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INTRODUCTION
Research Background: Our research group is conducting a large-scale Social 
Network Analysis to analyze the relationships between academic success and social 
practices among students. To identify these networks, we ask students to report 
their interactions with other students through open-response name generator 
surveys. As a result, many of the survey responses contain ambiguous names 
(lacking a last name, simple name misspellings, etc.). To compile the interaction 
data, all response names need to be resolved to the correct network entities. 
Problem: To disambiguate these responses, we qualitatively considered the 
process for manual disambiguation during our pilot study. The results of this effort 
provided an overall process for disambiguating each response (Figure 1). Further, 
these results provided an overall structure for using computing power to automate 
most of the disambiguation process. This presentation describes our current work to 
automate name-matching techniques for disambiguating student network data.

RESULTS 
To date, we have a script that iterates through registry and interaction 
data and adds eligible survey participants to the key (Stage 1). 
Currently, we are working on finding remaining names in the interaction 
data and compiling name matching values for these names to names in 
the key. Since we already completed the disambiguation process 
manually, we will know our script is complete when the results match 
our previous results.

METHODS
To automate these steps, we are writing the scripts in Python through PyCharm, 
allowing easy access to open-source libraries. To begin, we developed a main 
function which read the raw data and wraps each stage from Figure 1 as 
demonstrated by. Our strategy combines Levenshtein distance, Metaphone II, and 
hierarchical clustering to create a similarity score between an ambiguous name and a 
resolved name (Figure 2). 

Figure 1. The overall process of resolving an ambiguous name (bottom left, red) 
into a real-world entity (bottom left, dark blue).  

Levenshtein distance helps us find misspelled names. 
The Levenshtein Distance (LS) determines literal string similarity by quantifying 
how many additions, deletions, or replacements will make two strings match. 

Metaphone algorithm will help us find names that sound similar. 
The Metaphone algorithm computes a value for the pronunciation of a string. 

[John Deer] and [John Deare]
both have the Metaphone keys: JNTR, ANTR 

Clustering processes help us find if names belong to students that 
have similar friend groups.
The hierarchical clustering algorithm creates a tree diagram 

representing the hierarchy of smaller and smaller sub-networks in the 
overall network as demonstrated in the dendrogram below:

CONCLUSIONS
Using both Levenshtein distance and Metaphone II algorithms, in 
addition to agglomerative hierarchical clustering, researchers can 
resolve ambiguous names into the correct entity more efficiently.

More efficient and accurate name-matching methods will pave the way 
for study of more holistic social networks.
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Figure 2. The main function structure for importing, comparing, and 
consolidating names according to string and sub-network similarity.

John Deer Rick Social Alex SociogramJohn Deere Earl Excel

The key helps us record name variances which correspond to each name.
To initialize the key, we use registry data of invited participants (left) and 
participants’ own names.

Original Names Variant Names
Number First Name Last Name First Name Last Name First Name Last Name

1 John Deer Jon Deere John Deare
2 Bob Survey Bobby Survey Bobbie Servey
3 Earl Excel Earl Exel
4 Gerry Network Jerry Knetwork

Combining the LS, M2, and HC help us identify overall name 
similarity. 
Using thresholds identified through a manually disambiguated 
network, we will consolidate names of sufficient LS, M2, and HC 
similarity
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John Deer
Bob Survey
Earl Excel
Gerry Network

J O H N D E E R J O N D E A R E

DELETION REPLACEMENT INSERTION
Therefore, [John Deer] & [Jon Deare] have a Levenshtein Distance of 3 


