Wetland Plants
of Great Salt Lake
A guide to identification, communities, & bird habitat

Rebekah Downard · Maureen Frank · Jennifer Perkins
Karin Kettenring · Mark Larese-Casanova

July 1, 2017
Contents

List of illustrations vi
Preface and Acknowledgments vii
About this guide viii
Using the general plant information key x
Map: Wetland Plant Communities of Great Salt Lake xii
Introduction: Great Salt Lake wetlands: water, plants, birds, and management 1

Chapter 1: Submergent Wetlands 9
Submerged aquatic plants list 11
Plant identification pages 12
Submergent birds 26

Chapter 2: Emergent Wetlands 29
Emergent plants list 31
Plant identification pages 33
Emergent birds 66

Chapter 3: Meadow Wetlands 69
Meadow plants list 71
Plant identification pages 73
Meadow birds 108

Chapter 4: Playa Wetlands 111
Playa plants list 113
Plant identification pages 114
Playa birds 132

Chapter 5: Upland Plants 135
Upland plants list 136
Plant identification pages 138
Upland birds 179

Epilog: Threats to Great Salt Lake wetlands 181
Glossary 184
References 196
Index 203
List of illustrations

Figures
1.1 Generalized flower 184
1.2 Composite flower of Asteraceae species 184
1.3 Valvate flower 185
1.4 Grasses 186
1.5 Inflorescence types 188
1.6 Leaf attachments 190
1.7 Leaf shapes 192

Key
General plant information key x

Map
Wetland plant communities of Great Salt Lake xii

Tables
1.1 Great Salt Lake wetland communities 3
1.2 Great Salt Lake priority bird species 7
Preface

The wetlands of Great Salt Lake (GSL) are internationally important bird use areas, ecological wonders, and local treasures. I feel lucky to have spent each summer during 2012–2015 immersed in these wetlands, identifying plants as part of my dissertation work at Utah State University. Originally, the plant data I gathered was intended to be used in developing an index of the condition of GSL wetlands; however, it quickly became apparent that the data would also provide useful information for a wide range of organizations, agencies, and people.

Around this same time, Maureen Frank was working on a guide to GSL wetland vegetation and how to manage native plants as high-quality habitat for birds. This book is a combination of Maureen’s and my research and showcases a current, comprehensive list of GSL wetland plants. Native wetland plants are the first link in complex food webs, and they highlight the unique ecology of each wetland community and the diversity of wetland-dependent bird species.

From deep, submergent wetlands at the heart of conservation areas, to the flat, salty playas where killdeer dart back and forth, my hope is that this guide provides you a window into the fascinating inner workings of GSL wetlands. Together, I believe our efforts in dedicating time, knowledge, and resources to understanding GSL wetland plants will benefit every species that depends on these wetlands, including ourselves.

Rebekah Downard

Acknowledgments

Funding for the development of this guide was generously provided by Utah State University Extension and a Wetland Program Development Grant from the Environmental Protection Agency through the Utah Geological Survey.

Rebekah would like to thank Diane Menuz with the Utah Geological Survey and Dr. Toby Hooker with the Utah Department of Water Quality for their help in assembling a comprehensive plant species list.

Maureen wishes to thank Howard Browers from the Bear River Migratory Bird Refuge for his help classifying birds and for providing an understanding of wetland systems.
About this guide

Wetland Plants of Great Salt Lake: A Guide to Identification, Communities, and Bird Habitat is designed to assist researchers, land managers, birders, and wetland enthusiasts. Its color-coded chapters represent plant communities surrounding Great Salt Lake (GSL):

Chapter 1: Submergent Wetlands (p. 9)
Chapter 2: Emergent Wetlands (p. 29)
Chapter 3: Meadow Wetlands (p. 69)
Chapter 4: Playa Wetlands (p. 111)
Chapter 5: Upland Plants (p. 135)

Each wetland community is classified by its topography, dominant plants, hydroperiod, and water chemistry (See Table 1.1, p. 3). The Upland Plants chapter lists species that occasionally disperse to and survive in wetlands but do not represent a wetland community. All chapters include a community description, a plants list, plant identification pages, and bird information and images. To view where wetland communities are located around GSL, use the Wetland plant communities of Great Salt Lake map (p. xii).

Plant species are listed in the wetland community where they are most commonly found. However, some species may be found in multiple communities (pp. x–xi). Each plant species is described in detail with four accompanying images, including the whole plant (big), its habitat (top left), its flowers, inflorescences, or seeds (top middle), and its leaves, stems, or both (top right). See the glossary for illustrations and definitions of plant anatomy (pp. 184–195). Each plant’s historical, medicinal, or distinguishing facts are included in the facts section when applicable.

Many state, regional, and national plant identification resources, or floras, were used to complete each plant identification page: Vascular Plants of Northern Utah, A Utah Flora, Intermountain Flora, Manual of Grasses for North America, and Flora of North America. Look to these sources for additional information.

Plant taxonomy—the classification of species into related groups—changes frequently as scientists use DNA research to find how species are related. The species names included in this guide represent
the current accepted names according to the U.S. Department of Agriculture PLANTS Database, as of December 2015. Older plant species’ names are included as synonyms when appropriate.

Bird species are pictured in their preferred wetland community based on nesting, foraging, and resting connections to plants within that community. They may be referred to by groups, such as waterfowl, shorebirds, waterbirds, and passerines.

Many bird species listed in this guide are highly dependent on GSL wetlands. This dependency qualifies them as species of special management concern or priority bird species (See Table 1.2, p. 7). Priority bird species represent the general habitat requirement of other bird species that may not be mentioned here.

The scientific and common names of bird species included in this guide correspond with the most recent scientific consensus as published in the American Ornithologists’ Union checklist, 57th Supplement, July 2016. Bird taxonomy is subject to change.
Using the general plant information key

A general plant information key is located on the bottom left of each identification page. It indicates a plant species’ typical wetland community (color), wetland indicator status, duration and growth form, nativity, and commonness. If a species is found in more than one wetland community, a colored line below the key will represent the other community. The example below shows that this species is typically found in submergent wetlands (blue) but may also be found in emergent wetlands (green).

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Commonness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBL</td>
<td>PF</td>
<td>N</td>
<td>C</td>
</tr>
</tbody>
</table>

One can also infer, using the categories below, that this species is an obligate wetland plant, a perennial forb, and a native plant in the United States that is common in Great Salt Lake submergent wetlands.

Wetland Indicator Status

- **Obligate Wetland Species (OBL):** nearly always occur in wetlands
- **Facultative Wetland Species (FACW):** usually occur in wetlands
- **Facultative Species (FAC):** occur in both wetlands and uplands
- **Facultative Upland Species (FACU):** usually occur in uplands
- **Upland Species (UPL):** rarely occur in wetlands
- **No Indicator Status (NA):** no wetland indicator status

Duration and Growth Form

Duration

- **Annual (A):** completes life cycle and dies in one growing season
- **Perennial (P):** part of the plant persists year to year
- **Biennial (B):** requires 2 years to complete life cycle
- **Annual or perennial (AP):** depends on local conditions
- **Annual, perennial, or biennial (APB):** depends on local conditions
Growth Form

Graminoid (G): grasses and grass-like plants, including species in the families Poaceae, Cyperaceae, and Juncaceae

Forb (F): a plant that is not a graminoid and not woody, also called an herb

Shrub (S): perennial, woody plant, usually < 5 meters (16 ft) tall, often multi-stemmed

Vine (V): a climbing or twining plant with long stems

Nativity in the Lower 48 States

Native (N): naturally occurring in the contiguous United States

Introduced (I): accidentally or deliberately introduced from outside the United States

Native and Introduced (NI): introduced in part of the range

Commonness in Wetland Community

Common (C): found abundantly in the appropriate GSL wetland community

Uncommon (U): found less abundantly in the appropriate GSL wetland community

Occasional (O): found infrequently in GSL wetlands
Wetland plant communities of Great Salt Lake

Submergent Wetland
Emergent Wetland
Meadow Wetland
Playa Wetland

Wetland Management Areas

A. Public Shooting Grounds Waterfowl Management Area
B. Bear River Migratory Bird Refuge
C. Harold Crane Waterfowl Management Area
D. Ogden Bay Waterfowl Management Area
E. The Nature Conservancy Shorelands Preserve
F. Farmington Bay Waterfowl Management Area
G. Inland Sea Shorebird Reserve
Great Salt Lake wetlands: water, plants, birds, and management

Great Salt Lake (GSL) is renowned throughout North America for its size, salinity, and importance to migratory bird flyways. Located in the Great Basin, the lake encompasses approximately 4,400 km² (1,087,000 ac) of northern Utah and is the largest terminal lake in North America. Nearly 1,400 km² (351,000 ac) of wetlands surround GSL’s shorelines; these wetlands teem with life and are a flooded oasis in an otherwise arid region.

From submergent wetlands to playas, plant communities play a vital part in GSL wetland ecosystems. Wetland plants provide habitat for insects, amphibians, fish, reptiles, mammals, and birds that thrive in wetlands. In fact, Great Salt Lake was designated a Western Hemisphere Shorebird Reserve Network because over 250 bird species migrate to and rely on its wetlands for food, cover, and rest. Together, water, plants, and birds contribute to healthy, vibrant GSL wetland communities. Managing GSL’s wetland plant communities is a tremendous, yet necessary challenge that stands to benefit many stakeholders.

联网 Water
Water is the defining feature of wetlands. From tiny microbes to hardy plants and towering great blue herons, all GSL wetland life is tied together by the presence of water. Water factors such as depth, flooding pattern, and chemistry differentiate the types of wetland communities.
Water levels at GSL and surrounding wetlands fluctuate with changes in snowpack, upstream irrigation demand, and evaporation. Fluctuations are cyclical, but irregular, and have a direct impact on how GSL wetlands function. For the past 15,000 years, water has only been able to leave GSL via evaporation. Meanwhile, salts and other minerals have been left behind and continue to accumulate as GSL’s three main tributaries—the Bear, Weber, and Jordan rivers—contribute more than 2 million tons of salt to the lake each year. Over time, the accumulation of salt has increased GSL’s salinity to 3–7 times the concentration of seawater.22

Wetlands are classified, in part, by the length of time and depth they are flooded. The pattern of flooding and drawdown is called the hydroperiod.36 Depending on the type of GSL wetland, flooding can vary from permanent, deep flooding to temporary saturation. Temporarily flooded wetlands, like playas, are only flooded for brief periods during the growing season, which runs from approximately April to October. Submergent and emergent wetlands are often semi-permanently flooded with standing water throughout most of the growing season. The hydroperiod and water source influence the salinity and alkalinity (pH) of a wetland, shaping the plant community. See Table 1.1 (p. 3) for specific hydroperiod depth and duration attributes of each wetland community.

The salinity and alkalinity of the water in GSL and associated wetlands fluctuates throughout the year. These fluctuations occur when freshwater inflows peak during spring snowmelt conditions, and when evaporation increases with rising summer temperatures. When GSL’s water level is low, an additional 1,678 km² (414,688 ac) of saline mudflats and playas are exposed.55 The receding lake leaves behind high concentrations of salts and other elements, leading to high salinity and alkalinity in exposed wetland soils. Brackish wetlands, those with salinities in between fresh and saline conditions, are common where periodic freshwater inflows have flushed hypersaline soils. Freshwater wetlands are found close to freshwater sources like streams and springs. Generally, the longer and deeper wetlands are flooded, the lower the salinity will be. Many GSL wetlands are alkaline, which means the soil or water has a pH higher than 7.4. See Table 1.1 (p. 3) for water chemistry types specific to each wetland community.
Great Salt Lake wetland communities

<table>
<thead>
<tr>
<th>Elevation, distance to freshwater</th>
<th>Submergent Wetlands</th>
<th>Emergent Wetlands</th>
<th>Meadow Wetlands</th>
<th>Playa Wetlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closest to freshwater where deep flooding is possible; farthest from GSL shoreline</td>
<td>Intermediate elevations in large, flat areas where flooding is shallow</td>
<td>Higher elevation between uplands and deeply flooded wetlands</td>
<td>At lowest elevations; expanding when shoreline recedes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dominant plants</th>
<th>Submerged aquatic vegetation growing in the water column</th>
<th>Tall vegetation growing up through the water surface</th>
<th>Mid-height, dense grasses and forbs</th>
<th>Sparse growth of short, salt-loving plants</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hydroperiod</th>
<th>Permanently to semi-permanently flooded; deep: 40–90 cm (16–35 in) to shallow: 10–45 cm (4–18 in)</th>
<th>Seasonally to semi-permanently flooded with drawdown; deep: 20–30 cm (8–12 in) to shallow: 5–20 cm (2–8 in)</th>
<th>Seasonally flooded to saturated; very shallow: less than 5 cm (2 in), to saturated soils</th>
<th>Temporarily flooded; shallow: 0–5 cm (0–2 in), dry most of the season</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Water chemistry</th>
<th>Fresh to brackish</th>
<th>Fresh to brackish</th>
<th>Fresh to brackish</th>
<th>Salty and alkaline</th>
</tr>
</thead>
</table>

| Management tactics | Maintain consistent flooding; low to moderate salinity; dredge nutrient-rich sediments; minimize physical disturbance | Ensure spring, fall flooding; drawdown to stimulate seed production; prevent undesirable species invasion | Manage for a diverse mosaic of plants | Protect ground-nesting birds from predators and flooding |

| Table 1.1 |
Plants, another defining feature of wetlands, determine what ecosystem functions a wetland might provide. Some plant species are effective at filtering pollutants out of the water, and others are beneficial because they prevent erosion, buffer nearby communities against flooding, or provide food and resting space for wildlife. See Table 1.1 (p. 3) that lists the dominant plant types in each community.

Wetland plants have a variety of adaptations that allow them to live and reproduce in flooded, low oxygen conditions and during periodic droughts or drawdown. General adaptations differ for each wetland plant community depending on the conditions plants must face in that habitat.

Submerged aquatic vegetation (SAV) have flexible, floating stems and leaves that are capable of photosynthesizing in low light.

Emergent plants have rigid stems that can grow exceptionally fast in order to keep leaves and flowers above the surface of the water.

Meadow plant species have a variety of underground adaptations that enable survival in variable conditions. These adaptations include dense root growth for soil stabilization and creeping or floating stems for rapid expansion.

Playa plants thrive in an especially harsh environment with a variety of adaptations such as very small leaves that reduce water loss during periods of drought and internal chambers that hold salts.12

Wetland plants also vary in their reproductive adaptations in order to take advantage of dynamic water conditions. Many SAV and emergent plants have large, nutritious, floating seeds that must be eaten by ducks in order to germinate; this requirement ensures that such seeds will travel far before sprouting.32 Some meadow plant species have light, wind-dispersed seeds capable of floating to bare soil patches that are ideal for germination. When conditions are favorable—often the short period of the year when water is present—several playa species have short life cycles that allow them to reproduce quickly.12
In addition to seed adaptations, many wetland plants are capable of reproducing without seeds, a strategy known as vegetative or asexual reproduction. When deep water or dry soil conditions exist and make seed germination and establishment difficult, some plants sprout new shoots from modified stem parts. These shoots are called rhizomes and stolons. Rhizomes are underground stems, and stolons are aboveground stems. Both rhizomes and stolons enable wetland plants to clone themselves and maintain or expand the area they cover.16

Birds

Great Salt Lake wetlands provide habitat for many different kinds of wildlife, most notably, migratory birds.18 At times, over 6 million birds may be present on and around GSL, including priority species (See Table 1.2, p. 7).41 GSL wetlands are particularly important because they constitute more than 75% of Utah’s wetlands.

The amount of available food and the quality of cover that wetland plants provide determine the type and number of birds and wildlife that wetland communities support. The main groups of birds found in GSL wetlands are waterfowl, shorebirds, and waterbirds.63

Waterfowl are relatively large birds that spend a considerable amount of time swimming or diving. Birds classified as waterfowl include ducks, geese, and swans.1

Shorebirds are small-bodied, long-legged wading birds like plovers, stilts, and sandpipers. They are typically found next to water or in shallow water rather than swimming. Nine species of shorebirds regularly breed and nest at GSL wetlands. Another 14 species regularly occur in the ecosystem during some part of the year.1

Waterbirds can be large or small and include pelicans, grebes, and herons. Sixteen species of waterbirds live on or near the water in GSL wetlands, often in colonies.1

Two additional bird groups include songbirds and birds of prey. These two groups rely on wetlands less than waterfowl, shorebirds, and waterbirds, but they are often found in or near GSL wetland habitats.
Birds are attracted to GSL wetland habitats because of the abundance of foraging and cover resources that are otherwise unavailable or uncommon in the surrounding arid region. Numerous species of birds consume plant seeds, while stems and leaves provide structure and cover for aquatic macroinvertebrates, amphibians, fish, reptiles, and small mammals that birds will also consume. Nesting birds and their young rely on the cover that wetland plants provide in order to hide from predators. See Table 1.2 (p. 7) for a list of priority bird species and how those species use various preferred GSL wetlands.

Wetland managers have goals and plans that prioritize maintaining and improving bird populations via wise habitat management. Priority species receive special management because GSL and its surrounding wetlands are particularly important to those species. In fact, GSL wetlands host a large proportion of several bird species’ continental population.

Many species use different wetland communities depending on when they visit GSL wetlands. During the fall migration, birds rely on more deeply flooded wetlands when foraging is critical. In spring, birds value wetlands with dense vegetation that is suitable for nesting habitat. Birds will also use different wetland communities based on their diet and adaptations to varying water depths. Management often focuses on maintaining a mosaic of wetland communities that support a diversity of migratory birds year round.
Great Salt Lake Priority Bird Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Group</th>
<th>*Foraging Habitat</th>
<th>*Breeding Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>American avocet</td>
<td>Shorebird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American white pelican</td>
<td>Waterbird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black-necked stilt</td>
<td>Shorebird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black tern</td>
<td>Waterbird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cinnamon teal</td>
<td>Waterfowl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forster’s tern</td>
<td>Waterbird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franklin’s gull</td>
<td>Waterbird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green-winged teal</td>
<td>Waterfowl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-billed curlew</td>
<td>Shorebird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-billed dowitcher</td>
<td>Shorebird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marbled godwit</td>
<td>Shorebird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redhead</td>
<td>Waterfowl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowy plover</td>
<td>Shorebird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tundra swan</td>
<td>Waterfowl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western grebe</td>
<td>Waterbird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western sandpiper</td>
<td>Shorebird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson’s phalarope</td>
<td>Shorebird</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-faced ibis</td>
<td>Shorebird</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3

Submergent
Emergent
Meadow
Playa

*Organized by most to least preferred
Management

Great Salt Lake wetland health is critical for resource managers, hunters, birders, conservationists, educators, photographers, and all who value wetland plants and birds. However, maintaining and managing wetland health is difficult. Drought, invasive species, and pollutants thwart many management efforts.

To produce as many wetland benefits and functions as possible, managers often seek to maintain a mosaic of wetland communities with heterogeneous vegetation structure. This is achieved by using the main principles of wetland management summarized below:

• Ensure an adequate supply of water, both in quantity and quality
• Provide favorable interspersion of open water and emergent vegetation for adequate foraging and nesting habitat
• Encourage vertical interspersion of vegetation in addition to horizontal

For wetlands that have water control structures, another principle can be applied:
• Ensure proper timing and duration of flooding

In unhealthy wetland communities, habitat management can be a foundation for rebuilding healthy ecosystem functioning. While the management recommendations above are generalizations, this book cites resources that managers can seek for specific guidance.

The first step in caring for GSL wetland communities—for researchers, land managers, birders, or wetland enthusiasts—is to learn about the plants and birds that inhabit these ecosystems. The following guide to wetland plants of GSL provides a good footing to that first step for anyone visiting these unique, beautiful wetlands.
Submergent wetlands are often referred to as ponds or open water wetlands. They are large, relatively deep, and flooded for most or all of the year. Approximately 260 km² (64,375 ac) of Great Salt Lake (GSL) wetland habitat is classified as submergent. Most of these submergent wetlands occur in large impoundments or wetland units where deep flooding can be accomplished through diking, diversion, and water level management. Submergent wetlands are characterized by an abundance of submerged aquatic vegetation (SAV) that grows while submerged within the water column or floating on the water’s surface. Most SAV are well adapted in constantly flooded environments because of tuberous roots and large, floating seeds.

Plants

Spiral ditchgrass (*Ruppia cirrhosa*, p. 24) and sago pondweed (*Stuckenia pectinata*, p. 23) are two of the most common and valuable GSL submergent species. Both tolerate elevated salinity and are high-quality food sources for migratory birds; however, sago pondweed is considered the cornerstone SAV species. Its presence in a submergent wetland indicates the wetland’s productivity for birds. The entire plant is edible and highly nutritious, including the leaves, tubers, and large seeds. Spiral ditchgrass is also highly nutritious but less productive; its importance to bird diets increases significantly during the winter months when other food sources are rare.
Wetland water level management is a key tool for maintaining the appropriate levels of salinity and depth necessary for SAV growth and reproduction. In GSL wetlands, a flush of freshwater in the spring is important for maintaining optimal water and salinity levels. Freshwater inflow varies throughout GSL wetlands, so managing SAV is easier in areas with a consistent supply of freshwater than in areas that experience frequent summertime drought. To stimulate the most plant production and therefore create the highest food availability for birds, 38–45 cm (15–18 in) of water with brackish salinity (9–15 ppt) is optimal for sago pondweed. Spiral ditchgrass thrives best in shallow wetlands where water depth is often less than 30 cm (12 in) and salinity is between 10–21 ppt.

Submergent vegetation provides habitat for macroinvertebrates and fish, but the physical disturbances from these species tend to alter SAV. Sago pondweed is especially intolerant of disturbances created by carp (Cyprinidae family). Carp are invasive bottom-feeding fish that uproot plants and increase water turbidity while searching for food in the mud. Managers can use pesticides or hydrologic drawdowns to control carp populations and decrease physical disturbances in submergent wetlands.

Native SAV need nutrients like nitrogen and phosphorus to grow, but when water nutrient levels are too high, SAV can be negatively impacted. High levels of nitrogen or phosphorous cause algal blooms that block sunlight and inhibit the growth of SAV. At their thickest, algal blooms prevent birds from accessing food in the water column. To deal with excess nutrients, managers can draw down their wetlands, allowing nutrients to bind to soil particles, then managers can dredge and remove the soil.
Submerged aquatic plants by family

Azollaceae (Azolla family)

Azolla microphylla
Mexican mosquitofern 12

Ceratophyllaceae (Hornwort family)

Ceratophyllum demersum
Coon’s tail 13

Characeae (Stonewort family)

Chara spp.
Chara 14

Haloragaceae (Water milfoil family)

Myriophyllum sibiricum
Shortspike watermilfoil 15

Lemnaceae (Duckweed family)

Lemna gibba
Swollen duckweed 16
Lemna minor
Common duckweed 17
Spirodela polyrrhiza
Great duckweed 18

Potamogetonaceae (Pondweed family)

Potamogeton crispus
Curly-leaf pondweed 19
Potamogeton foliosus
Leafy pondweed 20
Potamogeton nodosus
Longleaf pondweed 21
Stuckenia filiformis
Fineleaf pondweed 22
Stuckenia pectinata
Sago pondweed 23

Ruppiaceae (Ditchgrass family)

Ruppia cirrhosa
Spiral ditchgrass 24

Zannichelliaceae (Horned pondweed family)

Zannichellia palustris
Horned pondweed 25
Azollaceae

Azolla microphylla
Mexican mosquitofern

Habitat
Permanently flooded wetlands, ponds, and slow-moving streams

Stems and Roots
Free-floating mats to 2 cm (0.8 in) across; small roots

Leaves
Pinnately compound branching, two-lobed leaves, green to red

Flowers and Seeds
No flowers; sporocarps located on underside of leaves

Facts
Synonym: *A. mexicana*
Mosquitofern is a fern, not a flowering plant.

Wetland indicator: OBL
Duration & growth: APF
Nativity in lower 48: N
Commonness: U
Ceratophyllaceae

Ceratophyllum demersum

Coon’s tail

Habitat
Streams, ditches, ponds

Stems and Roots
Submerged, 1 m (3.2 ft) long stems, freely branched and tangled; rootless

Leaves
Whorls of 5–12 flat, linear leaves, toothed margins

Flowers and Seeds
Inconspicuous flowers in leaf axils; elliptical achene

Facts
Synonym: *C. apiculatum*

Coon’s tail can be distinguished from *Myriophyllum* species (p. 15) by its tiny, hidden flowers.
Characeae

Chara spp.

Chara

Habitat
Permanently flooded, alkaline wetlands

Stems and Roots
Multi-cellular algae attached to substrate via rhizoids

Leaves
No leaves; whorls of 6–16, light green, linear branches, gritty due to calcium carbonate deposits

Flowers and Seeds
No flowers; smells of hydrogen sulfide

Facts
Synonyms: stonewort, skunkweed, sandgrass

Chara is an algae often mistaken for a vascular plant.
Haloragaceae

Myriophyllum sibiricum
Shortspike watermilfoil

Habitat
Permanently flooded wetlands and ponds

Stems and Roots
Submerged, 30–80 cm (1–2 ft) long stems, slender with few branches

Leaves
Whorls of 4–5, thread-like, finely dissected leaves, 10 or fewer leaflets

Flowers and Seeds
Whorls of red flowers on short spikes held above water

Facts
Synonyms: M. exalbescens, M. magdalenense, M. spicatum

M. spicatum, an invasive milfoil, has longer leaves with more pairs of leaflets (16-21) than shortspike watermilfoil.
Lemnaceae

Lemna gibba
Swollen duckweed

Habitat
Permanently flooded wetlands, ponds, and slow-moving streams

Stems and Roots
Small floating plants, form colonies; single, small root per thallus

Leaves
Leafless; oval to round thallus, 5x4 mm (0.2x0.1 in); inflated air chambers below surface

Flowers and Seeds
Reproduction primarily by budding; flowers inconspicuous
Lemnaceae

Lemna minor
Common duckweed

Habitat
Permanently flooded wetlands, ponds, and slow-moving streams

Stems and Roots
Small floating plants, form colonies; single, small root per thallus

Leaves
Leafless, flat, oval, green or purple thallus, 3 faint veins; 4.5x3 mm (0.2x0.1 in)

Flowers and Seeds
Reproduction primarily by budding; flowers inconspicuous

Facts
Synonyms: *L. cyclostasa*, *L. minima*
Lemnaceae
Spirodela polyrrhiza
Great duckweed

Habitat
Permanently flooded wetlands, ponds, and slow-moving streams

Stems and Roots
Small floating plants; many roots per thallus

Leaves
Leafless, 2–5 oval thalli connected by stalks, dark-green above, purple below, 5.5x3.5 mm (0.2x0.1 in)

Flowers and Seeds
Reproduction primarily by budding, flowers inconspicuous

Facts
Synonym: Lemna polyrrhiza

Great duckweed is distinguished from *Lemna* species (pp. 16–17) because it is larger and has many rootlets.
Potamogetonaceae

Potamogeton crispus

Curly-leaf pondweed

Habitat
Deeply flooded wetlands and slow-moving streams

Stems and Roots
Submerged, 40–80 cm (1.5–2 ft) long, freely branching stems, forming mats; slender, creeping rhizomes

Leaves
Alternate, flat, ribbon-like blades, 3–5 mm (0.1–0.2 in) wide, crisped margins

Flowers and Seeds
Stout, 3–5 cm (1–2 in) tall, pedunculate spikes of yellow flowers; ovate, beaked achenes

Facts
Synonyms: crisped pondweed, curly pondweed

Curly-leaf pondweed was first introduced to the Western United States by gun clubs.
Potamogetonaceae

Potamogeton foliosus

Leafy pondweed

Habitat
Shallowly flooded wetlands and slow-moving streams

Stems and Roots
Submerged, 20–100 cm (0.5–3 ft) long, slender, compressed stems, freely branching; matted, slender rhizomes

Leaves
Alternate, flat, ribbon-like blades, 1 mm (0.03 in) wide, entire margin

Flowers and Seeds
0.5–1.5 cm (0.2–0.6 in) tall, pedunculate spikes of crowded, globular, greenish flowers; achene with wavy keel

Narrow, flat leaves distinguish leafy pondweed from *Stuckenia filiformis* (p. 22) and *S. pectinata* (p. 23), which have round leaves.
Potamogetonaceae

Potamogeton nodosus
Longleaf pondweed

Habitat
Deeply flooded wetlands, ponds, and streams

Stems and Roots
Partially submerged, 40–150 cm (1–5 ft) long, round stems; stout rhizomes

Leaves
Submerged leaves lanceolate, 10–20 cm (4–8 in) long; floating leaves elliptical, 5–12 cm (2–5 in) long; all petiolate, alternate

Flowers and Seeds
Stout, pedunculate spikes of crowded, green-brown flowers; achene with 3 keels

Facts
Synonyms: *P. americanus, P. fluitans, P. oblongifolius*
Potamogetonaceae

Stuckenia filiformis

Fineleaf pondweed

Habitat
Shallowly flooded wetlands, slow-moving ditches

Stems and Roots
Submerged, 20–60 cm (0.5–2ft) long, slender stems; slender, creeping rhizomes, tubers

Leaves
Alternate, round, thread-like blades, 1–3 mm (.04–0.1 in) wide, blunt tip; sheaths fused into a tube

Flowers and Seeds
Slender, pedunculate, 3–10 cm (1–4 in) long spikes, 2–8 whorls of brown flowers; achene with rounded keel

Facts

Synonym: *Potamogeton filiformis*

Fineleaf pondweed is distinguished from *S. pectinata* (p. 23) by its wider leaves and fused leaf sheath.
Potamogetonaceae

Stuckenia pectinata
Sago pondweed

Habitat
Moderate to deeply flooded, fresh to brackish wetlands, and slow-moving ditches

Stems and roots
Submerged, 30–80 cm (1–2.5 ft) long, round stems, freely branched; slender, creeping rhizomes, tubers

Leaves
Alternate, round, thread-like blades, 1 mm (.04 in) thick, pointed tip; sheath open

Flowers and Seeds
Slender, 1–15 cm (0.4–6 in) long, pedunculate spikes with unequally spaced whorls of green-brown flowers, 0.5–1.1 mm (0.02–0.03 in) beak; achene with rounded keel

Facts
Synonyms: Coleogeton pectinatus, Potamogeton pectinatus

*See pp. 9–10 for additional information.
Ruppiaceae

Ruppia cirrhosa

Spiral ditchgrass

Habitat
Shallow to moderately deep flooded brackish or alkaline wetlands

Stems and Roots
Submerged, 40–80 cm (1–2.5 ft) long, slender, freely-branched stems; creeping rhizomes

Leaves
Alternate, round, slender, scattered or tufted blades, 1–10 cm (0.4–4 in) long, sheathing leaf-bases

Flowers and Seeds
Flowers on spiraling peduncle; fruit a druplet

Facts
Synonyms: *R. maritima*, *R. occidentalis*, *R. spiralis*, widgeongrass

Spiralling flower stalks are a unique feature of spiral ditchgrass.

See p. 9 for additional information.
Zannichelliaceae

Zannichellia palustris

Horned pondweed

Habitat
Deeply flooded, fresh to brackish wetlands and slow-moving ditches

Stems and Roots
Submerged, 30–50 cm (1–1.6 ft) long, slender stems, freely branched; slender, creeping rhizomes

Leaves
Opposite, linear, slender, light green blades, 2–8 cm (0.8–3 in) long

Flowers and Seeds
Axillary buds enclosing minute flowers; clusters of oblong achenes, toothed margins

Facts
Synonym: Z. major

Horned pondweed has opposite leaves, which distinguish it from other pondweeds.
Birds

When submergent wetlands are managed for a variety of water depths and wetland complexes, they maintain a high diversity of birds (pp. 27–28). Deep submergent wetlands provide ideal conditions for waterfowl that feed on lush SAV growth, while shallow submergent wetlands attract shorebirds that hunt for the large, complex populations of aquatic macroinvertebrates living on the plants.7,39

A variety of waterfowl and other birds are attracted to high-quality submergent wetlands. Tundra swans (Cygnus columbianus) and many diving ducks, including canvasbacks (Aythya valisineria) and common mergansers (Mergus merganser), rest in submergent wetlands during their annual migrations. While resting, these species feed extensively on the leaves and tubers of sago pondweed.10 Dabbling ducks, including the northern pintail (Anas acuta) and American wigeon (Anas americana), consume the seeds of many SAV species, especially sago pondweed and spiral ditchgrass.3 Many of the waterfowl and shorebird species mentioned in subsequent chapters forage on vegetation and macroinvertebrates in submergent wetlands during their fall migration.7

Submergent wetlands, particularly deep submergent wetlands, provide habitat for piscivorous (fish-eating) birds that prey on fish hiding among SAV.39 Piscivorous bird species in GSL wetlands include the American white pelican (Pelecanus erythrorhynchos), double-crested cormorant (Phalacrocorax auritus), pied-billed grebe (Podilymbus podiceps), and the common merganser. Even birds of prey, including the bald eagle (Haliaeetus leucocephalus), fly over submergent wetlands in search of fish.

In addition to feeding in submergent wetlands, a few priority bird species will also use submergent plant species for breeding and nesting. Black terns (Chlidonias niger) breed in shallow submergent wetlands, and Clark’s and western grebes (Aechmophorus clarkii; A. occidentalis) will use sago pondweed to build floating nests on the water of these deep wetlands.33 Because they support so many different types of birds throughout the year, maintaining healthy, flooded submergent wetlands is a critical wetland management goal at GSL.
Submergent Birds

Tundra swan
Cygnus columbianus

Canvasback
Aythya valisineria

Common merganser
Mergus merganser

Northern pintail
Anas acuta

American wigeon
Anas americana

American white pelican
Pelecanus erythrorhynchos
Double-crested cormorant
Phalacrocorax auritus

Western grebe
Aechmophorus occidentalis

Clark’s grebe
Aechmophorus clarkii

Black tern
Chlidonias niger

Pied-billed grebe
Podilymbus podiceps

Bald eagle
Haliaeetus leucocephalus
Emergent Wetlands

Emergent wetlands are what many people imagine when they think of marshes that fringe lakes and ponds. They are characterized by a mix of open water and vegetation that grows in, but emerges from, the surface of the water. Over the course of a year, emergent wetland water levels can fluctuate considerably between deeply flooded and dry. The emergent wetlands surrounding Great Salt Lake (GSL) are often located near large submergent wetlands and encompass approximately 520 km\(^2\) (129,693 ac). Emergent wetlands are dominated by stout, fast-growing bulrushes, cattails, and large grasses.

Plants

Alkali bulrush (*Bolboschoenus maritimus*, p. 39), hardstem bulrush (*Schoenoplectus acutus*, p. 40), and Olney’s threesquare (*Schoenoplectus americanus*, p. 41) are three species of bulrushes that provide essential migratory bird habitat. Each thrives under slightly different flooding and water chemistry conditions, but all reproduce by rhizomes as well as by seeds. Rhizomes allow stands of bulrushes to persist under stressful drought or flooding conditions that are characteristic of emergent wetlands.

Alkali bulrush, the shortest and most valuable bulrush species, grows in expansive, loose stands. While it grows best in 5–15 cm (2–6 in) of water, it also benefits from seasonally fluctuating water levels and is capable of withstanding both temporary, deep flooding and
short-term drought. This hardy species can tolerate highly alkaline soils up to 9.0 pH, and while it grows most robustly when salinity is below 6 ppt, it can tolerate extended periods of time at salinities near 10 ppt with no increase in plant mortality.

Hardstem, the tallest bulrush, grows in dense stands of deeply flooded wetlands (up to 30 cm or 12 in deep); however, it has lower drought and salinity tolerances than alkali bulrush. Adult plants can tolerate salinities near 6 ppt with very little reduction in growth, but mortality increases at salinities above that level. During periods of drawdown, the soil must remain saturated for long-term maintenance of hardstem bulrush.

Olney’s threesquare, another dense, stand-forming bulrush, gets its name from its concave, triangular stem. Thriving best in shallow water of at least 10 cm (4 in), Olney’s threesquare can tolerate water depths up to 30 cm (12 in). Olney’s threesquare can also tolerate brackish conditions, around 6 ppt for up to 2 months, but will grow shorter as salinity approaches 12 ppt.

In addition to bulrushes, cattails (Typha spp., pp. 64–65) are common in GSL emergent wetlands. Although native, cattails are often viewed as undesirable species because they can colonize wetlands after a disturbance or when water stagnates, forming dense monocultures that outcompete habitat-forming plants like bulrushes. Without proper management of water flow, salinity, and nutrients, cattails will form dense, monotypic stands that waterfowl and other large birds cannot use. Water management, herbicide application, mowing, diskng, grazing, burning, or a combination of those techniques can be useful in preventing cattails from growing too densely.
Emergent Plants by Family

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alismataceae (Water plantain family)</td>
<td>Sagittaria cuneata</td>
<td>Arrowhead</td>
<td>33</td>
</tr>
<tr>
<td>Apiaceae (Carrot family)</td>
<td>Conium maculatum</td>
<td>Poison hemlock</td>
<td>34</td>
</tr>
<tr>
<td>Asclepiadaceae (Milkweed family)</td>
<td>Asclepias incarnata</td>
<td>Swamp milkweed</td>
<td>35</td>
</tr>
<tr>
<td>Asteraceae (Aster family)</td>
<td>Euthamia occidentalis</td>
<td>Western goldentop</td>
<td>36</td>
</tr>
<tr>
<td>Brassicaceae (Mustard family)</td>
<td>Nasturtium officinale</td>
<td>Watercress</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Rorippa palustris</td>
<td>Marsh yellowcress</td>
<td>38</td>
</tr>
<tr>
<td>Cyperaceae (Sedge family)</td>
<td>Bolboschoenus maritimus</td>
<td>Alkali bulrush</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Schoenoplectus acutus</td>
<td>Hardstem bulrush</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Schoenoplectus americanus</td>
<td>Olney’s threesquare</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Schoenoplectus pungens</td>
<td>Common threesquare</td>
<td>42</td>
</tr>
<tr>
<td>Grossulariaceae (Currant family)</td>
<td>Ribes aureum</td>
<td>Golden currant</td>
<td>43</td>
</tr>
<tr>
<td>Hippuridaceae (Mare’s-tail family)</td>
<td>Hippuris vulgaris</td>
<td>Common mare’s-tail</td>
<td>44</td>
</tr>
<tr>
<td>Iridaceae (Iris family)</td>
<td>Iris pseudacorus</td>
<td>Yellow flag</td>
<td>45</td>
</tr>
<tr>
<td>Lamiaceae (Mint family)</td>
<td>Lycopus asper</td>
<td>Rough bugleweed</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Mentha arvensis</td>
<td>Wild mint</td>
<td>47</td>
</tr>
</tbody>
</table>
Emergent Plants List

Onagraceae (Evening primrose family)
- *Epilobium ciliatum* Fringed willowherb 48

Poaceae (Grass family)
- *Phalaris arundinacea* Reed canarygrass 49
- *Phragmites australis* subsp. *australis* Common reed 50
- *Phragmites australis* subsp. *americanus* American common reed 51
- *Polypogon monspeliensis* Rabbitsfoot grass 52
- *Puccinellia nuttalliana* Nuttall’s alkaligrass 53

Polygonaceae (Buckwheat family)
- *Polygonum lapathifolium* Pale smartweed 54
- *Polygonum persicaria* Spotted ladysthumb 55
- *Rumex maritimus* Golden dock 56
- *Rumex stenophyllus* Narrowleaf dock 57

Ranunculaceae (Buttercup family)
- *Ranunculus cymbalaria* Marsh buttercup 58
- *Ranunculus sceleratus* Blister buttercup 59

Scrophulariaceae (Figwort family)
- *Mimulus guttatus* Seep monkeyflower 60
- *Veronica anagallis-aquatica* Water speedwell 61

Solanaceae (Potato family)
- *Solanum dulcamara* Climbing nightshade 62

Sparganiaceae (Bur-reed family)
- *Sparganium eurycarpum* Broadfruit bur-reed 63

Typhaceae (Cattail family)
- *Typha domingensis* Southern cattail 64
- *Typha latifolia* Broadleaf cattail 65
Sagittaria cuneata
Arrowhead

Habitat
Shallow to moderately deep ponds, slow-moving streams

Stems and Roots
10–50 cm (4–6 in) tall, emergent stem; rhizomes, tubers

Leaves
Basal, hastate blades, long petioles; ribbon-like submerged blades

Flowers and Seeds
2–8 whorls of large, white, 3-petal flowers, deciduous; globular fruiting bodies

Facts
Synonyms: wapato, duck potato, *S. arifolia*
Apiaceae
Conium maculatum
Poison hemlock

Habitat
Saturated soils, ditchbanks

Stems and Roots
30–60 cm (1–2 ft) tall, hollow stems with purple spots, branching above; taproots

Leaves
Opposite, pinnately dissected blades, petiolate; lower leaves sessile

Flowers and Seeds
Compound umbels of numerous, small, white, 5-petal flowers; seeds oblong, ribbed

Facts
Ingesting poison hemlock can be fatal.
Conium is the poison that is believed to have killed Socrates.
Asclepiadaceae

Asclepias incarnata
Swamp milkweed

Habitat
Shallowly flooded wetlands, streams, and ditchbanks

Stems and Roots
40–150 cm (1–5 ft) tall, stout stems with milky latex; short rhizomes

Leaves
Opposite or whorled, linear-lanceolate blades, pointed tips

Flowers and Seeds
Pink, 5-petal flowers in umbelliform cymes, petals with corona; seed comas

Facts
Swamp milkweed provides habitat for butterflies, and its seed comas have been used as pillow and life jacket stuffing.
Western goldentop

Habitat
Temporarily to permanently saturated soils

Stems and Roots
50–200 cm (0.6–6 ft) tall, stout stems, branched above; creeping rhizomes

Leaves
Many alternate, sessile, lanceolate blades; smooth surface, scabrous margins

Flowers and Seeds
Flat-topped corymbs of many small yellow flowers, involucres pale yellow, pappus of capillary bristles

Facts
Synonyms: false goldenrod, *Solidago occidentalis*

Western goldentop is taller than *Symphiotrichum ciliatum* (p. 79); its similar aster and flower heads are globular prior to blooming.
Brassicaceae

Nasturtium officinale

Watercress

Habitat
Shallow, slow-flowing streams and wetlands

Stems and Roots
10–60 cm (4 in–2 ft) tall, hollow stems, decumbent to ascending, forming dense colonies; fibrous roots

Leaves
Alternate, pinnately compound blades with pairs of elliptical leaflets, auriculate petiole

Flowers and Seeds
Terminal and axillary racemes of white, 4-petal flowers; silique

Facts
Synonym: *Sisymbrium nastrutium-aquaticum*

Watercress is used as a popular salad herb because of its spicy, peppery flavor.
Brassicaceae

Rorippa palustris

Marsh yellowcress

Habitat
Shallowly flooded wetlands and streambanks

Stems and Roots
20–100 cm (8 in–3.3 ft) tall, stout stems, branched above; taproots

Leaves
Alternate, cauline and basal, oblong and deeply lobed blades, margins irregularly toothed, clasping petiole

Flowers and Seeds
Terminal and axillary racemes of small, yellow, 4-petal flowers; silicle or siliqua
Cyperaceae

Bolboschoenon maritimus
Alkali bulrush

Habitat
Temporarily to permanently shallow-flooded, alkaline or saline wetlands

Stems and Roots
20–150 cm (8 in–5 ft) tall, stout, triangular culms; rhizomes, firm tubers

Leaves
Several long, flat, cauline blades

Flowers and Seeds
Compact cluster of 3–25 spikelets, scales tan or light brown, 2+ leaf-like involucre bracts; brown, lenticular achene

Facts
Synonyms: cosmopolitan bulrush, *Schoenoplectus maritimus, Scirpus maritimus*

See pp. 29–30 for additional information.
Cyperaceae

Schoenoplectus acutus

Hardstem bulrush

Habitat
Shallow to deeply flooded wetlands and shorelines

Stems and Roots
1–3 m (3–10 ft) tall, round, firm culms, >1 cm (0.4 in) across; rhizomatous

Leaves
Few, short blades near bottom of stem or bladeless sheaths

Flowers and Seeds
Open, branched inflorescence of 20+ spikelets, scales gray-brown with red spots; erect, stem-like involucre bract; small, dark brown, lenticular achene

Facts
Synonym: *Scirpus acutus*

S. tabernaemontani is similar in appearance to hardstem bulrush but is not found near GSL.

S. tabernaemontani is similar in appearance to hardstem bulrush but is not found near GSL.

See pp. 29–30 for additional information.
Cyperaceae

Schoenoplectus americanus
Olney’s threesquare

Habitat
Semi-permanent, shallowly flooded wetlands

Stems and Roots
50–150 cm (1.5 ft–5 ft) tall, clustered, sharply 3-sided, concave culms; rhizomatous

Leaves
Few, short blades on lower part of stem

Flowers and Seeds
Small, compact cluster of 2–15 spikelets, scales yellow-brown to red-brown, 1 stem-like involucre bract; small, dark-brown, lenticular achene

Facts
Synonyms: *Scirpus americanus*, *S. olneyi*, *S. chilensis*, *S. conglomeratus*

Wetland indicator: OBL
Duration & growth: PG
Nativity in lower 48: N
Commonness: C

See pp. 29–30 for additional information.
Cyperaceae

Schoenoplectus pungens

Common threesquare

Habitat
Saturated to shallowly flooded, alkaline wetlands

Stems and Roots
15–100 cm (0.5–3.3 ft) tall, triangular culms; rhizomatous

Leaves
Several flat or folded blades near base of stem

Flowers and Seeds
Compact cluster of 1–6 spikelets, scales yellow-brown with notched apex; lenticular achene

Facts
Synonym: *Scirpus pungens*

Common threesquare is distinguished from Olney’s threesquare by its shorter height and slightly, not sharply, concave culms.

Wetland indicator: OBL
Duration & growth: PG
Nativity in lower 48: N
Commonness: U
Grossulariaceae

Ribes aureum
Golden current

Habitat
Shallowly flooded wetlands, shorelines

Stems and Roots
1–3 m (3-9 ft) tall shrubs, gray or tan bark

Leaves
Alternate, 3-lobed blades, petiolate

Flowers and Seeds
Racemes of 5–18 yellow, 5-petal flowers with cylindrical hypanthium, fragrant, turns red with age; orange-red berries

Facts
Golden current flowers and berries are edible.
Hippuridaceae

Hippuris vulgaris
Common mare’s-tail

Habitat
Shallow ponds and slow-moving streams

Stems and Roots
10–40 cm (0.4–1 ft) tall, erect, partially submerged stems; rhizomes

Leaves
Whorls of 6+ thick, linear blades

Flowers and Seeds
Inconspicuous flowers in leaf axils, no petals
Iridaceae

Iris pseudacorus

Yellow flag

Habitat
Shallowly flooded wetlands, ditchbanks, and shorelines

Stems and Roots
40–150 cm (1–5 ft) tall stems, forming large clumps; rhizomatous

Leaves
Overlapping, broad (25 mm or 1 in), smooth, sword-shaped blades

Flowers and Seeds
Spathes with 2–3 large, yellow flowers with 3 spreading petals

Facts
Synonym: paleyellow iris

Wetland indicator: OBL
Duration & growth: PF
Nativity in lower 48: I
Commonness: O
Lamiaceae

Lycopus asper
Rough bugleweed

Habitat
Shallow, semi-permanent to permanently flooded wetlands

Stems and Roots
20–80 cm (0.5–2.5 ft) tall, square stems with spreading hairs; rhizomes, tubers

Leaves
Opposite, sessile, oblong to lanceolate blades, serrated margins

Flowers and Seeds
Whorls of small, white, 4-lobed flowers in leaf axils, 2 exserted stamens

Facts
Synonym: *L. lucidus*
Lamiaceae

Mentha arvensis

Wild mint

Habitat
Saturated to shallowly flooded wetlands

Stems and Roots
20–80 cm (0.5–2.5 ft) tall, erect, hairy, square stems; creeping rhizomes

Leaves
Opposite, ovate to elliptical blades, toothed margins, petiolate

Flowers and Seeds
Whorls of small, white to light purple flowers with 4 fused petals in upper leaf axils and 4 exserted stamens

Facts
Synonyms: *M. canadensis, M. gentilis, M. glabrior, M. penardii*

Wild mint can be easily identified by its strong, minty fragrance.
Wetland indicator: FACW
Duration & growth: PF
Nativity in lower 48: N
Commonness: C

Onagraceae
Epilobium ciliatum
Fringed willowherb

Habitat
Saturated to shallow, permanently flooded wetlands

Stems and Roots
1–2 m (3–6.5 ft) tall, erect stems; fibrous roots, turions

Leaves
Opposite, lanceolate to ovate blades, minutely toothed margins; upper leaves with short, fine hairs

Flowers and Seeds
Racemes of white or pink, 4-petal flowers on 2–15 mm (0.08–0.6 in) long pedicels; seeds with tuft of hairs
Poaceae
Phalaris arundinacea
Reed canarygrass

Habitat
Saturated to shallowly flooded streams and ditchbanks

Stems and Roots
40–230 cm (1–7.5 ft) tall culms; rhizomatous

Leaves
Scabrous blades, open sheaths, short auricles, membranous ligule

Flowers and Seeds
Contracted panicle with dense, spike-like branches, 3 florets (1 fertile and 2 scale-like) per spikelet; glumes with scabrous keel

Facts
Synonym: Phalaroides arundinacea
Poaceae

Phragmites australis subsp. *australis*
Common reed

Habitat
Shallow to moderately deep flooded, fresh to saline wetlands

Stems and Roots
1–4 m (3–13 ft) tall, stout, hollow, ribbed culms, forming dense stands; stout rhizomes

Leaves
Long, flat, green-blue blades, persistent open sheaths; <1 mm short (0.04 in), ciliate ligule

Flowers and Seeds
Large, 15–35 cm (6–13 in) long, open panicle, purple when young; 3–10 florets per spikelet; upper glume longer than lower glume; palea shorter than lemma

Facts
Synonyms: *P. communis, P. phragmites*

See pp. 112 and 181 for additional information.
Poaceae

Phragmites australis subsp. americanus
American common reed

Habitat
Saturated soils to shallow-flooded wetlands, streams, ditchbanks, and seeps

Stems and Roots
1–2 m (3–6 ft) tall, hollow, shiny culms in loose colonies; stout rhizomes

Leaves
Long, flat, green-yellow blades; loose, deciduous, sheath; >1 mm (0.04 in) long, ciliate ligule

Flowers and Seeds
Straw-colored panicle, smaller than introduced variety, 3–10 florets per spikelet; long, unequal glumes; palea shorter than lemma

Facts
Shiny or glossy culms and deciduous leaf sheaths are the most reliable distinguishing features of American common reed.

*See p. 181 for additional information.
Poaceae

Polypogon monspeliensis

Rabbitsfoot grass

Habitat
Saturated to shallowly flooded saline or alkaline wetlands

Stems and Roots
5–65 cm (2 in–2 ft) tall, hollow culms; caespitose

Leaves
Flat blades, open sheaths; pointed, membranous ligule

Flowers and Seeds
Dense, contracted, spike-like panicle, 1 floret per spikelet, glumes with long, narrow awn

Fact
Synonym: *Alopecurus monspeliensis*
Poaceae

Puccinellia nuttalliana
Nuttall’s alkaligrass

Habitat
Saturated to temporarily shallow-flooded, alkaline wetlands

Stems and Roots
35–70 cm (1–3.3 ft) long, erect culms; caespitose

Leaves
Blades often rolled inward, sheaths open, membranous ligule

Flowers and Seeds
Pyramidal, open panicle with spreading branches, slender spikelets with 3–7 florets

Facts
Synonyms: *P. airoides*, *P. cusickii*

Wetland indicator: FACW
Duration & growth: PG
Nativity in lower 48: N
Commonness: C
Polygonum lapathifolium
Pale smartweed

Habitat
Shallowly flooded wetlands; often near a disturbance

Stems and Roots
10–200 cm (4 in–6.6 ft) tall, ascending or erect stems, swollen nodes; taproots, rhizomes when submerged

Leaves
Alternate, lanceolate blades, pitted surface, faint to dark spot near center; petiolate; membranous, cylindrical ocrea, tears with age

Flowers and Seeds
Long (3–8 cm or 1–3 in), arching racemes with bundles of 4–15 white flowers with 4–5 tepals; disc-shaped, brown achenes

Facts
Synonyms: P. nodosum, P. tomentosum, Persicaria incarnata, P. lapathifolia

The taxonomic treatment of Polygonum species is currently undergoing debate and change.
Polygonaceae

Polygonum persicaria
Spotted ladysthumb

Habitat
Shallowly flooded wetlands and ditchbanks

Stems and Roots
10–70 cm (4 in–2.3 ft) tall, decumbent or erect stems, swollen nodes, branching near base; taproots

Leaves
Alternate, lanceolate blades, dark red spot in center; membranous ocrea with bristles on upper margin, tears with age

Flowers and Seeds
Nodding racemes with bundles of pink to purple flowers with 4–5 tepals; dark brown, disc-shaped achenes

Facts
Synonyms: *P. dubium*, *P. fusiforme*, *P. puritanorum*, *Persicaria maculata*, *P. maculosa*, *P. persicaria*

Wetland indicator: FACW
Duration & growth: AF
Nativity in lower 48: I
Commonness: U
Polygonaceae

Rumex maritimus
Golden dock

Habitat
Saturated to shallowly flooded wetlands

Stems and Roots
15–60 cm (6 in–2 ft) tall, erect stems; vertical rhizome

Leaves
Linear to lanceolate blades, smooth margins, petiolate

Flowers and Seeds
Panicles along half stem length, dense whorls of 15–30 green to yellow, pedicellate, valvate flowers; valves with irregularly toothed margins

Facts
Synonyms: *R. fueginus*, *R. persicarioides*. Plant taxonomists are investigating if *R. maritimus* and *R. fueginus* are distinct species from different continents.
Polygonaceae

Rumex stenophyllus
Narrowleaf dock

Habitat
Temporarily flooded wetlands, and ditchbanks

Stems and Roots
40–80 cm (1.3–2.6 ft) tall, erect stems, branched above; vertical rhizome

Leaves
Lanceolate blades, margins strongly crisped or wavy, petiolate

Flowers and Seeds
Panicles along half stem length, whorls of 20+ green to brown, pedicellate, valvate flowers, valves with 4–10 narrow projections or teeth on margins
Habitat
Saturated to shallowly flooded, saline wetlands, streambanks, and shorelines

Stems and Roots
3–18 cm (3–7 in) tall, solid stems, erect or ascending; stoloniferous

Leaves
Basal, orbicular or cymbal-shaped blades with small lobes, petiolate

Flowers and Seeds
Cymes of 1–5 small, yellow, 5-petal flowers, deciduous; fruits a cluster of 25-200 achenes

Facts
Synonyms: alkali buttercup, *Cyrtorhyncha cymbalaria*, *Halerpestes cymbalaria*
Ranunculaceae
Ranunculus sceleratus
Blister buttercup

Habitat
Shallowly flooded wetlands, streambanks, and shorelines

Stems and Roots
10-40 cm (4in–1.3 ft) tall, hollow, smooth, erect, branched stems; fibrous roots

Leaves
Blades semi-circular in outline, deeply lobed into 3 parts, long petioles

Flowers and Seeds
Terminal, small, yellow 3–5 petal flowers, 3–5 green sepals, 10–25 stamen; fruit an ovoid cluster of 90+ achenes with beak

Facts
Synonym: cursed buttercup
Blister buttercup’s juice is toxic and can cause blistering of the skin, tongue, and lips.
Scrophulariaceae

Mimulus guttatus

Seep monkeyflower

Habitat
Stream and ditchbanks, shorelines, and slow-moving streams

Stems and Roots
5–50 cm (2 in–1.6 ft) tall, erect to ascending stems; occasionally stoloniferous or rhizomatous; growth forms highly variable

Leaves
Opposite, obovate to orbicular blades, irregularly toothed margins, lower leaves petiolate, surface variable

Flowers and Seeds
Racemes of yellow, bilaterally symmetrical flowers with distinct upper and lower lips, red spots near throat
Scrophulariaceae

Veronica anagallis-aquatica

Water speedwell

Habitat
Shallow, permanently flooded wetlands, and slow-moving streams

Stems and Roots
10–60 cm (4 in–2 ft) tall, erect or ascending stems, often branched; rhizomatous

Leaves
Opposite, clasping, elliptical blades, smooth surface, toothed margins

Flowers and Seeds
Racemes of white to pale blue or purple flowers with 4 fused petals, flowers fall off easily

Facts
Synonyms: V. anagallis, V. catenata, V. glandifera
Habitat
Saturated to shallowly flooded wetlands, often disturbed

Stems and Roots
1–3 m (3–9 ft) long, climbing, hairy stem; a vine, herb, or subshrub; rhizomatous

Leaves
Alternate, ovate blades, shallow to deeply cleft at base, petiolate

Flowers and Seeds
Cymes of purple, downward-facing flowers with united anthers; red berries

Facts
Climbing nightshade berries are poisonous, and the plant does not always grow upright.
Sparganiaceae

Sparganium eurycarpum
Broadfruit bur-reed

Habitat
Moderately deep, flooded wetlands and shorelines

Stems and Roots
50–200 cm (1.6–6.5 ft) tall, stout stems; fibrous roots with creeping rhizomes

Leaves
Alternate, linear, flat or keeled blades

Flowers and Seeds
Branches with globular flowers, 5–12 staminate flowers above, 1–2 larger, pistillate flowers below; burr-like fruits, beaked achenes

Facts
Synonym: *S. californicum*
Typhaceae

Typha domingensis
Southern cattail

Habitat
Moderate to deeply flooded wetlands

Stems and Roots
2–4 m (6–13 ft) tall, stout, cylindrical, pithy stems; rhizomes

Leaves
Alternate, wide, flat blades, bottom side concave, sheaths open

Flowers and Seeds
Cylindrical, spike-like flowers; yellow (staminate) and light-brown (pistillate) sections separated by length of green axil

Facts
Synonym: *T. angustata*

The rhizomes, young flower spikes, stem, leaf base, and pollen of southern cattail are edible.

See p. 30 for additional information.
Typhaceae

Typha latifolia

Broadleaf cattail

Habitat
Moderate to deeply flooded wetlands

Stems and Roots
1–3 m (3–9 ft) tall, stout, cylindrical, pithy stems; fleshy rhizomes

Leaves
Alternate, wide, flat leaves, sheaths open

Flowers and Seeds
Cylindrical, spike-like flowers; yellow (staminate) and dark-brown (pistillate) flower sections contiguous

See p, 30 for additional information.
Emergent Birds

Emergent marshes provide critical nesting and resting cover for a wide array of migratory birds (pp. 67–68). Both diving and dabbling ducks primarily nest in bulrushes, as do Franklin’s gulls (Leucophaeus pipixcan), black terns, Forster’s terns (Sterna forsteri), and large waterbirds. Large emergent plants provide materials for nests and a safe hiding place for hens and chicks. Many passerines, including red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris), also build and hide their nests in emergent vegetation. Marsh wrens are especially industrious, with males building several globe-shaped nests suspended from emergent wetland plants.

In addition to nesting habitat, the dense growth of GSL’s emergent bulrushes provide a year-round protective resting space for birds. In the spring, marbled godwits (Limosa fedoa) will use emergent wetlands to stage. Redheads (Aythya americana) and other waterfowl loaf in emergent wetlands because of the proximity to open water, where they can remain safe from predation but close to food.

Emergent plants are quite valuable to foraging birds. Wintering waterfowl seek Alkali bulrush seeds because they are a high-energy food source. Dabbling ducks, including the mallards (Anas platyrhynchos) and northern shovelers (A. clypeata) commonly forage for seeds on the water’s surface. American coots (Fulica americana) can be found grazing on the vegetative parts of bulrushes and grasses. In warmer months, emergent wetland plant species provide important habitat for insects and mollusks that are consumed by goldeneyes (Bucephala spp.) and other diving ducks. Even shorebirds, which are typically found in playa wetlands, will visit shallow emergent wetlands for feeding. Lone great blue herons (Ardea herodias) are often seen stalking through emergent wetlands or perched in trees. Great blue herons usually eat fish and small mammals but will forage opportunistically on a variety of wetland wildlife, including snakes.
Emergent Birds

Franklin’s gull
Leucophaeus pipixcan

Forster’s tern
Sterna forsteri

Red-winged blackbird
Agelaius phoeniceus

Marsh wren
Cistothorus palustris

Marbled godwit
Limosa fedoa

Redhead
Aythya americana
Emergent Birds

Mallard
Anas platyrhynchos

Northern shoveler
Anas clypeata

American coot
Fulica americana

Goldeneye
Bucephala spp.

Great blue heron
Ardea herodias
Meadow Wetlands

Meadow wetlands, typically referred to as meadows, are defined by temporary or seasonal shallow flooding or saturated soils. Meadows comprise nearly 390 km² (97,225 ac) around Great Salt Lake (GSL) and are divided into wet and salt meadows based on differences in typical salinity ranges and dominant plant species. Across these ranges, meadow plant communities are characterized by shorter grasses and sedges that are well-adapted to fluctuating water levels. Most meadows are either located on low-angled slopes at slightly higher elevation than submergent and emergent wetlands, or they are on the outside edges of depressions and streams. Due to frequent proximity to agricultural land, many GSL meadows are grazed by cattle.

Plants

A number of plant species are important to wet and salt meadow, although specific species are representative of either wet or salt meadows because of salinity. While a wet meadow is an especially species-rich habitat because of low soil salinity, a salt meadow is unique because of its salinity tolerant plants.

Common spikerush (*Eleocharis palustris*, p. 83) is one important wet meadow species. It is often the first plant to grow in disturbed areas and can quickly colonize bare areas following a drawdown. However, common spikerush is intolerant of elevated salinity and stunts at salinities above 6 ppt.

Wet meadows often contain grasses and forbs. Slimstem reedgrass (*Calamagrostis stricta*, p. 96) and timothy (*Phleum pratense*, p. 102) are two characteristic wet meadow grasses, although they are found...
infrequently. An abundance of common forbs, such as nodding beggartick (*Bidens cernua*, p. 74), are also present in wet meadows.

Saltgrass (*Distichlis spicata*, p. 97) is the most important habitat species in salt meadows because it provides nesting cover for a number of waterfowl species.66 As a drought-tolerant, salt-tolerant species that grows in dense mats and expands via rhizomes, saltgrass can grow in wetland soils with salinity greater than 30 ppt without any impacts to growth or seed production.6; 13 Periodic wetland burning can stimulate saltgrass growth because it creates bare ground that can be colonized by new growth from both seeds and rhizomes.46

Nebraska sedge (*Carex nebrascensis*, p. 81) and clustered field sedge (*Carex praegracilis*, p. 82) are common sedges in GSL salt meadows. Both species often grow in the same habitat—saturated to shallowly flooded meadows—and support the same bird species, but Nebraska sedge is taller, has larger seeds, and is more tolerant of alkaline conditions (pH of 7.5 of more).54 Seasonally fluctuating water levels are beneficial to sedges, and dry periods are especially important after inundation.54 As a stable wetland species, Nebraska sedge can be used to treat wastewater and is often a key species in determining the severity of cattle grazing pressure. If grazing is impairing a meadow, the rhizomatous structure of Nebraska sedge, which typically protects soil from erosion, will become weakened and more tolerant species will replace it.

Like sedges, arctic rush (*Juncus arcticus*, p. 89) is a salt meadow plant that benefits from fluctuating water levels. Arctic rush can tolerate brackish and alkaline soil, seasonal drought, shade, and frequent disturbance.48 Arctic rushes’ broad range of tolerance, combined with its dense, rhizomatous growth, makes it a particularly valuable native salt meadow species because it can prevent the spread of invasive vegetation.
Meadow Plants by Family

Apiaceae (Carrot family)
- *Berula erecta*
 Cutleaf waterparsnip
 73

Asteraceae (Aster family)
- *Bidens cernua*
 Nodding beggartick
 74
- *Erigeron glabellus*
 Streamside fleabane
 75
- *Senecio hydrophilus*
 Water ragwort
 76
- *Symphyotrichum ciliatum*
 Rayless alkali aster
 77

Brassicaceae (Mustard family)
- *Chorispora tenella*
 Musk mustard
 78

Caryophyllaceae (Pink family)
- *Spergularia maritima*
 Salt sandspurry
 79

Chenopodiaceae (Goosefoot family)
- *Atriplex prostrata*
 Triangle orache
 80

Cyperaceae (Sedge family)
- *Carex nebrascensis*
 Nebraska sedge
 81
- *Carex praegracilis*
 Clustered field sedge
 82
- *Eleocharis palustris*
 Common spikerush
 83
- *Eleocharis parishii*
 Parish spikerush
 84

Fabaceae (Pea family)
- *Glycyrrhiza lepidota*
 Wild licorice
 85
- *Lotus corniculatus*
 Birdfoot trefoil
 86
- *Trifolium fragiferum*
 Strawberry clover
 87

Gentianaceae (Gentian family)
- *Centaurium exaltatum*
 Desert centaury
 88

Juncaceae (Rush family)
- *Juncus arcticus*
 Arctic rush
 89
- *Juncus torreyi*
 Torrey’s rush
 90
Juncaginaceae (Arrowgrass family)
 Triglochin maritima Seaside arrowgrass 91

Lythraceae (Loosestrife family)
 Lythrum salicaria Purple loosestrife 92

Plantaginaceae (Plantain family)
 Plantago lanceolata Narrowleaf plantain 93
 Plantago major Common plantain 94

Poaceae (Grass family)
 Alopecurus arundinaceus Meadow foxtail 95
 Calamagrostis stricta Slimstem reedgrass 96
 Distichlis spicata Saltgrass 97
 Echinochloa crus-galli Barnyardgrass 98
 Hordeum jubatum Foxtail barley 99
 Leymus cinereus Great Basin wildrye 100
 Muhlenbergia asperifolia Scratchgrass 101
 Phleum pratense Timothy 102
 Poa palustris Fowl bluegrass 103

Polygonaceae (Buckwheat family)
 Polygonum ramosissimum Bushy knotweed 104

Scrophulariaceae (Figwort family)
 Castilleja minor Lesser Indian paintbrush 105
 Cordylanthus maritimus Saltmarsh birds beak 106

Urticaceae (Nettle family)
 Urtica dioica Stinging nettle 107
Apiaceae

Berula erecta
Cutleaf waterparsnip

Habitat
Saturated to shallow-flooded wetlands

Stems and Roots
20–110 cm (7 in–3.6 ft) tall, branching stems; fibrous roots, stoloniferous

Leaves
Opposite, pinnate blades with 5–15 pairs of leaflets, toothed margins, petiolate

Flowers and Seeds
Compound umbels of small, white, 5-petal flowers; flattened seeds

Facts
Synonyms: B. incisa, B. pusilla, Siella erecta

Cutleaf waterparsnip is highly toxic and easily misidentified as watercress (p. 37).
Asteraceae

Bidens cernua

Nodding beggartick

Habitat
Saturated to shallow-flooded wetlands

Stems and Roots
10–110 cm (4 in–3.6 ft) tall, smooth stems; fibrous roots

Leaves
Opposite, sessile, lanceolate blades, serrated margins

Flowers and Seeds
Many large heads with yellow disk and ray flowers present; nodding with age; trident-shaped seeds

Facts
Synonym: *B. glaucescens*

Nodding beggartick has been used as a honey plant.

See p. 69 for additional information.
Asteraceae

Erigeron glabellus
Streamside fleabane

Habitat
Saturated to shallow-flooded wetlands

Stems and Roots
10–60 cm (4 in–2 ft) tall erect stems; caudex, fibrous roots

Leaves
Alternate, oblanceolate blades, sessile, with stiff hairs; lower leaves larger

Flowers and Seeds
Many heads, rays purple to white, numerous; hairy involucre bract, brown midvein

Facts
Synonym: Smooth daisy
Asteraceae

Senecio hydrophilus

Water ragwort

Habitat
Saturated, alkaline wetlands

Stems and Roots
40–200 cm (1.5–6.5 ft) tall, hollow, clustered stems; fibrous roots

Leaves
Alternate, elliptical blades, smooth, slightly succulent; lower leaves larger, petiolate

Flowers and Seeds
15+ clustered, erect heads of yellow disk and ray flowers

Facts
Synonyms: alkali-marsh butterweed, water grounse, *S. sandvicensis*
Asteraceae

Symphyotrichum ciliatum
Rayless alkali aster

Habitat
Saturated, saline wetlands and shorelines

Stems and Roots
10–70 cm (4 in–2.2 ft) tall, branching, red-tinged stems; taproots

Leaves
Alternate, linear blades, smooth with few hairs; lower leaves withering

Flowers and Seeds
Panicles of fluffy, white flowers; pappus bristles longer than ray flowers; blooming late summer

Facts
Synonyms: Aster brachyactis, Brachyactis angusta, B. ciliata, Tripolium angustum

Wetland indicator: FACW
Duration & growth: AF
Nativity in lower 48: N
Commonness: C
Brassicaceae

Chorispora tenella
Musk mustard

Habitat
Temporarily saturated wetlands; disturbed areas

Stems and Roots
10–45 cm (4 in–1.5 ft) tall, stipitate-glandular stems; taproots

Leaves
Alternate blades; shape varies from oblong to pinnatifid, sessile, or petiolate

Flowers and Seeds
Racemes of pink to lavender, 4-petal flowers; long silique

Facts
Synonyms: blue mustard, crossflower

Wetland indicator: NA
Duration & growth: AF
Nativity in lower 48: I
Commonness: O
Caryophyllaceae

Spergularia maritima
Salt sandspurry

Habitat
Saturated, alkaline wetlands

Stems and Roots
7–20 cm (2.7–8 in) long, prostrate to ascending, branched stems; taproots

Leaves
Opposite, linear blades, succulent, with stipules

Flowers and Seeds
Solitary, 5-petal, white to pink flowers, pedicellate; seed capsules

Facts
Synonyms: *S. marginata, S. media*

<table>
<thead>
<tr>
<th>Wetland indicator: FACW</th>
<th>Duration & growth: AF</th>
<th>Nativity in lower 48: I</th>
<th>Commonness: U</th>
</tr>
</thead>
</table>
Chenopodiaceae

Atriplex prostrata

Triangle orache

Habitat
Saturated, alkaline wetlands; disturbed areas

Stems and Roots
10–100 cm (4 in–3.2 ft) tall, ribbed stems, branching, erect to prostrate; taproots

Leaves
Opposite (lower 2/3) to alternate (upper 1/3), petiolate, thin, triangular to hastate or ovate blades; farinose, becoming smooth

Flowers and Seeds
Branched spikes of glomerules; bracteoles triangular with toothed margins, smooth-face, pointed apex; black or brown seeds

Facts

Wetland indicator: FACW
Duration & growth: AF
Nativity in lower 48: N
Commonness: C
Cyperaceae
Carex nebrascensis
Nebraska sedge

Habitat
Semi-permanently saturated to shallow-flooded wetlands

Stems and Roots
20–100 cm (8 in–3.2 ft) tall, stout, triangular culms; long, scaly rhizomes

Leaves
Firm, flat blades, bluish-waxy surface

Flowers and Seeds
3–6 sessile, erect, cylindrical spikes, brown-black scales with green midrib; inflated elliptical perigynia, light brown

See p. 70 for additional information.
Cyperaceae

Carex praegracilis
Clustered field sedge

Habitat
Temporarily saturated to shallow-flooded wetlands

Stems and Roots
30–70 cm (1–2.3 ft) tall culms, solitary or clustered; stout, dark rhizomes

Leaves
Long, flat blades on bottom quarter of stem; lowest leaves reduced to sheaths

Flowers and Seeds
6–25 spikes aggregated in ovoid head, sessile; scales light brown; perigynia light brown, ovate, convex

Facts
Synonym: C. camporum

*See p. 70 for additional information.
Cyperaceae

Eleocharis palustris

Common spikerush

Habitat
Saturated to shallow-flooded wetlands; exposed soils

Stems and Roots
10–100 cm (4 in–3.2 ft) tall, smooth, round culms; rhizomatous

Leaves
Bladeless leaf sheaths near stem base

Flowers and Seeds
Terminal, brown, lanceolate spikelet; lens-shaped, brown achenes with white tubercle constrained at the base

*See p. 69 for additional information.
Cyperaceae

Eleocharis parishii
Parish spikerush

Habitat
Saturated, fresh to brackish wetlands

Stems and Roots
10–30 cm (4 in–1 ft) tall, slender, round, ribbed culms; slender rhizomes

Leaves
Bladeless leaf sheaths near stem base

Flowers and Seeds
Terminal, brown, narrow, lanceolate spikelet; scales purple with translucent midrib; 3-sided achenes with sessile tubercle

Facts
Synonym: *E. disciformis*

Parish spikerush has thinner stems and smaller, darker spikelets than common spikerush.
Fabaceae

Glycyrrhiza lepidota
Wild licorice

Habitat
Saturated wetlands; disturbed areas

Stems and Roots
40–120 cm (1.2–3.9 ft) tall, punctate stems; sweet-flavored, deep roots

Leaves
Alternate, odd-pinnate blades, leaflets lanceolate to oblong with pointed tip

Flowers and Seeds
Racemes of white to cream, 5-petal flowers; burr-like, oblong or elliptical pods with hooks

Facts

Synonym: G. glutinosa

Roots of wild licorice have a licorice flavor.

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Common-ness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAC</td>
<td>PF</td>
<td>N</td>
<td>U</td>
</tr>
</tbody>
</table>
Fabaceae

Lotus corniculatus

Birdfoot trefoil

Habitat
Streams and ditchbanks near agriculture

Stems and Roots
20–60 cm (8 in–2 ft) tall, slender stems; taproot, caudex

Leaves
Alternate, pinnate blades with 3 lanceolate or elliptical leaflets, petiolate

Flowers and Seeds
Pedunculate yellow, bilaterally symmetrical flowers, sometimes red-tinged; pods
Fabaceae

Trifolium fragiferum
Strawberry clover

Habitat
Saturated, alkaline or saline wetlands

Stems and Roots
5–30 cm (2 in–1 ft) long, creeping, mat-forming stems, rooting at nodes; initial taproot, rhizomes or stolons

Leaves
Alternate, palmate blades with 3 leaflets obovate with pointed tips, surface with soft hairs, petiolate

Flowers and Seeds
Compact, spherical heads of pink to purple flowers, become papery and veined with age

Facts
Stolons of strawberry clover can float, allowing survival during flooding.
Gentianaceae

Centaurium exaltatum

Desert centaury

Habitat
Saturated to flooded, alkaline wetlands

Stems and Roots
10–40 cm (4 in–1.3 ft) tall, erect, branched, 4-angled stems

Leaves
Opposite, sessile, linear to lanceolate blades

Flowers and Seeds
Cymose panicles of white or pink flowers, 4–5 petals and corolla tube, pedicellate

Facts
Synonyms: C. nuttallii, Cicendia exaltata, Zeltnera exaltata
Juncus arcticus
Arctic rush

Habitat
Temporary to permanently saturated, alkaline wetlands

Stems and Roots
30–90 cm (1–3 ft) tall, firm, round culms; creeping, sod-forming rhizomes

Leaves
Blade-less, basal, brown leaf sheaths remaining

Flowers and Seeds
Lateral inflorescences of 10–50 flowers, approximately 6 cm (2.4 in) long, brown-black scales; erect, stem-like involucre

Facts
Synonym: *J. balticus*

See p. 70 for additional information.
Juncaceae

Juncus torreyi

Torrey’s rush

Habitat
Saturated, alkaline wetlands and streambanks

Stems and Roots
40–100 cm (1.3–3.2 ft) tall, round culms; cord-like rhizomes

Leaves
Round, hollow blades, cauline, auriculate

Flowers and Seeds
2–10 dense, spherical inflorescences of 12+ flowers, brown scales
Juncaginaceae

Triglochin maritima

Seaside arrowgrass

Habitat
Temporary to permanently saturated, alkaline wetlands

Stems and Roots
30–120 cm (1–3.9 ft) tall, erect, round culms; stout rhizome

Leaves
Basal, short, linear blades

Flowers and Seeds
Scapes with dense racemes, elliptical tepals; follicular fruit

Facts
Synonym: *T. elatum*
Lythraceae

Lythrum salicaria
Purple loosestrife

Habitat
Stream and ditchbanks; shallow-flooded wetlands

Stems and Roots
50–150 cm (1.6–4.9 ft) tall, stout, square stems, clustered; rhizomes; wide variation in growth

Leaves
Opposite, sessile, lanceolate blades with hairy surface

Flowers and Seeds
Showy spikes with clusters of 4–6 petals, purple flowers, forming cylinder at base

Facts
Purple loosestrife is a noxious weed in Utah.
Plantaginaceae

Plantago lanceolata
Narrowleaf plantain

Habitat
Saturated, disturbed wetlands

Stems and Roots
15–60 cm (0.5–2 ft) tall scapes; fibrous roots

Leaves
Basal, long, narrowly elliptical to lanceolate blades

Flowers and Seeds
Scapes with dense, cylindrical spike, flowers with exserted stamens; capsules

Facts
Synonym: *P. altissima*
Plantaginaceae

Plantago major
Common plantain

Habitat
Dry to saturated, disturbed wetlands

Stems and Roots
5–25 cm (2–10 in) tall scapes; fibrous roots

Leaves
Basal, cordate to ovate blades, petiolate

Flowers and Seeds
Scapes with dense, narrow spikes; flowers with reflexed corolla lobes, exserted stamens

Facts
Synonyms: *P. asiatica, P. halophila, P. intermedia*

| Wetland indicator: | FAC | Duration & growth: | PF | Nativity in lower 48: | I | Commonness: | O |
Poaceae

Alopecurus arundinaceus

Meadow foxtail

Habitat
Temporarily saturated to shallow-flooded wetlands

Stems and Roots
30–110 cm (1–3.6 ft) tall culms; rhizomatous

Leaves
Flat leaf blades on lower half of culm, open sheath, membranous ligule

Flowers and Seeds
Dense, spike-like inflorescence; 1 floret per spikelet, flattened; glume with hairs along keel; bent lemma awn

Facts
Meadow foxtail has been cultivated as meadow hay.
Poaceae

Calamagrostis stricta

Slimstem reedgrass

Habitat
Saturated to shallow-flooded wetlands

Stems and Roots
35–90 cm (1.1–2.3 ft) tall, hollow culms; rhizomatous

Leaves
Flat blades ribbed on upper surface; open sheaths, membranous ligule

Flowers and Seeds
Inflorescences a contracted panicle, pale green to yellow; 1 floret per spikelet, laterally compressed, glumes keeled, lemma with awn and ring of hairs around base

See p. 69 for additional information.
Poaceae

Distichlis spicata
Saltgrass

Habitat
Temporarily saturated to shallow-flooded wetlands and shorelines

Stems and Roots
10–45 cm (4 in–1.5 ft) tall culms, decumbent at bases; rhizomes or stolons

Leaves
Overlapping, rigid blades along entire culm, open sheaths, membranous ligule

Flowers and Seeds
Large, laterally compressed spikelets in green to yellow-green, contracted panicle over-topped by uppermost leaf blades; glumes keeled

Facts
Synonyms: *D. stricta, Uniola spicata*

*See pp. 70 and 112 for additional information.

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>FAC</th>
<th>Duration & growth:</th>
<th>PG</th>
<th>Nativity in lower 48:</th>
<th>N</th>
<th>Commonness:</th>
<th>C</th>
</tr>
</thead>
</table>
Poaceae

Echinochloa crus-galli

Barnyardgrass

Habitat
Stream and ditchbanks

Stems and Roots
30–100 cm (1–3.2 ft) tall culms, rooting at nodes; caespitose

Leaves
Broad, flat blades with scabrous margins, open sheaths, no ligule

Flowers and Seeds
Branching, nodding panicles; 2 florets per spikelet, dorsally compressed; glumes with long awn; fertile lemma 3-sided, shiny

Facts
Synonyms: Japanese millet, *Panicum crus-galli*

Barnyardgrass has been planted as a waterfowl habitat species in some state management areas.
Poaceae
Hordeum jubatum
Foxtail barley

Habitat
Temporarily saturated or flooded, alkaline wetlands

Stems and Roots
20–80 cm (8 in–2.5 ft) tall, hollow culms; caespitose, appearing annual

Leaves
Flat, lax, scabrous blade, open sheaths, membranous ligule

Flowers and Seeds
Inflorescence nodding spike, turning purple with age; 3 spikelets per node (1 fertile, 2 infertile), 1 floret per spikelet; glumes awn-like, lemma with long, 1–6 cm (0.35–2.5 in) awn

Wetland indicator: FAC
Duration & growth: PG
Nativity in lower 48: N
Commonness: C

Poaceae

Leymus cinereus
Great Basin wildrye

Habitat
Temporarily saturated meadows, ditchbanks, and roadsides

Stems and Roots
1–2.5 m (3.2–8.2 ft) tall culms, caespitose with short rhizomes

Leaves
Flat blades with blueish waxy coating, 4-15 mm (0.15–0.59 in) wide, visible veins; open sheath, auricles present, membranous ligule

Flowers and Seeds
Inflorescence long, 10–29 cm (3.93–7.90 in) spike; spikelets on opposite sides with 3-7 florets each; keeled glumes, awned lemmas

Facts
Synonym: *Elymus cinereus*
Poaceae

Muhlenbergia asperifolia

scratchgrass

Habitat
Permanently saturated to shallowly flooded, alkaline wetlands

Stems and Roots
10–60 cm (4 in–2 ft) tall, slender culms; long, scaly rhizomes

Leaves
Flat or folding cauline blades with open, overlapping sheaths; membranous ligule

Flowers and Seeds
Inflorescence an open panicle, almost as wide as long, breaking away at maturity; small, 1.5 mm (0.06 in), purple, laterally compressed spikelets; membranous glumes

Facts
Synonym: *Sporobolus asperifolius*

Wetland indicator: FACW
Duration & growth: PG
Nativity in lower 48: N
Commonness: U
Poaceae

Phleum pratense

Timothy

Habitat
Saturated soils in a variety of habitats

Stems and Roots
50–100 cm (1.6–3.2 ft) tall, hollow, tufted culms

Leaves
Flat leaf blades, scabrous margins, open sheath; membranous ligule

Flowers and Seeds
Contracted, dense, spike-like inflorescence, 1 floret per spikelet; distinct, flat-topped glumes with comb-like hairs on keel and awn

Facts
Timothy has awned glumes and spreading spikelets while *Alopecurus arundinaceus* (p. 97) has awned lemma and ascending spikelets.

See p. 69 for additional information.
Poaceae

Poa palustris
Fowl bluegrass

Habitat
Saturated to shallow-flooded wetlands

Stems and Roots
25–120 cm (10 in–3.9 ft) long, decumbent culms, rooting at nodes; tufted to stoloniferous

Leaves
Ascending, flat blades with rolled tip, sheaths open to base, membranous ligule pointed at top

Flowers and Seeds
Pyramidal panicles, open or contracted, nodding with age; 25–100 spikelets per node; glumes keeled; lemmas with tuft of hair at base

Facts
Synonyms: *P. crocata*, *P. eyerdamii*, *P. trillora*

Fowl bluegrass is distinguished from *Poa pratensis* (p. 174) by its pointed (not flat) ligule.
Polygonaceae

Polygonum ramosissimum

Bushy knotweed

Habitat
Temporarily to permanently saturated wetlands; disturbed areas

Stems and Roots
10–100 cm (4 in–3.2 ft) tall, profusely branched, ribbed stems

Leaves
Small, alternate, lanceolate to elliptical, yellow to blue-green blades; ocrea disintegrating into brown fibers

Flowers and Seeds
Small, axillary and terminal, 5-parted flowers, white to yellow to yellow-green tepals, hypanthium present

Wetland indicator: FAC
Duration & growth: AF
Nativity in lower 48: N
Commonness: C
Scrophulariaceae

Castilleja minor
Lesser Indian paintbrush

Habitat
Saturated to shallow-flooded wetlands

Stems and Roots
20–80 cm (8 in–2.6 ft) long, simple stems, hairy; short taproots

Leaves
Many alternate, sessile, linear to lanceolate blades

Flowers and Seeds
Narrow racemes of tubular, bilaterally symmetrical, red flowers, bracts leafy, red-tipped
Scrophulariaceae
Cordylanthus maritimus
Saltmarsh birds beak

Habitat
Saturated to shallow-flooded, alkaline wetlands

Stems and Roots
10–30 cm (4 in–2 ft) tall, branched stems, sticky-haired surface

Leaves
Alternate, lanceolate blades, often with powdery salt crystals

Flowers and Seeds
Spikes of light yellow or white, bilaterally symmetrical flowers, long leafy bracts; hairs on bracts and petals

Facts
Synonym: *C. maritimium*

Wetland indicator: OBL
Duration & growth: AF
Nativity in lower 48: N
Commonness: O
Habitat
Streambanks and shorelines

Stems and Roots
0.5–3 m (1.6–10 ft) tall, erect, 4-sided stems, covered in stinging hairs; rhizomatous

Leaves
Opposite, elliptical to lanceolate, dark green blades, toothed margins, petiolate, with stinging hairs

Flowers and Seeds
Long, pedunculate panicles of 4-lobed staminate and pistillate flowers

Facts
Avoid handling stinging nettle; contact with skin causes painful stinging.
Meadow Birds

Birds
Meadow grasses are primary nesting habitat for ducks and shorebirds (pp. 109–10) seeking shorter nesting cover than other birds. Cinnamon, blue-winged, and green-winged teal (*Anas cyanoptera*, *A. discors*, and *A. crecca*) depend specifically on meadows for nesting cover. Ducks require saltgrass for nesting habitat, and large dabbling and diving ducks may occasionally use sedges for nesting cover. The largest concentration of staging Wilson’s phalaropes (*Phalaropus tricolor*) is found around GSL, though only a small population of this concentration nests here. When nesting, Wilson’s phalaropes prefer the salt-tolerant grasslands of meadows.

While meadow plant species tend to be shorter and have smaller seeds, they provide a valuable source of nutrition for some migratory birds. Teal, dabbling ducks, and geese will eat the vegetative parts and seeds of sedges and grasses. Meadow plants also provide habitat for terrestrial invertebrates that loggerhead shrikes (*Lanius ludovicianus*) and other passerines seek as prey. In flooded meadows, tall shorebirds such as white-faced ibis (*Plegadis chihi*) and snowy egrets (*Egretta thula*) will forage for aquatic invertebrates among sedges. Birds of prey such as rough-legged hawks (*Buteo lagopus*), American kestrels (*Falco sparverius*), and northern harriers (*Circus cyaneus*) fly over a variety of wetland habitats, but will use meadows more frequently to prey on plentiful insects, small birds, and mammals living within meadows or nearby emergent wetlands.
Cinnamon teal
Anas cyanoptera

Blue-winged teal
Anas discors

Green-winged teal
Anas crecca

Wilson’s phalarope
Phalaropus tricolor

White-faced ibis
Plegadis chihi

Snowy egret
Egretta thula
Meadow Birds

Loggerhead shrike
Lanius ludovicianus

Northern harrier
Circus cyaneus

Rough-legged hawk
Buteo lagopus

American kestrel
Falco sparverius
Playa Wetlands

Playa means “beach” or “seashore” in Spanish and refers to an arid or semiarid wetland with distinct wet and dry seasons. Playas comprise approximately 240 km² (60,317 ac) around Great Salt Lake (GSL); in fact, the lake itself is located in a playa depression, which is why it is relatively shallow. GSL playas typically collect water during the spring. When water evaporates, the mineral deposits left behind create highly saline and alkaline soil conditions. Playas are sparsely vegetated and occur on poorly drained depressions that typically have no outlet. Because playas are a harsh environment, plants that do occur in playas have physiological adaptations to survive drought, salinity, and high pH.

Mudflats are areas that have become exposed when flooded submergent or emergent wetlands have been drawn down. GSL mudflats cover approximately 1,680 km² (414,689 ac) and are considered critical habitat for millions of migratory shorebirds. During periods of drought, large portions of the bed of GSL itself are also exposed and classified as mudflats. Because plant species found in playas also occur on mudflats, this section combines facts about playas with facts about mudflats.

Plants

Despite their simple vegetation structure, playas and mudflats are difficult to manage and tend to be maintained passively. Playa vegetation requires both brief, seasonal flooding and extended drought. Plants that grow in playas, such as pickleweed (*Salicornia rubra*, p. 124) and Pursh seepweed
Playa Wetlands

(Suaeda calceoliformis, p. 125), are typically short and sparse. Pickleweed is a halophyte (salt-loving plant) capable of growing in soils with a salinity of 35 ppt or greater. The leaves of pickleweed have been reduced to scales, while the stems are succulent and include vacuoles or chambers that sequester salts from the rest of the plant. The seeds of pickleweed are dehiscent, which means they are forcefully expelled from plants as they dry out during the late fall, attracting large flocks of waterfowl. Pursh seepweed, another succulent halophyte, is taller than pickleweed and grows in both saline and brackish wetlands. Like pickleweed, Pursh seepweed produces more seeds when exposed to saline and alkaline conditions. In GSL playas, Pursh seepweed is important because it provides cover for nesting shorebirds.12

Other plants, such as phragmites (Phragmites australis, p. 50) and saltgrass (Distichilis spicata, p. 97) grow well in playas. Phragmites, an aggressive wetland invader, can quickly colonize playa ecosystems through seeds and by sending out stolons and rhizomes. Dense, invasive phragmites that grows on previously unvegetated ground completely alters the habitat, preventing birds that need open foraging areas from accessing their prey. Although saltgrass is primarily a salt meadow species, it is prevalent in playas as well.
Playa Plants by Family

Aizoaceae (Fig-marigold family)

Sesuvium verrucosum Verrucose seapurslane 114

Asteraceae (Aster family)

Iva axillaris Povertyweed 115
Xanthium strumarium Rough cocklebur 116

Boraginaceae (Borage family)

Plagiobothrys leptocladus Finebranched popcornflower 117

Chenopodiaceae (Goosefoot family)

Allenrolfea occidentalis Iodine bush 118
Atriplex spp. Saltbush 119
Atriplex micrantha Twoscale saltbush 120
Chenopodium glaucum Oakleaf goosefoot 121
Chenopodium rubrum Red goosefoot 122
Salicornia rubra Pickleweed 123
Sarcobatus vermiculatus Greasewood 124
Suaeda calceoliformis Pursh seepweed 125

Convolvulaceae (Morning-glory family)

Cressa truxillensis Spreading alkaliweed 126

Frankeniaceae (Frankenia family)

Frankenia pulverulenta European seaheath 127

Poaceae (Grass family)

Crypsis schoenoides Swamp pricklegrass 128
Hordeum marinum Mediterranean barley 129
Sporobolus airoides Alkali sacaton 130

Tamaricaceae (Tamarisk family)

Tamarix spp. Saltcedar 131
Aizoaceae

Sesuvium verrucosum
Verrucose seapurslane

Habitat
Temporarily saturated, saline, and alkaline wetlands

Stems and Roots
30–100 cm (1–3.2 ft) long, prostrate, short-branched stems, forming mats; taproots

Leaves
Opposite, oblanceolate to obovate, succulent blades, salt crystals on surface

Flowers and Seeds
Solitary, dark pink, 5-petal flowers in leaf axils

Facts
Synonym: *S. erectum*

Wetland indicator: FACW
Duration & growth: PF
Nativity in lower 48: N
Commonness: O
Asteraceae

Iva axillaris

Povertyweed

Habitat
Temporarily saturated, alkaline and saline wetlands; disturbed areas

Stems and Roots
10–60 cm (4 in–2 ft) tall stems; deep, creeping roots

Leaves
Opposite below and alternate above, oblong blades, sparsely hairy

Flowers and Seeds
Solitary, nodding flower heads, pedunculate; black achenes

Facts
Native Americans have used povertyweed to treat indigestion and colds.
Asteraceae
Xanthium strumarium
Rough cocklebur

Habitat
Exposed mudflats

Stems and Roots
20–200 cm (8 in–6.5 ft) tall, hairy stems; taproots

Leaves
Alternate, broad, shallowly lobed blades with rough surface; petiolate

Flowers and Seeds
Brown, ovate burrs with rigid, hooked spines

Facts
Cocklebur seedlings are poisonous to livestock and humans.
Boraginaceae

Plagiobothrys leptocladus
Finebranched popcornflower

Habitat
Temporarily saturated wetlands

Stems and Roots
10–30 cm (4 in–1 ft) long, slender, prostrate stems, branching at base

Leaves
Opposite, narrowly linear blades, smooth above, stiff hairs below

Flowers and Seeds
Loose racemes of small, white flowers with 5 spreading petals; nutlet

Facts
Synonyms: *P. orthocarpus*, *Allocarya leptoclada*

Wetland indicator: OBL
Duration & growth: AF
Nativity in lower 48: N
Commonness: O
Chenopodiaceae

Allenrolfea occidentalis

Iodine bush

Habitat
Saturated, alkaline wetlands

Stems and Roots
30–150 cm (1–4.9 ft) tall, alternate branching, fleshy, jointed stems, woody at base; large taproots

Leaves
Alternate, dark green, succulent, scale-like, triangular leaves

Flowers and Seeds
Cylindrical spikes of inconspicuous flowers, 3–5 per stem joint, 1–2 exserted stamens; seeds enclosed in bracts

Facts
Synonym: *Halostachys occidentalis*
Iodine bush tastes salty because of concentrated salt in its stems.

Wetland indicator: FACW
Duration & growth: PS
Nativity in lower 48: N
Commonness: U
Chenopodiaceae

Atriplex spp.

Saltbush

Habitat
Variety of saturated to dry, alkaline or saline wetlands

Stems and Roots
30–150 cm (1–4.8 ft) tall, prostrate to erect, stems often gray-green

Leaves
Alternate or opposite, deltoid, triangular or hastate leaves often farinose, especially when young

Flowers and Seeds
Clusters or panicles of glomerules, seeds enclosed by flattened bracteoles

Facts
The saltbush genus is complex, and species are difficult to identify during much of the growing season. Possible Atriplex species found in GSL wetlands include, A. dioica, A. gardneri, A. micrantha, A. patula, and A. prostrata.
Chenopodiaceae

Atriplex micrantha

Twoscale saltbush

Habitat
Frequently saturated, disturbed wetlands

Stems and Roots
40–150 cm (1.3–4.9 ft) tall, erect, branched stems; taproots

Leaves
Mostly alternate (lowest opposite), triangular to hastate blades, sparsely farinose (green with age), margins entire or irregularly toothed, petiolate

Flowers and Seeds
Long, branching spikes of glomerules; bracteoles ovate to circular, smooth margins; seeds shiny black or brown

Facts
Synonym: *A. heterosperma*

Twoscale saltbush is distinguished from other *Atriplex* spp. (pp. 80, 119) by its smooth, round bracteoles.
Chenopodiaceae

Chenopodium glaucum
Oakleaf goosefoot

Habitat
Saturated, saline wetlands

Stems and Roots
7–25 cm (3–10 in) long, prostrate to ascending, sparsely farinose stems, branched from base

Leaves
Alternate, thick, rhombic to ovate blades, green and smooth above, white and farinose below; wavy or toothed margins

Flowers and Seeds
Short spikes of round, 3–5 parted glomerules; round, greenish fruit enclosing red-brown seeds
Chenopodiaceae
Chenopodium rubrum
Red goosefoot

Habitat
Exposed, saline mudflats

Stems and Roots
10–90 cm (4 in–3 ft) tall (erect) or 3–20 cm (1–8 in) long (prostrate), reddish stems

Leaves
Alternate, rhomboid-ovate blades, wavy margins, petiolate; dark green turning red

Flowers and Seeds
Short spikes or panicles of glomerules; 3–4 parted, green flowers and fruits; dark brown or black seeds

Facts
Red goosefoot leaves are red underneath, while *Chenopodium glaucum* leaves are white underneath.
Habitat
Temporarily saturated to shallow-flooded, alkaline and saline wetlands

Stems and Roots
10–30 cm (4 in–1 ft) tall, simple or branched, succulent, segmented stems; slender taproots

Leaves
Opposite, succulent, scale-like leaves, green turning red

Flowers
Cylindrical spikes of inconspicuous flowers; scales form triad, central scale higher than lateral pair

Facts
Synonyms: red swampfire, red glasswort

Pickleweed is one of the most salt-tolerant species in the western United States.

*See pp. 111–112 for additional information.
Chenopodiaceae
Sarcobatus vermiculatus
Greasewood

Habitat
Infrequently flooded, alkaline and saline wetlands

Stems and Roots
1–2 m (3.2–6.5 ft) tall, woody, branched shrubs with thorns

Leaves
Opposite below, alternate above, linear, succulent blades

Flowers and Seeds
Spikes of two flower types; staminate flowers catkin-like, pistillate flowers fused to form circular disks

Facts
Greasewood has been used for making tools, weapons, and instruments.

Wetland indicator: FACU
Duration & growth: PS
Nativity in lower 48: N
Commonness: U
Chenopodiaceae
Suaeda calceoliformis
Pursh seepweed

Habitat
Saturated to shallow-flooded, alkaline wetlands

Stems and Roots
20–50 cm (8 in–1.6 ft) tall, erect stems, simple or with ascending branches

Leaves
Alternate, round, linear, succulent blades

Flowers and Seeds
Crowded spikes of glomerules with 3–7 keeled flowers, leafy bracts; shiny black seeds

Facts
Synonyms: *S. americana, S. depressa, S. maritima, S. minutiflora, S. occidentalis, Dondia depressa, Schoberia occidentalis*

See pp. 111–112 for additional information.
Convolvulaceae
Cressa truxillensis
Spreading alkaliweed

Habitat
Temporarily saturated, alkaline wetlands

Stems and Roots
10–15 cm (4–6 in) long, low and spreading stems, woody at base

Leaves
Alternate, ovate leaves with gray, woolly surface, sessile

Flowers and Seeds
Solitary white to purple flowers with 5 petals fused at base, stamens exerted; hairy seed capsule

Facts
Synonyms: *C. depressa*, *C. insularis*
Frankeniaceae

Frankenia pulverulenta

European seaheath

Habitat
Infrequently flooded, saline wetlands

Stems and Roots
15–30 cm (6–12 in) long, decumbent to ascending stems, sparse white hairs, branched at base; taproots

Leaves
Opposite, obovate blades with short hairs or powdery surface, short petioles

Flowers and Seeds
Solitary, white to pink flowers, 5 petals fused at the base, 6 stamen
Poaceae

Cryopsis schoenoides

Swamp pricklegrass

Habitat
Exposed, alkaline mudflats

Stems and Roots
2–75 cm (0.8 in–2.5 ft) long, prostrate, branching stems with red nodes, forming mats

Leaves
Flat or folded blades, open sheaths that become inflated, ligule of hairs

Flowers and Seeds
Short, compact panicle (spike-like) partially enclosed by a leaf sheath, spikelets laterally compressed with 1 floret

Facts
Synonyms: *Heleochloa schoenoides*, *Sporobolus schoenoides*

Wetland indicator: OBL
Duration & growth: AG
Nativity in lower 48: I
Commonness: U

128
Poaceae
Hordeum marinum
Mediterranean barley

Habitat
Infrequently to temporarily saturated, alkaline wetlands

Stems and Roots
10–50 cm (4 in–1.6 ft) tall, hollow culms, erect or jointed near base, hairy with smooth nodes; caespitose

Leaves
Flat, lax blades, hairy surface, open sheaths, membranous ligule

Flowers and Seeds
Short spike, 3 spikelets per node (1 fertile, 2 infertile), 1 floret per spikelet; central spikelet glumes scabrous and slender with stout awn; awned lemma

Facts
Synonym: seaside barley

Mediterranean barley is distinguished from *H. pusillum* and *H. murinum* by its central, scabrous, slender spikelet that has no broadened parts.
Poaceae
Sporobolus airoides
Alkali sacaton

Habitat
Temporarily to semi-permanently saturated, alkaline wetlands

Stems and Roots
40–90 cm (1.3–3 ft) tall, round stems; caespitose, forming large clumps

Leaves
Basal, flat or rolled blades, roughened lower surface, ligule of hairs

Flowers and Seeds
Long, open, pyramidal panicles; spikelets located at the end of branches; glumes deciduous, palea and lemma split at maturity

Facts
Synonym: *Agrostis airoides*

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Commonness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAC</td>
<td>PG</td>
<td>N</td>
<td>U</td>
</tr>
</tbody>
</table>
Tamaricaceae
Tamarix spp.
Saltcedar

Habitat
Temporarily to permanently saturated, alkaline wetlands and streambanks; disturbed areas

Stems and Roots
2–5 m (6.5–16 ft) tall trees, brown to black bark; deep taproots

Leaves
Alternate, overlapping, scale-like leaves with pointed tips

Flowers and Seeds
Long racemes of small, lavender, 5-petal, 5-stamen flowers

Facts
Multiple *Tamarix* species have invaded Utah wetlands and are difficult to identify to species. *T. aphylla*, *T. chinensis*, *T. parviflora*, and *T. ramosissima* have all been found in Utah.

Saltcedar is classified as a noxious weed in Utah; it can reproduce via seeds and stem parts.
Birds

GSL playas and mudflats host some of the world’s largest breeding and staging shorebird populations; thus, conservation of these salty habitats has a significant impact on species that migrate across the entire Western Hemisphere. Seasonal flooding of playas often leads to brief but critical hatches of protein-rich macroinvertebrates that support shorebird and wading bird foraging (pp. 133–134). What playas offer in foraging they equally lack in cover, so it is essential to manage playas as part of a wetland complex with nearby or adjacent vegetated wetlands that provide cover and nesting habitat for birds that use unvegetated playas for foraging.

Many bird species prefer playas and mudflats for nesting. Snowy plovers (Charadrius nivosus) nest on playas by building scrapes or shallow depressions on the open ground. American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) build crude nests, barely more than a scrape, on sparsely vegetated playas near water; rarely will they nest on unvegetated playas or mudflats. While sometimes near vegetation, killdeer (Charadrius vociferus) typically build scrapes in open, pebbly playa. Several shorebirds prefer to nest in open areas but frequently locate their scrapes near a clump of saltgrass.

Mudflats host a rich source of food for many birds and are particularly crucial habitat for shorebirds. The salty, bare ground provides habitat for numerous types of burrowing invertebrates. American avocets, black-necked stilts, and long-billed dowitchers (Limnodromus scolopaceus) forage on these invertebrates by probing. Snowy plovers prefer foraging on mudflats by gleaning insects off the surface.

Birds use various strategies for accessing prey on playas or mudflats. American avocets are best known for their scything method of foraging, in which they sweep their open bills through flooded mudflats to catch invertebrates. Black-necked stilts forage in areas that are bare or very shallowly flooded, typically pecking at insects on the surface of the water or mud. Long-billed dowitchers use their bills to probe into the mud to find hidden invertebrates. Smaller shorebirds, such as western...
sandpiper (*Calidris mauri*) and lesser yellowlegs (*Tringa flavipes*), also probe to find invertebrates, but the bills of these species are much shorter than that of the long-billed dowitcher. Each bird species has varying bill lengths, an adaptation specifically allowing them access to different mud depths and invertebrate prey.
Long-billed dowitcher
Limnodromus scolopaceus

Lesser yellowlegs
Tringa flavipes

Western sandpiper
Calidris mauri
Upland Plants

Rather than a wetland community, this collection of upland plants represents species that are often found in or disperse to Great Salt Lake (GSL) wetlands—particularly under conditions of drought and disturbance. This listing is not comprehensive of upland plants, but the selected species often indicate previous or regular wetland disturbance, so they are important to note. Often disturbance to wetlands comes in the form of drought, which increases the likelihood of upland and invasive species establishing in a wetland.

Also, upland habitat and its plants benefit wetlands. A mosaic of upland habitat interspersed with wetland habitat provides structural diversity to wetland plant complexes and supports a wide variety of bird species. Although some wetlands surrounding GSL include small portions of upland habitat in their management plans, most upland habitat is not explicitly managed.

Plants

Upland plants grow where soil conditions are dry, on small topographic rises within large marshes, or on elevated areas near roads and dikes. Due to the proximity of GSL to agricultural lands, many upland plants found in its wetlands are agricultural or pasture weeds. A group of upland plants, including bassia (*Bassia hyssopifolia*, p. 157) and intermediate wheatgrass (*Thinopyrum intermedium*, p. 175), were deliberately planted after the construction of dikes and roads to prevent erosion.
Upland Plants by Family

Asclepiadaceae (Milkweed family)

Asclepias speciosa Showy milkweed 138

Asteraceae (Aster family)

Ambrosia artemisiifolia Common ragweed 139
Arctium minus Common burdock 140
Cichorium intybus Chicory 141
Cirsium arvense Canada thistle 142
Cirsium vulgare Bull thistle 143
Conyza canadensis Horseweed 144
Erigeron divergens Spreading fleabane 145
Grindelia squarrosa Curlycup gumweed 146
Gutierrezia sarothrae Broom snakeweed 147
Helianthus annuus Common sunflower 148
Lactuca serriola Prickly lettuce 149
Matricaria recutita German chamomile 150
Sonchus asper Spiny sowthistle 151

Brassicaceae (Mustard family)

Cardaria draba Whitetop 152
Lepidium latifolium Perennial pepperweed 153
Lepidium perfoliatum Clasping pepperweed 154

Capparaceae (Caper family)

Cleome serrulata Rocky Mountain beeplant 155

Chenopodiaceae (Goosefoot family)

Atriplex gardneri Gardner’s saltbush 156
Bassia hyssopifolia Fivehorn bassia 157
Bassia scoparia Annual kochia 158
Chenopodium album Lambsquarter 159
Salsola tragus Russian thistle 160

Cuscutaceae (Dodder family)

Cuscuta pentagona Five-angled dodder 161
Dipsacaceae (Teasel family)

Dipsacus fullonum
Fuller’s teasel 162

Elaeagnaceae (Oleaster family)

Elaeagnus angustifolia
Russian olive 163

Fabaceae (Pea family)

Medicago lupulina
Black medic 164
Medicago sativa
Alfalfa 165
Melilotus officinalis
Sweetclover 166
Trifolium repens
White clover 167

Lamiaceae (Mint family)

Nepeta cataria
Catnip 168

Malvaceae (Mallow family)

Malva neglecta
Common mallow 169

Onagraceae (Evening primrose family)

Oenothera curtiflora
Velvetweed 170

Poaceae (Grass family)

Bromus secalinus
Rye brome 171
Bromus tectorum
Cheatgrass 172
Poa bulbosa
Bulbous bluegrass 173
Poa pratensis
Kentucky bluegrass 174
Thinopyrum intermedium
Intermediate wheatgrass 175

Polygonaceae (Buckwheat family)

Polygonum argyrocoleon
Silversheath knotweed 176
Rumex crispus
Curly dock 177

Rubiaceae (Madder family)

Galium aparine
Stickywilly 178
Asclepiadaceae
Asclepias speciosa
Showy milkweed

Habitat
Roadsides, streams, and ditchbanks

Stems and Roots
60–120 cm (2–3.9 ft) tall, stout, erect stems with milky latex; woody rhizomes

Leaves
Opposite, ovate blades, finely hairy on top surface, densely hairy undersides

Flowers and Seeds
Umbelliform cymes of pink to purple, 5-part flowers, petals with cream corona; large, soft follicle of seeds with tufts of hair

Facts
Synonym: A. giffordii
Showy milkweed is habitat for butterflies, and its latex has been used as an antiseptic.
Asteraceae

Ambrosia artemisiifolia

Common ragweed

Habitat
Dry to saturated soils

Stems and Roots
10–100 cm (4–3.2 ft) tall, branching stems; taproots

Leaves
Opposite below, alternate above, blades 1–2 times pinnatifid, variously hairy

Flowers and Seeds
Hanging cymes of nodding, cup-shaped flowers

Facts
Ragweed is a primary cause of hay fever.

A. psilostachya, a perennial species with opposite leaves, is more common in rangelands than *A. artemisiifolia*.
Asteraceae

Arctium minus

Common burdock

Habitat
Dry to saturated soils

Stems and Roots
50–150 cm (1.6–4.9 ft) tall, stout, branching stems; taproots

Leaves
Alternate, ovate to cordate blades, thinly hairy surface, petiolate

Flowers and Seeds
Spreading, branched inflorescences, green heads of disk flowers; corollas pink or purple, involucre bracts with hooked bristles

Facts
Synonym: *Lappa minor*
Asteraceae

Cichorium intybus
Chicory

Habitat
Dry to saturated soils

Stems and Roots
30–170 cm (1–5.6 ft) tall stems with milky juice; deep taproots

Leaves
Oblanceolate blades, toothed to pinnatifid and petiolate below, entire and sessile above

Flowers and Seeds
Spikes of blue flowers, all ray flowers

Facts
Chicory roots are used to strengthen the bitter flavor of coffee.
Asteraceae

Cirsium arvense
Canada thistle

Habitat
Dry, disturbed soils

Stems and Roots
30–150 cm (1–4.9 ft) tall, smooth stems; deep, creeping roots

Leaves
Alternate blades, longer than wide, deeply lobed to pinnatifid, often spine-tipped, smooth above, wooly below

Flowers and Seeds
Many solitary, pink to purple flowers at the end of branches, pappus longer than corollas, involucre bracts with spiny tips

Facts
Synonyms: *Breca arvensis*, *B. incana*, *Carduus arvensis*, *C. incanum*, *Serratula arvensis*, *S. setosum*
Asteraceae
Cirsium vulgare
Bull thistle

Habitat
Dry soils or near roads

Stems and Roots
50–150 cm (1.6–4.9 ft) tall, spiny-winged stems; taproots

Leaves
Alternate, pinnatifid blades with spiny wings, decurrent leaf bases, surface scabrous above, wooly below

Flowers and Seeds
Several large, flat-topped flower heads, purple, involucre bracts spine-tipped

Facts
Synonyms: *C. lanceolatum*, *Carduus lanceolatus*, *C. vulgaris*

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Commonness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACU</td>
<td>BF</td>
<td>I</td>
<td>U</td>
</tr>
</tbody>
</table>
Asteraceae

Coryza canadensis

Horseweed

Habitat
Dry to saturated, disturbed soils

Stems and Roots
10–150 cm (4 in–4.9 ft) tall, simple stems; taproots

Leaves
Many alternate, cauline, linear to oblanceolate blades, some deciduous

Flowers and Seeds
Long panicles of small flowers, white ray flowers and yellow disk flowers

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Commonness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>AF</td>
<td>N</td>
<td>U</td>
</tr>
</tbody>
</table>

Conyza canadensis

Habitat
Dry to saturated, disturbed soils

Stems and Roots
10–150 cm (4 in–4.9 ft) tall, simple stems; taproots

Leaves
Many alternate, cauline, linear to oblanceolate blades, some deciduous

Flowers and Seeds
Long panicles of small flowers, white ray flowers and yellow disk flowers

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Commonness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>AF</td>
<td>N</td>
<td>U</td>
</tr>
</tbody>
</table>
Asteraceae

Erigeron divergens

Spreading fleabane

Habitat
Dry to temporarily flooded soils near a disturbance

Stems and Roots
10–70 cm (4 in–2.3 ft) tall stems, branching near base and above; taproots

Leaves
Alternate, hairy blades, basal blades oblanceolate, cauline blades narrower

Flowers and Seeds
Diffuse inflorescence of white, pink, or blue ray flowers, yellow disk flowers; double pappus of bristles and scales
Asteraceae

Grindelia squarrosa
Curlycup gumweed

Habitat
Dry soils near roads

Stems and Roots
10–100 cm (4 in–3.2 ft) tall, smooth stems; taproots

Leaves
Alternate, simple, thick blades with minutely toothed margins

Flowers and Seeds
Solitary heads with yellow disk and ray flowers; receptacle with reflexed, sticky resinous bracts
Asteraceae

Gutierrezia saro thrææ
Broom snakeweed

Habitat
Dry to saturated soils; pristine to disturbed areas

Stems and Roots
20–60 cm (8 in–2 ft) tall, slender, brittle, branching stems, woody at base

Leaves
Alternate, linear blades, resinous and scabrous

Flowers and Seeds
Flat-topped corymbs of small, yellow flowers

Facts
Synonyms: G. diversifolia, G. lepidota, G. linearis, Solidago saro thrææ, Xanthocephalum saro thrææ
Asteraceae

Helianthus annuus

Common sunflower

Habitat
Various disturbed soils

Stems and Roots
2+ m (6.5+ ft) tall, rough, branching stems

Leaves
Opposite below and alternate above, ovate to cordate blades, surface rough with stiff hairs, petiolate

Flowers and Seeds
Solitary or corymbs of large flowers with flat, green receptacle; yellow ray flowers, red-brown disk flowers

Facts
Synonyms: *H. aridus, H. lenticularis*

Common sunflower has been cultivated for sunflower seeds.
Asteraceae
Lactuca serriola
Prickly lettuce

Habitat
Dry, disturbed soils

Stems and Roots
30–150 cm (1–4.9 ft) tall stems with milky juice

Leaves
Alternate, smooth, pinnately-lobed blades with prickly margins, spines along back midrib; clasping and twisted at base

Flowers and Seeds
Solitary, small, yellow, all-ray flowers, blue when dried

Facts
Synonym: *L. scariola*
Asteraceae

Matricaria recutita

German chamomile

Habitat
Roadsides and exposed soils

Stems and Roots
20–80 cm (0.6–2.6 ft) tall, branching stems, aromatic

Leaves
Alternate, pinnate blades, ultimate segments linear

Flowers and Seeds
Corymbs of flower heads with cone-shaped receptacles, white ray flowers, yellow disk flowers

Facts
Synonyms: stinking chamomile, *M. suaveolens*, *Chamomilla chamomilla*, *C. recutita*

M. discoidea is more frequent in rangelands and distinguished by a lack of ray flowers.
Asteraceae

Sonchus asper

Spiny sowthistle

Habitat
Saturated, disturbed soils or streambanks

Stems and Roots
10–200 cm (4 in–6.5 ft) tall, smooth stems with milky juice

Leaves
Alternate, obovate to pinnatifid blades, prickly margins, auriculate bases

Flowers and Seeds
Corymbs of yellow flowers, all ray flowers; pappus of capillary bristles

Facts
Synonym: *S. nymanii*
Brassicaceae

Cardaria draba

Whitetop

Habitat
Dry to moist, alkaline soils near agriculture

Stems and Roots
20–45 cm (0.6–1.5 ft) tall, erect stems, forming dense colonies; strongly rhizomatous

Leaves
Alternate, oblanceolate leaves, irregularly toothed margins; short, soft hairs; lower leaves petiolate

Flowers and Seeds
Branched corymb of many small, white flowers; inflated, cordate silicles

Facts
Synonym: *Lepidium draba*
Whitetop is classified as a noxious weed in Utah.
Brassicaceae

Lepidium latifolium

Perennial pepperweed

Habitat
Moist soils; disturbed areas

Stems and Roots
40–150 cm (1.3–4.9 ft) tall, erect stems, profusely branched above; taproots

Leaves
Alternate, lanceolate blades, lower petiolate and deciduous

Flowers and Seeds
Short, diffusely branched panicles of small, white, 4-petal flowers; ovate silicles

Facts
Synonyms: *Cardaria latifolia*

Perennial pepperweed is classified as a noxious weed in Utah.

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Commonness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAC</td>
<td>PF</td>
<td>I</td>
<td>U</td>
</tr>
</tbody>
</table>
Brassicaceae

Lepidium perfoliatum
Clasping pepperweed

Habitat
Dry, alkaline soils

Stems and Roots
15–40 cm (0.5–1.3 ft) tall, erect, simple stems drying light brown; taproots

Leaves
Alternate blades of two types; upper leaves cordate with perfoliate leaf attachment, lower leaves 2–3 times pinnatifid in linear segments

Flowers and Seeds
Long racemes of small, yellow, 4-petal flowers, inflorescences widely branched; obovate silicles
Capparaceae

Cleome serrulata
Rocky Mountain beeplant

Habitat
Various areas, often disturbed

Stems and Roots
30–200 cm (1–6.3 ft) tall, erect stems; unpleasant smelling; taproots

Leaves
Alternate, palmate blades with 3 elliptical leaflets, petiolate

Flowers and Seeds
Showy racemes of pink to purple flowers, 4 distinct petals, 6 exserted stamen; long pods

Facts
Synonym: *Peritoma serrulata*
Beeplant attracts bees through copious nectar production.

<table>
<thead>
<tr>
<th>Wetland indicator: FACU</th>
<th>Duration & growth: AF</th>
<th>Nativity in lower 48: N</th>
<th>Commonness: O</th>
</tr>
</thead>
</table>
Chenopodiaceae

Atriplex gardneri
Gardner’s saltbush

Habitat
Infrequently flooded, saline soils

Stems and Roots
10–40 cm (4 in–1.3 ft) tall, erect or ascending stems, woody at base

Leaves
Alternate (lowest opposite), deciduous, linear to ovate blades: grayish to green, farinose surface

Flowers and Seeds
Spikes of glomerules; yellow to brown, staminate glomerules; pistillate glomerules axillary, enclosed by long or round bracteoles; brown seeds

Facts
Synonyms: *A. buxifolia*, *A. gordonii*

Chenopodiaceae
Bassia hyssopifolia
Fivehorn bassia

Habitat
Roadsides

Stems and Roots
20–100 cm (0.6–3.2 ft) tall, branched, red-tinged, ribbed stems; taproots

Leaves
Alternate, linear blades with wooly surface and prominent midvein, sessile

Flowers and Seeds
Dense panicles of hairy glomerules, 5-lobed flowers with 5 hooked spines

Facts
Synonyms: *Echinopsilon hyssopifolius*, *Kochia hyssopifolia*

Fivehorn bassia is planted for erosion control, and its persistent hooks on the fruits stick to clothing and fur.

See p. 135 for additional information.
Chenopodiaceae
Bassia scoparia
Annual kochia

Habitat
Dry to temporarily flooded alkaline or saline soils

Stems and Roots
30–100 cm (1–3.2 ft) tall, branched stems; taproots

Leaves
Alternate, oblanceolate blades, 3 parallel veins, petiolate

Flowers and Seeds
Axillary glomerules, leafy or ciliate bracts, flowers develop 5 membranous wings

Facts
Synonyms: burningbush, *B. sieversiana*, *Kochia alata*, *K. scoparia*

B. scoparia is distinguished from *B. hyssopifolia* by its 3 leaf veins.
Chenopodiaceae
Chenopodium album
Lambsquarter

Habitat
Various disturbed places

Stems and Roots
20–70 cm (0.6–2.3 ft) tall, erect, red-tinged stems

Leaves
Alternate rhombic to ovate blades, irregular waved or toothed margins, pale green, farinose, petiolate

Flowers and Seeds
Dense panicles of glomerules, 5 flower parts, overlapping and keeled; black seeds

Facts
Lambsquarters can be cultivated as a valued source of calcium, phosphorus, and potassium. It is distinguished from Atriplex species by its round (not flat) fruits.
Russian thistle

Chenopodiaceae

Salsola tragus

Habitat
Dry, alkaline to saline soils

Stems and Roots
10–100 cm (4in–3.2 ft) tall, spiny, branched stems

Leaves
Alternate, narrowly linear blades with spine-like tip

Flowers and Seeds
Flowers separated by lengths of stem; bracteoles of 5 fused, wing-like parts with spines

Facts
Synonyms: *S. australis*, *S. pestifer*, *S. ruthenica*

Russian thistle is the most common species of tumbleweed.
Cuscutaceae
Cuscuta pentagona
Five-angled dodder

Habitat
Dry to temporarily flooded soils

Stems and Roots
Parasitic plants, slender, orange, twining stems; rootless

Leaves
Alternate, highly reduced, scale-like blades

Flowers and Seeds
Glomerules of small, white, 5-petal flowers

Facts
Dodder is a parasitic plant that obtains nutrients from other plants.
Dipsacaceae

Dipsacus fullonum

Fuller’s teasel

Habitat
Roadsides and ditchbanks

Stems and Roots
0.5–2 m (1.6–6.5 ft) tall, stout, prickly, ribbed stems; taproots

Leaves
Opposite, oblanceolate blades, united at base, prickly

Flowers and Seeds
Terminal, dense, cylindrical heads of blue, 4-lobed flowers, spiny involucre bracts, pedunculate

Facts
Synonym: *D. sylvestris*

Wetland indicator:
- FAC

Duration & growth:
- BF

Nativity in lower 48:
- I

Common-ness:
- C
Elaeagnaceae

Elaeagnus angustifolia

Russian olive

Habitat
Stream and ditch banks

Stems and Roots
5–10 m (16-33 ft) tall, thorny trees, young branches with silvery scales

Leaves
Alternate, lanceolate to elliptical blades, silvery with hairs or scales below, green above

Flowers and Seeds
Clusters of yellow, 4-lobed flowers, with hypanthium; ellipsoid drupes with dense white scales

Facts
Russian olive is classified as a noxious weed in Utah.

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Commonness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAC</td>
<td>PS</td>
<td>I</td>
<td>U</td>
</tr>
</tbody>
</table>
Fabaceae

Medicago lupulina

Black medic

Habitat
Escaping from lawns

Stems and Roots
10–40 cm (4 in–1.3 ft) long, prostrate or decumbent stems; taproots

Leaves
Alternate, pinnate blades, 3 obovate to rhombic leaflets, toothed margins, petiolate

Flowers and Seeds
Dense, head-like racemes of 6–25 small, yellow flowers, pedunculate
Fabaceae
Medicago sativa
Alfalfa

Habitat
Escaping from irrigated fields

Stems and Roots
40–120 cm (1.3–3.9 ft) tall, erect or spreading stems; deep taproots

Leaves
Alternate, pinnate blades with 3 oblong to lanceolate leaflets, toothed margins

Flowers and Seeds
Pedunculate racemes of 10–40 small, bilaterally symmetrical, purple flowers

Facts
Alfalfa has been cultivated as livestock forage for more than 3,000 years.
Fabaceae

Melilotus officinalis
Sweetclover

Habitat
Various dry to infrequently flooded places

Stems and Roots
40–150 cm (1.3–4.9 ft) tall, branching stems; taproots

Leaves
Alternate, pinnate blades with 3 obovate to elliptical leaflets, toothed margins, petiolate

Flowers and Seeds
Pedunculate racemes of numerous, small, nodding, white or yellow, bilaterally symmetrical flowers

Facts
Synonyms: M. alba, M. arvensis, M. leucanthus, M. lutea
Fabaceae

Trifolium repens

White clover

Habitat
Irrigated pastures

Stems and Roots
8–35 cm (3-12 in) long, wiry stems, rooting at nodes, forming dense mats; stoloniferous

Leaves
Alternate, palmate blades with 3 obovate leaflets united at base, minutely toothed margins, petiolate

Flowers and Seeds
Pedunculate, spherical heads of white or pink, bilaterally symmetrical flowers, turning brown and hemispherical with age

Facts
The 4-leafed variation of white clover is a symbol of good luck.
Lamiaceae
Nepeta cataria
Catnip

Habitat
Roadsides and ditchbanks

Stems and Roots
30–100 cm (1-3.2 ft) tall, square stems with ascending branches

Leaves
Opposite, ovate to oblong blades, serrated margins; covered in short, matted hairs

Flowers and Seeds
Cymes of 5-parted, tubular, bilaterally symmetrical flowers, white with purple spots

Facts
Cats are strongly attracted to and affected by catnip.
Malvaceae

Malva neglecta
Common mallow

Habitat
Dry, disturbed soils

Stems and Roots
15–60 cm (0.5–2 ft) long, prostrate stems, branched near base; caudex

Leaves
Alternate, kidney-shaped blades, surface with short, stiff hairs; petiolate

Flowers and Seeds
Axillary groups of 3–4 white, 5-petal flowers, pedicellate; schizocarp

Facts
Synonym: *M. rotundifolia*

Wetland indicator: NA
Duration & growth: APF
Nativity in lower 48: I
Commonness: U
Onagraceae

Oenothera curtiflora

Velvetweed

Habitat
Dry to temporarily saturated soils; disturbed areas

Stems and Roots
50–150 cm (1.6–4.9 ft) tall stems with hairy or glandular surface

Leaves
Alternate, elliptical to lanceolate blades with spreading hairs

Flowers and Seeds
Long racemes or panicles of numerous flowers with long (1.5–5 mm or 0.02–0.2 in) hypanthium, 4 small, white or pink petals; hard, 4-sided fruits

Facts
Synonyms: *Gaura mollis*, *G. parvillora*

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Common-ness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACU</td>
<td>AF</td>
<td>N</td>
<td>U</td>
</tr>
</tbody>
</table>
Poaceae
Bromus secalinus
Rye brome

Habitat
Dry to temporarily saturated soils; disturbed areas

Stems and Roots
20–80 cm (8 in–6.2 ft) tall, smooth culms with hairs at nodes

Leaves
Flat blades covered in soft, straight hairs; closed sheaths, membranous ligule

Flowers and Seeds
Open, nodding panicle with strongly laterally compressed spikelets and spreading florets, short glumes, broad lemmas with 4–5 mm (0.1–0.2 in) curving awn
Poaceae
Bromus tectorum
Cheatgrass

Habitat
Dry roadsides and disturbed soil

Stems and Roots
10–50 cm (4 in–1.6 ft) tall culms covered in soft hairs

Leaves
Flat, softly hairy blades, closed sheaths, membranous ligule

Flowers and Seeds
Drooping, 1-sided panicle; lemmas narrow with two-pronged apex and straight or slightly bent, 7–17 mm (0.3–0.6 in) long awns

Facts
Synonym: *Anisantha tectorum*

<table>
<thead>
<tr>
<th>Wetland indicator:</th>
<th>Duration & growth:</th>
<th>Nativity in lower 48:</th>
<th>Commonness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>AG</td>
<td>I</td>
<td>U</td>
</tr>
</tbody>
</table>
Poaceae

Poa bulbosa

Bulbous bluegrass

Habitat
Irrigated pastures

Stems and Roots
15–50 cm (0.5–1.6 ft) tall, wiry culms arising from a small bulb; caespitose

Leaves
Flat blades, thin and withering, sheaths open to base, membranous ligule

Flowers and Seeds
Ovoid panicles with ascending to spreading branches, florets modified into small bulbs; spikelets laterally compressed, glume with scabrous keel
Poaceae

Poa pratensis
Kentucky bluegrass

Habitat
Temporarily saturated lawns and pastures

Stems and Roots
15–70 cm (0.5–2.3 ft) tall culms; creeping, sod-forming rhizomes

Leaves
Folded blades with pointed tips, sheaths open to base, ligule membranous and flat-topped

Flowers and Seeds
Pyramidal panicle with spreading branches; spikelets green or purplish, laterally compressed; glumes unequal and short; hairs on lemma keel

Facts
Kentucky bluegrass is cultivated as a grass for lawns.
Poaceae

Thinopyrum intermedium
Intermediate wheatgrass

Habitat
Roadsides

Stems and Roots
70–100 cm (2.3–3.2 ft) tall culms with waxy surface; rhizomatous

Leaves
Blades smooth on top, stiff-haired underside, ribbed; sheaths open, auricles present, membranous ligule with short hairs

Flowers and Seeds
Erect spike with 1 spikelet per node, 3–10 florets per spikelet; glumes thick, oblong with blunt tips

Facts
Synonyms: *Agropyron aucheri*, *A. ciliatiflorum*, *A. gentryi*, *A. glaucum*, *A. intermedium*, *A. podperae*, *A. pulcherrimum*, *A. trichophorum*, *Elymus hispidus*, *E. intermedius*, *Elytrigia intermedia*

See p. 135 for additional information.
Polygonaceae

Polygonum argyrocoleon

Silversheath knotweed

Habitat
Dry, saline, disturbed soils

Stems and Roots
15–100 cm (0.5–3.2 ft) long, decumbent to erect, ribbed stems

Leaves
Alternate, small, linear to lanceolate, blue-green leaves, sessile or petiolate; green ocrea disintegrating into fibers

Flowers and Seeds
Bundles of 4–6 small, axillary and terminal, 5-parted flowers, usually pink but sometimes white to green
Polygonaceae

Rumex crispus

Curly dock

Habitat
Dry to temporarily saturated, disturbed soils

Stems and Roots
40–100 cm (1.3–3.2 ft) tall, erect stems, branched above; vertical rhizome

Leaves
Alternate, lanceolate blades, margins strongly crisped and wavy, petiolate

Flowers and Seeds
Large, terminal panicles along half stem length, green to reddish valvate flower in whorls of 10–25, valves with smooth margins, pedicellate
Rubiaceae

Galium aparine

Stickywilly

Habitat
Dry to temporarily flooded soils

Stems and Roots
10–100 cm (4 in–3.2 ft) tall, hooked, square stems; growing on other plants

Leaves
Whorled, narrow blades with pointed tip, scabrous

Flowers and Seeds
Axillary groups of 3–5 small, white-green, hooked flowers, pedunculate

Facts
Synonyms: *G. spurium*, *G. vaillanti*
Birds

Upland areas typically provide habitat for upland bird species (p. 180) such as western kingbirds (*Tyrannus verticalis*), sparrows (family Emberizidae), and yellow-headed blackbirds (*Xanthocephalus xanthocephalus*). Large upland game birds, such as ring-necked pheasants (*Phasianus colchicus*), use and can be flushed from small upland habitats.

Upland plants are important for wetland birds during different stages of their life cycle. Dabbling ducks will often nest in a variety of upland plants, and a number of shorebirds that usually nest on mudflats will sometimes nest in sparsely vegetated upland habitat. While long-billed curlews (*Numenius americanus*) select nesting sites on mudflats near meadows, they will also nest in and forage throughout sparse and dense upland grasses.

One challenge to managing upland plants and upland habitat for birds is that mammalian predators also thrive in upland habitat. Species such as coyotes (*Canis latrans*), red foxes (*Vulpes vulpes*), striped skunks (*Mephitis mephitis*), and raccoons (*Procyon lotor*) take refuge in upland habitat and prey upon ground nesting birds and eggs in nearby wetlands. Predator control or other techniques can be used to reduce predation on upland-nesting birds.
Western kingbird
Tyrannus verticalis

Yellow-headed blackbird
Xanthocephalus xanthocephalus

Ring-necked pheasant
Phasianus colchicus

White-crowned sparrow (Sparrows)
Zonotrichia leucophrys (Family Emberizidae)
Threats to Great Salt Lake wetlands

Wetlands around the world, including Great Salt Lake (GSL) wetlands, currently face many threats. The most challenging threats to GSL wetlands are invasive plant species, urbanization, and drought.

Invasive plant species are a major conservation issue at GSL wetlands because they outcompete native plants. Purple loosestrife (Lythrum salicaria, p. 92), whitetop (Cardaria draba, p. 152), poison hemlock (Conium maculatum, p. 34), thistles (Cirsium spp., pp. 142–143) and pepperweeds (Lepidium spp., pp. 155–156) are invasive species that thrive under dry or more nutrient-rich conditions and are capable of rapidly invading disturbed areas.\(^6\) In addition to those invasive species, over 89 km\(^2\) (22,000 ac) of wetland habitat around GSL’s shorelines are densely populated with an invasive lineage of phragmites (Phragmites australis, p. 50).

Phragmites, colloquially called phrag, is a tall grass that grows in dense monocultures, outcompeting native vegetation, changing the course of rivers, and degrading wildlife habitat.\(^7\) Soras (Porzana carolina), rails (Family Rallidae), and blackbirds (Icteridae family), can use stands of phragmites, but very few other bird species are adapted to living in such dense vegetation.\(^7\) In addition, phragmites also causes many problems for humans and their domestic animals. Hunters frequently lose equipment and their navigation when walking through phragmites stands. Often, hunting dogs suffer cuts to their feet, faces, and tongues by phragmites leaves and broken, sharp stems.\(^2\)

As with most invasive species, controlling phragmites is a daunting task that needs our attention. Dry phragmites is a fire hazard,
while phragmites growing in water control structures can clog them and prevent the flow of water to wetlands. Many emergent wetland species benefit from seasonal/summer drawdown, but during the drawdown period, exposed, unvegetated areas are at increased risk of phragmites invasion via seed, thus creating a complex management challenge.

While invasive phragmites is incredibly damaging to GSL wetlands, there is also a lineage of North American native phragmites that is found throughout Utah. Shiny stems (rather than ribbed) and deciduous leaf sheaths reliably distinguish native phragmites (Phragmites australis subsp. americanus, p. 51) from the invasive strain. Native phragmites does not grow as densely as invasive phragmites, so other native plants can still grow alongside it and create interspersed layers of plants that can be utilized by many wildlife groups. Native phragmites is widespread in riparian and wetland areas in the southern half of the state, but occurs only rarely in GSL wetlands.

Most of Utah’s population lives on the Wasatch Front in cities and suburbs adjacent to GSL, and urbanization is expected to continue. This urban expansion result in wetland habitat loss and poses threats such as water diversion and increased nutrient inputs. Additional homes built along the Wasatch Front increasingly push into the buffer zones around GSL wetlands. These buffer zones are necessary to protect wetlands from surrounding land and water use changes. The combined impacts of development and roads results in significant wetland habitat loss, and the loss of native plants can be devastating to birds.

Water is already a scarce resource for GSL wetlands. Climate change models suggest water availability problems will worsen as winter snowpack is likely to decrease and summertime evapotranspiration increases. Urbanization further threatens water availability because water diverted to urban and suburban areas does not return to wetlands like excess runoff from irrigation. The water that will make it to GSL wetlands in the future will likely have higher concentrations of nutrients, leading to hypereutrophic conditions.

Healthy GSL wetlands are important for human needs such as flood control, erosion control, and water filtration, and they are vital for countless native species of wildlife, particularly birds. Understanding the invasive plant, urbanization, and drought threats to GSL wetlands and knowing wetland communities and their plant species, will help ensure sustainable wetland ecosystems for all stakeholders.
Flowers

Generalized Flower

- Anther
- Stamen
- Petal
- Pistil
- Sepal
- Pedicel

Corolla

Calyx

Composite Flower of Asteraceae Species

- Disk flowers
- Ray flowers
- Receptacle
- Pappus

Figure 1.1

Figure 1.2
Flower parts

Anther: pollen-bearing portion of the stamen

Beak: the pointed, end projection of a fruit

Bract: a leaf- or stem-like structure at the base of a flower or inflorescence

Capillary bristle: slender, hair-like bristles; often attached to the achenes of Asteraceae flowers

Corolla: collection of flower petals

Corona: crown-like structures on the petals of *Asclepias* species

Disk flowers: small tubular flowers of Asteraceae

Hypanthium: a cup-shaped extension of the flowers formed by the fused, lower parts of the corolla and calyx

Involucre: bracts located below inflorescences of Asteraceae

Pappus: awns, scales, or bristles at the base of Asteraceae flowers and the apex of achenes

Peduncle/Pedicel (pedunculate/pedicellate): the stalk or stem of a single flower or an inflorescence

Pistil: female reproductive parts

Pistillate: flowers bearing pistils, lacking stamens

Ray flowers: narrow, petal-like composite flowers, often surrounding disk flowers

Receptacle: the part of the Asteraceae peduncle where the flowers of the head are borne

Scale: thin, dry, membranous structure

Sepal: a segment of the calyx (outer whorl of a flower)

Stamen: male reproductive parts

Staminate: flowers bearing stamens but not pistils

Tepal: an undifferentiated flower segment

Valve: segments of a fruit that separate from each other

Valvate: opening by valves, like the fruit of *Rumex* species
Grasses

Figure 1.4
Grass parts

Auricle: ear-shaped appendage of a grass leaf where it meets the stem

Awn: bristle-like extension at the tip or back of lemma or glume

Dorsally compressed: spikelets that are flattened from front to back

Floret: an individual flower within a grass spikelet

Glume: paired bracts at the base of grass florets’

Laterally compressed: spikelets that are flattened from the sides

Lemma: lower of two bracts of a grass floret, often partially surrounding the palea

Ligule: in Poaceae species, an appendage at the junction of the inner leaf with the leaf sheath; can be membranous or ciliate (with hairs)

Palea: the upper of two bracts of a grass floret, often partially enclosed by lemma

Sheath: the base of the grass leaf that surrounds the stem; can be open or closed; sides of closed sheaths touch, and open sheaths have a gap between sides (Poaceae and Potamogetonaceae species)

Spike: a long, unbranched inflorescence with sessile flowers, maturing from the bottom upward

Spikelet: basic unit of a grass flower usually consisting of two glumes and one or more florets
Inflorescence types

- Corymb
- Cyme
- Panicle
- Raceme
- Spike
- Umbel–flat
- Umbel–round

Figure 1.5
Inflorescence types

Axillary: arising from leaf or stem axil

Bilaterally symmetrical: with two mirrored sides, often with distinct top and bottom petals

Compound: with two or more similar parts

Corymb: flat or round-topped inflorescence, lower pedicels are longer than upper

Cyme: flat or round-topped inflorescence, the terminal flower blooms first (Cymose)

Exserted: protruding beyond surrounding parts

Globular: globe-shaped or spherical

Glomerule: a dense, head-like cluster of flowers

Inconspicuous: small, often 1 mm or less

Inflorescence: a cluster or arrangement of flowers

Ovoid: egg-shaped

Panicle: branched inflorescence in which flowers mature from the bottom up

Pyramidal: pyramid-shaped

Raceme: an unbranched, elongate inflorescence with pedicellate flowers

Spike: a long, unbranched inflorescence with sessile flowers, maturing from the bottom upward

Spathe: a large bract that often encloses an inflorescence

Terminal: borne at the tip or apex

Umbel: a flat-topped or round inflorescence with pedicels arising from the same point like an umbrella

Umbelliform: with the appearance, but not structure, of an umbel
Leaf attachments

Alternate: arising singly from each node
Auriculate: leaf attachment with ear-shaped lobes
Basal: arising from the base of the stem
Cauline: arising from along the stem above ground
Clasping: surrounding the stem
Deciduous: falling off, not persistent
Decurrent: extending downward
Opposite: two leaves arising from the same node on opposite sides of the stem
Perfoliate: a leaf with margins surrounding the stem so the stem appears to pass through the leaf
Petiolate: attached via a leaf stalk called a petiole
Sessile: leaf attached directly to stalk, without petiole
Whorls: arranged in rings around nodes

Figure 1.6
Leaves

Margins (edge of the leaf)
- **Crisped**: wavy or crinkly
- **Entire**: smooth, not toothed
- **Serrated**: saw-like margin with forward-facing teeth

Parts
- **Axil**: space formed between the axis of the stem and leaf
- **Blade**: the broad part of a leaf
- **Leaflet**: divisions of compound leaves
- **Margin**: the edge of a leaf blade
- **Ocrea**: a membranous sheath around stems in Polygonaceae species
- **Petiole**: leaf stalk
- **Stipule**: leaf-like structures at the base of the petiole
- **Thallus**: undifferentiated plant body
- **Wing**: thin, flat margin extending from a structure

Surface
- **Farinose**: surface with powdery or mealy substance
- **Glabrous**: surface lacking hairs or glands
- **Glandular**: bearing glands
- **Hirsute**: surface with (usually soft) hairs resent
- **Scabrous**: roughened surface due to thick cells or stiff hairs
Leaf shapes

Cordate

Deltoid

Elliptic

Hastate

Lanceolate

Linear

Oblong

Ovate

Reniform

Rhomboid

Figure 1.7
Leaves

Shapes

- **Cordate**: heart-shaped with a notched base
- **Deltoid**: shaped like an equilateral triangle
- **Dissected**: divided into narrow segments
- **Elliptical**: shaped like an oval, broadest in center
- **Hastate**: shaped like an arrowhead with outward-turned bottom lobes
- **Keeled**: with a ridge, like the keel of a boat
- **Lanceolate**: shape that is longer than wide, and widest below the center
- **Linear**: long and narrow shaped, with near-parallel sides
- **Lobe**: a rounded segment or division
- **Oblanceolate**: inversely lanceolate shape, longer than wide, attached at the narrowest end
- **Oblong**: shape that is longer than wide, sides near parallel
- **Obovate**: egg-shaped, attached at the narrow end
- ** Orbicular**: approximately circular
- **Ovate**: egg-shaped, attached at the broadest end
- **Palmate**: lobed or divided at a single point like the fingers of a hand
- **Pinnatifid**: divided or lobed with parts arranged on opposite sides of the axis
- **Pinnate**: dissected with leaflets arranged on opposite sides of leaf axis
- **Rhombic**: diamond-shaped
- **Succulent**: juicy and fleshy
Measurements and abbreviations

ac: acres
cm: centimeters
ft: feet
in: inches
km²: square kilometers
m: meters
mm: millimeters
p.: page
pp.: pages
pH: a number between 0–14 indicating a chemical’s alkalinity or acidity
ppt: parts per thousand
ssp: multiple species

Seeds

Achene: a small dry fruit with a single seed
Apex: the tip
Bracteole: a small bract enclosing the seeds of Atriplex species
Capsule: a dry fruit, opening at maturity
Coma: a seed with a tuft of hair
Druplet: a small, fleshy fruit
Follicle: a dry pod, opening along the side at maturity
Keel: a prominent ridge along longest axis
Lenticular: biconvex, lentil-shaped
Nutlet: small, lobed, nut-like fruits
Perigynia: scale-like bract enclosing the pistil in Carex species
Schizocarp: a dry fruit that splits into segments at maturity
Silicle: a dry fruit of Brassicaceae species, less than twice as long as wide, with two valves splitting at maturity
Silique: a dry fruit, more than twice as long as wide, with two valves splitting at maturity; Brassicaceae fruit
Tubercle: a small swelling or projection
Stems and roots

Ascending: growing upward, usually curved

Caespitose (cespitose): growing in dense tufts

Caudex: a persistent woody base

Colonies: growing in groups connected by underground parts

Creeping: growing along the surface or just below

Culm: hollow or pithy stems of Cyperaceae, Juncaceae, and Poaceae species

Decumbent: reclining on the ground but with the tip ascending

Erect: vertical, straight

Fibrous: roots system with branches of approximate equal thickness

Node: section of stem from where leaves originate

Pithy: spongy tissue

Prostrate: growing flat along the ground

Punctate: dotted with pits and/or sunken glands

Rhizoid: a root-like structure

Rhizome: thick, horizontal, underground stems

Ribbed: surface with prominent veins, ribs, or ridges

Scape: a long, leafless peduncle

Spreading: growing or reaching horizontally

Stipitate-glandular: surface with glands born on stalks

Stolon: long, horizontal, creeping stem, rooting at nodes

Taproot: main root axis from which small root branches arise

Tuber: thickened portion of a rhizome bearing nodes and buds

Tufted: growing in dense clusters

Turion: small, over-wintering shoot
References

References

Aechmophorus
clarkii 26, 28
occidentalis 26, 28
Agelaius phoeniceus 66, 67
Agropyron
aucheri 175
ciliatiflorum 175
gentryi 175
glaucum 175
intermedium 175
podperae 175
pulcherrimum 175
trichophorum 175
Agrostis airoides 130
AIZOACEAE 113
Alfalfa 165
ALISMATACEAE 31
Alkali bulrush 29, 30, 39
Alkali buttercup 58
Alkali sacaton 130
Alkali-marsh butterweed 76
Allenrolfea occidentalis 118
Allocarya leptoclada 117
Alopecurus
arundinaceus 95
monspeliensis 52
Ambrosia
artemisiifolia 139
psilostachya 139
American avocet 132, 133
American common reed 51, 182
American coot 66, 68
American kestrel 108, 110
American white pelican 26, 27
American wigeon 26, 27
Anas
acuta 26, 27
americana 26, 27
clupeata 66, 68
crecca 108, 109
cyanoptera 108, 109
discors 108, 109
platyrhynchos 66, 68
Anisantha tectorum 172
Annual kochia 158
APIACEAE 33, 71
Arctic rush 70, 89
Arctium minus 140
Ardea herodias 66, 68
Arrowhead 33
ASCLEPIADACEAE 31, 136
Asclepias
giffordii 138
incarnata 35
speciosa 138
Aster brachyactis 77
ASTERACEAE 31, 71, 113, 136
Atriplex
buxifolia 156
dioica 119
gardneri 119, 156
gordonii 156
hastata 80
heterosperma 120
latifolia 80
micrantha 119, 120
patula 119
prostrata 80, 119
triangularis 80
Aythya
americana 66, 67
valisineria 26, 27
Azolla
mexicana 12
microphylla 12
AZOLLACEAE 11
Bald eagle 26, 28
Barnyardgrass 98
Bassia
fivehorn 135, 157
hyssopifolia 135, 157
scoparia 158
sieversiana 158
Berula
erecta 73
Index

Carduus
 arvensis 142
 incanum 142
 lanceolatus 143
 vulgaris 143

Carex
 camporum 82
 nebrascensis 70, 81
 praegracilis 70, 82

CARYOPHYLLACEAE 71

Castilleja minor 105

Catnip 168

Centaurium
 exaltatum 88
 nuttallii 88

CERATOPHYLLACEAE 11

Ceratophyllum
 apiculatum 13
 demersum 13

Chamomilla
 chamomilla 150
 recutita 150

Chara 14

CHARACEAE 11

Charadrius
 nivosus 132, 133
 vociferus 132, 133

Cheatgrass 172

CHENOPODIACEAE 71, 113, 136

Chenopodium
 album 159
 glaucum 121
 rubrum 122

Chicory 141

Chlidonias niger 26, 28

Chorispora tenella 78

Cicendia exaltata 88

Cichorium intybus 141

Cinnamon teal 108, 110

Circus cyaneus 108, 110

Cirsium
 arvense 142
 lanceolatum 143
 vulgaris 143

C Cannistra
 draba 152
 latifolia 153
Index

Cistothorus palustris 66, 67
Clark’s grebe 26, 28
Clasping pepperweed 154
Cleome serrulata 155
Climbing nightshade 62
Clustered field sedge 82
Coleogeton pectinatus 23
Common burdock 140
Common duckweed 17
Common mallow 169
Common mare’s-tail 44
Common merganser 26, 27
Common reed 50, 112, 181
Common spikerush 69, 83
Common sunflower 148
Common threesquare 42
Conium maculatum 34
CONVOLVULACEAE 113
Conyza canadensis 144
Coon’s tail 13
Cordylanthus
 maritimum 106
 maritimus 106
Cosmopolitan bulrush 39
Cressa
depressa 126
insularis 126
truxillensis 126
Crisped pondweed 19
Crossflower 78
Crypsis schoenoides 128
Cuscuta pentagona 161
CUSCUTACEAE 136
Cutleaf waterparsnip 73
Curly dock 177
Curly-leaf pondweed 19
Curly pondweed 19
Cursed buttercup 59
Cygnus columbianus 26, 27
CYPERACEAE 31, 71
Cyrtorhyncha cymbalaria 58

D
Desert centaury 88

DIPSACACEAE 137
Dipsacus
 fullonum 160
 sylvestris 160
Distichlis
 spicata 70, 97, 112
 stricta 97
Five-angled dodder 161
Dondia depressa 125
Double-crested cormorant 26, 28
Duck potato 33

E
Echinochloa crus-galli 98
Echinopsilon hyssopifolius 157
Egretta thula 108, 109
ELAEAGNACEAE 137
Elaeagnus angustifolia 163
Eleocharis
disciformis 84
palustris 69, 83
parishii 84
Elymus
hispidus 175
intermedius 175
Elytrigia intermedia 175
EMBERIZIDAE 179, 180
Epilobium ciliatum 48
Erigeron
divergens 145
glabellus 75
European seaheath 127
Euthamia occidentalis 36
Exaltata zeltnera 88

F
FABACEAE 71, 137
False goldenrod 36
Falco sparverius 108, 110
Fat hen 80
Finebranched popcornflower 117
Fineleaf pondweed 23
Forster’s tern 66, 67
Fowl bluegrass 103
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>Foxtail barley</td>
<td>113</td>
</tr>
<tr>
<td>127</td>
<td>FRANKENIACEAE</td>
<td>127</td>
</tr>
<tr>
<td>66, 67</td>
<td>Franklin’s gull</td>
<td>127</td>
</tr>
<tr>
<td>48</td>
<td>Fringed willowherb</td>
<td>127</td>
</tr>
<tr>
<td>66, 68</td>
<td>Fulica americana</td>
<td>127</td>
</tr>
<tr>
<td>162</td>
<td>Fuller’s teasel</td>
<td>127</td>
</tr>
<tr>
<td>178</td>
<td>G</td>
<td>178</td>
</tr>
<tr>
<td>178</td>
<td>Galium</td>
<td>178</td>
</tr>
<tr>
<td>178</td>
<td>aparine</td>
<td>178</td>
</tr>
<tr>
<td>178</td>
<td>spurium</td>
<td>178</td>
</tr>
<tr>
<td>178</td>
<td>vaillanti</td>
<td>178</td>
</tr>
<tr>
<td>156</td>
<td>Gardner’s saltbush</td>
<td>178</td>
</tr>
<tr>
<td>170</td>
<td>Gaura</td>
<td>178</td>
</tr>
<tr>
<td>170</td>
<td>mollis</td>
<td>178</td>
</tr>
<tr>
<td>170</td>
<td>parviflora</td>
<td>178</td>
</tr>
<tr>
<td>71</td>
<td>GENTIANACEAE</td>
<td>71</td>
</tr>
<tr>
<td>150</td>
<td>German chamomile</td>
<td>71</td>
</tr>
<tr>
<td>85</td>
<td>Glycyrrhiza</td>
<td>85</td>
</tr>
<tr>
<td>85</td>
<td>glutinosa</td>
<td>85</td>
</tr>
<tr>
<td>85</td>
<td>lepidota</td>
<td>85</td>
</tr>
<tr>
<td>66, 68</td>
<td>Goldeneye</td>
<td>66, 68</td>
</tr>
<tr>
<td>43</td>
<td>Golden currant</td>
<td>43</td>
</tr>
<tr>
<td>56</td>
<td>Golden dock</td>
<td>56</td>
</tr>
<tr>
<td>124</td>
<td>Greasewood</td>
<td>124</td>
</tr>
<tr>
<td>66, 68</td>
<td>Great blue heron</td>
<td>66, 68</td>
</tr>
<tr>
<td>18</td>
<td>Great duckweed</td>
<td>18</td>
</tr>
<tr>
<td>146</td>
<td>Grindelia squarrosa</td>
<td>146</td>
</tr>
<tr>
<td>31</td>
<td>GROSSULARIACEAE</td>
<td>31</td>
</tr>
<tr>
<td>146</td>
<td>Gutierrezia</td>
<td>146</td>
</tr>
<tr>
<td>147</td>
<td>diversifolia</td>
<td>147</td>
</tr>
<tr>
<td>147</td>
<td>lepidota</td>
<td>147</td>
</tr>
<tr>
<td>147</td>
<td>linearis</td>
<td>147</td>
</tr>
<tr>
<td>147</td>
<td>scorothrae</td>
<td>147</td>
</tr>
<tr>
<td>29, 30, 40</td>
<td>Hardstem bulrush</td>
<td>29, 30, 40</td>
</tr>
<tr>
<td>128</td>
<td>Heleochloa schoenoides</td>
<td>128</td>
</tr>
<tr>
<td>148</td>
<td>Helianthus</td>
<td>148</td>
</tr>
<tr>
<td>148</td>
<td>annuus</td>
<td>148</td>
</tr>
<tr>
<td>148</td>
<td>aridis</td>
<td>148</td>
</tr>
<tr>
<td>148</td>
<td>lenticularis</td>
<td>148</td>
</tr>
<tr>
<td>34</td>
<td>Poison hemlock</td>
<td>34</td>
</tr>
<tr>
<td>132, 133</td>
<td>Himantopus mexicanus</td>
<td>132, 133</td>
</tr>
<tr>
<td>34</td>
<td>HIPPURIDACEAE</td>
<td>34</td>
</tr>
<tr>
<td>44</td>
<td>Hippuris vulgaris</td>
<td>44</td>
</tr>
<tr>
<td>99</td>
<td>Hordeum</td>
<td>99</td>
</tr>
<tr>
<td>129</td>
<td>jubatum</td>
<td>129</td>
</tr>
<tr>
<td>25</td>
<td>Horned pondweed</td>
<td>25</td>
</tr>
<tr>
<td>144</td>
<td>Horseweed</td>
<td>144</td>
</tr>
<tr>
<td>181</td>
<td>ICTERIDAE</td>
<td>181</td>
</tr>
<tr>
<td>118</td>
<td>Iodine bush</td>
<td>118</td>
</tr>
<tr>
<td>135, 175</td>
<td>Intermediate wheatgrass</td>
<td>135, 175</td>
</tr>
<tr>
<td>31</td>
<td>IRIDACEAE</td>
<td>31</td>
</tr>
<tr>
<td>45</td>
<td>Iris pseudacorus</td>
<td>45</td>
</tr>
<tr>
<td>115</td>
<td>Iva axillaris</td>
<td>115</td>
</tr>
<tr>
<td>98</td>
<td>Japanese millet</td>
<td>98</td>
</tr>
<tr>
<td>71</td>
<td>JUNCACEAE</td>
<td>71</td>
</tr>
<tr>
<td>72</td>
<td>JUNCAGINACEAE</td>
<td>72</td>
</tr>
<tr>
<td>70, 89</td>
<td>Juncus</td>
<td>70, 89</td>
</tr>
<tr>
<td>89</td>
<td>arcticus</td>
<td>89</td>
</tr>
<tr>
<td>90</td>
<td>balticus</td>
<td>90</td>
</tr>
<tr>
<td>90</td>
<td>torreyi</td>
<td>90</td>
</tr>
<tr>
<td>174</td>
<td>Kentucky bluegrass</td>
<td>174</td>
</tr>
<tr>
<td>132, 133</td>
<td>Killdeer</td>
<td>132, 133</td>
</tr>
<tr>
<td>158</td>
<td>Kochia</td>
<td>158</td>
</tr>
<tr>
<td>157</td>
<td>alata</td>
<td>158</td>
</tr>
<tr>
<td>157</td>
<td>hyssopifolia</td>
<td>157</td>
</tr>
<tr>
<td>158</td>
<td>scoparia</td>
<td>158</td>
</tr>
<tr>
<td>118</td>
<td>L</td>
<td>118</td>
</tr>
<tr>
<td>206</td>
<td>Lactuca</td>
<td>206</td>
</tr>
</tbody>
</table>
Index

scariola 149
seriola 149
Lambsquarter 159
LAMIACEAE 137
Lanius ludovicianus 108, 110
Lappa minor 140
Leafy pondweed 20
Lemna
 cyclostasa 17
gibba 16
minima 17
minor 17
polyrrhiza 18
LEMNACEAE 11
Lepidium
 draba 152
 latifolium 153
 perfoliatum 154
Lesser Indian paintbrush 105
Lesser yellowlegs 133, 134
Leucophaeus pipixcan 66, 67
Limnodromus scolopaceus 132, 134
Limosa fedoa 66, 67
Loggerhead shrike 108, 110
Long-billed curlew 179, 180
Long-billed dowitcher 132, 134
Longleaf pondweed 21
Lotus corniculatus 86
Lycopus
 asper 46
 lucidus 46
LYTHRACEAE 72
Lythrum salicaria 92

M
Mallard 66, 68
Malva
 neglecta 169
 rotundifolia 169
MALVACEAE 137
Marbled godwit 66, 67
Marsh buttercup 58
Marsh yellowcress 38
Matricaria
 recutita 150
 suaveolens 150
Marsh wren 66, 67
Meadow foxtail 95
Medicago
 lupulina 164
 sativa 165
Mediterranean barley 129
Melilotus
 alba 166
 arvensis 166
 leucanthus 166
 lutea 166
 officinalis 166
Mentha
 arvensis 47
 canadensis 47
 gentilis 47
 glabrior 47
 penardii 47
Mergus merganser 26, 27
Mexican mosquitofern 12
Mimulus guttatus 60
Muhlenbergia asperifolia 101
Musk mustard 78
Myriophyllum
 exalbescens 15
 magdalenense 15
 sibiricum 15
 spicatum 15

N
Narrowleaf dock 57
Nasturtium officinale 37
Nebraska sedge 81
Nepeta cataria 168
Nodding beggartick 74
Northern harrier 108, 110
Northern pintail 26, 27
Northern shoveler 66, 68
Numenius americanus 179, 180
Nuttall's alkaligrass 53
O
Oakleaf goosefoot 121
Oenothera curtiflora 170
Olney’s threesquare 29, 30, 41
ONAGRACEAE 32, 137

P
Pale smartweed 54
Paleyellow iris 45
Panicum crus-galli 98
Parish spikerush 88
Pelecanus erythrorhynchos 26, 27
Perennial pepperweed 153
Peritoma serrulata 155
Persicaria
 incarnata 54
 lapathifolia 54
 maculata 55
 maculosa 55
 persicaria 55
Phalacrocorax auritus 26, 28
Phalaris arundinacea 49
Phalaroides arundinacea 49
Phalaropus tricolor 108, 109
Phasianus colchicus 179, 180
Phleum pratense 69, 102
Phragmites
 australis subsp. australis 50,
 112, 181
 australis subsp. americana 51,
 182
 communis 50
 phragmites 50
Pickleweed 111, 123
Pied-billed grebe 26, 28
Plagiobothrys
 leptocladus 117
 orthocarpus 117
PLANTAGINACEAE 72
Plantago
 altissima 93
 asiatica 94
 halophila 94
 intermedia 94
 lanceolata 93
 major 94
Plantain
 narrowleaf 93
 common 94
Plegadis chihi 108, 109
Poa
 bulbosa 173
 crocata 103
 eyerdamii 103
 palustris 103
 pratensis 174
 triflora 103
POACEAE 32, 72, 113, 137
Podilymbus podiceps 26, 28
POLYGONACEAE 32, 137
Polygonum
 argyrocoleon 176
 dubium 55
 fusiforme 55
 lapathifolium 54
 nodosum 54
 persicaria 55
 puritanorum 55
 ramosissimum 104
 tomentosum 54
Polypogon monspeliensis 52
Porzana Carolina 181
Potamogeton
 americanus 21
 crispus 19
 filiformis 22
 fluitans 21
 foliosus 20
 nodosus 21
 oblongifolius 21
 pectinatus 23
POTAMOGETONACEAE 11
Povertyweed 115
Prickly lettuce 149
Puccinellia
 airoides 53
 cusickii 53
nuttalliana 53
Purple loosestrife 92
Pursh seepweed 111, 112, 125

R
Rabbitsfoot grass 52
Common ragweed 139
RALLIDAE 181
Rails 181
RANUNCULACEAE 32
Ranunculus
 cymbalaria 58
 sceleratus 69
Rayless alkali aster 77
Recurvirostra americana 132, 133
Red glasswort 123
Red goosefoot 122
Redhead 66, 67
Red swampfire 123
Red-winged blackbird 66, 67
Reed canarygrass 53
Ribes aureum 43
Ringed-neck pheasant 179, 180
Rocky Mountain beeplant 155
Rorippa palustris 38
Rough cocklebur 116
Rough bugleweed 46
Rough-legged hawk 108, 110
RUBIACEAE 137
Rumex
 crispus 177
 fueginus 56
 maritimus 56
 persicarioides 56
 stenophyllus 57
Ruppiaceae 11
Russian olive 163
Russian thistle 160
Rye brome 171

S
Sagittaria
 arifolia 33
 cuneata 33
Sago pondweed 9, 10, 23
Salicornia rubra 111, 123
Salsola
 australis 160
 pestifer 160
 ruthenica 160
 tragus 160
Saltbush 119
Salt sandspurry 79
Saltcedar 131
Saltgrass 70, 97, 112
Saltmarsh birds beak 106
Sandgrass 14
Sarcobatus vermiculatus 124
Schoberia occidentalis 125
Schoenoplectus
 acutus 29, 30, 40
 americanus 29, 30, 41
 maritimus 39
 pungens 42
Scirpus
 acutus 40
 americanus 41
 chilensis 41
 conglomeratus 41
 maritimus 39
 olneyi 41
 pungens 42
Scratchgrass 101
SCROPHULARIACEAE 32, 72
Seaside arrowgrass 91
Seaside barley 129
Seep monkeyflower 60
Senecio
 hydrophilus 76
 sandvicensis 76
Serratula
 arvensis 142
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosum 142</td>
</tr>
<tr>
<td>Sesuvium</td>
</tr>
<tr>
<td>erectum 114</td>
</tr>
<tr>
<td>verrucosum 114</td>
</tr>
<tr>
<td>Shortspike watermilfoil 15</td>
</tr>
<tr>
<td>Showy milkweed 138</td>
</tr>
<tr>
<td>Siella erecta 73</td>
</tr>
<tr>
<td>Silversheath knotweed 176</td>
</tr>
<tr>
<td>Sisymbrium nasturtium-aquaticum 37</td>
</tr>
<tr>
<td>Skunkweed 14</td>
</tr>
<tr>
<td>Slimstem reedgrass 69, 96</td>
</tr>
<tr>
<td>Smooth daisy 75</td>
</tr>
<tr>
<td>Snowy egret 108, 109</td>
</tr>
<tr>
<td>Snowy plover 132, 133</td>
</tr>
<tr>
<td>Solanaceae 32</td>
</tr>
<tr>
<td>Solanum dulcamara 62</td>
</tr>
<tr>
<td>Solidago</td>
</tr>
<tr>
<td>occidentalis 36</td>
</tr>
<tr>
<td>sarrothrae 147</td>
</tr>
<tr>
<td>Sonchus</td>
</tr>
<tr>
<td>asper 151</td>
</tr>
<tr>
<td>nymanii 151</td>
</tr>
<tr>
<td>Sora 181</td>
</tr>
<tr>
<td>Southern cattail 64</td>
</tr>
<tr>
<td>SPARGANIACEAE 32</td>
</tr>
<tr>
<td>Sparganium</td>
</tr>
<tr>
<td>californicum 63</td>
</tr>
<tr>
<td>eurycarpum 63</td>
</tr>
<tr>
<td>Sparrows 179, 180</td>
</tr>
<tr>
<td>Spergularia</td>
</tr>
<tr>
<td>marginata 79</td>
</tr>
<tr>
<td>maritima 79</td>
</tr>
<tr>
<td>media 79</td>
</tr>
<tr>
<td>Spiny sowthistle 151</td>
</tr>
<tr>
<td>Spiral ditchgrass 9, 24</td>
</tr>
<tr>
<td>Spirodela polyrrhiza 18</td>
</tr>
<tr>
<td>Sporobolus</td>
</tr>
<tr>
<td>airoides 130</td>
</tr>
<tr>
<td>asperifolius 101</td>
</tr>
<tr>
<td>schoenoides 128</td>
</tr>
<tr>
<td>Spotted ladysthum 55</td>
</tr>
<tr>
<td>Spreading alkaliweed 126</td>
</tr>
<tr>
<td>Spreading fleabane 145</td>
</tr>
<tr>
<td>Sterna forsteri 66, 67</td>
</tr>
<tr>
<td>Stickywilly 178</td>
</tr>
<tr>
<td>Stinging nettle 107</td>
</tr>
<tr>
<td>Stinking chamomile 150</td>
</tr>
<tr>
<td>Stonewort 14</td>
</tr>
<tr>
<td>Strawberry clover 87</td>
</tr>
<tr>
<td>Streamside fleabane 75</td>
</tr>
<tr>
<td>Stuckenia</td>
</tr>
<tr>
<td>filiformis 22</td>
</tr>
<tr>
<td>pectinata 23</td>
</tr>
<tr>
<td>Suaeda</td>
</tr>
<tr>
<td>americana 125</td>
</tr>
<tr>
<td>calceoliformis 111, 112, 125</td>
</tr>
<tr>
<td>depressa 125</td>
</tr>
<tr>
<td>maritima 125</td>
</tr>
<tr>
<td>minutiflora 125</td>
</tr>
<tr>
<td>occidentalis 125</td>
</tr>
<tr>
<td>Swamp milkweed 35</td>
</tr>
<tr>
<td>Swamp pricklegrass 128</td>
</tr>
<tr>
<td>Sweetclover 166</td>
</tr>
<tr>
<td>Swollen duckweed 16</td>
</tr>
<tr>
<td>Symphyotrichum ciliatum 77</td>
</tr>
</tbody>
</table>

T

Tamaricaceae 113

Tamarix |
| *aphylla* 131 |
| *chinensis* 131 |
| *parviflora* 131 |
| *ramossima* 131 |
| **Thin-leafed orache** 80 |
| **Thinopyrum intermedium** 135, 175 |
| **Timothy** 69, 102 |
| **Torrey’s rush** 90 |
| **Triangle orache** 80 |
| **Trifolium** |
| *fragiferum* 87 |
| *repens* 167 |
| **Triglochin** |
| *elatum* 91 |
| *maritima* 91 |
| **Tringa flavipes** 133, 134 |
| **Tripolium angustum** 77 |
| **Twoscale saltbush** 120 |
Index

Typha
 angustata 64
 domingensis 30, 64
 latifolia 30, 65
TYPHACEAE 32
Tyrannus verticalis 179, 180
Tundra swan 26, 27

U
Uniola spicata 97
Urtica dioica 107
URTICACEAE 72

V
Veronica
 anagallis 61
 anagallis-aquatica 61
 catenata 61
 glandifera 61
Verrucose seapurslane 114
Velvetweed 170
Vulpes vulpes 179

W
Wapato 33
Water grounsel 76
Water ragwort 76
Water speedwell 65
Watercress 37
Western goldentop 36
Western grebe 26, 28
Western kingbird 179, 180
Western sandpiper 132, 133, 134
White clover 167
White-crowned sparrow 179, 180
White-faced ibis 108, 109
Whitetop 152
Widgeongrass 24
Wild licorice 85
Wild mint 47
Wilson’s phalarope 108, 109

X

Xanthium strumarium 116
Xanthocephalum sarothrae 147
Xanthocephalus xanthocephalus 179, 180

Y
Yellow flag 45
Yellow-headed blackbird 179, 180

Z
Zannichellia
 major 25
 palustris 25
ZANNICHELLIACEAE 11
Zonotrichia Leucophrys 179, 180
Contributors

Dr. Rebekah Downard is a Wetland Scientist for the Utah Division of Water Quality (UDWQ). She received her Ph.D. in Ecology from Utah State University (USU). Her time spent as a graduate student studying plants and hydrology in Great Salt Lake wetlands inspired this book. Rebekah received her Masters in Human Dimensions of Ecosystem Science and Management from USU, and her B.S. from Weber State University where she majored in Zoology. The goal of her work at UDWQ is to help protect Utah’s wetlands through water quality management.

Dr. Maureen Frank is an Assistant Professor and Extension Wildlife Specialist for Texas A&M AgriLife Extension Service. She is based out of Uvalde, Texas, and serves the west, southwest, and south regions of the state. Maureen received her Ph.D. in Wildlife Biology from USU and her B.S. in Wildlife and Fisheries Sciences from Texas A&M University. As an Extension Specialist, Maureen provides support to county Extension agents for all things wildlife. The goal of her outreach and education work is to connect people with their local landscapes and help them understand how to be good stewards of their natural resources.

Dr. Karin Kettenring is an Associate Professor of Wetland Ecology in the Department of Watershed Sciences and Ecology Center at USU. She received her Ph.D. in Applied Plant Sciences from the University of Minnesota and her B.A. in Biology from Oberlin College. At USU, Karin teaches courses in wetland ecology and restoration ecology. Her research focuses on the regeneration ecology, genetics, and functional impacts of wetland plants. Her research informs the control of invasive plants, revegetation of native plants, and overall vegetation management in wetlands.

Mark Larese-Casanova is an Extension Assistant Professor in the Department of Watershed Sciences at USU. He received his Masters in Wildlife Management from the University of Connecticut. Mark directs and teaches the Utah Master Naturalist Program, a series of science-based field courses that forge strong connections between people and Utah’s watershed, desert, and mountain ecosystems.

Jennifer Perkins is a technical writer pursuing a Master of Technical Communication at USU. She received a B.S. in English, Professional and Technical Writing, and a B.S. in Natural Resources, Recreation Resource Management, both from USU. Jennifer’s work focuses on developing and designing both print and digital natural resource documentation that promotes stakeholder understanding of and appreciation for the natural world.