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Estimators (general)

In statistics, we often try to guess some unknown parameter 6 using an estimator 8. Typically, 8 is a function of our
observed data.

Examples:

* Mean of a normal distribution u with estimator i = %le-

* Rate parameter of exponential distribution A with estimator A= Zix
J

« Probability density function f(x) with estimator f(x) (there are a few ways to do this, kernel density estimation
being one) (we will return to this in a few slides)



What makes an estimator “good”?

The MSE (mean squared error) measures the error of an estimator. T e

It is well-known that the MSE can be decomposed into: .
MSE(8) = Bias(é)2 + Var(9) : ‘ @

Approaches to minimize the MSE of an estimator often involve simultaneously i e Bl
minimizing the bias and the variance.

MSE(8) = E(§ - 6)%)
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Probability density functions

Probability density functions contain all the important information regarding the distribution of a continuous
random variable. L
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We might want to guess what this is using a finite sample of data. A naive approach to
guess this from data is with a histogram.
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Kernel density estimation

Another way to estimate a PDF is with kernel density estimation (KDEs). This is
nonparametric (doesn’t assume distributional form).

KDEs are of the form: Available Kernels
gaussian tophat epanechnikov
1 n
A X = Xj
plx) = — E k ( )
nh ¢ h
=1
n: the Sample slze exponential linear cosine

x;: known data

k(-): kernel function

h: bandwidth (degree of smoothing)

2h -h 0 h 2h 2h -h 0 h 2h 2h -h 0 h 2Ih



Example of a KDE

Simulation of 300 data points from a V'(u = 40, 5% = 25) distribution. The red line is a KDE with h = 0.5 and
the blue line is a KDE with h = 3.0.

Histogram of Data and KDE




Parametric vs nonparametric

As mentioned before, KDEs are nonparametric. If we know the true distribution of our data

(e.g., normal, exponential, Rayleigh, gamma), then it is better in terms of MISE it is better to
use parametric estimation.

For the mathematically inclined,

* MSE for parametric density estimation is on the order of O (%)

* MSE for nonparametric density estimation is on the order of 0(\/%)



Can you make multiple estimators work in a team?

Yes. These are called ‘ensemble’ techniques. Examples from ML:
* Random forests

e AdaBoost

* Gradient boosting

Goal: use ensemble to improve kernel density estimation



Assumed form for ensemble

Let @l be an estimator for a parameter 6. Define a weighted ensemble estimator as

=2Wl§l

leL

Where L is an index set with |[£]| = L andw = Wiy ey Wy } is a set of weights such that
Y ,esw; = 1. The 8, is the ensemble estimator, and each 01 is a “weak estimator.”

We will try to apply general ensemble estimation theory to kernel density estimation to see
if we can get a better KDE.



MSE theorem for weighted ensemble estimator

Theorem 1 (Sricharan et al. 2013):

Suppose the following conditions hold for each weak estimator él:

(C1) The bias can be expressed as
B(0) = ) cahi(pi(nd) + 0(1/Vn)
T
(C2) The variance can be expressed

Var(él) = Cy (l) + 0 (l>

n n

Then, 3w € RE such that the MSE: E [(éw — 3)2] =0 (%)

c; are constants that depends on the underlying density, J = {iy, ..., ;} is an
index set with cardinality I < L = |L|, and ¥;(l) are functions that only depend
on L.



But how do we find wg?

The theorem states that the weight vector w, giving the MSE rate of O (%) can be
found by solving the convex optimization problem:

min €
w, €
st Y w(l) =1,
el

Yw(i)n2gian)| <€, VieJ
|lwl|3 < ne



Does the KDE meet the hypotheses of Theorem 17

Short answer: no.

Long answer: The bias meets the condition, but not the variance. However, we can extend
the theorem and use weaker conditions to obtain an ensemble kernel density estimator
that performs better than using a single estimator.



Controlling the Bias

The bias of a KDE fits condition (C1) in Theorem 1, but some work is needed to derive it. With some
assumptions on smoothness (s times differentiable density), the bias of the KDE can be derived to be

5/2 —2i
IBB(f]) = Z cl-f]?‘n(d%) + o(h;)

=1

¢; is a constant depending on the underlying density, and £; is a function of the bandwidth which is used in
the optimization problem. Matching the above to the form of Theorem 1, y;(£) = ffi and ¢; 4(n) =

21
n d+e, Furthermore, if hf — 0 quickly enough in relation to n, then the asymptotic term can be replaced with

O(Tlﬁ).



Controlling variance (part 1)

As said before, variance does not meet hypothesis of Theorem 1. As a
trick, we’ll force the problematic part of the variance to be very small in

our constrained optimization problem. For our ensemble KDE fw, the
variance is

Var(fy) = Z wiw;[ZL]; j

LjEJ

Where [X,]; ; is the covariance between the ith and jth weak estimators,
parameterized with bandwidths h; and h; respectively.



Controlling the Variance (part 2)

For two different KDEs designated f, and f{,r, the covariance can be derived to be

f(x)

nmax(hy, hyr)@

o 1
2.1:; = Cov(Fo frr) = +0 (E) + o(h + h)

The above is nontrivial to derive and requires a few strong assumptions on our kernel function (compact domain).

If h; = 0 no slower than % — 0 for all i, then, we substitute the above into Var(fw) and we have

2

nd+e \igj j<i

2
Trick is to take the first term of the above and “force it small” using optimization problem. If we keep ||W|| small
using optimization problem, this guarantees the variance of the ensemble will be on the order of O (;) which is

what we want.



Optimization problem

We use a similar optimization problem as in Theorem 1, except we add an extra constraint to
accommodate the variance of the ensemble (third line of constraints below).

min €

w,€

st Yy w(l) =
lel

|7 (B)1 2 4(n)| < € Vi € T,

1
neo/(d+eo)—1 [Zw E d"‘zw Z )E ] < )€

] 1<

[lw]]3 < ne



Ensemble KDE in Practice

As input, you select:

* L:number of estimators

* ¢€:small positive constant for stability
* {hp}per: asetof bandwidths

After you select the above,
* Use optimization software to solve the constrained problem. This gives you a vector of

weights.
* Estimate density by using the estimator f,,(x) = X, w,f,(x).



Experiment Design

To check this is better in practice, let us compare the following types of
estimators with a given set of bandwidths {h;};c,.

1. Ensemble estimator

2. Single estimator (one bandwidth chosen from {h;};c, using cross-validation)
3. Single estimator (rule of thumb chosen bandwidth)



Example Experiment Results ford = 8,n = 500

Average testing mean-squared error from 50 simulations using a randomized multivariate Gaussian density with
randomized mean and covariance matrix.

Average MSE on fixed 200 test points (50
randomizations)

Scott’s rule of thumb 89.97 x10~12
Silverman'’s rule of thumb 121.5x10712
Single KDE (limited range) 1.873x10~12
Single KDE (CV — large range) 1.867x10~12

Ensemble 1.359x 10712



Future Work

* Convergence toward specific higher order kernel?

* Algorithms for selecting bandwidth

* Compare against other modern KDE approaches

* Multivariate density estimation proof
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