language (OWL) (Patel-Schneider  et al., 2004) adds to RDF 

and RDF-S an additional set of specified predicates, objects, and their properties that  OWL 

interpreters will know how to use and to make additional inferences, such as logic properties 

and restrictions.  

There are three flavors of OWL that permit varying amounts of logic. These flavors 

are meant to ensure decidability of the logic to varying degrees. 

Ontologies use namespaces to define groups of related properties. For example, 

Table 1-4 lists several keywords from three different ontological namespaces, RDF, RDF-S, 

and OWL. The namespace prefix to the keyword is meant to both identify the keyword as 

belonging to a particular ontological lexicon as well as giving it a unique identifier. The RDF 

namespace shorthand, rdf:, takes the place of the full rdf namespace, 

http://www.w3.org/1999/02/22-rdf-syntax-ns#. Thus, rdf:type is actually 

http://www.w3.org/1999/02/22-rdf-syntax-ns#type, which is a complete, unique URI.  

Some ontologies, such as RDF-S and OWL, include keywords from other namespaces, 

like RDF, illustrating that ontologies are meant to be extendable (Grau  et al., 2008). This is a 

key feature of ontologies. Because of the namespace feature along with the unique URIs, 

there are a few technical difficulties in merging different ontologies. Generally the 

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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ontological differences, which are usually naming differences, can be resolved by creating a 

fairly simple bridging ontology that equates concepts from one ontology to another.  

1.2.6.4  Reasoning Engines and Rules 

To use an ontology, a reasoner and query engine is needed. A popular query engine 

for RDF and RDF-S is called SPARQL (Prud'hommeaux and Seaborne, 2008).  Others for 

various OWL flavors include Pellet (Sirin and Parsia, 2004) and SQWRL (O'Conner and Das, 

2009). 

Ontologies excel at describing data and the relationships between data in a manner 

that allows for both automated data integration as well as inference of new data. The nature 

of ontologies allows them to describe rules, such as business rules, that can be used to make 

conditional decisions. The ontology inference engines, though, do not know how to use the 

rules. The Semantic Web Rule Language (SWRL) (Horrocks  et al., 2004) combines OWL with a 

rule syntax known as RuleML (Boley  et al., 2001) to enable the expression and evaluation of 

rules. The rules allow for further data integration and inference in situations where 

conditional statements need to be used. Other coupled ontology and rule systems, often 

used for automated business logic, include JBoss Drools (Browne, 2009), Jena (Carroll et al., 

2004), Jess (Friedman-Hill, 2003), and SweetRules (Grosof, 2004). 

Semantic Web Services (SWS) (Payne and Lassila, 2004) are a group of young 

technologies that offer varying approaches to encapsulating web services in an ontology 

description. According to (Hebeler et al., 2009) there are three primary approaches under 

development, Semantic Markup for Web Services (OWL-S) (Martin et al., 2004), Web Service 

Modeling Ontology (WMSO) (Roman  et al., 2005), and Semantic Annotations for WSDL and 

XML Schema (SAWSDL) (Farrell and Lausen, 2007). 
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Table 1-4. Example list of RDF, RDFS, and OWL key words used to define meaning in their 
ontologies. P and Q represent predicates, x, y, and z represent subjects/objects, and the form 
P(x,y) means that x is related to y via predicate P, or <x> <P> <y> in triple form. 
Keyword Language Meaning 

rdf:Type RDF "is a" predicate 

rdf:Property RDF define a predicate 

rdf:Resource RDF define a object/subject 

rdfs:Class RDFS define a group type 

rdfs:domain RDFS Indicates the subject class of a 
predicate 

rdfs:range RDFS Indicates the object class of a predicate 

rdfs:SubClassOf RDFS creates a sub-group type 

owl:TransitiveProperty OWL Indicates that a predicate has the 
transitive property.  Specifically if P(x,y) 
and P(y,z) then P(x,z) is implied. e.g. 
west of: X is west of Y, Y is west of Z, 
therefore X is west of Z 

owl:SymmetricProperty OWL Indicates that a predicate has the 
symmetry property.  Specifically if P(x,y) 
then P(y,x) is implied, e.g. equality: if 
A=B, then B=A 

owl:InverseOf OWL Indicates that a predicate has an inverse 
predicate.  Specifically if Q InverseOf P 
then P(x,y) implies Q(y,x), e.g. P=less 
than, Q=greater than:  if A<B then B>A 

owl:equivalentClass OWL Two object/subjects are the same (A is 
actually the same concept as B) 

owl:Restriction OWL Narrows the scope of possible 
attributes (e.g. cardinality: must have 3 
attributes) 

 

1.2.6.5 Including Procedural Knowledge 

Similarly to the point raised in section 1.2.2, Hartley (1985) argues that procedural 

knowledge is a separate but equally important knowledge base as semantic knowledge. 

Encoding and enabling the computer to execute procedural knowledge along with the 

semantic reasoning is the goal of a class of semantic models termed ‘attached procedure 

executable semantic networks’ (Sowa, 1992). One class of attached procedure executable 

semantic networks are semantic models describing actions that an actor may take when 
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certain conditions are met (Hartley, 1984). The reasoning engine looks to match a set of 

preconditions for the execution of the procedures and, if found to be true, executes the 

sequence of steps specified. This sequence of steps is encoded as a set of concepts that the 

reasoning engine must interpret. 

A new technology, Answer Set Programming (Schindlauer, 2008), augments semantic 

rules (discussed by, e.g., Boley  et al., 2001; Horrocks  et al., 2004) with the ability to query 

the knowledge base as part of the rule (Eiter et al., 2008). This creates functionality where 

the rules are able to be based on the current content of the knowledge base. Semantic rules 

and answer set programming are designed to augment basic logical constructs of description 

logic languages with complex second and higher order logics, conditional logic, and logic 

statements based on the answer to semantic queries. Ontologies (semantic networks based 

on a description logic language) coupled with rule sets are termed Description Logic 

Programs (Grosof  et al., 2003; Motik and Rosati, 2007).  

1.3 Related Fields: Model Driven Engineering 

A field related to semantic modeling is that of Model Driven Engineering (MDE). The 

model engineering paradigm is based on the principle that “everything is a model” (Bézivin, 

2005) and has the goal of disciplined and rationalized production of models (Favre, 2005). 

MDE uses a similar concept to semantic modeling in that models are sets of concepts and 

relationships between them. In this light, MDE has progressed to specify not only how to 

abstract information into a model but also how to, in turn, model the models, or in other 

words, how to create metamodels. Metamodels are a description of the format that actual 

models should have. There is even a tier higher termed metametamodels or more simply 

megamodels. This concept is illustrated in Figure 1-4.  At the base (M0 layer) are things and 
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instances (e.g. numerical hydrologic model processes, actual physical processes in a 

watershed, or web pages describing watershed properties). In metamodeling, the goal is to 

describe these things and instances in terms of concepts, which is the M1 layer. This layer 

roughly corresponds to the RDF layer in an ontology.  

The M2 layer is metamodels that describe the framework of the M1 layer. In one 

sense they are like the additional logic properties of the ontologies, such as class 

relationships and predicate properties. They are also used, however, to structure different 

ways of representing the same basic concept. For example, an M2 layer could describe the 

content structure for a set of web pages that have the same content but different visual 

representations. The M1 layer would be the individual web page layouts. Another example 

would be that the M1 layer could describe various infiltration models while the M2 layer 

dictates the how the data for the infiltration models should be represented such that the 

same set of information could be used for several infiltration models. In other words, the 

data model for each infiltration model is an M1 model, and how those data models should be 

framed is an M2 metamodel.  

Above the M2 layer is the M3 layer, the Meta-meta model (or mega-model) layer, 

that describes how the metamodel is stated. In an ontology, this layer translates to the set of 

overarching concepts, such as the completeness of the description logics used in the 

reasoning engine (Figure 1-4). 

While somewhat similar to ontologies, MDE is not generally used for the same kinds 

of reasoning tasks as ontologies. One of the primary benefits, though, of this metamodeling 

approach is that data, information, or knowledge can be transformed from one format to 

another by constructing a schema translation based on the level above it. In fact, not only 
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data can be transformed but models can be transformed as well. For example, while MDE is 

used to model many physical, digital, and conceptual systems, it is also frequently used to 

model software. Diagrams of variables and related code can be described in a general format 

and then translated to any number of programming languages. Gaševic et al. (2009) discuss 

several areas of research in turning MDE diagrams into workable code. Another example of a 

very pertinent tool that has been developed and used for transformations is XML Schema 

Language Transformations (XSLT) (Kay, 2007). XSLT can translate from one XML document 

into another by using an XML schema document as a template. The XML schema document 

serves as the metamodel for translating one into the other. Model translation is a very active 

area of research. 

A commercial application of this concept has been developed in the software 

MapForce® by Altova® (http://www.altova.com/mapforce.html.) The software can take an 

XML data file and convert it into a host of other data formats, including flat files and 

databases. It claims to even be able to create software that can be run in a stand-alone 

fashion in order to automate the process. 

An important tool in use today for MDE modeling is Unified Modeling Language 

(UML) (OMG UML, 2010).  UML is fairly analogous to OWL for ontologies. In fact, typical UML 

constructs are graph diagrams that demonstrate relationships between concepts. Since 

ontologies can be considered models of concepts in the MDE sense, Gaševic et al. (2009) 

discuss the issue of being able to convert between ontologies and UML graphs. Overall they 

find that it is possible but there are a few issues. One, interestingly enough, is that two owl  

 

http://www.altova.com/mapforce.html
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Figure 1-4. Hierarchy of modeling layers. Adapted from (OMG, 2006). 

 
flavors, OWL-DL and OWL-Full, are more expressive than UML and include constructs that 

cannot be represented in UML. 

The modeling layers of MDE and ontologies are related, but not on a one-to-one 

basis. An ontology where only individuals are presents (e.g. RDF) represents an M1 layer in 

the MDE scheme whereas an ontology that uses class constructs (e.g. RDFS) as well as 

individuals would be at both the M1 and M2 layers. Semantic web services (e.g. Martin et al., 

2004; Roman et al., 2005) each have their own M2 ontology, a specification for the format of 

the web service description document. Another important application of metamodels is for 

data validation (Conejo et al., 2007). 

From the description of model driven engineering it is apparent that they are close 

relatives of the semantic models and many of the foundational concepts are similar. The 

advantage of MDE is that they are in part designed to represent process descriptions. The 

downside, though, is that they lack the ability to include deductive analysis and queries as 

the central function of the knowledge representation.  

M3 Layer, Meta-
meta-models  

(or mega-models) 

M2 Layer, Meta-models 

M1 Layer, Models 

M0 Layer, Things/Instances 
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From this discussion, it is apparent that there is no one single tool able to represent 

hydrologic knowledge to the degree of facilitating the use of hydrologic tools and 

computational models. The work done for this dissertation will focus on including procedural 

models as part of a semantic model and reasoning engine and then demonstrate the 

application of the semantic and procedural model and reasoning engine for hydrologic 

situations. 

1.4 Related Practical Applications 

OntoWEDSS (Ceccaroni et al., 2004) has been developed as a coupled ontology, rule, 

and sensor  system for automating the management of a wastewater treatment plant. It uses 

an ontology to define the references for measured quantities, perceived system state, and 

actions that should be taken. The rules translate the measured quantities into the perceived 

system state as well as prescribe the needed actions.  

The OntoWEDSS project is relevant for two reasons. First, that ontologies are used 

both for integration of data as well as reasoning over necessary implications of the data. 

Secondly, the framework integrates perceptions from the many sensors available in the 

waste water treatment plant. 

The SEAMLESS project (Janssen et al., 2008) (see also 

http://www.seamlessassociation.org/) uses an ontology to define the meaning of fields in a 

relational database that is used by several different models. The goal was to provide a means 

of agricultural model interoperability through an ontological description of the data used by 

the disparate models. The data covered many different database fields and came from 

different data sources. Data included farm activities and income, soils data, climate data, 

farm management data, and herd levels and output. After several iterations, they were able 

http://www.seamlessassociation.org/
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to successfully create an ontology that both described the relationships between data fields 

as well as enabled the creations of individuals that identified specific database fields.  

ARIES (Villa, 2009) is a project aimed at using an ontology to describe environmental 

flux information in order to assist in modeling. By using a standardized ontology describing 

environmental fluxes, the project goal is to enable models to describe themselves in a 

fashion that allows for automated model to model linking. Villa describes the processes that 

occur during a user session: 

During an ARIES user session, users will select an area of interest using an interactive 
map, and a set of observables (e.g. carbon sequestration or flood protection value) that they 
want quantified. As soon as the user priorities are set, the ARIES engine will look up semantic 
models for all the observables of interest and start the two-phase process described above: 
the context of evaluation of each model will be computed first, and different specialized 
models for each context state will be built, trained and computed. As the main paradigm for 
modeling in ARIES is Bayesian network models (Cowell et al., 1999), calibration (training) of 
the models can be performed in advance and cached in most cases. Users are then able to 
set forcing functions or change the value of parameters and recompute all models to explore 
scenarios of interest.1 

 
The “observables of interest” are the particular observed values, such as rainfall 

amount or soil hydraulic conductivity, that are specified by the model. These are stored in a 

semantically annotated database. The data in ARIES is stored in “knowledge boxes,” or k-

boxes. These k-boxes take the form of semantic wrappers around storage formats, such as 

GIS data or SQL databases. Spatial and temporal scaling was accomplished by using a 

spatially explicit paradigm in the specification of the context variable with reference to 

spatial scales from (Wu, 2006). 

ARIES, OntoWEDDS, and SEAMLESS all build on semantically-mediated databases. 

This gives the application a specific, but limited, set of controlled vocabulary to use in the 

                                                           
1
 Villa, 2009. Semantically driven meta-modelling: automating model construction in an 

environmental decision support system for the assessment of ecosystem services flows. Information 
Technologies in Environmental Engineering, Springer Berlin Heidelberg: 23-36. 
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modeling process. Each of these modeling applications represents a significant amount of 

work and a significant advance for using semantic modeling with procedural models. The 

goal of this work is to take the integration of semantic and procedural modeling a step 

further, to enable general procedural knowledge descriptions to be used as part of the 

deductive logic process of the reasoning engine. 

1.5 Conclusions and Direction 

Semantic modeling holds out the promise of significant advances in automating 

hydrologic processing, especially as evidenced by ARIES, OntoWEDDS, and SEAMLESS 

projects. Model Driven Engineering, however, appears to be more focused on modeling the 

models than creating a tool for practical use. It does appear, though, that the advantages of 

Model Driven Engineering, namely metamodeling, can be gained through the proper 

application of semantic modeling. These approaches, however, still do not enable a complete 

treatment of procedural knowledge in order to include the procedural knowledge as an 

integral part of the reasoning process, such as we use in hydrology. This work will focus on 

combining procedural knowledge with semantic models and reasoning engines such that the 

procedural knowledge is able to be used directly by the reasoning engine.  The following 

figure, Figure 1-5, illustrates the differences between the current semantic modeling 

paradigm and the proposed functional ontology paradigm where the reasoning engine is able 

to directly execute procedural knowledge. The difference being that the source code about 

concepts is intimately tied to the concepts within the knowledge base rather than being 

separate from the knowledge base. This will allow programmers to seamlessly integrate 

procedures into the knowledge base rather than forcing programmer to implicitly tie the 

code and semantic concepts together. 
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Figure 1-5. Differences in the current paradigm and the functional ontology paradigm for 
using semantic models with source code. 
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CHAPTER 2 

ENABLING APPLIED GEOPHYSICAL CONCEPTUAL AND FUNCTIONAL 

KNOWLEDGE MODELING: INCORPORATING PROCEDURAL KNOWLEDGE INTO 

A SEMANTIC REASONING ENGINE2 

Abstract 

One of the grand challenges of the geosciences lies in the automated integration of 

data sources and computational analyses. The field of knowledge modeling has the potential 

to enable automated reasoning about data sources – identifying data type, units, and other 

key information pertinent to computational analyses. While knowledge models are able to 

represent and reason about concepts, they are limited in their ability to encode and apply 

procedural knowledge for computational analysis and modeling. This paper presents a new 

knowledge model representation that integrates conceptual knowledge (e.g. knowledge 

about data) with procedural knowledge (e.g. procedures, functions or methods). We have 

termed the new knowledge representation form a “functional ontology” for its capacity to 

represent and execute procedural tasks as well as reasoning over conceptual knowledge. 

Underlying the representation of procedural knowledge is a formal definition, which we 

created, of the logic about the meaning of procedural knowledge. This new logic about 

procedural knowledge has been incorporated into a functional ontology reasoning engine 

that includes computational procedures as part of its reasoning process. This enables 

automated connections between data, metadata, and computational analyses. The capability 

of this system is demonstrated using a simple pedagogical example knowledge model of 

                                                           
2
 Prepared for submission to the Journal Computers and Geosciences. The authors are Aaron 

Byrd and David Tarboton. 
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polygons and their properties.  While seemingly trivial to Geographic Information System 

(GIS) users, this example demonstrates, at a level where the detail can be exposed, the 

capability to automatically accomplish GIS style analyses that are beyond the scope of 

current reasoning engines.  While illustrated for a simple GIS example, the functional 

ontology approach has a generality that is applicable to a wide range of geoscience modeling 

and data analysis problems. Future work will expand this effort to include a range of 

computational models, data sources, and tool sets such as watershed delineation tools, and 

weather, hydrology, and ecological computational models.  

2.1 Introduction 

Many problems in engineering and physical sciences require an in-depth 

understanding of a wide variety of both concepts and procedures. For example, in the field of 

hydrology there are many concepts related to how water moves through the atmosphere, 

land surface, soil, groundwater, and streams. There are also many procedures that form part 

of the knowledge base of hydrology, such as how to perform a calculation or execute a 

model resulting in the quantification of a concept. There are also many concepts and 

procedures related to creating hydrologic simulations, including information about the data 

sources, what they mean in relation to watershed model parameters, how to obtain the 

information, and any processing that must be done to turn the data into simulation input 

parameters and processing that must be done to generate information in order to deduce 

conclusions from simulation outputs. 

The automated representation, storage, and reasoning of information has long been 

the scope of the field of artificial intelligence (Turing, 1950). One method, semantic 

modeling, focuses on developing knowledge models of concepts and the relationships 
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between them. There are several advantages to using semantic models to represent 

geophysical knowledge: semantic models provide a common language for scientific 

interoperability of digital products, semantic models can capture knowledge in a framework 

that allows for automated, reproducible reasoning, and the reasoning logic capabilities can 

deduce knowledge not readily apparent, especially with cross-discipline knowledge. 

The underlying philosophy of semantic modeling is that “meaning” is entirely a 

function of the relationships between concepts. Semantic modeling utilizes graph theory 

(which began with Euler, 1741) to represent the relationships between concepts in order to 

inform automated reasoning tools how to infer additional relationships between concepts. 

Undergirding the reasoning tools is a logic called descriptive logic (Brachman, 1979; Ceccato, 

1961; Masterman, 1961; Sattler et al., 2009) (see Sowa, 1992) which is derived from first 

order logic (Frege, 1879; Gödel, 1929; Peirce, 1885). 

With the author’s background in hydrology, the purpose for examining and utilizing 

knowledge modeling methods is to develop a methodology that will enable the automation 

of the functional analyses throughout the process of hydrologic modeling. While many of the 

concepts and knowledge in hydrology can be represented by an interconnected network of 

concepts, there is an additional class of knowledge about how to accomplish hydrologic 

modeling tasks that is in a different spirit, a how-to rather than a what-is. For example, many 

hydrologic analyses involve analyzing digital land surface elevation models to determine how 

much land drains to a given point. There have gradually been developed procedures that, 

with practice, become fairly standard to hydrologists, such as downloading the data, 

performing the drainage pattern analysis, determining the contributing area and boundaries, 

etc. These procedures are an important part of the analysis and software such as the 
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Watershed Modeling System (Aquaveo, 2011), TauDEM (Tarboton et al., 2009), and many 

others have been created to facilitate this analysis. The procedures we use are directly 

related to hydrologic concepts and represent vital knowledge. This point, that procedural 

knowledge is a separate but equally important knowledge base as semantic knowledge, is 

also argued by (Hartley, 1985).  

While there are many types of procedural knowledge, one type that relates to 

semantic modeling is describing the steps in a functional analysis that relates to how some 

concepts (e.g. data and metadata) are related. Semantic models (knowledge models built on 

a reasoning logic) are essentially collections of truthful statements about relationships 

between concepts. The statements are in the form of “Subject Predicate Object.” The 

relationships between concepts, formed by the Predicate (i.e. verb), are what create the web 

of concepts and the meaning of the concepts. 

 For example, in Geographical Information System (GIS) analyses frequently one 

needs to find the area of a polygon.  The area can be associated with a polygon identifier in 

an ontology with a sentence (subject, predicate, object) such as <Polygon_154 hasArea 

53.24>, but the method (i.e. code) to determine the area of the polygon could also be a part 

of the ontology (a “has Area” procedure.) This could be useful if, for example, some external 

program has not already calculated the area of the polygon. In essence, the code could 

function as a “live” verb for the predicate. If the ontology is queried for the area of a polygon 

(<Polygon_154 hasArea ?area>) but the area has not been defined, then the “has Area” 

procedure could be called (passing the query as a set of parameters) in order to compute the 

area for the stated polygon.  The procedure could then add this new information to the 

ontology and complete the query. 
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The purpose of this study is to test the hypothesis that the meaning of procedural 

knowledge can be formalized in order to enable a reasoning engine to execute procedural 

knowledge as part of a query. The goal is to include procedural knowledge, encoded in a 

general-purpose programming language, as an integral part of a knowledge base built on 

semantic models. This will create a general-purpose knowledge modeling language to 

integrating data, metadata, and functional analyses that we use in the geosciences.  

This approach to integrating procedural knowledge into semantic knowledge models 

is in contrast to, say, utilizing workflow engines for functional analysis. The workflow engines 

do enable quite complex analyses. The approach to modeling procedural knowledge as a part 

of a semantic knowledge base, however, has two significant potential advantages. First, the 

reasoning engine is able to utilize metadata to automatically identify appropriate input data. 

Secondly, the reasoning logic as well as the procedural knowledge logic enable the reasoning 

engine to potentially deduce and/or create the required input data. 

2.1.1 Semantic Networks and Reasoning 

Ontologies are semantic models constructed according to a description logic 

standard. Description logic standards have a set of keywords that allow the definition of 

properties of the concepts, such as predicates having a symmetric, transitive, equivalence, 

class-subclass, etc. relationship. The defined keywords for the description logic standard 

govern the overall nature of possible relationships between concepts used to express 

"meaning.” These relationships take the form of a simple sentence and can be expressed in a 

pattern of <Subject Predicate Object>. Much like a sentence, the predicate acts as the verb 

and defines the relationship between the subject and object.  Another way of looking at the 
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triples is to view them as a “thing-attribute-property” description, where the predicate is the 

attribute and the property is the object. 

The goal of constructing an ontology is to enable a computer to glean and deduce 

information in answer to a query. Reasoning engine Applications Programming Interfaces 

(APIs) are built to operate on ontologies and attempt to answer user submitted queries. In 

essence queries are simple questions asked of the reasoning engine such as <A P ?B> which 

means “Given a subject a and a predicate p, what is the set of concepts B (with members bi) 

that are true statements <a p bi>.”  The reasoning engine uses pattern matching and the logic 

statements to deduce the set of concepts that match the given query parameters. The result 

is a set of concepts B = {b1, b2, …, bn.}. Another type of query is a truth-test. In this case the 

query returns whether or not the query triple has been asserted as a truth.    

2.1.2 XML and Semantic Modeling 

The goal of an ontology is to model concepts. Hopefully this is done in a manner that 

facilitates modularity and re-use of the ontologies (see Grau et al., 2008). One of the key 

aspects of making an ontology is to create a set of unique concepts. One of the file formats 

commonly used is XML and so using Uniform Resource Identifiers (URIs), Uniform Resource 

Locator (URLs), and XML namespaces are a means of creating and referencing globally 

unique concepts. The “tag” URL format is used to create globally unique identifiers, such as 

http://www.example.org/MyOntology.rdf#Concept. Using an XML namespace (ex = 

http://www.example.org/MyOntology.rdf#) further simplifies the formatting and enhances 

the human readability of the concept (ex:Concept.) A benefit of using URLs is that there can 

actually be a web page at the URL that describes the concepts in human terms and as well as 

host a file to be downloaded and used by a computer.  Table 2-1 and Table 2-2 show some 
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example namespaces, including the namespaces used in the examples and test cases for this 

research. Resource Description Framework (RDF) (Klyne and Carroll, 2004), Resource 

Description Framework – Schema (RDF-S or RDFS) (Brickley and Guha, 2004), and Web 

Ontology Language (OWL) (Patel-Schneider et al., 2004) are description logic languages used 

in the Semantic Web (Berners–Lee et al., 2001).  

2.2 Methods 

In order to demonstrate the utility of integrating semantic and procedural knowledge 

a prototype reasoning engine API was created along with a demonstration knowledge base 

for computing fundamental properties of polygons, such as the perimeter and area.  The 

approach taken in this API to include procedural knowledge is two-fold. The first method is to 

define and enable a fall-back mechanism for predicates. In other words, if a query fails to find 

or deduce a set of concepts matching the query pattern, the predicate function (if that is not 

the primary query search term) is called to try to create the additional knowledge. The 

second method to include procedural knowledge is to define and enable execution of a 

sequence of steps associated with an overarching concept, such as a task the user wants to 

have performed. In the encoding of the procedural knowledge the API expects actual code. 

The API compiles and links the code to the appropriate parts of the semantic store. 

2.2.1 API Design 

The prototype API for the reasoning engine was developed using C# and the code 

written for the ontology must currently be coded in C# as well. The primary reason for using 

the C# programming language and the Microsoft .NET framework is that the .NET framework 

provides a compiler for C# and a method of adding new code to the running code. Since the 
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code is executed by the operating system rather than interpreted by the semantic model, the 

reasoning engine must be able to read new code, compile the code, add links to the new 

code to the semantic model, and then execute the code as required, all without restarting 

the semantic reasoning engine. If new code is added after other code has already been read, 

the reasoning engine must be able to remove the current code set and recompile all the 

code. This is accomplished in the API by wrapping the semantic code into classes for the 

concepts, compiling it into a library, creating a separate application domain (execution space 

in memory) for the executable semantic code, loading the library into this domain, and then 

creating the classes (and references to them) that implement each of the code sections for 

the concepts. 

We have chosen the name “Functional Ontology” for the ontology design, where 

code can be executed to perform the “how-to” aspects of predicates. It is a new form of 

attached procedure executable semantic network that links code to semantic reasoning in 

the two instances described above, namely, query failure and over-arching task concepts. 

The “functional” aspect of the name does not refer to strictly functional languages, 

functional programming, or functional (i.e. one-to-one) properties, however, rather to the 

property of the ontology having executable components that provide specific functionality 

and represent procedural knowledge. 

 
Table 2-1. Namespaces and Namespace URLs used in this research. 

Namespace 
Symbol 

Namespace URL Reference 

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# 

rdfs http://www.w3.org/2000/01/rdf-schema# 

owl http://www.w3.org/2002/07/owl# 

fo http://chl.erdc.usace.army.mil/FO-lang-20111201# 

poly http://chl.erdc.usace.army.mil/FunctionalOntology/hasAreaExample# 
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Table 2-2. Description of the namespaces referenced in Table 1-2. 

Namespace Symbol Description 

rdf Resource Description Framework (RDF) is a description logic standard 
that include some basic logic and the specification of the triple format 
for storing logic statements. Also specifies an XML file format for 
ontologies denoted RDF/XML. 

rdfs Builds upon the RDF specification, Resource Description Framework – 
Schema (RDF-S) includes additional logic for class / subclass 
relationships 

owl An advanced description logic standard used throughout the semantic 
web. OWL stands for Web Ontology Language. Includes class / 
subclass, inverse, equivalence, restrictions, cardinality, and many 
other types of logic. Often serialized in RDF/XML format. 

fo Functional Ontology description logic standard. Created for the 
purposes of this research, the functional ontology description logic 
includes terms specifying how to add algorithms as concepts to an 
ontology. 

poly Polygon ontology definition. Created for the purposes of this research 
to contain concepts and algorithms related to polygons and simple GIS 
functions for polygons. 

 

2.2.2 Functional Ontology Language Definition 

A functional ontology will use both existing semantic modeling language keywords as 

well as extend the keyword list. The current API prototype has a unique description logic that 

utilizes some keywords from RDF, RDF-S, and OWL along with the RDF/XML file format for 

serialization. The RDF, RDF-S, and OWL description logic used is meant to demonstrate the 

reasoning engine capabilities as a proof of concept rather than be a full-fledged description 

logic implementation.  

Since an implementation of a functional ontology in an API will necessitate both the 

specification of a programming language as well as require compiling the code in the 

ontology, there will need to be keywords that relate to some of the technical details of the 

compilation process. Ontologies use namespaces and URIs to create unique identifiers and 
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represent unique concepts.  The namespace chosen for this initial version of the functional 

ontology keywords is: 

fo=http://chl.erdc.usace.army.mil/FO-lang-20111201# 

Table 2-3 shows the keywords that are a part of the initial functional ontology 

namespace. In the functional ontology coding paradigm, the code is organized into the 

following four primary components:  

Primary code refers to a function that can be directly called via a query mechanism. 

Primary code has a one-to-one relationship with a predicate (e.g. the “has Area” function for 

the “has Area” predicate).  

User code would be code that a user could call from, say, a menu. Instead of simply 

performing queries against the ontology a user could also call a user function to complete 

some defined set of actions, such as computing the area for all of the polygons in the 

ontology.  

Secondary code provides a place to write helper methods which can be associated 

with both primary and user code.  It consists of methods (and class members if desired) that 

are part of the overarching class for primary code or user code, but are outside of the actual 

function (primary or user) in scope.  

Common code is a code base that defines an entire class, minus the class header (for 

wrapping purposes). Common code allows for the construction of helper classes that can be 

instantiated by the primary, user, or secondary code. Common code classes are not utilized 

via an ontological query or direct user calls. In this initial specification class inheritance will 

not be allowed in order to facilitate wrapping the classes in languages that only allow for 

single inheritance. 
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Table 2-3. Key words for associating code with concepts in a functional ontology. 

fo:PrimaryCode The main code for a predicate function. The code should 
examine the query values, perform the analysis, add the 
resulting values to the triple store of the ontology, and 
return the results of the query. 

fo:UserCode The main code for a user-callable function. This code would 
be run at the user’s discretion to run a defined sequence of 
instructions. 

fo:SecondaryCode This code consists of supporting methods that the primary 
code or user code could call. The primary code or user code 
along with the secondary code will be part of a class. Each 
primary or user code base can have its own secondary code. 

fo:CommonClass This data consists of all the methods and members for a 
class definition. This code will not be called via a query or 
user operation but rather it should define class types that 
can be instantiated by the primary or user code (or their 
respective secondary code.) 

fo:UsingNamespace In order to include functionality from an external library, 
often a “using” clause needs to be added to the code. This 
using namespace value will be added to the individual 
classes (primary, user, or common) for which they are 
specified. 

fo:UsingFile This keyword specifies the inclusion of an external library 
(e.g. system.dll) in the compilation process. The UsingFile 
keyword specifies the actual library file, while the 
UsingNamespace keyword specifies a namespace within the 
library. 

 
 

In addition to these components, the UsingNamespace and UsingFile keywords are 

for use by compilers or interpreters. They direct the compiler to include external files in the 

compilation process as well as include namespaces from those files in the primary, 

secondary, and common classes. The “using namespace” commands will be included at the 

entire ontological class namespace (of which there will only be one for this initial 

specification) rather than the scope of the individual classes. The using file directives will, of 

necessity, be of global scope. Duplicate using file and using name directives will be checked 

and discarded. 
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2.2.3 Reasoning Algorithm 

The API has a prototype reasoning algorithm in order to demonstrate the integration 

of declarative and procedural knowledge. The reasoning algorithm uses deductive logic to 

match concept relationships to the query and return the set of concepts that complete the 

query. The logic is based on RDF and RDF-S but does not include blank nodes or sequences.  

The reasoning algorithms include the RDF and RDF-S logic for class, subclass, subproperty, 

domain, range, as well as the logic for the OWL equivalence and inverse of terms. 

The reasoning algorithm is built around a recursive search over a triple and node set. 

Each concept is set up as an instance of a node class with the unique identifier given by the 

concept string. The node class stores references to the triples of which the node is a part. 

The recursive algorithm searches for the equivalent nodes and all defined types of each of 

the concepts that are a part of the query to be matched. For example, if the query is <A B 

?C> it looks for all equivalent and types of A and B. From those it then tries to match up all 

triples that fit the pattern defined by the query. The triples that match the pattern then 

indicate the set of concepts for the set defined as the missing part of the query; in this case 

the set of concepts is named “C.” The ontology API has a class defined that holds a dictionary 

of results sets. The reasoning algorithm creates the results set and returns the count of the 

concepts in the result set. The reasoning engine follows an open-world paradigm, meaning 

that null results indicate an unknown rather than a negation. If the query is a truth-test 

query, meaning that the query is a set of three concepts rather than one or two, the 

reasoning algorithm returns a 1 if it is known to be true and 0 if it is unknown if it is true.  

If the reasoning algorithm does not find a set of concept nodes that fit the query, 

including for a truth-test query, then it runs the predicate code if it has been defined. The 



49 
predicate code is allowed to also run queries and must return the count of concept nodes 

that fit the query, or the truthfulness of a truth-test query. The predicate code can add 

triples, initiate other queries (which may also run predicate functions,) and do anything that 

can be done with the code programming language (C# in the prototype).  

2.2.4 Example 

The example to demonstrate the utility of the integration of semantic and procedural 

code will be the evaluation of polygon area. This example is a simple example that is 

somewhat trivial given that most GIS systems have built-in tools to define the area and 

perimeter of polygons, but the goal is to demonstrate the potential of integrating procedural 

knowledge with semantic knowledge and to distill the demonstration to its simplest form. A 

simple knowledge base about polygons is shown in Figure 2-1. 

The “poly” namespace used for this example is: 

poly=http://chl.erdc.usace.army.mil/FunctionalOntology/hasAreaExample# 

The poly:hasArea and poly:hasPerimeter predicates have predicate functions. The 

algorithm to find the area of a polygon is not complex. The assumptions here are that the 

polygon is closed, the line segments connecting the points are linear, and the points are 

listed in clockwise order with the first point repeated at the end. The area is given by formula 

2-1. 

 

  
 

 
                

   
         (2-1) 

 
For the perimeter the Pythagorean distance (in Euclidean two-dimensional space) 

between each successive point in the list is computed and summed together. For both 
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functions a listing of the points is required. The point string in the knowledge base is a list of 

the points in the format “(x1, y1) (x2, y2) … (xn-1, yn-1).” There could certainly be other 

definitions of points, such as those in the OWL geometry upper level ontology (Dumontier 

and Gawronski, 2010), but for this example this will be the assumed format. 

The code for the knowledge base will actually be comprised of a common class (Figure 2-3) 

and two predicate procedures (Figure 2-2 and Figure 2-4.) The poly:GetPoints common class 

(Figure 2-3) will query for the point string and create real-valued arrays for the x and y points, 

repeating the first point as the last. The poly:hasArea predicate function (Figure 2-2) calls the 

common class to obtain the points and then computes the area. The poly:hasPerimeter 

function (Figure 2-4) is similar in format but it computes the perimeter. 

The reasoning engine will be run and the ontology for the polygon example case read 

in. The triples in Figure 2-5 are added to the ontology as the test polygons. Six queries will 

then be executed, as shown in Table 2-4. 

 
Figure 2-1. Concept map for a simple knowledge base about polygons. It defines polygons as 
a class and that they may (but not must) have attributes poly:hasPointString, poly:hasArea, 
and poly:hasPerimeter. 

poly:hasPointString 

poly:hasArea 

poly:hasPerimeter 

rdf:range 

rdf:domain 

xml:string 

poly:Polygon 

rdf:range 

rdf:subClassOf 

poly:PolyPointString 

poly:PerimeterValue 

poly:AreaValue 

rdf:range 

xml:double rdf:subClassOf 

xml:double rdf:subClassOf 
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A simple GUI has been created to interface with the functional ontology API. 

2.3 Results 

With the reasoning engine running the knowledge base defined in the example, and 

the addition of the triples in Figure 2-5, the reasoning engine is ready for the queries in Table 

2-4. Figure 2-6 shows the GUI for the reasoning engine while it is running the functional 

ontology for the polygon example.  

Figure 2-7 shows the reasoning engine GUI after the queries. The results of the 

queries are the triples shown in Table 2-5 and the named node sets (results sets or answer 

sets) shown in Table 2-6. 

The area and perimeter values for each polygon are not included in the knowledge 

base and thus each of the queries initially results in an empty set, indicating that it was 

unable to deduce an answer. The reasoning engine then checked and recognized that 

“Primary Code” procedural knowledge exists for each of the “poly:hasArea” and 

“poly:hasPerimeter” predicates. It then executed the method for the primary code for each 

of the predicates. The primary code for the each of the predicates in turn queries the 

reasoning engine for the lists of points, calls the common class method to convert the string 

of points into arrays of double values, computes the desired value, adds the new knowledge 

to the knowledge base, and re-executes the original query in order to return the new 

knowledge in the correct format (as part of a set). The final results are new triples added to 

the knowledge base and the creation of a group of answer sets containing the appropriate 

values. 
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Figure 2-2. The primary code definition for the poly:hasArea predicate. The code here is 
wrapped in a method for a class with the name of the concept but with the colon replaced by 
an underscore. The method header is defined by an interface method. 

 

2.4 Discussion 

While this example is seemingly simple, the results show that the new reasoning 

engine was 1) able to execute procedural code describing a non-trivial functional analysis 

that was 2) encoded in a general-purpose programming language, which 3) enabled the 

assessment of the existing knowledge in order to deduce knowledge that was not readily 

apparent. The procedural code was also able to state complex logic that included error 

checking, data conversion, and mathematical algorithms. The results show that this approach 

is a viable means of integrating procedural code related to geophysical concepts and 

semantic querying for geophysical applications involving data conversion, mathematical 

algorithms, and other computational problems.  

poly:hasArea fo:PrimaryCode 

      double a = 0, b = 0;  
      double[] x;  
      double[] y;  
      int count;  
      bool hasPoints=poly_GetPoints.getPoints(theSubject, out x, out y, out count, theOntology);
  
  
      if (!hasPoints)  
        return 0; // couldn't complete the computation of the area  
  
      for (int i = 0; i < count; i++)  
      {  
        a = a + (x[i] * y[i + 1]);  
        b = b + (y[i] * x[i + 1]);  
      }  
      double area = (a – b)/2.0;  
      if (area < 0.0)  
        area = -area;  
       
      theOntology.AddTriple(theSubject, thePredicate, area.ToString());  
  
      return theOntology.FindMatchingSet(theSubject, thePredicate, theObject, results);  
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The hypothesis that the meaning of procedural knowledge can be formalized in 

order to enable a reasoning engine to execute procedural knowledge as part of a query is 

thus shown to be true. Procedural knowledge, encoded in a general-purpose programming 

 

 

Figure 2-3. The common class definition for the poly:GetPoints utility function to extract 
points from their storage in a string object. 

 

poly:GetPoints fo:CommonClass 

    public static bool getPoints(string thePoly, out double[] x, out double[] y, out int count, 
FuncOnt theOntology)  
    {  
      NamedNodeSet tmpResults = theOntology.MakeTempNamedNodeSet();  
      bool retval = (theOntology.FindMatchingSet(thePoly,"poly:hasPointString", 

"?thepoints",tmpResults)>0);  
      if (retval)  
      {  
        string points = tmpResults.First("thepoints");  
        char[] pointseparator = { '(' };  
        string[] pointlist = points.Split(pointseparator, StringSplitOptions.RemoveEmptyEntries);
  
        char[] numseparator = { ' ', ',', ')' };  
        count = pointlist.Length;  
        x = new double[count + 1];  
        y = new double[count + 1];  
        for (int i = 0; i < count; i++)  
        {  
          string[] data = pointlist[i].Split(numseparator, StringSplitOptions.RemoveEmptyEntries);
  
          x[i] = Convert.ToDouble(data[0]);  
          y[i] = Convert.ToDouble(data[1]);  
        }  
        x[count] = x[0];  
        y[count] = y[0];  
      }  
      else  
      {  
        x = new double[1];  
        y = new double[1];  
        x[0] = 0.0;  
        y[0] = 0.0;  
        count = 0;  
      }  
      return retval;  
    }  



54 

 
Figure 2-4. The primary code definition for the poly:hasPerimeter predicate, similar to the 
poly:hasArea predicate primary code. 
 
 

 
Figure 2-5. Point strings for the test polygons. 
 
 
Table 2-4. Test queries for the example ontology. These are input into the reasoning engine 
query mechanism. The objects have a question mark in front of the name indicating that we 
want concepts that fit there to make true statements. The set of statements is labeled with 
the name that comes after the question mark, e.g. squareArea. 
<SquarePoly poly:hasArea ?squareArea> 

<SquarePoly poly:hasPerimeter ?squarePerimeter> 

<TrianglePoly poly:hasArea ?triangleArea> 

<TrianglePoly poly:hasPerimeter ?trianglePerimeter> 

<DiamondPoly poly:hasArea ?diamondArea> 

<DiamondPoly poly:hasPerimeter ?diamondPerimeter> 

 

 

SquarePoly 

TrianglePoly 

DiamondPoly 

poly:hasPointString 

poly:hasPointString 

poly:hasPointString 

(0, 0) (0, 2) (2, 2) (2, 0) 

(0, 0) (3, 3) (6, 0) 

(2, 0) (0, 2) (2, 4) (4, 2) 

poly:hasPerimeter fo:PrimaryCode 

      double d = 0;  
      double[] x;  
      double[] y;  
      int count;  
      double perim = 0.0;  
      bool hasPoints=poly_GetPoints.getPoints(theSubject, out x, out y, out count,  
 theOntology);  
  
      if (!hasPoints)  
        return 0; // couldn't complete the computation of the perimeter  
  
      for (int i = 0; i < count; i++)  
      {  
        d = Math.Sqrt((x[i + 1] - x[i]) * (x[i + 1] - x[i]) + (y[i + 1] - y[i]) * (y[i + 1] - y[i]));  
        perim += d;  
      }  
  
      theOntology.AddTriple(theSubject, thePredicate, perim.ToString());  
  
      return theOntology.FindMatchingSet(theSubject, thePredicate, theObject, results);  
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Figure 2-6. The reasoning engine GUI running the functional ontology for the polygon 
example. 
 
 
Table 2-5. Triples added to the knowledge base as a result of the code execution via the 
queries. 
Subject Predicate Object 

SquarePoly poly:hasArea 4.00 

SquarePoly poly:hasPerimeter 8.00 

TrianglePoly poly:hasArea 9.00 

TrianglePoly poly:hasPerimeter 14.49 

DiamondPoly poly:hasArea 8.00 

DiamondPoly poly:hasPerimeter 11.31 

 

language, is captured as an integral part of a knowledge base built on semantic knowledge 

models. The prototype reasoning engine is able to utilize both procedural knowledge and 

semantic reasoning to answer the query posed to it. 

As Turing (1950) noted, artificial intelligence algorithms will not create new 

knowledge but they are able to reach conclusions that human counterparts would not 

necessarily have thought of. A merit of this approach to including procedural knowledge into 

a knowledge base is that it enables the reasoning engine to extend its analysis capabilities 
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and thus reach a broader set of conclusions than previously. This approach does have a 

drawback in that there is no formal constraint on the logic embedded in the knowledge base. 

A feature of typical knowledge models is that all conclusions are able to be proven through a 

rigorous mathematical analysis. The procedural knowledge is a practical “short cut” that 

enables a wide range of analyses at the expense of also allowing for logical errors and bugs in 

the code. The one programming the code is responsible for ensuring its logical soundness. 

Another merit of this approach to integrating procedural knowledge into a 

knowledge model is that it constrains subject matter experts to actually state both the 

concepts and the procedures. This creates a formal procedure for a concept that can be 

analyzed by other subject matter experts. By creating this formal statement of procedure the 

art of practice can be studied and improved, turning it into science. For example, in 

computational modeling a numerical model is chosen to fit a subject purpose. Why one 

model is chosen over another is generally in the “art” of computational modeling.  

Formalizing why we choose one model over another could explain where models 

overlap and why one model would or wouldn’t be preferred over another. This would push 

model practitioners to tackle the issues of model applicability and sufficiency, as well as the 

relationship between cost, accuracy, and expediency.   

Table 2-6. Named node sets as a result of the queries. The set members make true 
statements from the original query. 
Set Name Set Members 

SquareArea {“4.00”} 

SquarePerimeter {“8.00”} 

TriangleArea {“9.00”} 

TrianglePerimeter {“14.49”} 

DiamondArea {“8.00”} 

DiamondPerimeter {“11.31”} 
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Figure 2-7. The reasoning engine GUI after the results of the query. The resulting sets and the 
newly added triples are shown. 

 

2.5 Conclusions 

Procedural knowledge is very relevant to real-world tasks in the geophysical 

sciences. The approach to incorporating procedural knowledge in a semantic knowledge base 

shown in this article, termed “functional ontology,” demonstrates a new, unique, and 

powerful method of adding procedural execution to a semantic reasoning engine. Through 

this integration of procedural and semantic knowledge the capabilities of the reasoning 

engine are greatly enhanced to allow for complex reasoning and analysis of types of 

problems found in the geophysical sciences. 
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CHAPTER 3 

ENHANCING HYDROLOGIC DATA CREATION AND PROJECT ANALYSES 

 THROUGH PROCEDURAL AND SEMANTIC MODELING3 

Abstract 

We have many tools and models that we use in hydrologic project analyses. We have 

different models and tools we use depending on the situation – the project context. For 

example, planning level studies do not require as much accuracy but do require less time-to-

completion than detailed engineering studies. Knowledge models are a class of conceptual 

models that have the potential of facilitating a wide range of project analyses. By providing a 

common language for scientific interoperability of digital products, capturing knowledge in a 

framework that allows for automated, reproducible reasoning, and the reasoning logic to 

deduce knowledge that it not readily apparent, knowledge modeling holds the promise of 

enhancing how we use the tools we have. However, to date knowledge models have not 

been used to discriminate hydrologic work flows based on the project context. Functional 

ontologies are able to utilize both conceptual knowledge as well as procedural knowledge as 

part of the knowledge models. We show how combined semantic and procedural modeling 

can be used to enhance and facilitate existing hydrologic tools. The test case shown in this 

work covers delineating a watershed with the TauDEM suite of software functions. Semantic 

models of the TauDEM functions and input and output data are created, along with semantic 

models of project purposes and how they influence and direct TauDEM analyses. The 

procedural models include how to construct and execute TauDEM command lines, deduce 

                                                           
3
 Created for publication in the Journal of Environmental Modeling and Software. The authors 

are Aaron Byrd and David Tarboton. 
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the chain of dependencies for a given data set, and a user function that, in conjunction with 

the semantic data, controls and directs the analysis. The result of these knowledge sets is 

that the reasoning engine is able, because of both the semantic and procedural knowledge, 

to deduce the chain of functions needed to compute a desired data set. The results show 

that combined semantic and procedural modeling can enhance and automate the tools we 

use as hydrologists. 

3.1 Introduction 

Semantic modeling holds the promise of enhancing how we use the tools we have by 

providing a common language for scientific interoperability of digital products, capturing 

knowledge in a framework that allows for automated, reproducible reasoning, and the 

reasoning logic to deduce knowledge that is not readily apparent. Hydrologic modeling 

involves a significant amount of analysis and as such semantic modeling would seem to offer 

advantages, such as reasoning over why and which tools are needed. Semantic models 

identify concepts and their relationships. These concept relationships form a web or graph of 

concepts. The underlying philosophy of semantic modeling is that “meaning” of concepts is 

entirely a function of the relationships between concepts. Semantic modeling utilizes graph 

theory (which began with Euler, 1741) to represent the relationships between concepts in 

order to inform automated reasoning tools how to infer additional relationships between 

concepts. The logic undergirding these reasoning tools is called descriptive logic (Ceccato, 

1961; Masterman, 1961; Brachman, 1979; Sowa, 1992; Sattler et al., 2009). 

Prior work using semantic models for hydrologic applications includes the Hydrologic 

Information System (HIS) (Tarboton et al., 2011) created by the Consortium of Universities 

for the Advancement of Hydrologic Science, Inc. (CUAHSI).  CUAHSI HIS facilitates the 
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discovery and cataloging of hydrologic data. The CUASHSI HIS data discovery and download 

tool is set up as a web service (Beran et al., 2009). This allows the HIS semantic search and 

hydrologic data knowledge base to be consumed by programs, such as Hydrodesktop (Ames 

et al., 2009), and other web services. This situation is typical of the current paradigm for 

semantic logic programs (knowledge bases built on declarative logic that can include rule 

sets and conditional logic) and reasoning engines, to use them as a data source consumed by 

other software.  

Reasoning engines have significant potential to facilitate and automate analyses but 

there remains significant work to be done to make both the knowledge bases and reasoning 

engines sufficient for the general-purpose analysis and solution of problems. One of the key 

weaknesses of semantic modeling is that it does not provide a framework for any logic 

besides the descriptive logic the reasoning engines are built on. The descriptive logic is 

excellent at providing a formal mechanism for logical deduction but is a poor mechanism for 

including actual procedural analysis and execution, such as executing a watershed 

delineation function. 

Procedural logic based programs, along with related programming paradigms such as 

object-oriented programming and functional programming excel at solving specific tasks and 

encapsulating procedural knowledge. The primary philosophical shortfall of these 

programming methods, however, is that there is no “meaning” to the procedural logic other 

than its place in the execution loop. While good programming practices in these domains 

involve breaking the code into conceptual chunks, these conceptual chunks do not have 

meaning in a computer-interpretable sense apart from being directly referenced by other 

portions of the code base. For example, one may write an algorithm that computes the 
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infiltration of ponded surface water into the soil profile but the computer does not have any 

relationships about this algorithm that it can use to relate when and why it would need to be 

called. It only knows to call it when it is invoked by other portions of the code.  

The authors have developed a new form of reasoning engine and knowledge base 

(see Chapter 2) termed “functional ontologies” that aims to help fill that gap in capability by 

allowing procedural knowledge, represented as source code, to be a part of the semantic 

knowledge base. The source code, rather than be external to the knowledge base, is included 

as procedural aspects of the concepts included in the knowledge base. The reasoning engine 

is able to compile the code and then execute the procedural code as part of a query if need 

be. The advantage to this approach is that the description of procedural knowledge is in a 

form that can be readily utilized by the reasoning engine to compute the result without 

having to have a sophisticated code interpreter. Further, since the form of representation of 

the procedural knowledge is a general-purpose programming language (C# in the current 

implementation) the procedural knowledge has the full capabilities of the underlying 

language. This combination of semantic reasoning and procedural knowledge has the 

potential of facilitating the automation of many geographic, environmental and hydrologic 

modeling processes. This article is a demonstration of how it can be used to facilitate the 

automation of terrain analysis for hydrologic modeling.  

For a reasoning engine to be able to successfully replicate and apply the knowledge 

used for a specific modeling task, here hydrologic terrain analysis, it must be able to both 

reason about concepts and relationships between them as well as execute established 

procedures. The hypothesis tested by this work is that the new integrated semantic and 

procedural knowledge model (functional ontologies) and reasoning engine is capable of 
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representing the knowledge about how to delineate a watershed, including deducing the 

workflow and then the execution of the set of actual TAUDem functions, including that for  

watershed delineation. The overall goal of this work is to explore the practicality of this new 

form of knowledge representation for use in modeling concepts and procedures involved in 

geographic, hydrologic and environmental modeling. Success will be quantified by the 

reasoning engine properly formulating and executing the correct sequence of functions to 

delineate a watershed based on the query and two separate project contexts. 

A reasoning engine that allows for declarative and procedural logic can describe and 

analyze knowledge about situations. One problem, however, is incorporating existing 

software and programs. In the field of hydrology there are many existing applications and 

tools that are used by hydrologists. These applications and tools are built around concepts 

central to hydrology. Inherent to these tools are relationships between the tools and the 

datasets they operate on and create – they have, in essence, an implicit ontology that they 

operate on. The tools do not operate on meaningless data, they operate on specific types of 

values – stream roughness, soil moisture content, rainfall rates, elevation data, etc. The 

numbers have a physical meaning. This meaning generally remains in the realm of human 

interpretation and analysis, for users to understand rather than computers to understand. 

The tool sets hydrologists use range in complexity and functional granularity, from a 

set of command-line executable programs to complex data transformation applications with 

graphical user interfaces. If the software is able to be controlled programmatically then it has 

potential for integration with a functional ontology reasoning engine. In order to control the 

software, however, the knowledge base for the reasoning engine will need to know about 
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the data sets and functionality available, as well as include functionality for controlling the 

software. 

3.2 Methods 

The functional ontology reasoning engine (see Chapter 2) has been designed to 

integrate semantic and procedural knowledge.  In order to demonstrate the utility of 

modeling semantic and procedural knowledge of existing hydrologic tools, a knowledge 

model will be created that focuses on using TauDEM (Tarboton et al., 2009) to delineate 

watersheds. This knowledge model will be a proof-of-concept model designed for watershed 

delineation rather than the full suite of capabilities of the TauDEM set of functions. The 

knowledge base will also include the concepts to tailor the TauDEM modeling to the project 

purpose. There will be two project purposes modeled, one where a single basin delineation is 

desired for use with engineering-level watershed models and the other where multiple sub-

basins are desired for use with planning-level watershed models. A third project purpose, an 

alternative pit-fill algorithm, is also demonstrated to illustrate how simple it is to add 

additional analysis end-points. 

3.2.1 TauDEM Example: Semantic Knowledge Base 

A frequent task undertaken by hydrologists is to create a hydrologic model of a study 

area that models how and where the water flows under intense rainfall or other flooding 

conditions. One of the primary tasks when creating a hydrologic model is to delineate the 

watershed under study. One of the tools used to delineate watersheds is the TauDEM suite 

of software. We have developed a watershed delineation functional ontology knowledge 

base that utilizes many of the functional ontology keywords, as well as many RDF (Brickley 
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and Guha, 2004), RDF-S (Bruijn and Heymans, 2010), and  OWL (Patel-Schneider et al., 2004) 

keywords to encode the knowledge required to run TauDEM. TauDEM consists of a set of 

command-line executables that begin with a digital elevation model (DEM) file and perform a 

sequence of analyses to fill digital pits, determine cell-to-cell flow paths and upstream areas, 

and finally delineate the watershed. Through the processing sequence several data files are 

created that cover the same raster domain as the original DEM. These files have unique file 

names that are a derivative of the file name of the original DEM. 

This test case is meant to be a somewhat simple proof-of-concept but also to 

demonstrate and clarify the key capabilities and advances discussed above. While TauDEM 

has many DEM analysis functions and end-points, such as wetness index analysis, this 

demonstration will focus on the few functions that are used in watershed delineation. The 

semantic knowledge base will cover both details about the TauDEM functions and data sets 

and details relating needed data sets, optional command-line parameter, and the desired 

data sets for the project purpose. The procedural knowledge base will cover details about 

how to create TauDEM command lines and execute TauDEM functions. 

TauDEM is conceptually a set of command-line executables that have input and 

output data sets. This relationship between functions and input/output data sets can be 

described by triples, as shown in Figure 3-1. The use of the owl:InverseOf, rdfs:domain, and 

rdfs:range keywords are also illustrated in Figure 3-1. The “owl” and “rdfs” part of the 

keywords refers to their formal definition, which is actually at 

http://www.w3.org/2000/01/rdf-schema# for RDFS and http://www.w3.org/2002/07/owl#  

for OWL. The top concept graph defines a type for concepts in the domain and range 

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
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Figure 3-1. The TauDEM triples relating to input and output data sets for the first two 
functions, the pit remove and 8-way flow direction programs. 
 
 
positions of the input and output dataset keywords while the second concept graph defines 

the actual input and output concepts around the first two TauDEM functions, the pit remove 

and 8-way (D8) flow direction tool. The pit fill function takes as an input a raw DEM and 

outputs a pit filled DEM, while the D8 flow direction function uses the pit filled DEM as input 

and outputs D8 flow direction and slope data sets. The graph thus shows an implicit 

dependence of the D8 flow direction function on the pit remove function. 

The owl:InverseOf key word, defined as part of the OWL language, used in Figure 3-1 

hasComputeFunction triple <td:hasComputeFunction  owl:InverseOf  td:hasOutputDataSet>, 

is used to specify inverses. Mathematically, if it is asserted that <A P B> is true, and P is the 

inverse of P’, then <B P’ A> is also true. The hasComputeFunction triple, combined with the 

<td:PitRemove  td:hasOutputDataSet  td:PitFilledDEM> entails the triple <td:PitFilledDEM  

td:hasComputeFunction  td:PitRemove>; in other words, the Pit Remove function is used to 
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compute the Pit Filled DEM. The reasoning engine can deduce this triple, and the others like 

it, when queried.  

The TauDEM functions use command-line inputs in order to instruct the executable 

on what files to read and write. The various data types have specific command-line flags. For 

example a raw DEM is used in the command line as “-z RawDEMFile.tif.” The generated files 

follow a naming convention, a simple semantics if you will, where a few letters denoting the 

dataset type are appended to the raw DEM file name. For example a pit filled DEM has the 

suffix “fel” and, using the previous example, would be denoted in the command line as “-fel 

RawDEMFilefel.tif.” The command line flags and file suffixes for several of the TauDEM data 

sets are shown in Figure 3-2. The input-only files (i.e. the raw DEM and the outlet files) only 

have file flags and not file suffixes. 

Another set of related ontological keywords, used in Figure 3-2, are 

“rdfs:subPropertyOf” and “rdfs:SubClassOf.” The class/subclass and property/subproperty 

mechanism serves to create both classes and concepts that are members of another class of 

concepts, and thus have all the properties of the larger class, while still allowing for unique 

attributes for the individual subclasses or subproperties themselves. In this example, 

td:hasInputFileFlag is a subproperty of td:hasFileFlag. Thus, any properties of td:hasFileFlag 

automatically apply to td:hasInputFileFlag. Similarly for the subclasses 

td:D8ContribAreaNoOutlet and td:D8ContribAreaAdjOutlet, they inherit the attribute and 

property “td:hasFileFlag  -ad8” from their parent class td:D8ContribArea. While most data 

sets do not use the input and output file flags, the adjust outlet function takes an outlet 

shape file and produces an outlet shapefile, thus necessitating the different input and output 

file flags. When an adjusted outlet is used as an input parameter it is treated as a normal 



69 
outlet file, but when it is being output is needs a special suffix and output file flag. The use of 

the subproperties allows for the td:hasFileFlag to represent both the input and output file 

flags of most of the data sets, but when specified the input and output flags can be separate.  

Figures 3-3 and 3-4 show concept graphs of the TauDEM and terrain group data 

concepts. These concepts form a logical framework for creating instances of terrain groups 

that both may and do have TauDEM data sets associated with them. The procedural 

knowledge, discussed in the following section, details the steps to compute new TauDEM 

data sets from the given data sets. Figure 3-3 shows concepts and relationships for the 

terrain data group concept. This knowledge base uses rdfs:domain and rdfs:range, which 

were discussed above. It also uses rdf:type, which is used to create an instance of a class of 

concepts. In this case the class of concepts is actually rdfs:Class, which means that the 

subject concept is a class of concepts. In Figure 3-3 this translates to meaning that 

td:TerrainDataGroup is a class of concepts and that other concepts can be instances of type 

td:TerrainDataGroup. 

To create the conceptual set of data for a site, an instance of a td:TerrainDataGroup 

is added to the working ontology, shown in Figure 3-4. The concept 

:LoganCanyonTerrainGroup and the relationship to the td:TerrainDataGroup concept would 

be created while interacting with the reasoning engine and not as part of the predefined set 

of concepts and relationships. The terrain data group :LoganCanyonTerrainGroup, because of 

the semantic logic for classes, inherits all the properties of the parent class 

td:TerrainDataGroup, such as the list of potential data sets. The blank namespace in front of 

LoganCanyonTerrainGroup indicates a local namespace. Figure 3-4 also shows how actual 

data sets are associated with the instance of the terrain data group. The terrain data group 
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instance has an associated actual data set, identified by the filename. The type of the data 

set is also shown. 

The knowledge encoded in figures 3-1 to 3-4 comprises a formalization of the 

knowledge required to use TauDEM. This knowledge is required to be known by a user and is 

learned by reading the documentation and other writing on watershed delineations.  It also 

formalizes the file naming conventions suggested (but not required) in the TauDEM 

documentation. This file naming convention is a way of indicating the meaning of the data in 

the files and as such is an informal ontology. By formalizing the semantics this knowledge 

representation extends the informal ontology to a formal one that can be utilized for 

automated processing. Formalizing the semantics also resolves ambiguities and nuances that 

a human user was just expected to know or learn in order to use TauDEM, such as which 

data sets serve more than one purpose even though they only have one file name ending 

denoting their meaning.   

3.2.2 TauDEM Example: Procedural Knowledge Base 

The TauDEM procedural knowledge base revolves around stepping through the 

creation sequence of data sets in order to create the desired data set, such as the delineated 

watershed. Since the API is written in C#, the procedural knowledge is also encoded in C#.  

For clarity, though, the example code shown in this document simply describes the steps the 

C# code follows. 

The functional ontology specification, http://chl.erdc.usace.army.mil/FO-lang-

20111201#, and as discussed in Chapter 2, enables the inclusion of four types of source code: 

“primary code” used as the “how-to” for predicates (e.g. how to compute an area of a 

polygon for a “hasArea” predicate,) “user code” which encapsulates procedures for a user-

http://chl.erdc.usace.army.mil/FO-lang-20111201
http://chl.erdc.usace.army.mil/FO-lang-20111201
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menu style function (e.g. “compute the area of all polygons”), “secondary code” which are 

merely helper methods for the primary and user code, and “common classes” where are 

merely accessory classes for use by the other code. For compatability with C#, there are also 

keywords to include namespaces and library files in the source code. The reasoning engine 

takes the data code of the ontology, compiles it, and links it to the appropriate locations in 

the reasoning engine.   

 

 
Figure 3-2. Part of the TauDEM knowledge base that utilizes subclasses and sub-properties. 
These concept graphs show information about the file naming conventions (td:hasFileSuffix) 
as well as the command-line flags (td:hasFileFlag). 
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Figure 3-3. The concept map for the terrain data group. The terrain data group is the central 
concept organizing and framing the set of data sets. The concept td:TerrainDataGroup has 
potential data associations, while an instance of a terrain data group, e.g. the Logan Canyon 
data group, would have actual data associations.  
 
 

 
Figure 3-4. Example instance of a terrain data group. The Logan Canyon terrain group is an 
instance of the class td:TerrainDataGroup. Since td:TerrainDataGroup, as the class definition 
concept, is associated with several potential data sets LoganCanyonTerrainGroup, via the 
semantic logic for classes, also has those same potential data sets. Additionally, the 
LoganCanyonTerrainGroup also has an actual data association LoganCanyon.tif, which is a 
data set of type td:RawDEM. 
 
 

The concept graph shown in Figure 3-5, which demonstrates the use of several 

functional ontology keywords (fo:UsingNamespace, fo:PrimaryCode, and fo:SecondaryCode),  

contains the knowledge about how to assemble the TauDEM command line. The 

td:ComputeData and td:hasComputableData concepts have primary code, which is also the 

code used to complete the semantic query. For example, the query 



73 
<:LoganCanyonTerrainGroup td:hasComputableData ?canComputeLogan> will initially result 

in a function call to the primary code for td:hasComputableData. This code creates a set of 

concepts that are the currently computable data sets for the given knowledge in the 

knowledge base. This set is returned as a result set just like any other query would result. But 

since this knowledge is potentially temporary it is not added to the primary knowledge store. 

This results in the code being called each time the query is run, thus allowing for the 

knowledge base and the answer set to evolve over time but still remain a set of true 

concepts. 

The secondary code concept shown in Figure 3-5 is the knowledge that creates the 

unique file names for the TauDEM data sets. For example, if the root DEM for the terrain 

data group is LoganCanyon.tif and the computer is trying to create the pit filled DEM, then 

the GenerateNewFilename code will find the root DEM name (LoganCanyon.tif) and the file 

name suffix for the new data set (“fel”) to compose the new file name. The file name string is 

split into parts, the suffix appended, and then the parts are reassembled to give 

LoganCanyonfel.tif. It should be noted that, since this is secondary code, the entire class 

method is defined in the knowledge base rather than just the code internal to a class 

method, as is the case for primary code. The secondary code is included as-is as member 

methods of the class created to house the primary code. Access specifiers (e.g. 

public/private, static, etc.,) native to the underlying language, control whether or not other 

external classes are able to access this method. In general, though, secondary code is meant 

to be used only by the primary code. If it is meant to be more ubiquitously used then it 

should be created as common code. 
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Table 3-1 describes the code concepts used to define the TauDEM knowledge base 

procedural knowledge. It includes several primary code sections, a few common classes, and 

one user code section. Together this code details how to create terrain data groups, execute 

a general standard or MPI command-line function, and also how to assemble and execute 

the TauDEM commands to create a desired data set. Because of the power and flexibility of 

using code to define the meaning of a predicate, a second-order logic function takes just a 

few lines of code. Second-order logic refers to logic statements where concepts are linked by 

an intermediate set of concepts and relationships, rather than being directly related. In this 

case, the data set dependency list for any given data set is a function of the input data sets 

for the TauDEM function that outputs the given data set. Thus there is a layer of concepts 

between the input and output data sets, creating the need for second-order deductive logic.  

3.2.3 TauDEM Example: Project Purpose Knowledge Base 

In this demonstration example, there are two points where the project is brought in 

to bear. In the overall analysis of the raw DEM to create the delineated watershed, there are 

times it is desirable to aim for a watershed with many sub-basins and there are times a single 

watershed basin is called for. For this demonstration, the distinguishing case will be the user 

deciding to model a single or multiple basin domain. The single basin example will be 

presumed to be for a highly-detailed spatially explicit watershed model suitable to analyze 

watershed management options – an engineering-level. The multiple sub-basin model will be 

presumed to be for a more tradition hydrologic model that examines rainfall-runoff 

transformations for existing watershed conditions – a planning level model. Figure 3-6 shows 

the project purpose relationships, termed the analysis context (i.e. multiple sub-basin model 
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vs. single-basin model,) to required input data, desired output data, and any special 

command-line flags for individual TauDEM functions.  

To illustrate the ease of adding additional functionality to the ontology, consider 

Figure 3-7. It illustrates the set of triples required to use the pit remove function to remove 

digital dams. Digital dams are artifacts of a four-way overland flow algorithm used by some 

gridded watershed models. When dominant flow directions are lined up at angles askew to 

the grid arrangement, sometime some cells can block others forming a “digital dam.” Using a 

four-way pit fill algorithm will ensure that the elevation grid for the watershed model will 

flow as needed. Because the pit remove function of TauDEM has a four-way as well as the 

usual eight-way algorithm it can be used for this special circumstance. Figure 3-7 shows the 

set of nine triples that are required to fully create the option of automatically running the 

four-way pit fill algorithm as part of the TauDEM functional ontology knowledge base.  

The semantic and procedural knowledge base for the TauDEM suite of tools, and the 

functional ontology API, will be tested on the Logan Canyon DEM and outlet (shown in Figure 

3-8) provided as part of the TauDEM example cases. The knowledge base will be run for both 

the watershed management and rainfall-runoff transformation project purposes. 

3.3 Results 

Once the TauDEM functional ontology was created, the Functional Ontology Engine 

(FOE, a graphical user interface designed for use with the functional ontology API) was run 

with the input RDF XML files. For each of the test cases one command was given: run the 

user function td:CreateNewTerrainGroup. This user function queries the user for the name of 

a terrain data group and the purpose of the project. From there the function queries the 
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ontology for information about the project purpose, including required data and any 

statements to execute.  

 

 

Figure 3-5. Semantic linkages between the previous concept graphs and some of the code 
definitions. The red boxes show the code that is wrapped in XML CDATA structures when the 
knowledge base is stored to disk in RDF XML format. The actual code is written in C# whereas 
this figure describes the process followed by the code. 
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Table 3-1. Code concepts included in the knowledge base. 

Concept Description 

td:hasRawDEM 
(fo:PrimaryCode) 

Used in a query to find the root DEM file of a terrain 
data group. If the terrain data group does not have a 
raw DEM then it queries td:hasRawDEM the file name. 

td:hasRawData 
(fo:PrimaryCode) 

Checks to see if the terrain data group has the specified 
data; if not the function queries the user for a file 
name. 

td:CreateNewTerrainGroup 
(fo:UserCode) 

Used as a menu option, this function queries the user 
for the name of the new terrain data group and the 
purpose of the project. It then queries the ontology for 
the required data for the project purpose and any 
statements to execute. 

cc:CmdExec 
(fo:UsingNamespace) 

Adds a library namespace used by the code for 
cc:CmdExec. 

cc:CmdExec 
(fo:CommonClass) 

As a common class this code is meant to be used in 
other functions. The two members are static so that an 
instance of the class does not have to be created. The 
two class methods are ExecuteCommand, which 
executes a standard command in a local shell, and 
MPIExecuteCommand, which executes a shell 
command that calls mpiexec to execute the desired 
command. 

cc:DoesFileExist 
(fo:CommonClass) 

Performs a file system query to check the existence of a 
file. Returns true or false. 

cc:FindMPIExecPath 
(fo:CommonClass) 

Checks to see if MPI has been installed by checking the 
existence of mpiexec in two standard installation 
locations. If mpiexec is found, it returns the path 
otherwise it returns an empty string. 

td:hasComputeDependence 
(fo:PrimaryCode) 

A second-order logic function, this code is meant to be 
executed via a query and will return the list of input 
data sets for the function that outputs the queried data 
set. Relies on the inverse properties of the 
‘td:hasComputeFunction’ predicate. 

td:hasComputableDependents 
(fo:SecondaryCode) 

Defines the function 
‘DoesTerrainGroupHaveActualData,’ which examines 
the actual data associations of a terrain data group to 
determine the existence of the specified data set class 
(e.g. the pit filled DEM.) 

td:hasComputableDependents 
(fo:PrimaryCode) 

A recursively defined method (i.e. it queries the 
ontology with td:hasComputableDependents as a 
predicate) used to check if all the dependent data sets 
of the desired data set are computable or exist already. 

td:hasComputableData 
(fo:PrimaryCode) 

Searches the list of potential data sets for a given 
terrain data group to determine which ones are able to 
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have all their dependents satisfied given the current 
actual data associations. 

td:hasComputableData 
(fo:UsingNamespace) 

Adds a library namespace for a class used by 
td:hasComputableData. 

td:ComputeData 
(fo:SecondaryCode) 

Defines the method ‘GenerateNewFilename,’ which 
queries the for the file suffix of the desired data set and 
the root DEM of the terrain group to create the 
filename for the new file according to the customary 
logic for TauDEM file names. Also includes error 
checking to make sure the terrain group and root DEM 
exist. 

td:ComputeData 
(fo:PrimaryCode) 

The code that assembles the TauDEM command line 
(via several queries and calling GenerateNewFilename), 
executes the command, and adds the filename for the 
new data to the ontology and the terrain data group. 
Used in a truth query, it returns success or failure. 

 
 
Each of the two watershed delineation project purposes need a raw DEM and an 

outlet (shown in Figure 3-6). Once the files are identified the appropriate triples are added to 

the ontology to define the new terrain group, the raw DEM file and outlet file, and associate 

the raw DEM file and outlet file with the terrain group.  

Once the required data files are input the execution statement is passed as a query 

to the reasoning engine. If the query has as one of its parts the concept 

td:CurrentTerrainDataGroup then the name of the current terrain data group (the one 

created by the user) is substituted. For both of the project purposes the goal is to delineate a 

watershed (td:DoWatershedDelineation.) The query (<td:CurrentTerrainDataGroup 

td:ComputeData td:Watershed>)  to delineate the watershed is passed to the reasoning 

engine.  

The compute data function, illustrated in Figure 3-5, queries the ontology for the 

function that can compute the data set, the input and output data sets of the TauDEM 

function, and the command line flags for each of them, calls a secondary function to create 
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new file names for the output data sets, recursively queries the ontology to create 

dependent data sets that don’t yet exist, checks for context assessment functions and adds 

additional command-line parameters based on the context variables, and then calls some 

common code to execute the command line in either MPI or standard mode. The compute 

data command relies on the deductive reasoning engine to return the sets of values it needs 

to assemble into the command line. For example, the subproperty and subclass reasoning to 

obtain the correct file suffixes and flags and the inverse-of reasoning to obtain the TauDEM 

function that can compute the desired data sets. The compute data function has 18 different 

calls to the reasoning engine, several of which often call other functions in turn as well as 

recursively calling the compute data function to compute dependent data sets that do not 

exist yet. 

For this exercise both watershed delineation analysis contexts were used as two 

different trials.  The single-basin result is shown in Figure 3-9 (a) and the multiple-basin result 

in shown in Figure 3-9 (b). The triples in the ontology created through this process, for the 

single-basin analysis context, are shown in Table 3-2. The multiple-sub-basin analysis context 

is similar. Figure 3-10 shows an excerpt from the output of the reasoning engine. 

3.4 Discussion 

The key goal of a functional ontology is to include programming language code as 

part of a knowledge base, and to include it in a fashion a reasoning engine is able to utilize 

and to know when to utilize. The results of the demonstration show how integrated semantic 

reasoning and procedural execution can enhance tradition hydrologic analyses, as well as 

how the project situation can influence can be presented to influence the analyses.  
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Figure 3-6. The analysis context (project purpose). The analysis context sets the overall big 
picture of the desired data. The required data must be input by the user; the execute 
statement is the goal of the analysis. TauDEM functions can define specialized command 
flags for individual analysis contexts (td:MultipleBasinModelSetup or 
td:SingleBasinModelSetup,) such as td:hasStreamNetCommandFlag, or for the group of 
analysis contexts via the semantic logic (such as the td:hasThreshCommandFlag shown in 
red). The colors highlight the two different knowledge base sets for the two project 
purposes.  
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Figure 3-7. Example of an additional analysis context. This analysis context uses a 4-way pit 
filling algorithm to solve digital dam problems. 
 
 

The procedural code (see Figure 3-5 and Table 3-1) executed queries against the 

semantic triples. The semantic queries used declarative logic in finding matches to the 

queries and, when needed, executed the predicate procedures. The predicate procedures 

themselves executed queries in order to recurse through the list of dependent to a data set. 

The general-purpose ability of the procedural knowledge to enhance the reasoning logic sets 

this knowledge model apart from other knowledge modeling forms. The use of concepts, 

concept relationships, and deductive reasoning logic sets this method of knowledge 

modeling apart from scripting languages and many other programming forms. 
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Figure 3-8. Contours of the raw DEM file used inthe demonstration example, 
LoganCanyon.tif. The pink dot near the lower left corner is the outlet location 
(LoganOutlet.shp). 
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(a) Single basin watershed (b) Multiple basin watershed 

Figure 3-9. Watershed basins produced by the TauDEM suite of tools, the TauDEM 
knowledge base, and the functional ontology API. 

 

Having the code as an active part of the knowledge base creates the opportunity for 

discussion of the code among a community of software engineers who specialize in the focus 

of the ontology. The analysis approach is made bare for all to view and discuss. This 

paradigm allows for an expert systems approach whereby both the knowledge about system 

concepts as well as analysis methods are encoded into a “living” document that the 

computer can operate on to conduct independent analyses. The functional aspects of the 

analysis are not hidden behind a user interface or buried in a set of code files but rather are 

an integral part of the input to the system. Each code snippet is associated with a concept 

and can employ all the expressive power of the coding language to fully create the meaning 

of the action behind the concept. 
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Table 3-2. Semantic triples created by the execution of the td: CreateNewTerrainGroup user 
function, as discussed above. The analysis context used was the single basin model. 
Subject Predicate Object 

:LoganCanyonTerrainGroup rdf:type td:TerrainDataGroup 

LoganCanyon.tif rdf:type td:RawDEM 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyon.tif 

LoganOutlet.shp rdf:type td:Outlet 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganOutlet.shp 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonfel.tif 

LoganCanyonfel.tif rdf:type td:PitFilledDEM 

LoganCanyonfel.tif td:hasPitFillAlgorithm td:D4Planchon 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonp.tif 

LoganCanyonp.tif rdf:type td:D8FlowDirRaster 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonsd8.tif 

LoganCanyonsd8.tif rdf:type td:D8SlopeRaster 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonad8_no_outlet.tif 

LoganCanyonad8_no_outlet.tif rdf:type td:D8ContribAreaNoOutlet 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonsrc_no_outlet.tif 

LoganCanyonsrc_no_outlet.tif rdf:type td:StreamRasterNoOutlet 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonom.shp 

LoganCanyonom.shp rdf:type td:AdjustedOutlet 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonad8_adj_outlet.tif 

LoganCanyonad8_adj_outlet.tif rdf:type td:D8ContribAreaAdjOutlet 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonsrc_adj_outlet.tif 

LoganCanyonsrc_adj_outlet.tif rdf:type td:StreamRasterAdjOutlet 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonord.tif 

LoganCanyonord.tif rdf:type td:NetworkOrder 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyontree.dat 

LoganCanyontree.dat rdf:type td:StreamNetworkTree 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyoncoord.dat 

LoganCanyoncoord.dat rdf:type td:NetworkCoordinates 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonnet.shp 

LoganCanyonnet.shp rdf:type td:StreamNetworkShapefile 

:LoganCanyonTerrainGroup td:hasActualDataAssociation LoganCanyonw.tif 

LoganCanyonw.tif rdf:type td:Watershed 

LoganCanyonw.tif td:AnalysisContext td:4PointFlowModelSetup 

LoganCanyonw.tif td:hasBasinCount td:SingleBasin 

 

The tight integration of the general purpose procedural code with the semantic 

network and semantic reasoning engine constitute a new paradigm of computer 

programming. It is not strictly a declarative logic programming style nor is it a strict 

procedural logic programming style but rather a blending of the two. Functional ontologies 

allow programmers to reference globally accepted concepts and tie code to these concepts.  
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Figure 3-10. Excerpt from the log produced by running the td:CreateNewTerrrainDataGroup 
user method and choosing the single-basin project purpose. 

 

Compiling code to 
C:\Users\Administrator\AppData\Local\Temp\y2i0nqxw.1ta\fos_364e8f13-7f65-
4257-8e1c-52d1db6cee79.dll 

Successfully compiled the code. 
Checking CA td:useMPI 
Set default value (td:SingleProcessor) for td:useMPI 
Executing statement <LoganCanyonTG td:ComputeData td:Watershed> 
Found 15 computable data sets, 2 actual data sets, and 0 uncomputable data sets. 
Determining command-line format of the 5 output data sets for td:StreamNet 
The reasoning engine deduced that there are 5 output data sets, td:NetworkOrder 

(c:\work\TestProjects\LoganCanyon\LoganCanyonord.tif) td:StreamNetworkTree 
(c:\work\TestProjects\LoganCanyon\LoganCanyontree.dat) td:NetworkCoordinates 
(c:\work\TestProjects\LoganCanyon\LoganCanyoncoord.dat) 
td:StreamNetworkShapefile 
(c:\work\TestProjects\LoganCanyon\LoganCanyonnet.shp) td:Watershed 
(c:\work\TestProjects\LoganCanyon\LoganCanyonw.tif)  

Determining input data sets for td:Watershed 
Dependent data set td:PitFilledDEM not computed, recursing via the reasoning engine... 
Found 15 computable data sets, 2 actual data sets, and 0 uncomputable data sets. 
Determining command-line format of the 1 output data sets for td:PitRemove 
The reasoning engine deduced that there is 1 output data set, td:PitFilledDEM 

(c:\work\TestProjects\LoganCanyon\LoganCanyonfel.tif)  
Determining input data sets for td:PitFilledDEM 
Deduced that the correct command line is: PitRemove.exe  -fel 

c:\work\TestProjects\LoganCanyon\LoganCanyonfel.tif  -z 
c:\work\TestProjects\LoganCanyon\LoganCanyon.tif 

[It would be nice if the log reported successfully executing a function] 
Successfully created the new td:PitFilledDEM data set 

c:\work\TestProjects\LoganCanyon\LoganCanyonfel.tif. 
Successfully computed the data set td:PitFilledDEM 
Dependent data set td:D8FlowDirRaster not computed, recursing via the reasoning 

engine... 
Found 14 computable data sets, 3 actual data sets, and 0 uncomputable data sets. 
Determining command-line format of the 2 output data sets for td:D8FlowDir 
The reasoning engine deduced that there are 2 output data sets, td:D8FlowDirRaster 

(c:\work\TestProjects\LoganCanyon\LoganCanyonp.tif) td:D8SlopeRaster 
(c:\work\TestProjects\LoganCanyon\LoganCanyonsd8.tif)  

Determining input data sets for td:D8FlowDirRaster 
… 
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One of the potentials benefits of this approach is that general purpose algorithms 

can be researched and constructed to mine data, deduce further information from the data, 

and also potentially find inconsistencies with the algorithms and reality, thus aiding the 

identification of research opportunities. 

Further, the functional ontology approach also is a step towards realizing the fourth 

paradigm of discovery, data-intensive discovery (Hey et al., 2009) wherein computers do the 

bulk of the analysis and discovery on huge data sets, guided by the concepts and 

understanding given by the experts. Functional ontologies should provide a mechanism to 

facilitate the automated processing and assessment of large quantities of data in a manner 

that could yield results in a fraction of the time in which it could be done via human 

interaction. This data-to-theory paradigm has a competing paradigm, a tools-to-theory 

paradigm (Gigerenzer, 2000) that posits that the way to increased understanding relies on 

increasingly advanced tools to research and measure information about the world. There is 

likely a feed-back mechanism in the creative development of new tools for measuring data 

corroborating theories. For hydrology, the ultimate goal is then to have a tool that can, in an 

automated fashion, research information about a watershed, evaluate the appropriateness 

of the modeling tools, and then create an analysis model that accounts for both user 

purposes and the on-site processes.  

An alternative approach for scripting actions are workflows such as those in ArcGIS 

ModelBuilder (Armstrong, 2009). There are two disadvantages of using workflows when 

compared to using functional ontologies. First, the functional ontology approach can utilize 

information about the data and models to discover which data and models should be 

applied. Secondly, by having the reasoning engine querying for the data rather than having 
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the user supply the data the reasoning engine could use other procedural knowledge to 

create the data set if needed. 

3.5 Conclusions 

The results demonstrate that artificial intelligence reasoning engines can be 

successfully utilized for hydrologic purposes. The demonstration showed how an integrated 

knowledge base of TauDEM concepts (declarative knowledge), procedures relating to the 

execution of TauDEM functions (procedural knowledge), and relationships between the 

analysis context and the optional TauDEM execution parameters (contextual declarative and 

procedural knowledge) can be use to analyze data, create 15 data sets, and in the end 

delineate a watershed, all in an automated manner.   

The integration of these forms of knowledge resulted in a knowledge system that is 

more capable than either one alone. Through the modeling of concepts and procedures 

related to those concepts, functional ontologies could play a significant role in the 

advancement of the state of science of automated information processing and modeling.  
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CHAPTER 4 

FACILITATING COMPUTATIONAL MODEL INTEGRATION 

WITH SEMANTIC AND PROCEDURAL KNOWLEDGE MODELS4 

Abstract 

Given that water is a driving force in many environmental and ecological situations, 

using hydrologic models together with environmental or ecological models for decision 

purposes is happening more frequently. There are many challenges in model integration but 

two key challenges addressed by this work are identifying models that are able to provide 

the data of appropriate type and sufficient scale and using models with unique input and 

output data formats and execution mechanisms as a part of an integrated system.  Semantic 

modeling of procedural computations provides a new approach to facilitate model 

integration. By utilizing metamodels, or models of models, a semantic reasoning engine can 

reason about integrating disparate and unique models. The other key to model integration is 

to view the process not as an attempt to integrate models but rather a process of deducing 

one form of data from another. In order to use the reasoning engine to deduce relationships 

between data sets a distinction must be made between fully mutable, partially mutable, and 

immutable properties of data. Similar to the requirement for semantic models to use unique 

concept identifiers, the immutable and partially mutable properties of data sets act as a 

unique fingerprint that procedural and semantic knowledge can use to identify them. Using 

this data identification and computational metamodel approach together results in a 

                                                           
4
 Created for publication in the Journal of Environmental Modeling and Software. The authors 

are Aaron Byrd and David Tarboton. 
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functional ontology model integration system that can use disparate models in a coherent 

fashion, automatically selecting the models to use. 

In order to demonstrate how semantic and procedural modeling can facilitate model 

integration, a demonstration project predicting climate change impacts for a study area in 

Georgia has been created. Two climate change scenarios are downscaled and turned into 

sets of weather data. A hydrologic and agent-based salamander model is also created. The 

goal of the project is to deduce salamander populations from climate information.   

The results of the modeling exercise show that automated model integration was 

enabled by an ontology that combined semantic and procedural knowledge. Further, the 

results demonstrate that immutable and partially mutable data properties provide the 

uniqueness property necessary for the reasoning engine to identify data set relationships and 

dependencies. With the metamodel and data semantic and procedural knowledge models 

the reasoning engine is able to integrate disparate computational models into a powerful 

deductive logic workflow engine. 

4.1 Introduction 

Model integration is becoming increasingly used and an important tool to examine 

and engineer multiple systems. Increasingly water managers are being asked to examine the 

impacts of water management options on water quality and ecology. Model integration 

requires knowledge of data sets, such as the type of data, whether the data is historic data or 

model-produced data for a scenario, time and space scale (internal scale and extent), and the 

units. Also included in this body of knowledge are the procedures for creating the workflows 

and transforming one data set into another.  Semantic modeling can facilitate model 

integration. One of the goals of semantic modeling is to facilitate automated analyses of 
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complex situations. Computational models, such as hydrologic models, are complex tools 

that involve many data sets. They often involve many parameters and describe many 

different physical processes. The task of analyzing and transforming significant amounts of 

data into the physical process parameters, as well as the task of transforming the data into 

the description of the geometry of the problem for the numerical algorithms, is not simple 

and straightforward. Often the results of one analysis can dictate other analysis steps. As 

such they are not easily added to workflows. They also involve a wide range of concepts, 

from the physical processes they model (including appropriate scales), to describing and 

creating appropriate geometry for the numerical model, including boundary conditions and 

model parameterization. Thus the semantic knowledge set required to fully describe 

computational models is significantly large and costs a significant amount of effort to put in 

to standard semantic models.  Yet these concepts represent a significant body of knowledge 

of process representation. 

 It is the interaction of physical processes, many of which are represented in 

computational models, which are key to understanding the overall system impacts to 

management options. While it is often desirable to examine, for example, ecological impacts 

of watershed management decisions, often smaller projects just do not have the budget for 

creating and integrating ecological models on top of hydrologic models.  It is practical 

limitations, rather than theoretical limitations, that limit systems models. If these 

computational models could be constructed and connected in an automated fashion, 

though, then there would be little in the way of examining a wider set of consequences for 

decisions.  
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The goal of this paper is to demonstrate that concepts about disparate 

computational models can be incorporated into a knowledge base that allows a semantic 

reasoning engine to reason about and execute them. This is done using a new integrated 

semantic and procedural knowledge reasoning engine and knowledge base that we have 

developed (see Chapter 2). The computational models are automatically included in a 

workflow as part of the deductive process, creating a set of loosely-coupled models. The key 

to the seamless integration of computational models into the deductive workflow is the use 

of a semantic metamodel of computational models. Each computational model is unique, 

and as such semantic models describing them will be unique. But the overall purpose of a 

computational model used in the physical sciences is to transform one set of data into 

another. Generalizing this knowledge about computational models creates a metamodel that 

the reasoning engine is able to use to reason about the different models.  

Computational models are created to be used, in general, in a decision making 

processes. The key driver of the decision process, though, is not the models but rather the 

data. The computational models are the tools for deducing the desired data from other data. 

When viewed as such, computational models would seem a natural fit with reasoning 

engines, albeit they operate on very complex sets of knowledge. Reasoning over data and 

the relationships between data sets is where the semantic and procedural reasoning engine 

can be of especial assistance. For this purpose a suite of ontologies have been created that 

describe what it means to be a data set as well as time and space scaling and scale 

comparison of data sets. By being precise about the data requirements the reasoning engine 

can use the scale information to find relationships between desired data sets and data sets 

output by computational model as well as historical data sets. The key data set properties 
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are time and space extent and internal scale, data type, and the scenario it is related to 

(including the historic scenario for measured data). 

To demonstrate the viability of this semantic and procedural approach to model 

integration a logical infrastructure will be created that a) describe the computation models,2) 

describe classes of simulations for particular computational engines, and 3) describe project 

frameworks. Two computational modeling engines are used, the first is a stochastic weather 

model written in the R scripting language (R, 2011) and the second is a hydrologic and 

ecologic agent-based model written as a NetLogo (Wilensky, 1999) model. NetLogo is a 

program to create and run agent-based models. NetLogo, and thus the NetLogo simulations, 

run on Java (Oracle, 2011). The data creation project, which ends up using these two 

simulations, examines the effect of climate change projections on the population viability of 

an ecologically sensitive species, the Frosted Flatwoods Salamander. The salamanders 

depend on specific hydrologic situations in order reproduce and the climate change 

projections influence the hydrology of the modeled area.  

4.1.1 Background 

Semantic modeling is the modeling of individual concepts and their relationships to 

other concepts. The relationships between the concepts form a web or graph. The 

fundamental idea behind semantic modeling is that it is the relationships between the 

concepts that give the concepts meaning. For example, a set of numbers takes on meaning 

when they are expressed as representing measurements of some physical property. In 

hydrology we often use informal semantic models to represent the many concepts we work 

with and how they relate to the tools and computational models we use. Formal semantic 
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models are based on globally unique representations of concepts and formal semantic logics 

called descriptive logics. 

Semantic models are often recorded using XML. One of the advantages to using XML 

is that the URL can be set up as a namespace and the actual unique concept name shortened 

for increased human readability without sacrificing the full URL representation of the 

concept. 

4.1.2 Functional Ontologies 

Functional ontology (see Chapter 2) logic is a formally defined semantic logic 

(http://chl.erdc.usace.army.mil/FO-20111201#) that extends the concepts of semantic 

modeling by providing for specific properties of conceptual relationships.  These properties 

of the relationships are functional aspects of the relationship concept. The power of the 

functional ontologies is what enables the creation of the overarching logical infrastructure.  

4.1.3 Metamodels 

The term “metamodel” has been coined to refer to models of models. Metamodels 

abstract and generalize features of the underlying models. Metamodels are used in two 

manners. The first is the abstraction of software and the second is in semantic models. The 

Model Driven Software Engineering (MDSE) community uses metamodels (and meta-

metamodels, or megamodels) such as Unified Modeling Language (UML, 2010) diagrams to 

represent underlying software concepts and relationships. The goal of these metamodels is 

to enable the automated conversion of one software description into another or the 

automated creation of software from the description diagram. 

http://chl.erdc.usace.army.mil/FO-20111201
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A recent advance in business process modeling also includes metamodels and 

illustrates the use of metamodels for semantic modeling. ConceptBase (Jeusfeld, 2009) 

includes the concept of metamodels, in the sense of models of semantic models used for 

business database processes (Jarke et al., 2009). The goal of these metamodels is to enable 

the integration of legacy database process models into a more complex system. 

Semantically defined web services (Payne and Lassila, 2004) have also benefitted 

from recent work in metamodeling. Semantic web services are web services whose interface 

is defined in the usual (e.g. REST or SOAP) form but is also described by a semantic model. 

Much like the ConceptBase metamodels, the Semantic Web Service metamodels are used to 

abstract the properties of unique and varied semantic web services in order to facilitate their 

integration into a larger system of services (De Virgilio, 2010).  

Given the success in using metamodels to integrate disparate and varied systems, 

this work will investigate their use as part of a functional ontology in order to reason about 

using disparate and varied computational models to deduce new knowledge from existing 

knowledge. 

4.2 Methods 

In order to investigate the integration of computational models into a semantic and 

procedural knowledge framework, a logical infrastructure will be created and tested. This 

logical infrastructure will include a range of metamodels for data sets, computational 

models, and projects which control the structure of the data as well as provide critical 

functionality. Finally, these models will be used in an example that examines deducing the 

effects of climate change on the viability of an endangered ecological species. 
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4.2.1 Semantic Metamodels of Computational Models 

Metamodels are semantic models that describe a class of semantic models, similar to 

a schema or template. By creating metamodels and utilizing them to describe the actual 

semantic models, we are able to express in general terms properties and attributes of a 

whole class of semantic models. This approach greatly increases our ability to incorporate 

specific semantic models into a more general semantic modeling framework.  

As a directly relevant example, consider computational models. Conceptually, 

computational models embody a functionality designed to compute one set of information 

from another.  So while we could make semantic models of specific computational models, 

their use would be applicable only to other semantic models directly related to the first. For 

example, Figure 4-11(a) shows two simple semantic models about computational models 

called “Computational Model X” and ”Computational Model Y.” If there was a need for a 

workflow engine to compute the data set D:X_Data then we could use “Computational 

Model X.” However, for the workflow engine to make use of this knowledge it needs an 

inherent understanding of the meaning of X:hasOutputDataSet. If the workflow engine also 

needs to compute the data set D:Y_Data then it can use “Computational Model Y” but, again, 

only if the workflow engine has an inherent understanding of the meaning of the concept 

Y:ComputesDataSet. This requirement imposes a significant burden on the workflow engine 

and quickly becomes untenable as more and more models are added to the list of available 

computational models.  

What is needed is for the workflow engine to have to understand the meaning of 

X:hasInputDataSet, X:hasOutputDataSet, Y:ComputesDataSet, and Y:NeedsDataSet apart 

from their relationships shown in the diagram. What is missing is the knowledge that 
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X:hasOutputDataSet and Y:ComputesDataSet are both predicates denoting model output. 

Similarly X:hasInputDataSet and Y:NeedsDataSet are both predicates denoting input data 

requirements.  Enter the metamodel shown in Figure 4-11(b). The metamodel 

“Computational Model Class” is a semantic model of semantic models, specifically semantic 

models of computational models. It defines computational models as having input and 

output predicates. Below the “Computational Model Class” are the definition of the 

relationships for “Computational Model X” and “Computational Model Y.” Given this new 

information, a workflow engine would only need to know about the concepts of the 

metamodel in order to deduce the correct workflow. Whether one or one hundred models 

are part of the model knowledge base, the workflow engine can just as easily search and 

deduce the workflow. Thus the metamodeling approach gives the workflow engine unlimited 

flexibility to incorporate computational models. 

Given that model integration involves more than one model, a computational model 

metamodel has been created as part of this work effort. The metamodel is somewhat more 

complicated than the simple one shown in Figure 4-11. In creating the metamodel, there are 

really two parts, creating concept classes to represent the abstract ideas, and defining 

predicates classes that represent the abstract relationships.  Figure 4-12 shows a more 

complete conceptual metamodel of computational models as well as the symbol used for 

computational models in the abstract schematic diagrams included later in Figure 4-17. 

The computational model semantic metamodel created for this work actually has a 

slightly different view of computational modeling, one that better facilitates a collection of 

computational model instances. The metamodel defines what is termed a “Model Class.” 

Model classes are viewed as describing general properties of a computational model engine, 
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such as general input and output data sets as well as other typical attributes of models (not 

properties, although they could. See also Table 4-1.) These attributes could be, for example, 

that the computational model uses a defined time step or uses one of a set of numerical 

integration methods. These attributes of the model class are used by the model class itself, 

but not, in general, outside of the model class. Model classes include references to what are 

termed “reference models,” which are specific instances of computational models and 

simulation data that have been previously set up. It is these reference models which are able 

to actually compute data sets; the model class is an abstraction level of the group of 

reference models. The computational model semantic metamodel defines relationships for 

both model classes and reference models.  

4.2.2 Semantic Metamodeling and Procedural Knowledge 

When considering metamodels as semantic models in and of themselves, if is fairly 

straightforward to identify functionality that applies to the metamodels and thus to the 

semantic models as well. For the computational model metamodel example, computing a 

desired data set is an obvious example. A somewhat more subtle example is computing the 

dependency chain for a given data set. For a semantic model of a computational model, the 

dependency of an output data set on the input data sets is a second-order logic relationship 

(e.g. there are two dependency links between data sets, meaning that the output data is 

created by the computational model, and the computational model required input data). 

Adding the computational model semantic metamodel to the mix and the dependency 

becomes a highly complex third-order logic (depends on the connections to both the 

metamodel and the computational model) where the logic connections are independently  
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(a) (b) 

Figure 4-11. Simple semantic model and metamodel of computational models. Part a shows a 
semantic model for “Computational Model X” and “Computational Model Y,” while part b 
shows the metamodel “Computational Model Class” and how to describe “Computational 
Model X” and “Computational Model Y” in terms of the metamodel. 

 
defined (but conform to the metamodel description), not something easily deduced by a 

reasoning engine based on first and second-order logics. 

Adding the data set format described below increases the dependency of one type of 

data on another two steps to a fifth-order logic – data types are part of data sets (one step), 

data sets are computed by computational models (one step) that consume input data sets 

(one step) that have data (one step), the description of computational models are 

independent but defined to conform to a metamodel (one step).  A seemingly simple  
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Figure 4-12. "Meta" conceptual model of computational models. In this form the relationship 
between the output data sets and the input data sets is a second-order logic relationship 
with the computational model forming the vital relationship link. 

 
 

question as “What data do I need to compute a desired result or output” is not so simple 

after all. It is, however, quite amenable to being described as an algorithm that can be 

included as a procedural aspect of a predicate. Thus, a useful metamodel predicate would be 

a predicate for the dependency of one data on another. 

With the computational model semantic metamodel, a dependency predicate, and a 

“create and execute the model” predicate the functional ontology reasoning engine actually 

becomes a powerful workflow engine in and of itself, not only able to execute computational 

models but integrate a broad spectrum of metamodels with an inherent understanding of 

the meaning of data. In essence the semantic and procedural aspects of the computational 

model metamodel represent, in a straightforward manner, the abilities of a workflow engine. 

By enabling procedural aspects of knowledge to be represented in a directly usable fashion 

the functional ontology approach to knowledge modeling creates a powerful mechanism to 

deduce, create, and transform knowledge.  
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Table 4-1. Computational model metamodel predicate definitions. 
Predicate Meaning 

md:hasReferenceModelPredicate A semantic model of computational models 
include instances of simulations for the modeling 
engine. Reference models are these simulation 
instances that can be customized to produce 
data sets for specific scenarios. The semantic 
model must have a predicate to relate these 
reference models to the model class definition.  

md:hasReadModelConcept Defines the predicate used by the semantic 
model for reading in a reference simulation. 

md:hasCreateModelConcept Defines the predicate used by the semantic 
model for creating and running an instance of a 
reference model customized for a scenario. The 
predicate function should also write the output 
data sets in the format needed by the 
computational model and read in the resulting 
data sets. 

md:hasOutputDataPredicate Defines the predicate that used to identify 
output data created by a model class.  

md:hasInputDataPredicate Defines the predicate that used to identify input 
data created by a model class.  

md:hasReferenceModelOutputDataSetPredicate Defines the predicate used to define actual data 
sets set up as output data sets of the reference 
simulations. These data sets have time and space 
scales and data types but do not have scenario 
specifications or actual data values. 

md:hasReferenceModelInputDataSetPredicate Defines the predicate used to define actual data 
sets set up as input data sets of the reference 
simulations. These data sets have time and space 
scales and data types but do not have scenario 
specifications or actual data values. 

 

4.2.3 Semantic Models of Data Sets 

Computational models, whether physics-based numerical models, analytical models, 

statistical models, or otherwise, are designed to represent a process that transforms one 

type of data, one type of knowledge, into another. The data for computational model used in 

the physical sciences is frequently of a physical-world, geosciences context. It is this type of 

data that will be considered for this work.  
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As engineers and scientists we use computational models to assist us in analyzing 

data and to produce results, or output data upon which we make decisions. For example, if a 

runoff model tells us that a new proposed subdivision will result in increased flooding 

downstream we require mitigation measures of the developer. If a tsunami model tells us a 

tsunami is on the way we alert the populations at risk so they can evacuate. These decisions 

are based on the data produced by models.   

In computational modeling there are two broad classes of knowledge that must be 

considered and weighed in order to adequately provide new knowledge: knowledge about 

the models and knowledge about the data. Computational models encode a significant 

amount of knowledge about physical processes and logical data transformation pathways. In 

general, since formal semantic modeling has only recently started to be used in conjunction 

with computational modeling, computational models are built on informal (and often 

implicit) semantic models. Formal semantic models of the computational models thus help to 

bridge the gap between the informal semantics of the computational model and a formal 

semantic representation that facilitates integration with other semantic models, including 

data. Computational models, though, are just a means to capture and use formal procedural 

knowledge in order to transform one knowledge form into another; they represent, in a 

formal procedural manner, the relationship between data. It is not the exercise of the 

procedural knowledge that is desired rather the end results of the execution. The 

computational models are thus just a tool to deduce mathematically, results in the form of 

output data based on the knowledge represented by their encoding. Computational models, 

then, can be viewed as a source or store of knowledge. It is this knowledge that must be used 
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for real-world decisions, not the models. Thus a data-centric view of model integration is 

both needful and appropriate.   

When looking at how models use data, and how we set up computational modeling 

projects to answer questions, the various dimensions of data become apparent. These are 

illustrated in Figure 4-13 and Figure 4-14. The first dimension is the fundamental meaning of 

the data; these are not merely meaningless values but have some real-world physical 

meaning, such as air temperature, stream stage, or population count. A second dimension 

involves the representation of the data – the data we measure or model is only a subset of all 

the possible data. It has both spatial and temporal extents as well as internal scaling. The 

third dimension of data comes to bear from looking at modeling projects. Often 

computational modeling projects are designed to look at “what-if” scenarios – what if the 

city picks land use plan A over plan B, what if a levee is put in along the river, what if an 

approaching hurricane changes it course, what if carbon emission scenario A1B comes to 

pass, etc. Computational models are designed to help answer these questions, but it should 

be recognized that an integral part of a data model is the alternative or project forcing 

scenario used to produce the data. It should also be noted that what differentiates scenarios 

are the data sets designed as alternate versions of what could be.  

4.2.4 Deductive Logic for Data Sets 

To enable the deductive logic for the data sets, the procedural knowledge examining 

and evaluating the relationships between data sets will be encoded as part of an ontology of 

data sets.  To determine if one data set can be created from another (e.g. the input data set 

for one computational model from the output data set for another computational model) the 

properties of each data set are compared. The properties of datasets are the key to uniquely  
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Figure 4-13. Semantic model of data sets includes several attributes that act as dimensions to 
the data set. 
 
 
identifying them for use as part of the reasoning process. There are three types of 

properties: immutable (can’t change) properties, such as the data type and the scenario used 

to create the data set, fully mutable (can change, fully reversible) properties, such as the 

units, and partially mutable (can change but not in a reversible sense) properties, such as 

being able to scale from a fine scale to a coarse scale. 

The immutable properties are used to uniquely identify one data set from another. 

The partially mutable properties are used to clarify whether one can be turned into another. 

The mutable properties simply clarify the form of the data. By testing the immutable and 

partially mutable properties the reasoning engine will be able to identify which data sets 

directly relate to others in a mutable-only fashion.  Data sets that are immutable must be 

deduced by the computational models.  

The first two data tests are on the immutable properties – matching the data type, 

scenario, and extent. Once the reasoning engine verifies that they match then the internal 

scale information is checked. The scale information is built on a “scale” ontology that defines 
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the properties of a scale set. The scaling ontology, meant to be a proof-of-concept ontology, 

is shown in Figure 4-15. The scale includes time and space domains, both extent and internal 

scale. The time and space extent triples are actually based on other ontologies, ontologies of 

space and time. The space ontology (describes where things are at) is an extension of the 

GeoRSS simple model (GeoRSS, 2012). The GeoRSS simple model defines simple feature 

objects such as points, lines, and polygons. The functional ontology space ontology adds the 

concepts of an envelope (feature extended by a radius) and whether or not one envelope 

encompasses another. Procedures are used to compute the envelope (fgeo:Envelope) and 

whether one envelope covers (fgeo:FullyEnvelopes) another. The time ontology, while 

simpler, has similar functionality. The scale ontology uses this functionality to see if one data 

set is fully enveloped by another, both spatially and temporally.  

 

 
Figure 4-14. Representation of the relationships between data, scale, and scenario for a data 
set. A data set consists of values from a data set for a particular scenario. The extent and 
internal spacing of values is determined by the scaling data. “Data” is considered a spatially 
and temporally continuous property. Data sets are windows into “data” values. 
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After it is determined that one data set extent covers the other, the internal scale is 

then checked to see if the data can be transformed from one to the other. The order, for 

both time and space, of internal scale types is that point values can be derived from real-

valued scales, and real-valued scales can be derived from other real-valued scales or uniform 

scales. Point scales refer to the data set being a single value, either in space or time. Real-

valued means that the data values are continuous over the interval but broken up into unit 

parts, which are of the size <internal scale value>. For example, hourly time series for an 

airport meteorologic data would have internal space scale <scale:PointValue> and internal 

time scale <scale:RealValued> with internal time value “0.041667,” which is one hour 

expressed in Julian time (one day = 1.0). The scale ontology has procedures for determining if 

one internal scale is equal to or can be upscaled to another. Downscaling is not permitted at 

the moment. 

4.2.5 Procedural Modeling for Data Values 

There are a large number of data types, from single values to multi-dimensional time 

series. The goal of the ontology is to describe the data sufficient that the reasoning engine 

can use the data. The underlying data storage mechanism, however, is open to different 

forms. For example, the parameter and statistical data is stored as a set of triples in the 

ontology whereas time series data is stored in a class container in the common code of the 

ontology. Another data type created is a two-dimensional gridded time series where the time 

data is stored similar to the time series but the data is cached on the hard drive until needed. 

So long as the procedural knowledge is able to answer the queries presented the underlying 

form is unimportant. Since data transformations are an important part of the model 

integration process, the procedural knowledge is expected to provide the interpolation and 
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transformation tools, either using strict procedural knowledge or a combination of semantic 

and procedural knowledge.  

4.2.6 Modular Ontological Engineering 

The development of the semantic models involved creating different sets of closely 

related concepts into individual ontologies. This approach allows the individual ontologies to 

be developed in tandem. There are several different flavors of ontologies that were 

developed and used. The  “Upper Level” ontologies are used to define the data types, such as 

“count:Population” or “thic:Precipitation.” Using these ontologies enables disparate models 

and data sets to be identified in uniform terms. The application-level ontologies (Table 4-2) 

form the foundational semantics and capabilities. These include the scale ontology, the time 

series ontology, etc. The metamodel ontologies (Table 4-3) utilize, integrate, and define 

semantics about the application-level ontologies. These include the Computational Model 

semantic metamodel, the data set metamodel, and one for reading card-based project files 

of computational models. The conceptual relationships between the ontologies are shown in 

Figure 4-16. 

4.2.7 Pulling It All Together: Determining Model Integration Requirements 

The computational model metamodel, and thus the computational models, is framed 

in terms of transforming inputs into outputs. To create desired outputs requires specific 

inputs. Thus the driving force for model integration are the data requirements for each 

computational model step. The project metamodel defines the desired data set to be used 

for decisions – this defines the first step of the analysis process. The task of the reasoning 

engine is to use the logical infrastructure as well as the actual model descriptions to deduce 
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the path from the scenario data sets to the decision data set. The process is illustrated in 

Figure 4-17. The complete knowledge base includes a collection of reference models (actual 

simulations), actual complete data sets (either historic or for a scenario) such as the scenario 

input data sets, and the project specification. The reference models refer to both input and 

output data sets that have a specified data type (the hollow shapes) and scale (internal and 

extent).  For example, the M1 model class has a reference model that takes a “star” type 

data set with scale S1.5 and transforms it into a “triangle” data set with scale S1.7. The “1” in 

the scale refers to an extent while the “.5” and “.7” refer to internal scales.   

 

 
Figure 4-15. An ontology of scale. This includes the concepts of extent and internal scale, 
both for time and space. 
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Table 4-2. Descriptions of the application-level ontologies developed for this project. 

Application-level Ontology Semantic Knowledge 
Description 

Procedural Knowledge 
Description 

Time Julian and Gregorian time Convert between Julian and 
Gregorian time formats 

Time Series (single) Defines concepts relating to a 
time series of values 

Interpolation of values 
between given points; 
integration of data from one 
time to another 

Scale Defines extent and internal 
space and time scales for data 
sets 

Check to see if one scale set 
is enveloped by another as 
well as if one internal scale is 
more refined than another 
(for upscaling) 

Functional Geography 
(space) 

Builds on the OWL Geo 
ontology; defines envelope 

Computes envelope of a 
geographic entity; computes 
if one entity envelopes 
another entity spatially 

Parameter Defines a real/integer/string 
parameter and its association 
with a parameter 
identification 

Read from text file 

Statistics Defines a pair of second-order 
statistics (mean, standard 
deviation) as well as a group 
of monthly second order 
statistics 

Add/query for monthly 
statistics based on month 
number rather than just 
name. 

Command-line execution Defines concepts around 
executing a command-line 
function 

Execute a system call to 
execute a command-line call. 

 
 
The deduction logic works backwards from the desired data set to the input scenario 

data sets. When the reasoning engine is asked to create the “diamond” S2.9 historic data set, 

shown in the project specifications panel of Figure 4-17, it searches for a data set and 

deduces that it can use the “diamond” S2.4 data set. It does this by looking examining all the 

data sets (and model produced data sets) of the correct type to find one at the correct 

location and space scale. Since the data set does not exist it queries for the reference model  

 



111 
Table 4-3. Description of the metamodels created for the project. 

Metamodel Semantic Knowledge Description Procedural Knowledge 
Description 

Data Set Defines a data set as having a data 
type, set of data values, and a set 
of scale information (extent, 
internal scale). Also defines 
stochastic data sets and the 
“historic” or measured data 
scenario for use by all measured 
data. 

Checks if a desired scenario 
data set already exists; 
computes stochastic data set 
count 

Model 
Project 
 Alternative Scenario  

Defines the relationship between 
projects, project decision data 
sets, alternative scenarios and 
scenario data sets, computational 
model classes and the conceptual 
meta-model for computational 
models. 

Find or compute project 
decision data sets and 
scenario data sets; read 
model, execute model 
“meta” procedures 

Card-based Project Defines concepts that must be 
specified by models that have 
card-based project files to 
automate reading and writing 

Reading and writing the file, 
setting up the parameters 

 

used to create the data set and executes the metamodel’s CreateModel query (part of the 

logical infrastructure to be able to execute the models).  

The CreateModel query of the metamodel checks to make sure the input data sets 

are satisfied for the reference model, queries for the actual CreateModel predicate for the 

reference model’s model class, and then calls that CreateModel query. If the data sets (e.g. 

historic “star” 2.4) are not satisfied the CreateModel predicate of the metamodel begins the 

search anew for the input data sets. In this manner the reasoning engine steps backwards, 

deducing the previous link is the data transformation chain. Once it reaches to the existing 

data set for the scenario all the input data sets are satisfied and the computations begin and 

proceed up the modeling chain. If at any time a required data set does not exist, and the 

reasoning engine cannot find a data set that can be used to create it, the chain stops and the  
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Figure 4-16. Relationship between the several ontologies used to create the semantic and 
procedural models of conceptual models. 
 

reasoning engine reports the missing data sets. The “deduced workflow” panel also shows 

how data sets computed for a scenario for one project can be used for the same scenario but 

for a different project – the scenario is the key data set dimension, not the project it was 

created for. 

4.3 Demonstration Model Integration Project 

To demonstrate the utility of this semantic and procedural model and metamodeling 

approach, a proof-of-concept model integration project will be conducted that examines the 

impact of climate change on a hydrology-sensitive endangered species, the Flatwoods 

Salamander. This proof-of-concept is actually the first step in a more comprehensive analysis 

of Ft. Stewart, GA. This project will be completed by June 2013 and will be published by 

September 2013. Fort Stewart in Georgia, USA, is used to train military personnel.  
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Figure 4-17. A simple example showing a collection of models, existing data sets, project 
descriptions, and the final workflows deduced and executed. The model collection 
represents models as circles (e.g. M1, M2, etc.) with the curvy arrows as input and output 
data types. The various data types are represented as hollow shapes (star, diamond, 
hexagon, etc.). The data set collections shows data values for a data type, with a scale and 
scenario. The filled-in shapes represent data sets with the color (e.g. red, yellow) being the 
scenario. The S numbers below the shapes represent the scales, both extent and internal. 
The first number refers to an extent, so S1 would be a different location than S2, and the 
second number refers to the internal scale, with smaller number being more refined than 
larger numbers. 
 

 
The Flatwoods Salamander is found around a few ephemeral ponds. While the 

Flatwoods Salamander is both present and classified as endangered or threatened, training is 

restricted from those areas. The population level of the Flatwoods Salamander is thus a key 

variable of concern and used for decisions about the training facility. To model the Flatwoods 
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Salamander an agent-based simulation has been created using the NetLogo agent-based 

modeling software (Wilensky, 1999).  

In the agent-based salamander model, the physical environment in which the 

salamanders live is simulated as well as “agents” that are programmed to act as the 

salamanders. The environment includes elevation, surface water, vegetation, soil, and 

weather properties. The surface water, soil moisture, and weather properties vary over time.  

The salamander agents decide where the salamander should live, where it should move, and 

if it is able to reproduce or not. The salamander agents grow through the life cycle of the 

salamander and, if the environmental conditions are not sufficient or the agent is older than 

the general maximum age of salamanders, the agent dies. For more information see 

Westervelt et al. (2012). 

Because the key driver of the population lifecycle of the salamander is the presence 

of the nearby ephemeral ponds, a simple pond filling and depletion hydrologic model has 

been created as part of the environmental simulation. The key inputs for the hydrologic 

portion of the model are temperature and precipitation. The output of the simulation is 

salamander population level over time. The key scenario variables of interest are climatic 

variations from any one of a number of climate change scenarios. To bridge the gap from 

climate variations to weather, two models are used. The first is a Weather Research and 

Forecasting Model (WRF) (Michalakes et al., 2004) simulation run on a supercomputer. This 

model takes Global Climate Model (GCM) inputs as boundary conditions and outputs 

regional weather data, which is then analyzed and turned into climate change statistics.  

The next model is a stochastic weather model that takes the climate change statistics 

and stochastically creates sets of weather data. For the full modeling scenario another model 
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will be next in line, a hydrologic model that takes each of the weather sets and simulates the 

physical processes resulting in surface water ponding. For this example, however, the simpler 

hydrologic model included in the salamander agent model will be used. When completed, 

the salamander model will take both weather data and ponded depth information. While the 

WRF model is run on supercomputers, the stochastic weather model, the detailed hydrology 

model, and the salamander agent-based model can all be run on personal computers. This 

proof-of-concept will begin with the output of the WRF model as the scenario data and the 

project decision data will be the salamander population levels for a specified pond. The 

complete project will also incorporate a risk model that examines the probability of each of 

the scenarios and the expected outcome of the population under the scenario and forecasts 

expected risk for the installation.  

4.3.1 Modeling Domain 

The modeling area, shown in Figure 4-18, is a set of small ephemeral ponds on Fort 

Stewart, GA. However, the different reference models have various domains. The stochastic 

weather model is for the Savannah/Hilton Head Airport, in Savannah, GA. The WRF model 

covers the southeastern portion of the U.S. Table 4-4 shows the input and output data for 

each of the various models. 
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Table 4-4. Each of the computational models for the complete project requires different 
input and output data sets. The computational models act as the relationship links between 
the data sets. Two models will be used for the model integration proof-of-concept 
demonstration, the synthetic weather model and the Flatwoods Salamander model. 
Preliminary data from the WRF model will be used as an alternative scenario input data. 

Computational Model Input Data Output Data 

Global Climate Model (GCM) Climate Scenarios Global weather data 

Weather Research and 
Forecasting (WRF) (and post-
analysis) 

Global weather data at 
region boundaries 

From WRF: regional weather 
data 
From post-analysis: Climate 
statistics 

Synthetic weather model Climate Statistics Set of time series weather 
data for a location 
(stochastic representation of 
climate) 

Gridded Surface Subsurface 
Hydrologic Analysis (GSSHA) 
hydrologic model 

Precipitation, meteorological 
data, digital elevation data, 
soils data, land use data, 
stream profiles 

Surface water depths (in 
depressional ponds) 

NetLogo Flatwoods 
Salamander Model 

Surface water depth, 
meteorological data 

Flatwoods Salamander 
population count 

Risk Model Flatwoods Salamander 
population count 

Risk to facility 

 

4.3.2 WRF Scenario Input Data 

Two climate scenarios will be run for the proof-of-concept modeling exercise, a 

historic scenario and a climate change scenario loosely based on the Inter-governmental 

Panel for Climate Change’s Special Report Emissions Scenario (Nakićenović and Swart, 2000) 

A1B scenario.  

Figure 4-19 shows the two sets of precipitation statistics while Figure 4-20 shows the 

two sets of temperature statistics. These statistics are used to drive differences in the 

stochastic sets of weather data. Table 4-5 shows the scale information used with the WRF 

data. 

 



118 
4.3.3 Stochastic Weather Modeling 

The stochastic weather model, created to reproduce historical statistics, including 

auto- and cross-correlations, for eight hydrometeorological data at an hourly scale: 

precipitation, temperature, wind speed, barometric pressure, relative humidity, cloud cover, 

and direct and total radiation. The weather model is a stochastic time series model that will 

create hourly data for all eight variables, including cross-correlations. The weather model  

 

 
Figure 4-18. Locations of the ecological model domain (red square) and the Savannah/Hilton 
Head Airport (blue triangle). The yellow outline is approximately the boundary of Fort 
Stewart. The purple diamond is the approximate location of the pond shown in Figure 4-
21(a) where salamanders were most recently sighted. Background map imagery © 
OpenStreetMap contributors, CC BY-SA5. 

                                                           
5
 The Creative Commons Attribute-ShareAlike 2.0- license (CC BY-SA) permits copying of the 

imagery provided the attribution statement is included. 

http://www.openstreetmap.org/
http://creativecommons.org/licenses/by-sa/2.0/


119 

 
Figure 4-19. Precipitation statistics used for the two climate scenarios. 

 

 
Figure 4-20. Temperature statistics for the two climate scenarios. 
 
 
Table 4-5. Scale triples for the WRF data used as the input scenario data. The times are Julian 
values. 
cdr:WRFRegionExtent scale:hasSpaceExtent 37.391027 -90.765781 

29.465569 -75.438652 

cdr:WRFRegionExtent scale:hasSpaceScale cdr:WRFRegion_SpaceScale 

cdr:WRFRegion_SpaceScale scale:hasInternalScaleType scale:UniformContinuous 

cdr:WRFRegionExtent scale:hasTimeExtent 2469807.5 2475286.5 

cdr:WRFRegionExtent scale:hasTimeScale scale:ConstantThroughTime 
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was  created as a script for use with the statistical programming environment R (2011), 

requires several decades of historical weather data. For this modeling exercise the nearest 

station to provide the required data is at the Savannah/Hilton Head Airport. Data from 1949 

to 2009 is used to generate the historical statistics. The model also accepts alternate values 

of daily average of temperature and precipitation, for each month. The produced data are 

post-processed to conform to the new averages. The time period modeled will be a 15-year 

span starting the year 2050. 

The Savannah Airport weather model is defined to have two input data sets and 

eight output data sets. The output data sets have the “sw:SavannahAirportScale” as their 

data set scale, shown in Table 4-6. It defines the data as being at a point (the airport weather 

station, 32.147075 -81.210058) but being applicable for a 1 arc-degree space around the 

airport (geo:radius 1). The internal scale, being a point, is uniform. The time extent, defined 

with Julian dates, is from 1/1/2050 to 1/1/2065. For the input data (Table 4-7), it is looking 

for values at the location of the airport that are uniform through time and space. These are 

the monthly precipitation and temperature climate statistics. 

4.3.4 Hydrology and Flatwoods Salamander Model 

The salamander model was built using the NetLogo (Wilensky, 1999) platform. The 

NetLogo platform allows for the scripting of agent behavior and the interactions of the agent 

and the world around it. The Flatwoods Salamander model is set up to imitate salamander 

behavior.  

Table 4-6. Scale triples for the output data sets defined as part of the Savannah Airport 
stochastic weather model. The radius for the airport is set to be 1 degree just for simplicity. 
sw:SavannahAirportScale scale:hasSpaceExtent 32.147075 -81.210058 

sw:SavannahAirportScale geo:radius 1 
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sw:SavannahAirportScale scale:hasSpaceScale scale:ConstantThroughSpace 

sw:SavannahAirportScale scale:hasTimeExtent 2469807.5 2475286.5 

sw:SavannahAirportScale scale:hasTimeScale scale:HourlyScale 

  

Table 4-7. Scale triples for the input data sets for the Savannah Airport stochastic weather 
model. 
sw:SavannahAirportClimateDataScale scale:hasSpaceExtent 32.147075 -81.210058 

sw:SavannahAirportClimateDataScale scale:hasSpaceScale scale:ConstantThroughSpace 

sw:SavannahAirportClimateDataScale scale:hasTimeExtent 2469807.5 2475286.5 

sw:SavannahAirportClimateDataScale scale:hasTimeScale scale:ConstantThroughTime 

 
 

Not much is known about the salamanders, but it is estimated that they live roughly seven to 

ten years, staying near (less than 500m and probably less than 100m) and return to a natal 

pond for breeding. They live in crawfish or other animal burrows in the shallow subsurface 

and feed off of insects that cross their burrow. When the surface soil is saturated they 

emerge and migrate. During the fall or early winter if there is a strong cold-front they are 

signaled to return to their natal pond to breed and deposit eggs. If a sufficiently large storm 

or set of storms follows the cold-front signal to fill the ephemeral ponds for 12-15 weeks the 

eggs are able to hatch and grow and successfully transform into new salamanders. If the 

pond dries out before they complete the transformation process they desiccate and die. It is 

estimated that sufficient pond filling occurs with a seven-year return period, so there is not 

much margin of error for the salamanders. The ephemeral ponds vary in drainage area and 

shape and thus some years some will be full while others will have dried up. These ponds are 

very shallow. The subsurface consists of roughly two feet of sand with six feet of clay 

beneath the sand. In the pond areas the sand has a large fraction of organic matter as well.  
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The hydrology model created for the salamander model models ponds as individual 

bowls with a specified upland area (computed beforehand) that fills with precipitation and 

drains via a specified evapotranspiration loss rate.  

The hydrology and Flatwoods Salamander model uses two data sets as input, a 

precipitation data set and a temperature data set. The data used by the model needs to be at 

  

  

(a) (b) 

Figure 4-21. Photos of ephemeral ponds at Fort Stewart. The change in vegetation in the 
background demarcates the transition from the pond to the neighboring “upland” area. The 
buttressing of the trees and the “knees” indicates the usual depth at which the pond fills. 
There are only slight differences in topography and soils between the pond land elevation 
and the neighboring terrain surface elevation. The terrain is hummocky and does not drain to 
a drainage network but rather drains to these ephemeral ponds. The (a) photo is of a pond, 
shown in Figure 4-8, where the salamanders were last sighted. The (b) photo is the pond 
labeled F9.5-01 in Figure 4-22. Photos taken by Aaron Byrd during a site visit on the 31st of 
January 2011. Subsurface investigations during the visit showed that in area (a) the soil was 
not fully saturated above the clay layer, while in (b) standing groundwater was encountered 
4” below the surface. In both cases the impervious clay layer was approximately 2’ below the 
surface. The buttressing at area (a) was approximately 4” while that in area (b) was 
approximately 2’. 
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daily scale. Further, while daily precipitation values are used, the temperature data is 

actually three daily values, the high, low, and mean daily temperature. The data will not only 

have to be converted to daily values but also need to be the three values over each day.  The 

time series procedural knowledge base provides this facility. The input and output data set 

scale triples are shown in Table 4-8 and Table 4-9. The complete salamander model has five 

areas (of which this proof-of-concept uses just the first) and outputs data by individual ponds 

that have unique identifiers, such as F9.5-01. The pond shown in Figure 4-21 is part of the 

third area. 

The agent-based model is also a stochastic model. For this proof-of-concept 

demonstration two salamander runs will be executed for each set of weather data.  The first 

area has five salamander ponds; each is started with five salamanders at age zero. The 

maximum population for each pond is 100. 

 
Table 4-8. The scale triples for the input data sets of the salamander model. The complete set 
of simulations has five salamander areas it models, hence this one is area one. 
em:EM Area 1 Scale scale:hasSpaceExtent 32.095650 -81.772045 32.070061 -

81.739402 

em:EM Area 1 Scale scale:hasSpaceScale em:Area 1 Internal Space Scale 

em:Area 1 Internal Space Scale scale:hasInternalScaleType scale:UniformContinuous 

em:EM Area 1 Scale scale:hasTimeExtent 2469807.5 2475286.5 

em:EM Area 1 Scale scale:hasTimeScale scale:DailyScale 

 

Table 4-9. The scale triples for the output data set of the salamander model. F9.5-01 is the 
designation for a particular pond studied by wildlife biologists interested in the salamanders. 
em:FWS F9.5-01 Scale scale:hasSpaceExtent F9.5-01 Extent 

em:FWS F9.5-01 Scale scale:hasSpaceScale em:F9.5-01 Internal Space Scale 

em:F9.5-01 Internal Space Scale scale:hasInternalScaleType scale:UniformContinuous 

em:FWS F9.5-01 Scale scale:hasTimeExtent 2469807.5 2475286.5 

em:FWS F9.5-01 Scale scale:hasTimeScale scale:AnnualScale 

F9.5-01 Extent owl:SameAs 
32.090011 -81.752433 
32.091219 -81.753613 
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4.3.5 Project Specification 

The project specification for this proof-of-concept has one decision data set, the 

salamander population for pond F9.5-01, and two alternative scenarios, a historic data 

scenario and an A1B climate scenario. The project is also set up to use reification triples 

(triples about triples, for example Table 4-10) in order to read in data sets and reference 

projects. These include the input WRF data sets, the Savannah Airport model data, and the 

salamander model data. 

4.4 Results 

The two scenarios run create five weather sets, each of which are run twice for the 

salamander model, results in a total of 20 simulation runs.  

The results at the end of the 15-year period for all five salamander ponds in the 

salamander model are shown in Table 4-11 and are quite illustrative of the advantages to 

using this integrated modeling approach. The results, while only for preliminary data and of 

questionable statistical significance (this is a proof-of-concept model with only sufficient 

stochasticity to demonstrate that it is included in the concepts), show significant differences 

for three of the five ponds. Overall the A1B climate change data was actually helpful for the 

salamanders. After the fact the reason for this becomes clear – the climate data of Figure 4-

19 forecasts more precipitation during the winter months which would tend to result in 

 
Table 4-10. Initialization triple and reification statements used to denote a particular file to 
be read in as the WRF historic data. 
cdr:FlatwoodsSalamander-
ClimateChangeImpact 

md:hasInitializationStatement cdr:InitHistoricData 

cdr:InitHistoricData rdf:subject wrf:WRFSimulation 

cdr:InitHistoricData rdf:predicate cp:ReadProjectFile 

cdr:InitHistoricData rdf:object C:\work\TestProjects\... 
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Figure 4-22. The Flatwoods Salamander model at initialization in the NetLogo environment. 
The model can either be run from the user interface or from the command line.  The 
polygons with the dots are the salamander ponds – the dots are the salamander agents. For 
this image 50 salamanders are at each pond. For the actual runs only 5 salamanders started 
at each pond. This area is represented by the red square in Figure 4-8. 
 
 
Table 4-11. Salamander population results of the two climate scenarios for 10 total runs 
each. 

 A1B Climate Change Historic Data 

 % chance of 
extirpation 

Ave Pop Count of 
Viable Scenarios 

% chance of 
extirpation 

Ave Pop Count of 
Viable Scenarios 

F6.3-04 0% 80.8 70% 6.3 

F7.2-02 0% 43.6 100% n/a 

F7.2-04 0% 45.4 100% n/a 

F9.5-01 0% 88.6 0% 89.9 

F9.5-02 0% 88.9 0% 69.8 

 

F9.5-01 

F9.5-02 

F7.2-04 

F7.2-02 

F6.3-04 



126 
ponds being more full and thus more likely to endure the full 15 weeks. The results also show 

that pond F9.5-01 is more robust than the others at providing sufficient hydrologic habitat, 

even in the face of adverse conditions.  

More importantly, however, is that the results (and the output generated during the 

execution process) show that the model integration sequence worked as desired. The 

weather model created five hourly and five daily 15-year long data sets for each of the two 

scenarios. Ten input daily weather data sets and ten input experiment files were created for 

the salamander model; 20 summary output reports and 20 running population count reports 

were created by the salamander model. The climate model output monthly mean values in 

temperature and precipitation. The stochastic weather model used that data and produced 

sequences of rainfall, temperature, relative humidity, cloud cover, winds speed, etc. The 

hydrology and ecology model took that data and used it to drive pond depth over time as 

well as population dynamics. A quick summary of the total precipitation output for each 

weather set produced by the weather model (hourly data) matched that of the input 

weather precipitation data (daily data) indicating that the data was transformed correctly. A 

visual evaluation of the precipitation data shows that minimum, mean, and maximum values 

for each day were correctly calculated as well.  

By using the semantic metamodel of computational models together with the data 

set semantic and procedural knowledge, the reasoning engine was able to successfully 

deduce the correct chain of models. The procedural knowledge also included checks to see if 

the output files exist so as to not duplicate the computational effort. Figure 4-23 shows part 

of the output log for created by the run and illustrates the interaction between finding the 

data sets and executing the models. 
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4.5 Discussion of Results  

The results show that the reasoning engine, using the created functional ontologies, 

was able to a) deduce the sequence of models required to create the desired data set, b) 

deduce which specific simulations are spatially and temporally sufficient to provide the 

necessary data, and c) was able to read, interpret, and transform data from one model to 

another. In contrast to most workflow tools, the reasoning engine does not have a pre-set 

path to accomplish its goal but rather both deduces and executes the required work flow. 

The reasoning ability is able to deduce the work flow, while the procedural execution 

portions of the reasoning engine are able to execute the work flow.  

Using the semantic metamodeling approach for computational models enabled two 

models, with different input and output data types and scales, input and output file formats, 

and model execution styles, to transform one set of data, the scenario input data, into the 

desired data used for decisions. The metamodel included procedural knowledge that 

operated on the concepts of the metamodel but that also translated the metamodel 

concepts to the semantic model concepts in order to successfully execute the individual 

computational models.   

The key to deducing the sequence of models required, however, is the use of a 

metamodel of data sets. By providing immutable and partially mutable information about 

the data sets, the data set functional ontology, by using the auxiliary functional ontologies of 

scale, time, and space, can deduce which data sets can be derived from others. This 

deductive ability coupled with the computational model execution abilities transforms the 

semantic and procedural reasoning engine into a powerful deductive workflow engine that is 

able to capture and utilize a wide variety of knowledge creation and deduction mechanisms. 
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 The two models used for this integration exercise, one based on R and the other on 

Java, illustrate how this approach can integrate very different types of computational 

models.  The goal of this effort was not to create a model coupling methodology or standard, 

but rather to demonstrate the concept that a functional ontology reasoning engine, with 

functional ontologies about data and models, can deduce the need to couple the models, 

choose models that are able to compute the desired data at the appropriate scale and 

location, execute them, and transform data as needed. The example project, while done at a 

proof-of-concept level, illustrates a very real use case with real-life complexities of different 

data types and internal scales, non-spatially congruent model boundaries, and different file 

formats. The example project demonstrates that semantic and procedural modeling using 

semantic metamodels is a complimentary technology for computational models.  

4.6 Conclusions 

Semantic and procedural knowledge modeling is a very complimentary tool to the 

computational models we use as hydrologists. The semantic metamodeling approach 

allowed for disparate models to be brought into the semantic reasoning process in order to 

deduce one type of knowledge from another. The reasoning engine was able to first deduce 

that a model integration exercise was required. Next, it was able to select an appropriate set 

of models based on the description of the characteristics of the data that they each require 

and generate. Finally, it was able to execute the models and transform the data as required.  

The semantic and procedural reasoning engine and knowledge base is a powerful 

tool for capturing and utilizing the knowledge we have as hydrologists to automate and 

facilitate many of the tasks we do. 

 



129 
Read 20 ontologies 
Compiling code to C:\Users\Administrator\AppData\Local\Temp\pwjljsoo.nbj\fos_d63057e5-c688-
4cc5-a25f-2ff53bf8804e.dll 
Successfully compiled the code. 
Found 4 full initialization statements for project cdr:FlatwoodsSalamanderClimateChangeImpact 
Deduced that the data set cdr:FtStewartFWSPopulationCount can be created for scenario 
cdr:A1BClimateForcing from reference model 
C:\work\TestProjects\ModelIntegration\Flatwoods\testrun\integrationrun.xml:track-pop-for-pond1-
test 
Deduced that the data set em:FtStewart Temperature - Area 1 can be created for scenario 
cdr:A1BClimateForcing from reference model sw:SavannahAirportModel 
Deduced that an existing scenario data set fulfills the requirements for input data set 
sw:SavannahAirportClimateTempData for scenario cdr:A1BClimateForcing 
Deduced that an existing scenario data set fulfills the requirements for input data set 
sw:SavannahAirportClimatePrecipData for scenario cdr:A1BClimateForcing 
All 2 input data sets exist to execute reference model sw:SavannahAirportModel for scenario 
cdr:A1BClimateForcing 
Reading output data from sw:SavannahAirportModel, scenario cdr:A1BClimateForcing 
Read 8 data sets (time series) from each of 6 output files 
Successfully computed input data set em:FtStewart Temperature - Area 1 for scenario 
cdr:A1BClimateForcing 
Deduced that an existing scenario data set fulfills the requirements for input data set em:FtStewart 
Precipitation - Area 1 for scenario cdr:A1BClimateForcing 
All 2 input data sets exist to execute reference model 
C:\work\TestProjects\ModelIntegration\Flatwoods\testrun\integrationrun.xml:track-pop-for-pond1-
test for scenario cdr:A1BClimateForcing 
Converting time scales for four data sets to create weather data... 
All output data sets already computed for FWS experiment, reading results 
Reading C:\work\TestProjects\ModelIntegration\Flatwoods\testrun\final-counts\report-
cdr_A1BClimateForcing_1__track-pop-for-pond1-test-1.txt 
Reading C:\work\TestProjects\ModelIntegration\Flatwoods\testrun\final-counts\report-
cdr_A1BClimateForcing_1__track-pop-for-pond1-test-2.txt 
… 

Figure 4-23. Part of the log output by the procedural knowledge of the several ontologies 
created for this work. 
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CHAPTER 5 

FUNCTIONAL ONTOLOGY CLASS METHODS AND USAGE 

 
This chapter serves as the reference manual for the reasoning engine. It presents 

formal definitions for functional ontology classes and methods and the specifications for 

structuring code in the functional ontology framework. It discusses the details of how code is 

integrated into the reasoning engine, how the data code is wrapped, how the reasoning 

engine works, and the classes and class members and methods of the reasoning engine API 

that can be used in an external program or in the data code.  

The goal of a functional ontology knowledge base is to encode both semantic 

knowledge (i.e. concepts and relationships between them) as well as procedural knowledge 

directly associated with the concepts. The functional ontology reasoning engine is the core 

set of code that is able to execute semantic queries and procedural calls, together. The 

reasoning engine is a library that can be used in any C# program (or other Microsoft .NET 

framework language) and is separate from the graphical user interface (GUI) demonstrated 

in Chapter two. The reasoning engine can thus be added to any program and not just used 

with the GUI. This document outlines the general operation of the reasoning engine, as well 

as the classes and methods of the reasoning engine library. The classes and methods are 

usable in both an external code that creates an instance of a functional ontology reasoning 

engine as well as the code in any functional ontology knowledge base. 

5.1 Functional Ontology Coding Framework 

The functional ontology API is built on the Microsoft® .Net Framework. The .Net 

framework is built on a unique technology, called Common Language Infrastructure (ISO, 
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2006), where code is first compiled to a low-level language (called Common Intermediate 

Language Infrastructure, CIL) and then, as it needs to execute the code, uses a Virtual 

Execution Engine (VEC) technique to turn the CIL code into executable instructions. This 

method allows the code base at compile time to be extended later at run time. Apart from 

facilitating user-readable code in the ontologies, this allows for the knowledge base in use by 

the reasoning engine to grow during the reasoning process, including the potential of self-

coding algorithms.  

The functional ontology API can read in an RDF/XML file. The file, being XML, allows 

for CDATA nodes. The functional ontology language specifies a set of predicates that have as 

objects CDATA structures containing code. This code, which I will term “code data,” once 

read in to the API, has to be wrapped in code to create a complete source code structure that 

can be compiled into a library. The API has defined source code headers to wrap the code 

data.  The code data can access some forms of other code data, such as common code, by 

using the headers while some forms of code data, such as predicate methods, are best 

accessed by invoking functionality of the API. The following sections detail how the code is 

wrapped and how to access it from other code data. 

5.1.1 Key Concepts 

The reasoning engine links the code data (in the ontologies) to the reasoning engine 

by wrapping the code snippets to create a set of fully defined c# classes (objects), compiling 

them into a dynamic link library (DLL), creating an instance of them (live version,) and finally 

associating the classes in the DLL to the concepts in the reasoning engine . The reasoning 

engine itself is a DLL has several classes that the main reasoning engine class (FuncOnt) uses, 
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such as BaseOntNode and NamedNodeSet. The following sections go into more detail about 

the individual classes, members and methods, and how the reasoning engine works.  

5.1.2 Integrating Code Data into the API 

Once the code data is read in to the API and placed in the code wrapping classes the 

complete set of source code is compiled into a dynamic link library (DLL) with the c# compiler 

built into the .NET Framework. A new application domain is created and the DLL is attached 

to the application domain. An application domain is the conceptual housing for a running 

program in the operating system. The goal of the separate application domain is to allow for 

the graceful failure of the code data DLL without crashing the entire reasoning engine. There 

are two peculiarities, however, about this method. If the reasoning engine application 

domain directly calls the methods of the data code application domain, the data code DLL is 

instantiated as part of the reasoning engine application domain, at which point the failure of 

the data code DLL will crash the entire reasoning engine. To overcome this, a set of interfaces 

are created that include methods to call a named method of the class. In Figure 5-3, the 

complete code listing for a predicate function, shows a class that inherits from two 

interfaces, IRemoteInterface and IPredicateInterface, and has two methods, Invoke and 

EvalPredicate. The IRemoteInterface defines the Invoke method header while the 

IPredicateInterface defines the EvalPredicate method header. The API calls the Invoke 

method with the EvalPredicate method name, and an object list of the required parameters, 

when appropriate. The API uses a remote creation factory to create classes in the data code 

application domain, which are only referenced in the reasoning engine API via the 

IRemoteInterface. This brings us to the second peculiarity of this approach to having two 

application domains, accessing memory from one in the other.  
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The only method that will allow for code in one application domain to access 

memory in the other is to create classes that inherit from the class “MarshalByRefObject,” 

which is also shown in Figure 5-3. C# restricts class inheritance to single inheritance from 

classes but multiple inheritance from interfaces. Thus all classes in the API need to inherit 

from MarshalByRefObject.  There are two primary classes that are used by programs using 

the API, the FuncOnt class, which is the functional ontology reasoning engine, and the 

NamedNodeSet class, which contains the results lists. The NamedNodeSet class is a container 

with a dictionary for the linked list of nodes for the sets created by queries. It would be 

effective to have it inherit from the dictionary class, but since it must inherit from the 

MarshalByRefObject it therefore contains a dictionary object, called set. The procedural code 

can create temporary NamedNodeSet objects that the reasoning engine can use, and the 

procedural code can examine, by calling a create function on the FuncOnt class.  

5.1.3 Naming Convention 

Inside the reasoning engine class, the concept names area stored in “string” 

variables. The string variables holding the concept names are able to hold any character data. 

The linking of the code data to the concept name for the code involves wrapping the code in 

a complete class heading and invocation methods. The name of the concept is used to create 

the internal name of the class holding the code. The user needs to know the naming 

convention because the source code in the knowledge base is able to access other code in 

the knowledge base. This allows for a broad range of programming styles. Turning the 

concept names into code, however, involves some restrictions on possible characters. For 

instance, the colon, any spaces, or any punctuation in the concept string are not permissible 

as class or method names in the code file. In the creation of class or method names from the 
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concept strings all invalid characters are replaced with an underscore. For example, “ex:My 

Cool Concept” would become “ex_My_Cool_Concept.” 

5.1.4 Section Overview 

Section 5.2 describes the Functional Ontology semantic keywords as well as how 

they relate to code parts. Section 5.3 details how the reasoning engine and a user interface 

are able to interact. Section 5.4 covers the methods and members of the two primary classes 

in the reasoning engine API, the FuncOnt class (the reasoning engine class) and the 

NamedNodeSet class (the class that holds the answer sets from the reasoning engine). 

5.2 Functional Ontology Code Data and Language Reference 

The functional ontology language is described in the Chapter two and includes details 

about including source code in a functional ontology knowledge base. The code in the 

knowledge base is the functional code for the concepts but is insufficient for direct use. The 

knowledge base code (code data) must first be wrapped in a class header and invocation 

methods to create a complete code base that is then compiled and instantiated by the 

reasoning engine. The functional ontology reasoning engine class is, in general, passed to the 

methods encapsulating the knowledge base code (code data) so that the code in the 

knowledge base has complete access to any and all methods of the reasoning engine, such as 

the ability to further query the reasoning engine. 

The following sections describe in more detail how the code is wrapped and 

referenced for the various code data types. 
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5.2.1 fo:PrimaryCode 

The fo:PrimaryCode is the predicate used to identify the data code that functions as 

the fallback procedure for the reasoning engine. When the reasoning engine is not able to 

find a match for the query, or when expressly directed to, it will execute the primary code. 

For example, the RDF/XML file could have the following primary code, Figure 5-1. 

Figure 5-1 shows some data code for a predicate “poly:hasArea.” The code, when 

read in, is added to the triple store but also added to a class (internal to the API) that creates 

the wrapper code for the method. The API has a set of classes that are used to store the data 

code and in turn generate the wrapped code that will shortly be compiled. The header for 

the actual method called for the predicate code is shown in Figure 5-2.  The subject,  

 

 
Figure 5-1. Data code for the poly:hasArea predicate function. This code computes the area 
of a polygon. 
 
 

 
Figure 5-2. Method header for the predicate procedure. The query is of the form (Subject, 
Predicate, Object, results) so those are passed to the method. FuncOnt is the Functional 
Ontology class reference. 

public int EvalPredicate(string theSubject, string thePredicate, string theObject, 
   FuncOnt theOntology, NamedNodeSet results) 

 

double a = 0, b = 0;  
double[] x;  
double[] y;  
int count;  
bool hasPoints=poly_GetPoints.getPoints(theSubject, out x, out y, out count, 

   theOntology);  
  
if (!hasPoints)  
  return 0; // couldn't complete the computation of the area  
  
for (int i = 0; i < count; i++)  
{  
  a = a + (x[i] * y[i + 1]);  
  b = b + (y[i] * x[i + 1]);  
}  
double twicearea = a - b;  
if (twicearea < 0.0)  
  twicearea = twicearea * -1.0;  
double area = twicearea / 2.0;  
  
theOntology.AddTriple(theSubject, thePredicate,string.Format("{0:0.00}", area));  
  
return theOntology.FindMatchingSet(theSubject, thePredicate, theObject, results); 
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predicate, object, and results class are passed in as parameters, along with a reference to the 

ontology class making the call. The return value is the return value of the query, meaning the 

count of concepts matching the query. Zero is returned for an error or if no value is created 

or found. The predicate method is able to call any method on the functional ontology class. 

The EvalPredicate method shown in Figure 5-2 is a member of a class created to hold 

all the code related to the predicate. Separate classes are created for each predicate. The 

class name in the code will be the underscore version of the predicate’s string. In this 

example that would be “poly_hasArea.” The full class code for the wrapped function is 

shown in Figure 5-3. 

The predicate code data can refer to the five parameters. The parameters 

“theSubject,” “thePredicate,” and “theObject” refer to the triple query. The parameter 

“theOntology” is a reference to the reasoning engine class. The parameter “results” is the 

NamedNodeSet. The predicate code can either create the linked of concept nodes and make 

the set or it can, as shown in Figure 5-1 and Figure 5-3, add triples and rerun the query. To 

call the predicate function, execute a query with the predicate you want to call. To force a 

query to call the predicate function prepend a “+” to the predicate concept (“A +P ?B”). 

Alternatively, if you do not want a query to call a predicate function prepend a “-“ to the 

predicate concept (“A –P ?B”). 

5.2.2 fo:SecondaryCode 

Secondary code is the term used in the functional ontology for members of the 

predicate or user function that are not the primary method. For the predicate code in Figure 

5-3 the primary method is the “EvalPredicate” method. The secondary code should include 

all the method headers and may contain more than just one method. 
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Figure 5-3. Complete code wrapping the “poly:hasArea” predicate method. 

 
 

 
Figure 5-4. RDF/XML data for secondary code. The primary predicate is 
“td:hasComputableDependents.” 
 

public bool DoesTerrainGroupHaveActualData(string TerrainGroup,string ActualDataType, 
   FuncOnt theOntology) 

{ 
 NamedNodeSet tmpResults = theOntology.MakeTempNamedNodeSet(); 

theOntology.FindMatchingSet(TerrainGroup, "td:hasActualDataAssociation",  
                                                "?allData", tmpResults); 

if (!tmpResults.ExistsSet("allData")) 

  return false; 
 int retval = theOntology.FindMatchingSet(tmpResults.set["allData"],"rdf:type", 

  ActualDataType,tmpResults); 

if (retval>0)  
   return true; 
 else 
   return false; 
 } 
  

public class poly_hasArea : MarshalByRefObject, IRemoteInterface, IPredicate  
{ 
 
  public object Invoke(string MethodName,object[] Parameters)  
  { 
    return this.GetType().InvokeMember(MethodName, BindingFlags.InvokeMethod,  
                                       null, this, Parameters); 
  } 
  public int EvalPredicate(string theSubject, string thePredicate,  
                           string theObject, FuncOnt theOntology, 
                           NamedNodeSet results) 
  { 
 
    double a = 0, b = 0;  
    double[] x;  
    double[] y;  
    int count;  
    bool hasPoints=poly_GetPoints.getPoints(theSubject, out x, out y, out count, 

       theOntology);  
  
    if (!hasPoints)  
      return 0; // couldn't complete the computation of the area  
  
    for (int i = 0; i < count; i++)  
    {  
      a = a + (x[i] * y[i + 1]);  
      b = b + (y[i] * x[i + 1]);  
    }  
    double twicearea = a - b;  
    if (twicearea < 0.0)  
      twicearea = twicearea * -1.0;  
    double area = twicearea / 2.0;  
  
    theOntology.AddTriple(theSubject, thePredicate,string.Format("{0:0.00}", 
                          area));  
  
    return theOntology.FindMatchingSet(theSubject, thePredicate, theObject,  
                                       results);  
  } 
} 
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5.2.3 fo:CommonClass 

The common class code is meant to hold code that can be accessed by many other 

classes and should be reusable. Common class definitions are created as triples. The subject 

of the triple, after illegal characters are changed to underscores, will be used to create the 

class name. Figure 5-6 shows an example of a common code definition in RDF/XML, while 

Figure 5-7 shows the code as it is wrapped for the DLL. Notice that in the RDF/XML code 

(Figure 5-6) the class header and brackets are not explicitly defined. The rest of the class, 

including any members or methods, are defined in the RDF/XML code as it would appear in a 

source code file. This method is called in both Figure 5-1 and Figure 5-3. In this example the 

method is declared static, meaning that it can be accessed without creating an instance of a 

class. The common class could also be one that is used as instances in the other code.  

5.2.4 fo:UserCode 

The user code is meant to be a procedure that a user would want to call directly. For 

example, it could be called to accomplish a specific, over-arching task such as delineating a 

watershed or calculating the area of all polygons. 

5.2.5 fo:UsingFile 

The using file predicate is meant to add a library to the project. Both the standard 

libraries and user-made libraries can be added. It is usually used in conjunction with the using 

namespace predicate. While a file can be specified for each code set, the file will only be 

included once in the project. All file inclusions apply globally. 
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5.2.6 fo:UsingNamespace 

The using namespace predicate adds the namespace to the project. The object of the 

predicate is the namespace without the “using” keyword or a semicolon. Like the using file 

predicate, each code base can have any number of using namespace predicates but they will 

only be included once. All namespace inclusions apply globally. 

5.3 Reasoning Engine API and User Interface Integration 

The reasoning engine library (i.e. application programming interface, API) contains the core 
functionality for reasoning over semantic and procedural triples as well as compiling and 
executing the code in the procedural triples.  

Figure 5-10 shows a simple integration between the reasoning engine API and a user 

interface. At the heart of it the reasoning engine is simply a class that is created by the user 

interface. The concepts, relationships, and code are then fed to the class and the knowledge 

base source code is compiled (either automatically or when the user interface code instructs 

it to do so.) The reasoning engine then waits for the user interface to invoke a method, such 

as performing a semantic query. 

There are five primary interaction points (possible operations) between the 

reasoning engine class and the external program. In the diagram below these are the 

operations available. These are, generally speaking, reading data (from file or memory), 

writing data, performing a semantic query, executing a user function, and compiling (or 

recompiling) the knowledge base code,  

The first operation or interaction point is the query method, FindMatchingSet(). The 

query routine will both execute a logic-based search as well as execute predicate functions, if 

necessary. The second interaction point is in the execution of user functions, 

RunUserFunction(). There are also methods to retrieve the list of concepts that have 
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attached user functions. The next three interaction points are for input/output. There are 

two methods of reading the triple store, one is via a RDF/XML file and the other is via an in-

memory container. The in-memory container is designed so that it can be viewed by a C# 

program that is interacting with the reasoning engine API. Finally there is a method to 

recompile all the code and a boolean flag that controls if the code is recompiled immediately 

after reading in a file. This flag, RecompileOnDemand, should be true if, for example, a  

 

 
Figure 5-5. Wrapped code for the secondary code “DoesTerrainGroupHaveActualData” of the 
primary predicate “td:hasComputableDependents.” The RDF/XML code data is shown in 
Figure 5-4. 
 

public class td_hasComputableDependents : MarshalByRefObject,  
                                          IRemoteInterface, IPredicate 
{ 
 
  public object Invoke(string MethodName, object[] Parameters) 
  { 
    return this.GetType().InvokeMember(MethodName, BindingFlags.InvokeMethod, 
                                       null, this, Parameters); 
  } 
  public int EvalPredicate(string theSubject, string thePredicate,  
                           string theObject, FuncOnt theOntology,  
                           NamedNodeSet results) 
  { 
 … 
  } 
  public bool DoesTerrainGroupHaveActualData(string TerrainGroup,  

string ActualDataType, FuncOnt theOntology) 
  { 
    NamedNodeSet tmpResults = theOntology.MakeTempNamedNodeSet(); 
    theOntology.FindMatchingSet(TerrainGroup, "td:hasActualDataAssociation", 
                                "?allData", tmpResults); 
    if (!tmpResults.ExistsSet("allData")) 
      return false; 
    int retval = theOntology.FindMatchingSet(tmpResults.set["allData"],  
                                     "rdf:type", ActualDataType, tmpResults); 
    if (retval > 0) 
      return true; 
    else 
      return false; 
  } 
} 
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wrapping program is reading and setting up a few ontology stores before sending the data to 

the reasoning engine API. 

 

 
Figure 5-6. Common code example RDF/XML example. Note that this code contains 
everything but the class definition statement and brackets. 

 
 

public static bool getPoints(string thePoly, out double[] x, out double[] y,  
      out int count, FuncOnt theOntology)  
{  
  NamedNodeSet tmpResults = theOntology.MakeTempNamedNodeSet();  
  bool retval = (theOntology.FindMatchingSet(thePoly,"poly:hasPointString", 
       "?thepoints",tmpResults)>0);  
  if (retval)  
  {  
    string points = tmpResults.First("thepoints");  
    char[] pointseparator = { '(' };  
    string[] pointlist = points.Split(pointseparator,  
        StringSplitOptions.RemoveEmptyEntries);  
    char[] numseparator = { ' ', ',', ')' };  
    count = pointlist.Length;  
    x = new double[count + 1];  
    y = new double[count + 1];  
    for (int i = 0; i < count; i++)  
    {  
      string[] data = pointlist[i].Split(numseparator,  
                                         
StringSplitOptions.RemoveEmptyEntries); 
      x[i] = Convert.ToDouble(data[0]);  
      y[i] = Convert.ToDouble(data[1]);  
    }  
    x[count] = x[0];  
    y[count] = y[0];  
  }  
  else  
  {  
    x = new double[1];  
    y = new double[1];  
    x[0] = 0.0;  
    y[0] = 0.0;  
    count = 0;  
  }  
  return retval;  
}  
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Figure 5-7. Wrapped common code from Figure 5-6. The class definition statement was 
created from the name of the defined predicate. 

 

 

 

 

public class poly_GetPoints  
{ 
  public static bool getPoints(string thePoly, out double[] x, out double[] y,  

   out int count, FuncOnt theOntology)  
  {  
    NamedNodeSet tmpResults = theOntology.MakeTempNamedNodeSet();  
    bool retval = (theOntology.FindMatchingSet(thePoly,"poly:hasPointString", 

      "?thepoints",tmpResults)>0);  
    if (retval)  
    {  
      string points = tmpResults.First("thepoints");  
      char[] pointseparator = { '(' };  
      string[] pointlist = points.Split(pointseparator,  
                                        StringSplitOptions.RemoveEmptyEntries); 
      char[] numseparator = { ' ', ',', ')' };  
      count = pointlist.Length;  
      x = new double[count + 1];  
      y = new double[count + 1];  
      for (int i = 0; i < count; i++)  
      {  
        string[] data = pointlist[i].Split(numseparator,  
                                  StringSplitOptions.RemoveEmptyEntries);  
        x[i] = Convert.ToDouble(data[0]);  
        y[i] = Convert.ToDouble(data[1]);  
      }  
      x[count] = x[0];  
      y[count] = y[0];  
    }  
    else  
    {  
      x = new double[1];  
      y = new double[1];  
      x[0] = 0.0;  
      y[0] = 0.0;  
      count = 0;  
    }  
    return retval;  
  }  
 
} 
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Figure 5-8. RDF/XML user code for an “Add Outlet” procedure. 

 
 

 
Figure 5-9. The wrapped user code shown in Figure 5-8. 
 

 

5.4 API Classes 

There are several classes in the API but only two that are instantiated outside of the 

API itself: the reasoning engine class, FuncOnt, and the query results class, NamedNodeSet. 

FuncOnt is the primary class of the reasoning engine API. The members and methods hold 

public class td_AddOutlet : MarshalByRefObject,IRemoteInterface,IUserFunction  
{ 
  public object Invoke(string MethodName,object[] Parameters)  
  { 
    return this.GetType().InvokeMember(MethodName,  

BindingFlags.InvokeMethod,null,this,Parameters); 
  } 
  public void UserMain(FuncOnt theOntology, NamedNodeSet results) 
  { 
 
  string newgroup = theOntology.context.ValueOf("td:CurrentTerrainGroup");  
  string outlet=ccwpf_GetUserString.Get("Open Outlet File","Please enter the 
 file name for the outlet shapefile.");   
  if (cc_DoesFileExist.DoesFileExist(outlet)) {  
    theOntology.AddTriple(outlet,"rdf:type","td:Outlet");     
    theOntology.AddTriple(newgroup,"td:hasActualDataAssociation",outlet);  
  theOntology.context.AddValue("td:CurrentOutlet",outlet);  
  } else {  
    theOntology.log.AddLog("Error: unable to find file. Please re-run 
function");  
  }  
 
  } 
} 

 

  string newgroup = theOntology.context.ValueOf("td:CurrentTerrainGroup"); 
  string outlet=ccwpf_GetUserString.Get("Open Outlet File","Please enter the file name  
for the outlet shapefile.");  

  if (cc_DoesFileExist.DoesFileExist(outlet)) { 

    theOntology.AddTriple(outlet,"rdf:type","td:Outlet");    

    theOntology.AddTriple(newgroup,"td:hasActualDataAssociation",outlet); 

  theOntology.context.AddValue("td:CurrentOutlet",outlet); 

  } else { 
     theOntology.log.AddLog("Error: unable to find file. Please re-run function"); 

  } 
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and operate on a network of concept nodes. All information about a concept is stored in its 

concept node, which is an instance of the class BaseOntNode. Concept nodes that are the 

results of queries are referenced in linked lists in a NamedNodeSet. The NamedNodeSet class 

holds dictionaries of set names and linked lists of the values, and also includes set operators 

for the lists. BaseOntNodes stores different lists of relationship types. 

5.4.1 BaseOntNode Member and Method Description 

BaseOntNode class instances hold the identifying string for the concept as well as 

lists for the possible logic connections. Currently these logic connections include 

superclass/subclass, superproperty/subproperty, inverse, equivalence, domain, and range 

logic types. It also holds a list of all the triples it is defined to be a part of, as well as an 

alternate form of the triples called a base node pair. A base node pair consists of the other 

two concepts to form a triple as well as a position indicator (subject, predicate, object) for 

the root concept. The reasoning engine loops over these lists to search for potential 

matching triples as well as the possible logic connections. These lists are created 

automatically by the AddTriple procedure of the functional ontology (FuncOnt) class. The 

only method used outside of the functional ontology class is the ToString() method, which 

returns a string version of the concept. 

5.4.2 NamedNodeSet Member and Method Description 

Named node sets are the answer sets for the queries. Queries of the form <?A B C>, 

<A ?B C>, or <A B ?C> are in essence asking for a set of concepts that makes the statements 

true. The name of the set is the string after the question mark. 
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Figure 5-10. Possible interaction mechanisms between the reasoning engine class and a user 

interface. 



147 
5.4.2.1 NamedNodeSet::set  

The only member of a named node set is called “set.” Since C# only allows single 

inheritance and instances of NamedNodeSets need to inherit from the class 

“MarshalByRefObject” in order to facilitate cross-application domain memory access, the 

“set” member is the main set storage mechanism. The “set” member is a dictionary that 

relates a string keyword (in this case the set name from the query) to a linked list of 

BaseOntNodes. As a “Dictionary,” the set member has all the methods of the “Dictionary” 

class, such as “count,” “Remove,” “Add,” “ContainsKey,” etc.  

5.4.2.2 bool NamedNodeSet::SetContains(string setname, string nodename) 

The SetContains function looks through the nodes of the linked list associated with 

the setname and determines whether or not nodename belongs to the list. 

5.4.2.3 int NamedNodeSet::Union(string list1, string list2, string result) 

The Union operator takes two lists and creates a third list that consists of all the 

unique concept members of both sets. The resulting list name is indicated by result. A set 

Union operation is equivalent to a logical “or” operation. Returns the count of the result set. 

5.4.2.4 int NamedNodeSet::Intersection(string list1, string list2, string result) 

The intersection operator takes two sets, list1 and list2, and determines which 

concepts are in both of the lists. The set of concepts that belong to both lists is created and 

given the name indicated by result. A set intersection operation is equivalent to a logical 

“and” operation. Returns the count of the result set. 
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5.4.2.5 int NamedNodeSet::Difference(string BigSet, string SubtractSet, string result) 

A set difference operation is similar to subtracting one from the other. All elements 

of SubtractSet are removed from BigSet, if they are a part of BigSet. The resulting set of 

elements is put in the set named by results; BigSet is not changed during the operation. 

Returns the count of the results set. 

5.4.2.6 int NamedNodeSet::Size(string name) 

Returns the number of elements in the set name. 

5.4.2.7 void NamedNodeSet::Merge(NamedNodeSet other) 

The merge method takes another NamedNodeSet and adds the sets to the current 

sets. If any sets have the same key name then the result is the union of the two sets. 

5.4.2.8 string NamedNodeSet::Remove(string name) 

Removes the set indicated by name from the list of sets. 

5.4.2.9 string NamedNodeSet::First(string name) 

Returns a string of the first element of the list indicated by name.  

5.4.2.10 bool NamedNodeSet::ExistsSet(string name) 

Checks to see if the set indicated by name is a valid key in the set member dictionary. 

5.4.2.11 bool NamedNodeSet::ExistsNonEmptySet(string name) 

Checks to see if the set indicated by name is a valid key in the set member dictionary 

and the size of the set is greater than zero.  
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5.4.2.12 void NamedNodeSet::AddToSet(string setname, string concept, FuncOnt 

theOntology) 

Adds the BaseOntNode denoted by the parameter concept to the set indicated by 

setname. If the set does not exist then it creates the new set. 

5.4.2.13  void NamedNodeSet::AddListToSet(LinkedList<BaseOntNode> list, string name) 

Adds the list to the set under the name indicated by name. If there exists a set by the 

same name then the existing set is removed. 

5.4.3 FuncOnt Member and Method Description 

The FuncOnt class is the primary reasoning engine class. The members of the 

FuncOnt class are used to hold the information from the knowledge base. All of the concepts 

and triples are stored in one list but they source ontology for each triple (or sets of triples) 

can be different and is kept track of. Writing of the triples can be done over all the triples or a 

single source. There are a few members of the FuncOnt class: identList is a hybrid dictionary 

of the concept nodes (BaseOntNodes). This is the master list of all concept nodes. 

theTripleList is the master list of the triples. UserFunctions is the list of all specified user 

functions. PredFuncList is the list of all predicate functions. ScriptEngine is the class the 

handles code wrapping and compiling the code. NamespaceList is the list of all the 

namespaces referenced by the ontologies. NamedOntologyNodes is a set of triple 

collections. It is set up to be able to be linked to C#/XAML GUI objects for display. 

RecompileOnDemand is a key flag that controls whether or not the ScriptEngine compilation 

process is invoked immediately after reading in a file or memory store. If more than one file 

or memory store is to be read it should be set to true (to not invoke the ScriptEngine 
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compilation process). OntologyNameSet is the list of all ontology names. The name is 

changed when files are read in. The default name is “local.rdf.” CurrentOntologyName is a 

property that can be both set and retrieved. CurrentTempDirectory is also a property  that 

can be set or retrieved. CurrentTripleCollection is for external C#/XAML display purposes. log 

is the collection of statements added by procedural code or the ScriptEngine. 

5.4.3.1 FuncOnt Constructor 

There are two constructors: FuncOnt() : this("local.rdf") and FuncOnt(string 

InitialOntologyName): base(). The version that takes doesn’t take an initial ontology name 

calls the other to set up the default name, “local.rdf.” The version that takes the initial 

ontology name also sets up the temporary directory for the script engine and some of the 

BaseOntNodes for the logic relationships.  

5.4.3.2 NamedNodeSet FuncOnt::MakeTempNamedNodeSet() 

The MakeTempNamedNodeSet method is used to create a NamedNodeSet in the 

data code application domain. Temporary NamedNodeSets are frequently used in the data 

code in conjunction with the method calls to the reasoning engine. 

5.4.3.3 LinkedList<BaseOntNode> FuncOnt::MakeBaseOntNodeList() 

The MakeBaseOntNodeList method is used to create a linked list class for 

BaseOntNodes in the data code application domain. 

5.4.3.4 string FuncOnt::EncodeLiteral(string value) 

The EncodeLiteral method is used to create a reference concept from a literal value. 

The literal value could be any character string. This method allows for identical literal values 
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to represent unique concepts in an ontology. The method of encoding the literal string is to 

format it a part of the following string “[GUID:literal].” The GUID ensures uniqueness of the 

concepts. 

5.4.3.5 string FuncOnt::DecodeLiteral(string encodedvalue) 

The DecodeLiteral method reverses the encoding of the EncodeLiteral method. If the 

encoded value is of the form “[string:literal]” then it will return the literal portion. If it is not 

then it will return the original value. 

5.4.3.6 bool FuncOnt::AlreadyInList(string ID) 

AlreadyInList checks the identList to see if it contains the key ID. 

5.4.3.7 AddTriple Methods 

There are two AddTriple methods. The primary method that adds a triple to the 

ontology base is “void AddTriple(string, string, string).” The other version, “void 

AddTriple(string SubjectConcept, string PredicateConcept, string ObjectConcept, 

NamedNodeSet results),” checks to see if any of the triple concepts are prepended with a “+” 

character. If so, the concept is treated as the name of a set in the results set. Each member 

of the set is then substituted into the triple and the other AddTriple method is called. 

5.4.3.8 FindMatchingSet Methods 

The FindMatchingSet method is the primary query function. There are several 

versions of the FindMatchingSet function. The actual method that accomplishes the query is 

FindStandardMatchingSet. The return value is the count of true triples deduced. 
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To identify the key search field prepend the field with a question mark (?). To force 

the predicate function to be called prepend the predicate with a plus sign (+). To ensure that 

the predicate function is not called prepend the predicate with a minus sign (-). 

5.4.3.8.1 int FuncOnt::FindStandardMatchingSet(string Sub, string Pred, string Obj, 

NamedNodeSet results) 

This is the method for initiating a query. Note that it has “Standard” in the name 

whereas the ones below do not. It does not checking for some qualifying characters so it is 

better to use FindMatchingSet (5.4.3.8.3) 

5.4.3.8.2 int FuncOnt::FindMatchingSet(string packedQuery, NamedNodeSet results) 

This method expects a triple in the form of “subject;predicate;object.” This method 

unpacks the triple and then calls FindMatchingSet (5.4.3.8.3). 

5.4.3.8.3 int FuncOnt::FindMatchingSet(string Sub, string Pred, string Obj, NamedNodeSet 

results) 

This one will call the standard function but will also check to see if one of the 

concepts refers a set in the results lists. If any of the triple values have an asterisk (*) as the 

first character it is considered to indicate the name of a set in the results set. This set is then 

passed to the appropriate FindMatchingSet method (5.4.3.8.4, 5.4.3.8.5, or 5.4.3.8.6). 

5.4.3.8.4 int FuncOnt::FindMatchingSet(LinkedList<BaseOntNode> Sub, string Pred, string 

Obj, NamedNodeSet results) 

 Usually called by FindMatchingSet. This version loops through the list of concept 

nodes sent in as the subject and calls FindMatchingSet (5.4.3.8.3) for each one. 
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5.4.3.8.5 int FuncOnt::FindMatchingSet(string Sub, LinkedList <BaseOntNode> Pred, string 

Obj, NamedNodeSet results) 

 Usually called by FindMatchingSet. This version loops through the list of concept 

nodes sent in as the predicate and calls FindMatchingSet (5.4.3.8.3) for each one. 

5.4.3.8.6 int FuncOnt::FindMatchingSet(string Sub, string Pred, LinkedList <BaseOntNode> 

Obj, NamedNodeSet results) 

 Usually called by FindMatchingSet. This version loops through the list of concept 

nodes sent in as the object and calls FindMatchingSet (5.4.3.8.3) for each one. 

5.4.3.9 bool FuncOnt::ReadRdfXml(string filename) 

The ReadRdfXml method reads the triples from an RDF XML file. If the 

RecompileOnDemand flag is false then it will also call the RecompileAll() method. The 

filename will be used as the current ontology name. 

5.4.3.10 void FuncOnt::ReadFromOntologyStore(OntologyStore.OntologyStore theStore) 

A library developed as part of the reasoning engine GUI has a namespace and class 

called “OntologyStore.” The ontology store is a memory container that holds triples. The 

triples in the ontology store can be viewed with a C#/XAML GUI.  

5.4.3.11 LinkedList<string> FuncOnt::GetOntologyNameList() 

Returns a linked list of all the ontology names. The names were either from RDF/XML 

files or from the current ontology name being set. 
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5.4.3.12 bool FuncOnt::WriteOntologyFile(string ontologyName) 

Writes out an RDF/XML file of the specified ontology. The file name is the same as 

the ontology name. 

5.4.3.13 bool FuncOnt::RecompileAll() 

Takes all the wrapped code and compiles it into a “.dll” file in the temporary 

directory. The “.dll” file is instantiated in a new application domain and references to the 

appropriate classes are created for user functions and predicate functions. 

5.4.3.14 bool FuncOnt::RunUserFunction(string funcName, NamedNodeSet results) 

Calls the Invoke method, with parameters of the “UserMain” method and the 

ontology class and results class as parameters, of the class created for the user function. 

5.5 Summary 

There are two main classes that are frequently instantiated or used be code 

interfacing with the reasoning engine: the reasoning engine class FuncOnt and the answer 

set class NamedNodeSet. The primary interaction with the reasoning engine will be to call 

the query method FindMatchingSet(). The NamedNodeSet class is used to hold the results of 

all the queries and consists of a dictionary class (set member) that holds the answer set lists 

and then several methods that perform set logic on the lists. The two primary code snippets 

that area wrapped by the reasoning engine are the fo:PrimaryCode and fo:UserCode. Each of 

these two methods has defined method parameters which should be used as part of the 

code.  
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CHAPTER 6 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 
The motivation behind this dissertation was to facilitate a change in hydrologic 

modeling through the use of knowledge modeling. The intent was to allow us as hydrologic 

scientist and engineers to focus more on the weightier matters by automating processes that 

can be standardized. Additionally, formalizing the concepts and relationships between them 

can have the effect of generating a scientific discussion of parts of hydrology that are more 

art than science, potentially resulting in new scientific advances. The literature and software 

review examined tools for modeling hydrologic knowledge with the aim of enhancing the use 

of existing hydrologic computational tools. The conclusion of the literature and software 

review is that there was no existing software that could adequately capture both the 

procedural and semantic aspects of applied hydrology. The result of the research of this 

dissertation is a new knowledge modeling tool as well as investigations into and 

demonstrations of its application to hydrologic tasks. The results show that integrated 

semantic and procedural knowledge modeling is quite complimentary to the tools and tasks 

of hydrology. 

6.1 Summary and Conclusions 

The initial research and examination of software, Chapter 1, found that a significant 

amount of knowledge modeling work has been done in the fields of semantic modeling and 

model driven software engineering. Because semantic modeling is geared towards utilizing 

webs of concepts in a very general form, semantic modeling seemed to hold the most 

promise for capturing the concepts and thought processes we use as hydrologists. Semantic 
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modeling is still a long way off from capturing and effectively using process descriptions of 

the sort we frequently use in hydrology. In order to overcome this shortfall and enable the 

effective use of knowledge models for hydrologic purposes, we investigated and developed a 

new approach for combining semantic reasoning with procedural knowledge descriptions. 

The second chapter details the accomplishments of the research and development 

into integrating semantic models with procedural knowledge models. The result was the 

recognition that there was no formal semantic logic to describe the “how to” of a predicate 

along with the creation of a new, proof-of-concept, reasoning engine and knowledge model 

description that includes this capability. The knowledge model description is based on 

existing formal semantic logics. A set of new formal semantic logic terms were created 

(http://chl.erdc.usace.army.mil/FO-lang-20111201#) to add procedural knowledge to the 

knowledge base. Two fundamental types of procedural knowledge were chosen for inclusion 

as part of the formal semantic logic terms – concepts that form a “how-to” for a semantic 

verb and concepts that form an overarching set of steps similar to a menu function. In 

addition, procedural knowledge is allowed in the form of helper methods and library-style 

classes. This additional procedural knowledge is not used by the reasoning engine but only by 

the two primary forms of procedural knowledge. The form of procedural knowledge model 

chosen for inclusion is source code.  

The semantic and procedural reasoning engine created, termed a functional ontology 

reasoning engine, has semantic deductive capabilities to answer semantic queries as well as 

the capability of wrapping, compiling, and executing the source code snippets included in a 

functional ontology knowledge base. The wrapping of the “how-to” and menu-style source 

code snippets allows for the source code to have full access to the query mechanisms of the 
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semantic engine as well as utilize the full set of libraries and inherent functionality of the 

source code language, in this case C#. User-created libraries can also be included as part of 

the procedural knowledge. The capabilities of the new reasoning engine and semantic and 

procedural knowledge base are quite broad and could apply a wide variety of knowledge 

modeling situations. The goal of the Chapters 3 and 4 were research and demonstration into 

how the semantic and procedural knowledge base and reasoning engine facilitates our use of 

hydrologic tools and computational models. The result in both cases is both a set of 

knowledge modeling patterns that enable complex analysis and a practical example. 

The functional ontology knowledge model represents a new paradigm for 

approaching how we conceptually and practically create and use hydrologic models and 

computational tools by bringing together source code and semantic concepts so as to enable 

the two to utilize each other directly. In the current semantic modeling paradigm procedural 

knowledge, source code, is external to the semantic knowledge base and thus by definition 

not able to be utilized by the semantic knowledge base or the reasoning engine. The 

functional ontology paradigm moves the source code from external to the knowledge base to 

an internal part of the knowledge base. Thus the reasoning engine is able to include very 

complex procedural knowledge and is able to do so much more than a standard reasoning 

engine is able to do, such as download data from an external source, run a command-line 

program, or compute a highly complex algorithm with fall-back measures and error-checking, 

etc., all the while having each action tied to specific concepts and semantic logic. 

The example case presented in Chapter 2 is a simple example meant to illustrate the 

basic concepts of the functional ontology paradigm. The example uses a procedural 

description of how to compute areas and perimeters of polygons as part of a simple ontology 
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of polygons. The results illustrate that 1) the reasoning engine is able to execute procedural 

knowledge as part of the deductive process, 2) that the procedural knowledge descriptions 

are able to execute queries on the ontology to obtain needed information, and 3) that the 

procedural knowledge is able to include error-checking and conditional statements. 

Chapter 3 delved into a much more complex application of the semantic and 

procedural knowledge models, by an order of magnitude (in terms of number of concepts, 

the number of relationships between concepts, and the number of knowledge model 

patterns used). The goal of Chapter 3 was to demonstrate the relevance and utility of 

semantic and procedural models for typical hydrologic tasks, in this case watershed 

delineation. Many of the computational tools we use as hydrologists have an informal, and 

somewhat implicit, ontology that for their input and output data and use. This is the case 

with the TauDEM (Tarboton et al., 2009) suite of tools. 

TauDEM is a suite of command-line executable programs that deduce from Digital 

Elevation Models (DEMs) various other forms of knowledge, such as watershed boundaries 

and stream locations. Each of the executable functions takes various input data sets and 

produces one or more output data sets. There are specific flags to denote the meaning of the 

various files along with a suggested naming convention that acts as an informal semantics. 

The user of TauDEM needs to learn the many file extension conventions, the command-line 

flags, and what each of the many TauDEM functions accomplishes. Situations such as this are 

ripe for the application of semantic and procedural knowledge models. 

A semantic and procedural knowledge model of the TauDEM suite of tools was 

created to automate the delineation of watersheds for a given project purpose. The semantic 

models covered the types of data, the TauDEM functions, their input and output data set 
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requirements, the command-line flags for the data sets, as well as the set of project purposes 

the user is able to choose from and the relationship between those purposes and the 

TauDEM command-line flags. The procedural knowledge models cover the procedural 

knowledge for the second-order deductive logic to enable the reasoning engine to deduce 

the chain of functions required to create the specified data set. Further, the procedural 

knowledge is able to create the command line to run each of the functions as well as actually 

execute the TauDEM functions themselves, check for the output files, and add the 

knowledge about the new data to the ontology. The results illustrate that 1) the informal 

semantics used by hydrologic tools is able to be represented in a formal manner that 

enhances the tools we use by facilitating their automated use and execution, 2) that 

functional ontologies are able to include and use procedural knowledge that greatly extends 

the analysis capabilities of the reasoning engine, such as executing command-line functions 

and checking for the existence of files –capabilities that greatly facilitate the real-world 

application of semantic models, and 3) that semantic and procedural knowledge models are 

able to capture, deduce, and apply the consequences of the project purpose to the deductive 

analysis. 

The final application of semantic and procedural knowledge models for hydrology, 

presented in Chapter 4, builds on the work of Chapter 3. Instead of just applying procedural 

and semantic models to hydrologic tools with similar data and execution requirements, the 

work of Chapter 4 applies procedural and semantic models to integrate dissimilar 

computational models. The resulting knowledge model framework allows for the deduction 

of desired decision data sets from the supplied scenario alternative data sets. This model is 

an order of magnitude more complex than that of Chapter 3 and represents a real-world 



161 
application of semantic and procedural knowledge modeling in a complex analysis situation. 

The goal of the semantic and procedural knowledge models of Chapter 4 is to create a proof-

of-concept framework that is able to integrate computational models into a deductive 

reasoning framework. The work in Chapter 4 involves both the development of a set of 

underlying model integration knowledge models as well as instances of semantic models of 

computational models.  

The research into the application of semantic and procedural knowledge models for 

computational model integration resulted in the creation of several application level 

functional ontologies, such as those for spatial location, time, scale, and various data types. 

The research also resulted in the creation of a computational model semantic metamodel. 

This metamodel approach creates the semantics that describe the overall input, output, and 

execution semantics in terms that the metamodel procedural knowledge models can use to 

generically treat the computation model in the deductive logic reasoning process. At the 

same time, the metamodel approach allows the semantic models of the computational 

models to create and use all the semantic and procedural knowledge it requires to fulfill the 

requirements of the metamodel.  

Further, the research pointed out the central role of the data sets in the deductive 

logic process. It isn’t the computational models that are used for decisions but the data. The 

data requirements have to drive the computational modeling process. The data sets 

description must specify the data type, the extent and internal scale (both time and space) of 

the data, and the scenario used to create the data. The specification of data sets is also a 

metamodel. This procedural knowledge for the data set metamodel facilitates the deduction 

of which data sets can be created from other data sets and the computational models 
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needed to deduce the required data. Creating these procedural and semantic metamodels of 

computational models and data creates a powerful deductive workflow engine that is able to 

execute many complex computational models. 

The application for the model integration exercise is a proof-of-concept, for an actual 

project underway, that semantic and procedural modeling can be used as an integration 

mechanism. The research identified that a key concept to include and effectively use (in a 

semantic model integration framework) a variety of computational models and data, and to 

use the models and data in a project setting, is the use of functional ontology metamodels. 

Functional ontology metamodels (and meta-metamodels) were created to facilitate the use 

of computational models, the inclusion of various data, and also the project framework. 

The results of the model integration research illustrate that 1) through the use of a 

modular ontology development approach the semantic and procedural modeling process can 

scale up to include complex applications, 2) that, through the use functional ontology 

metamodels, the concepts and operation of very complex computational models can be 

abstracted and integrated into a deductive analysis framework in order to create a powerful 

deductive workflow engine, and 3) that a data set functional ontology metamodel definition 

that defines data scale (time and space extent and internal scale) and the scenario used to 

create the data set is sufficient to enable the reasoning engine to deduce which data sets can 

be used to derive the desired data sets; integrating the data set definition with the semantic 

and metamodels of existing computational models allows the reasoning engine to execute 

the chain of logic to create the desired data.  

The successful computational model execution and model integration results of the 

hydrologic applications demonstrate that semantic and procedural modeling is a very 
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complimentary technology for computational modeling. The semantic models are able to 

describe the wide variety of concepts we use in computational hydrologic modeling. The 

procedural models are able to compliment and inform the semantics with “how-to” 

knowledge that enables the computer to reproduce, rapidly and effectively, the “how-to” 

knowledge we employ. Semantic and procedural models are able to effectively wrap the 

hydrologic tools and computational models we use in a fashion that enhances and automates 

their use. Thus semantic and procedural models promise us the ability to automate many 

tasks that we do now in a manner that integrates into other knowledge as opposed to being 

a stand-alone process description. The promise of semantic and procedural modeling will 

allow us to capture existing scientific knowledge in a readily-usable form, enabling greater 

scientific advances by allowing us to spend more time on researching new scientific 

knowledge. 

Finally, since the reasoning engine is a library that can be included other software, as 

well as used within the procedural knowledge, instructions on how to use the reasoning 

engine are needful. Chapter 5 is a user’s manual that covers the reasoning engine functions 

and how they can be used. It also details the code wrapping for the procedural knowledge so 

that users can know what method headers to expect and how the code is called as part of 

the reasoning engine. 

6.2 Recommendations 

Because this research produced a new knowledge modeling tool, the first 

recommendation for future work is a practical one, create a new user interface for 

developing the knowledge models that assists the user in visualizing the knowledge model 

and debugging the source code. Currently used knowledge modeling interfaces, such as the 
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Protégé software (Stanford Center for Biomedical Informatics Research, 2010), do not allow 

for properties of predicates to be included. The functional ontology semantic logic 

specification is simply a set of potential properties for predicates. Properties of predicates is 

a rather esoteric feature in the field of semantic modeling but is included in the OWL-FULL 

(Patel-Schneider et al., 2004) specification. Allowing predicates to have properties breaks the 

“decidability” property of knowledge models (i.e. knowing that the computer can reach a 

final result).  As such properties of predicates are typically shunned by the semantic 

modeling community in favor of decidable semantic model specifications such as OWL-Lite or 

OWL-DL. The typical user interfaces for developing knowledge models, then, do not allow for 

the types of knowledge models presented in this dissertation. 

A second practical area of development will need to focus on sharing the semantic 

and procedural knowledge models. For the knowledge models to be useful they must first be 

obtainable. There are several ways currently used to disseminate ontologies or software and 

any one of a number of these approaches could be adapted for use for disseminating the 

functional ontology knowledge models. Typically these involve an on-line repository 

controlled by an institution that creates them (e.g. NASA SWEET Ontologies) or links to 

ontology files built into web pages (e.g. the Semantic Web). 

A third practical area of development should focus on making robust application-

level functional ontologies, such as units conversion, multi-dimensional data storage and 

transformation, and tools to obtain data from on-line data sources such as the CUAHSI HIS 

(Tarboton et al., 2011). Additionally, a primer for semantic and procedural modeling with an 

application to wrapping existing computation models would assist in bringing more 

computational models into the set of models that can be used in model integration. 
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A next step in semantically-mediated model integration would be to develop the 

reasoning process for types of tightly coupled model components, such as OpenMI 

(Gregersen et al., 2007) or the Common Component Architecture(CCA) (CCA, 2004). Instead 

of executing the individual models it would assemble the model components into the final 

model using the specified model integration technology. 

A potentially significant research area for procedural and semantic modeling for 

hydrologic applications is the development and formalization of the watershed investigation 

processes we now use. Given the abundance of available on-line data, the opportunity exists 

to begin the development of automated model creation processes. These semantic and 

procedural models should incorporate knowledge about the aspects of watersheds that we 

consider important for model purposes and the relative importance of the physical processes 

present in the watershed in the overall modeling process. 

The goal of this future work will be to create a framework that follows the three 

stages of the philosophy of computational modeling. The first stage of the framework will 

create the perceptual model. Creating the perceptual model will require a capability to 

integrate general hydrologic modeling principles, the project purpose, and automated data 

collection and testing tools (see Figure 6-1). Once the perceptual model is created, the 

second stage of the framework will need to integrate knowledge about how scale affects 

process requirements is integrated, along with knowledge about conceptual model 

components, in order to create the “digital” conceptual model (see Figure 6-2). The third 

stage will begin with the digital conceptual model and the input data and translate the 

information into a generic model description. This generic model description can then be 
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turned into the input data for any numerical model that simulates the required conceptual 

models (see Figure 6-3). 

The framework, shown schematically in Figure 6-1, Figure 6-2, and Figure 6-3, will 

require several different kinds of semantic and procedural knowledge which correspond to 

the kinds of knowledge a hydrologic modeler must know. There are fundamental concepts 

and relationships between those concepts (e.g. the hydrologic cycle) that form the 

theoretical foundation for the modeling work. Next there is practical knowledge, such as the 

implications of both the goal of the study and the properties of the area to be modeled. 

These implications mold the theoretical concepts into a set of practical concepts that 

should be modeled. This set of concepts that is molded from theoretical into increasingly 

practical concepts forms a dynamic, evolving body of knowledge. This body of knowledge, 

specific situational concepts about the model needed, is separate from both the theoretical 

 

 
Figure 6-1. The creation of the digital perceptual model from a generalized set of hydrologic 
model concepts. 
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Figure 6-2. The creation of the digital conceptual model from the digital perceptual model. 
 

 
Figure 6-3. The creation of the numerical model input data from the digital conceptual model 
and data. 
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social, and other scientific fields, functional ontologies offer the means of creating tools that 

reason about what they need to reason about. There is nothing precluding a functional 

ontology from containing code that uses other functional ontologies. An interesting, and 

exciting, possibility is to create ontologies that are able to discover, test, and decide what 

new truths and procedures to accept and add to the repository. Because of their nature in 

integrating algorithms with assertive statements, functional ontologies can include or use 

any algorithms, including other artificial intelligence algorithms such as neural networks or 

support vector machines, which can help in identifying and deciding truths and algorithms 

for identifying additional truths. The challenge in this process, and indeed in all artificial 

intelligence applications, is adding the creative spark to the program – programming 

imagination coupled with abstract pattern recognition in order to search for new underlying 

truths, investigative procedures, and creative processes.  
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