Tea Time With the Devil

Hamish Jackson

Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

Part of the Ceramic Arts Commons

Recommended Citation

This Creative Project is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
Tea Time with the Devil began with the hypothesis that I could create a diverse palette of glazes from one local material.

I chose to base my experiments on a granite from Devil’s Playground in western Utah. I collected its bones, hauled them back to USU and crushed them into powder. Each glaze contains at least 50% of the Devil’s granite.

This palette resulted from much trial and error — mostly error. Between 2020 and 2023, I ran thousands of glaze tests to formulate and hone these surfaces.

Why this place and material?

The wild landscape of Devil’s Playground captured my imagination and made me want to keep returning. I am truly grateful to this landscape and its rocks.

The granite contains a high percentage of silica, as well as some feldspar and mica. Once powdered, it melts into a celadon glaze without adulteration.

This was a good starting point: a blank (albeit grey) canvas for experiments.

Why tea wares?

As an Englishman and a walking stereotype, I love tea. Tea brings people together. By sharing tea, we make time to stop, reflect and connect.

I am fascinated by the world’s diverse tea traditions and their accompanying ceramic tools.

Tea Time with the Devil is inspired by the distinct tea traditions of England, Japan, China, and the American South.
GRANITE PROCESSING

Glaze testing takes a long time, even with processed, bagged materials. It takes considerably longer if you’re collecting your own materials.

The first step is harvesting the granite. I drove to Devil’s Playground and carefully collected some of its rocks. I was mindful to take stray rocks and disturb the place as little as possible. The land is managed by the Bureau of Land Management and people are allowed to collect “a reasonable” amount. Most people who go to Devil’s Playground to collect are searching for quartz crystals, such as the one displayed in this show, found by my friend — rockhound extraordinaire — Alex Whitney.

Once I have the granite back in the ceramics studio, I fire it to about 1200°F. This helps loosen the bonds holding the rock together and makes it easier to break up.

I had to get the granite down to about pea-size or smaller. Then it could be tumbled in a ball mill (a rotating barrel full of dense porcelain balls) to reduce it to a usable powder.

Crushing the granite was arduous. In the beginning, I was doing the initial crush by hand, hammer and brick, with the help of my assistant, Jack “The Hammer” Orgill. Our method sped up a lot when I acquired a “Crazy Crusher,” a hand-powered tool used by gold prospectors to crush rocks.

Once out of the ball mill, the powder is sieved to 60 mesh and ready for use in glazes.
The rocks of Devil’s Playground formed underground about 34 to 41 million years ago. Magma flowed into overlying Paleozoic (240 to 300 million years old) sedimentary rocks.

This magma intrusion happened approximately six miles below the surface of the earth. It is known as the *Emigrant Pass pluton*.

Beginning approximately 13 million years ago, extensional forces thinned and fractured the Earth’s crust within the Great Basin, creating a web of faults. Along these faults, mountains were uplifted and valleys dropped, producing the basin and range landscape. These geological processes continue today.

One of these north-south trending faults, the *Grouse Creek Mountains* fault, led to the uplift of Grouse Creek and Bovine Mountains, where Devil’s Playground is located. The bedrock was subjected to weathering and erosion by water, ice, wind and other agents.

Over millions of years, these erosional processes worked away, removing three to six miles of rock and sediment before exposing the granitic rocks of Devil’s Playground.¹

This is incredible to me. Miles of overlying rock eroded for the granite to be out in the open air. I am grateful for these slow processes, which have allowed me to collect granite on the surface of the earth and turn it into glazes.

¹ Much of this information was taken from a 2019 paper by Carl Ege: ‘Devils playground, Box Elder County,’ Utah Geological Association Publication, v. 48, no. 1, p. 1-7., doi: 10.31711/geosites.v1i1.79.
I always feel a sense of dread driving out to Devil’s Playground. From Logan, I climb over Rattlesnake Pass and cross multiple signs warning No Services. Run-down ranches and boarded up houses punctuate the route. Tom Waits and Alice Coltrane keep me company.

Devil’s Playground is on the western edge of the Great Salt Lake. It is a remote place in the high desert. No cell service, no settlements. It feels untamed.

Granite slabs jut out of the barren plain. The rock has weathered in fabulous patterns, from cavities that look like honeycomb, to seams and cracks, arches and pillars, all the way down to dust. I marvel at the structures eroded over millions of years.

I climb up one of the tallest granite slabs. A wide, desolate basin expands. The edge of Salt Lake is so far one can no longer see the water. It is exposed. Vicious winds try to blow me off the peak. I set up my tripod and take a photograph anyway. It is frigid now, but when I was here last, the harsh sun had me cowering for shade.

It is so dry, yet it teems with life: desert plants like sagebrush, Utah juniper, pinyon pine and cheatgrass thrive. Their cracked limbs show the struggle of survival.

On various trips here, I’ve marveled at the wildlife. I’ve seen lizards and birds, a jackrabbit, an owl and a snake. Rarely a human. I see the detritus of humans, though: old ammunition casings, food wrappers, rusty metal. In a small act of thanks and reciprocity, I collect these human things and remove them from the landscape.
The question was how to present the landscape of Devil’s Playground in a way that aligned with my investigation of traditional ways of making.

Professor Jared Ragland introduced me to wet plate photography, otherwise known as *tintype*. This method was invented in the 1850s and was one of the first ways people made black and white photographs.

Carleton Watkins, one of the pioneers of this process, inspired me. His 1861 mammoth landscape photographs of Yosemite were revolutionary. People on the East Coast could now see the majesty of the West. These plates played a significant role in the establishment of the U.S. National Park System. An excellent biography by Tyler Green, *Carleton Watkins: Making the West American*, describes this in detail.

The process involves coating a glass, tin or aluminum plate with silver collodion, exposing a photograph and then developing it whilst the plate is still wet. You have about 10 minutes to complete the various chemical operations. If the plate dries, the image will be obscured.

This is about the slowest, most challenging way to photograph a remote landscape like Devil’s Playground. The development must happen in the dark, so a portable darkroom (tent) is necessary. Much can go awry. This year’s exceptional winter did not help. You cannot let the chemicals or wet plate freeze. These tintypes were made in very cold but not quite freezing conditions, apart from the portraits, which were made in the studio.
Scanning electron microscopy (SEM) uses electrons to capture images at a higher magnification than is possible with traditional microscopes.

The SEM uses a beam of electrons to scan the surface of samples down to the atomic level, revealing topography the human eye cannot detect. It is akin to flying over farmland in an airplane and seeing the web of roads, lights and fields below.

USU’s Microscopy Core Facility is managed and maintained by FenAnn Shen. My friend Alex DiMonte, who is currently working on her PhD at USU, acquired these SEM images for me.

I was stunned to see the differences in my glazes under high magnification. In the celadon glaze, we see salt crystals on the surface. In the tenmoku, we see different forms of iron growing. In the yellow, we see large zircon crystals, which help make the glaze matte. In the jun, we see the bubbles that are the secret to its opalescent blue.

It was also incredible to see the structure of the Devil’s Playground granite at high magnification. Some of the same features are recognizable from the larger scale ones in nature.

Studying these images reminds me that everything is connected. Our bodies are made of many of the same elements as these rocks and glazes.

We are one with nature. We should be careful in our choices. What we use, what we buy, and how we live our short lives. To quote MaPó Kinnord, “we are guests here.”
Today, you can order bags of highly processed materials from all over the world, at the click of a button. It is so easy, but it makes potters beholden to large industry for the materials they use. Mines frequently close and potters must search for new sources. This system of large mines and global transport also has significant environmental implications.

I advocate for a return to the traditional way of making pottery, using local materials. Until relatively recently, this was a necessity: Clay and rocks are difficult to transport, and pots are usually inexpensive.

Processing your own materials is slow, hard work, but the pots that result are unique and have a tangible connection to the place they are made.

It’s like growing your own tomatoes. The ones you buy in the store are never as tasty as the ones you grow. They can’t be. Partly this is because they aren’t picked at peak ripeness, but it’s also because you have not turned the soil yourself, or watched the tomato ripen from green to yellow to red. You haven’t pinched it to see if it’s ready to pop off the vine. It’s about the connection, the slowness, the intentionality and the hard work. In the end, this makes the results more satisfying.

Over the last three years, I have connected in this way to Utah and particularly Devil’s Playground. I hope that the people who handle these pots feel a sense of this connection, too.
Before moving to Utah, my wife and I lived in North Carolina for five years. In the South, *sweet tea* is said to run through many people’s veins.

I have memories of sitting on the porch on late summer afternoons after work, drinking ice tea as storms rolled in. I would be hot and sweaty, hoping the downpour would clear out the humidity. Even if it didn’t, the tea helped.

In restaurants, the sweet tea can make you shiver with how much sugar it has. Usually there is an unsweetened option available, too. I would get funny looks sometimes, asking for unsweetened tea with just a splash of the sweet.

The vessels here are a homage to my time in North Carolina, on Johnny Burke Road, learning to throw pots as an apprentice for Mark Hewitt. I will be forever grateful for all he taught me. Mark makes ice tea vessels (of a different form), with 20 ounces of clay. I was always amazed by how tall he could stretch the clay. No need to compare mine to his.

A decently large pitcher is necessary for ice tea, especially if serving a group, and to allow for seconds. One cup is never enough! I tried to bring these pitchers to life with pregnant bellies and elegant necks.

During my apprenticeship, I began the journey of using local materials in my work. I helped Mark test and formulate a celadon glaze using a local granite, so it seemed appropriate to glaze these ice tea wares with my Devil’s Playground celadon.
Matcha is powdered green tea. In China, tea was powdered as far back as the 7th century AD. Back then, it was processed and served quite differently, roasted and often drunk with salt.

In 1191, Zen Priest Eisai brought tea seeds back to Kyoto. Starting with monks, who used the drink as an aid to meditation, tea cultivation and consumption spread. Eisai famously said matcha was the “elixir of the immortals.”

Today’s recognizable practice of the tea ceremony, or chanoyu, grew in popularity in the 16th century. Sen-no-Rikyu (1522–1591) was instrumental in shaping modern chanoyu. He collected everyday items for use in tea ceremonies and commissioned Chojiro — a roof tile maker — to make specific vessels. Rikyu moved away from ornate, elaborate tea wares and practices to simpler ones. Rikyu’s sense of aesthetics greatly influenced Japanese ceramics and the way of tea.

I looked to the aesthetics and philosophy of Rikyu for inspiration. Black and red teabowls were preferred by Rikyu and have been made by the Raku family (Chojiro’s descendants) ever since. I particularly like black teabowls. The dark glazed surface contrasts brilliantly with bright green tea.

For this reason, I chose to formulate and work with iron-rich tenmoku-style glazes for these tea wares. The surface variations are due to the way in which they were fired. I experimented with many different atmospheres and firing schedules.
In the context of tea, *Gong fu* means “brewing with skill.” To my mind, this way of tea brings out the most flavor from tea leaves.

This Chinese method involves brewing a relatively large amount of tea leaves in a small quantity of water for short periods of time. You re-brew the same leaves multiple times and enjoy the changes in flavor over the course of the session.

Gong fu is sometimes ritualized, but not always. I have found that drinking tea this way is always fun. The rounds of tiny cups of tea add up and can lead to one feeling tea drunk, especially if several teas are sampled!

The vessels used in this way of tea are very particular. Small teapots or *Gai Wan* (lidded vessel) are often used for brewing. The tea is poured into a pitcher, or *gong dao be*, so that it is fully mixed and then poured for the guests. This allows for a fair and equal strength of tea for everyone. Straight cups are used for smelling the aroma of the tea and then the wide-mouthed ones are for drinking. A tea table or tea tray is used to catch splashes of water. This is necessary as water is used liberally to heat up and clean the wares before use.

I have long been fascinated by Jun glazes of the Song dynasty (960–1279AD). Every time I encounter them in museums I ogle and drool. These glazes are somewhat mysterious and potters did not know how these opalescent blues were formulated.

It was my dream to make a Jun glaze from my granite and I am thrilled with the results.
A VERY ENGLISH TEATIME

How could I put on a show about tea without a nod to my homeland?

Tea in England is served with milk and sometimes sugar. Some prefer honey and lemon — but as a rule, it’s milky black tea. “Builders tea,” we call it, because if you have a handyman or plumber come to your house, they will expect a cuppa. It would be rude not to offer, and rude for them not to accept.

Until I was 18, this was all I knew of tea. It wasn’t until I was motorbiking across Vietnam that my mind and taste shifted. We stopped for lunch at a café in the central highlands. The highlight was a pitcher of iced jasmine tea. No milk! It was so flavorful. From then on, I have sampled as many different teas as I can.

Even though I enjoy drinking a variety of tea now, English tea is still very comforting to me, especially if accompanied by a slice (or two) of my mum’s delicious cake. If you attend the reception or tea party on Easter Sunday you too could experience this.

The reason for formulating a yellow glaze for these teawares goes back to medieval English slipware. I love these old earthenware pots, especially the warm yellow ones. Unfortunately, these yellows were made with glazes containing lead. They were also fired to a lower temperature than I need to easily melt my granite.

This yellow glaze also uses dolomite from Second Dam up in Logan Canyon. It is a pleasure to go into the canyon to collect these rocks; the act of doing so makes me feel more connected to this place.
GLAZE RECIPES

Hamish’s Celadon
80 Devil’s Playground granite
20 Wollastonite

Hamish’s Yellow
50 Devil’s Playground granite
20 Logan Canyon dolomite
15 Zircopax
10 Bone ash
5 Edgar plastic kaolin

Hamish’s Tenmoku
57 Devil’s Playground granite
14 Wollastonite
10 Grolleg
5 Basalt (Craters of the Moon)
5 Silica
5 Red iron oxide
2 Zinc oxide
2 Bentonite

Hamish’s Jun
50 Devil’s Playground granite
20 Wollastonite
20 Silica
10 Mahavir feldspar
2 Bentonite
2 Bone ash
1.5 Logan Canyon dolomite
1.5 Red iron oxide

Chemical composition of the Devil’s Playground granite (analysis from Washington State University):

SiO$_2$ 75.64 — TiO$_2$ 0.20 — Al$_2$O$_3$ 13.37 — FeO 1.34 — MnO 0.03
MgO 0.38 — CaO 1.38 — Na$_2$O 3.23 — K$_2$O 4.37 — P$_2$O$_5$ 0.06
JOIN ME FOR TEA

To fully appreciate these vessels, they must be used!

I offered several opportunities during my exhibition for people to come and do so.

For a maximum of six guests each afternoon (except Thursday), I served tea and treats in the Impact Commons behind the Tippetts and Eccles galleries. It was a joy to be able to connect with friends in this was and use the pots!

Sign up for these intimate tea sessions was with the gallery assistant. Limited to one slot per person.

- Monday, 3:30–4:30 p.m.: Southern ice tea session
- Tuesday, 3:30–4:30 p.m.: Matcha session
- Wednesday, 3:30–4:30 p.m.: Gong fu session
- (Thursday, 5–7 p.m.: Gallery reception)
- Friday, 3:30–4:30 p.m.: English tea session
Thanks to everyone who helped this show become a reality.

Thank you to my wife, Lauren, who has helped enormously, in so many ways; she is a star, a rock, the sparkliest piece of granite. Our daughter, Juniper, who has brought us so much joy and made me prioritize my time. Thanks to my parents, Juliet and Julian Jackson, for the support from afar, as well as clothing and feeding me for years. Thanks to my parents-in-law, Pat and Nelson Rose, for all their help, especially looking after Juni over the past two years. Thanks to my other parents-in-law Michael and Katherine Douglas for their support and encouragement along the way.

Thank you to my professors and mentors for all their guidance: John Neely, Dan Murphy, Todd Hayes, Ryoichi Suzuki, Jared Ragland, Kelly Bradbury, Katie Potter, John Shervais, Kathy Puzey, Michael Sowder, Antra Sinha, Janet Wilhelm, Holland Larsen, Michael Sowder, Mark Hewitt, Matt Blakely and my fellow grad cohort.

Thank you to everyone who has helped me fire soda and wood kilns lately: Bella Wetzler, Antra Sinha, Jack Orgill, Rachel Pearlman, Sam Richards and Rebecca Barney.

Thank you to Kendall Dutson, Lauri Dikos and Jorge Estrada and all the staff of the art building, who keep the studio safe and ship shape.

Last and not least, thank you to my collaborators: Jack Orgill, who has helped me enormously with countless arduous tasks. Will Mitchell, who made the fabulous gong fu travel box. Charlie Hellberg, who made the table runner for the matcha table and the covers for the tea jars. Alex Dimont, who taught me a lot about minerology and captured the SEM images of my glazes.

Thanks again to you all, and to all the unseen helpers.