
Name-Matching Techniques for Disambiguating Interaction Data

This material is based upon work supported by the mentor
Jack Elliott’s National Science Foundation Graduate Research
Fellowship under Grant No. DGE1745048. Any opinion,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Adam Weaver
Utah State University

Department of Engineering Education
adamweaver2000@gmail.com

INTRODUCTION
Research Background: Our research group is conducting a large-scale Social
Network Analysis to analyze the relationships between academic success and social
practices among students. To identify these networks, we ask students to report
their interactions with other students through open-response name generator
surveys. As a result, many of the survey responses contain ambiguous names
(lacking a last name, simple name misspellings, etc.). To compile the interaction
data, all response names need to be resolved to the correct network entities.
Problem: To disambiguate these responses, we qualitatively considered the
process for manual disambiguation during our pilot study. The results of this effort
provided an overall process for disambiguating each response (Figure 1). Further,
these results provided an overall structure for using computing power to automate
most of the disambiguation process. This presentation describes our current work to
automate name-matching techniques for disambiguating student network data.

RESULTS
To date, we have a script that iterates through registry and interaction
data and adds eligible survey participants to the key (Stage 1).
Currently, we are working on finding remaining names in the interaction
data and compiling name matching values for these names to names in
the key. Since we already completed the disambiguation process
manually, we will know our script is complete when the results match
our previous results.

METHODS
To automate these steps, we are writing the scripts in Python through PyCharm,
allowing easy access to open-source libraries. To begin, we developed a main
function which read the raw data and wraps each stage from Figure 1 as
demonstrated by. Our strategy combines Levenshtein distance, Metaphone II, and
hierarchical clustering to create a similarity score between an ambiguous name and a
resolved name (Figure 2).

Figure 1. The overall process of resolving an ambiguous name (bottom left, red)
into a real-world entity (bottom left, dark blue).

Levenshtein distance helps us find misspelled names.
The Levenshtein Distance (LS) determines literal string similarity by quantifying
how many additions, deletions, or replacements will make two strings match.

Metaphone algorithm will help us find names that sound similar.
The Metaphone algorithm computes a value for the pronunciation of a string.

[John Deer] and [John Deare]
both have the Metaphone keys: JNTR, ANTR

Clustering processes help us find if names belong to students that
have similar friend groups.
The hierarchical clustering algorithm creates a tree diagram

representing the hierarchy of smaller and smaller sub-networks in the
overall network as demonstrated in the dendrogram below:

CONCLUSIONS
Using both Levenshtein distance and Metaphone II algorithms, in
addition to agglomerative hierarchical clustering, researchers can
resolve ambiguous names into the correct entity more efficiently.

More efficient and accurate name-matching methods will pave the way
for study of more holistic social networks.

Consolidate names

Compare LS, M2, and HC distances and consolidate according to prescribed thresholds

Sub-Network Proximity

Hierarchically cluster (HC) responses
according to sub-networks

Identify shortest path length(s) between
ambiguous name(s) and key names

String-Matching
Identify Levenshtein Distance (LS)

between ambiguous name(s) and key
names

Identify Metaphone II Similarities between
ambiguous name(s) and key names

Known Value Import

Read in any registry data Initialize the key with all
unique registry names

Add participant-provided
names

Main Function

Read in raw data Build an accurate key Replace each response/key
match with a number

Figure 2. The main function structure for importing, comparing, and
consolidating names according to string and sub-network similarity.

John Deer Rick Social Alex SociogramJohn Deere Earl Excel

The key helps us record name variances which correspond to each name.
To initialize the key, we use registry data of invited participants (left) and
participants’ own names.

Original Names Variant Names
Number First Name Last Name First Name Last Name First Name Last Name

1 John Deer Jon Deere John Deare
2 Bob Survey Bobby Survey Bobbie Servey
3 Earl Excel Earl Exel
4 Gerry Network Jerry Knetwork

Combining the LS, M2, and HC help us identify overall name
similarity.
Using thresholds identified through a manually disambiguated
network, we will consolidate names of sufficient LS, M2, and HC
similarity

Name
John Deer
Bob Survey
Earl Excel
Gerry Network

J O H N D E E R J O N D E A R E

DELETION REPLACEMENT INSERTION
Therefore, [John Deer] & [Jon Deare] have a Levenshtein Distance of 3

