
Ensemble Kernel Density Estimation



Estimators (general)

In statistics, we often try to guess some unknown parameter 𝜃 using an estimator "𝜃. Typically, "𝜃 is a function of our 
observed data.

Examples:

• Mean of a normal distribution 𝜇 with estimator 𝜇̂ = !
"
∑𝑥#

• Rate parameter of exponential distribution 𝜆 with estimator "𝜆 = "
∑%!

• Probability density function 𝑓 𝑥 with estimator "𝑓 𝑥 (there are a few ways to do this, kernel density estimation 
being one) (we will return to this in a few slides)



What makes an estimator “good”?

The MSE (mean squared error) measures the error of an estimator. 

𝑀𝑆𝐸 $𝜃 = 𝔼( $𝜃 − 𝜃
!
)

It is well-known that the MSE can be decomposed into:

𝑀𝑆𝐸 $𝜃 = 𝐵𝑖𝑎𝑠 $𝜃
!
+ 𝑉𝑎𝑟 $𝜃

Approaches to minimize the MSE of an estimator often involve simultaneously 
minimizing the bias and the variance.



Probability density functions

Probability density functions contain all the important information regarding the distribution of a continuous 
random variable.

We might want to guess what this is using a finite sample of data. A naïve approach to 
guess this from data is with a histogram. 



Kernel density estimation

Another way to estimate a PDF is with kernel density estimation (KDEs). This is 
nonparametric (doesn’t assume distributional form).

KDEs are of the form:

𝑛: the sample size

𝑥#: known data

𝑘(⋅): kernel function

ℎ: bandwidth (degree of smoothing)

𝑝̂ 𝑥 =
1
𝑛ℎ
(
!"#

$

𝑘
𝑥 − 𝑥!
ℎ



Example of a KDE

Simulation of 300 data points from a 𝒩(𝜇 = 40, 𝜎& = 25) distribution. The red line is a KDE with ℎ = 0.5 and 
the blue line is a KDE with ℎ = 3.0.



Parametric vs nonparametric

As mentioned before, KDEs are nonparametric. If we know the true distribution of our data 
(e.g., normal, exponential, Rayleigh, gamma), then it is better in terms of MSE it is better to 
use parametric estimation.

For the mathematically inclined,
• MSE for parametric density estimation is on the order of 𝑂 :

;
• MSE for nonparametric density estimation is on the order of 𝑂( :

;
)



Can you make multiple estimators work in a team?

Yes. These are called ‘ensemble’ techniques. Examples from ML:
• Random forests
• AdaBoost
• Gradient boosting

Goal: use ensemble to improve kernel density estimation



Assumed form for ensemble

Let $𝜃< be an estimator for a parameter 𝜃. Define a weighted ensemble estimator as

$𝜃= ≔'
<∈ℒ

𝑤< $𝜃<

Where ℒ is an index set with ℒ = 𝐿 and 𝑤 = {𝑤<:, … , 𝑤<"} is a set of weights such that 
∑<∈ℒ𝑤< = 1. The $𝜃= is the ensemble estimator, and each $𝜃< is a ”weak estimator.”

We will try to apply general ensemble estimation theory to kernel density estimation to see 
if we can get a better KDE.



Theorem 1 (Sricharan et al. 2013):
Suppose the following conditions hold for each weak estimator +𝜃-:
(C1) The bias can be expressed as

𝔹 +𝜃% =(
!∈𝒥

𝑐!𝜓! ℓ 𝜙!(𝑛, 𝑑) + 𝑂(1/√𝑛)

(C2) The variance can be expressed

𝑉𝑎𝑟 +𝜃% = 𝑐(
1
𝑛
+ 𝑜

1
𝑛

𝑐! are constants that depends on the underlying density, 𝒥 ≔ {𝑖#, … , 𝑖)} is an 
index set with cardinality 𝐼 < 𝐿 = |ℒ|, and 𝜓!(𝑙) are functions that only depend 
on 𝑙.

Then, ∃𝑤 ∈ ℝ@ such that the MSE: 𝔼 $𝜃= − 𝜃
A
= 𝑂 :

;

MSE theorem for weighted ensemble estimator



The theorem states that the weight vector 𝒘B giving the MSE rate of 𝑂 :
; can be 

found by solving the convex optimization problem:

But how do we find 𝒘K?



Short answer: no.

Long answer: The bias meets the condition, but not the variance. However, we can extend 
the theorem and use weaker conditions to obtain an ensemble kernel density estimator 
that performs better than using a single estimator.

Does the KDE meet the hypotheses of Theorem 1?



Controlling the Bias

The bias of a KDE fits condition (C1) in Theorem 1, but some work is needed to derive it. With some 
assumptions on smoothness (𝑠 times differentiable density), the bias of the KDE can be derived to be

𝔹 9𝑓C ='
DE:

F/A

𝑐DℓCAD𝑛
HAD
(IJK) + 𝑜(ℎCF)

𝑐! is a constant depending on the underlying density, and ℓ* is a function of the bandwidth which is used in 
the optimization problem. Matching the above to the form of Theorem 1, 𝜓! ℓ = ℓ*+! and 𝜙!,- 𝑛 =

𝑛.
!"
#$%. Furthermore, if ℎ*/ → 0 quickly enough in relation to 𝑛, then the asymptotic term can be replaced with 

𝑂( #
$
).



Controlling variance (part 1)

As said before, variance does not meet hypothesis of Theorem 1. As a 
trick, we’ll force the problematic part of the variance to be very small in 
our constrained optimization problem. For our ensemble KDE "𝑓P, the 
variance is

𝑉𝑎𝑟 9𝑓= = '
D,C∈𝒥

𝑤D𝑤C[Σ@]D,C

Where Σ@ D,C is the covariance between the 𝑖th and 𝑗th weak estimators, 
parameterized with bandwidths ℎD and ℎC respectively. 



Controlling the Variance (part 2)

For two different KDEs designated "𝑓ℓ and "𝑓ℓ", the covariance can be derived to be 

Σ( #,* = 𝐶𝑜𝑣 "𝑓ℓ, "𝑓ℓ" =
𝑓(𝑥)

𝑛max ℎℓ, ℎℓ" + + 𝑂
1
𝑛 + 𝑜(ℎ#, + ℎ*,)

The above is nontrivial to derive and requires a few strong assumptions on our kernel function (compact domain).
If ℎ# → 0 no slower than !

"
→ 0 for all 𝑖, then, we substitute the above into 𝑉𝑎𝑟( "𝑓-) and we have

𝑉𝑎𝑟 "𝑓- =
𝑓(𝑥)

𝑛
.

+/.
\
#0*

𝑤#𝑤*ℓ*1+ +\
*2#

𝑤#𝑤*𝑙#1+ + 𝑂
𝑤 &

𝑛

Trick is to take the first term of the above and “force it small” using optimization problem. If we keep 𝑤 &
small 

using optimization problem, this guarantees the variance of the ensemble will be on the order of 𝑂 !
"

which is 
what we want.



Optimization problem
We use a similar optimization problem as in Theorem 1, except we add an extra constraint to 
accommodate the variance of the ensemble (third line of constraints below).



Ensemble KDE in Practice

As input, you select:
• 𝐿: number of estimators
• 𝜖: small positive constant for stability
• {ℎℓ}ℓ∈ℒ: a set of bandwidths

After you select the above,

• Use optimization software to solve the constrained problem. This gives you a vector of 
weights.

• Estimate density by using the estimator 9𝑓= 𝑥 = ∑ℓ𝑤ℓ 9𝑓ℓ(𝑥).



Experiment Design

To check this is better in practice, let us compare the following types of 
estimators with a given set of bandwidths {ℎ-}-∈ℒ .

1. Ensemble estimator
2. Single estimator (one bandwidth chosen from {ℎ-}-∈ℒ using cross-validation)
3. Single estimator (rule of thumb chosen bandwidth)



Example Experiment Results for 𝑑 = 8, 𝑛 = 500

Estimator Average MSE on fixed 200 test points (50 
randomizations)

Scott’s rule of thumb 89.97 ×101!&

Silverman’s rule of thumb 121.5×101!&

Single KDE (limited range) 1.873×101!&

Single KDE (CV – large range) 1.867×101!&

Ensemble 1.359×101!&

Average testing mean-squared error from 50 simulations using a randomized multivariate Gaussian density with 
randomized mean and covariance matrix.



Future Work

• Convergence toward specific higher order kernel?

• Algorithms for selecting bandwidth

• Compare against other modern KDE approaches

• Multivariate density estimation proof
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