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• Curcumin is the major bioactive natural product in turmeric (Curcuma 

longa), which is commonly used as a food additive (flavor and colorant) 

and traditional medicine for thousands of years. 

• Antioxidant[1], anti-cancer[2], anti-allergic[3], anti-inflammatory[4], and 

anti-Alzheimer’s[5] effects

• Current production relies on extraction of producing plants: requires large 

quantities of farmland and organic solvents[6]

• Microbial production represents a great alternative: saves time and 

materials.

• Microorganisms can be engineered to produce curcumin by incorporating 

curcumin biosynthetic enzymes.

• Testing various parameters in lab experiments is time-consuming and labor-

intensive. 

• This work aims to establish a computer model to simulate the production of 

curcumin in Escherichia coli.

Introduction

Enzyme Kinetics Data

• The PRISM Probabilistic Model Checking language

• Continuous-time Markov chain (CTMC).

• Two assumptions made

• The model is unaffected by the cell’s central metabolism

• Byproducts of DCS and CURS are negligible

• Each reaction is a probabilistic transition

• The ratio of rates determines the probability a reaction will occur

• A reaction being chosen causes an update in concentration

• Rates are calculating with the Michaelis-Menten and Hill equations

Michaelis-Menten Equation

𝑟𝑎𝑡𝑒 =
𝐾௧ ∗ 𝐸 ∗ [𝑆]

𝐾 + [𝑆]

Hill Equation

𝑟𝑎𝑡𝑒 =  
𝐾௧  ∗ 𝐸 ∗  [𝑆]

𝐾
 + [𝑆]

• Code snippet
module partial_pathway
[] fcoa > 0  -> v1: (facoa’ = facoa + 1) & (fcoa’ = fcoa – 1);
[] fcoa > 0 & facoa > 0  ->  v2:(cur’ = cur + 1) & (fcoa’ = fcoa – 1) & 

(facoa’ = facoa – 1);
endmodule

Probabilistic Model Construction

Figure 2. Concentrations of all substrates/products over a 48 hour period

• An average of 100 simulations resulted in 486.565 mg/L curcumin yield. 

• C3H may be the limiting enzyme due to rate of p-coumaroyl-CoA 

production

• Overexpression modeling analysis was done to test C3H hypothesis: 

overexpressing C3H to 50 mg/L increased the curcumin yield 32.7%.

• All combinations of two or three enzymes changed to 10 mg/L or 50 mg/L 
were simulated to determine the optimum concentration of enzymes (See 
table below)

• This data shows that C3H, DCS, and CURS are the three most limiting 

enzymes and increasing them will increase the final curcumin yield. 

• C3H, DCS, and CURS have been marked as further optimization targets

Results

• More work is to be done to determine more accurate kinetic parameters for 

all reactions

• More products will be added to the model (curcuminoids)

• Using the information from our representative model, we will validate the 

model in the lab.

Conclusions and Future Work

Enzyme Substrate Km (µM) kcat (1/s) Source

TAL L-tyrosine 1492.2 155 [7]

4CL p-coumaric acid 26 88.68 [8]

4CL caffeic acid 44 31.4 [8]

4CL ferulic acid 27 126 [8]

C3H p-coumaric acid 8 10.2 [9]

C3H p-coumaroyl-CoA 8 10.2 [9]

COMT caffeic acid 68.75 0.092 [10]

COMT caffeoyl-CoA 83.04 51.22 [10]

DCS feruloyl-CoA 46 0.02 (n=1.8) [11]

CURS feruloyl-CoA 18 0.018333 [11]

Enzyme_concentration (mg/L) Curcumin yield (mg/L)

C3H_50, DCS_50, CURS_50 957.7

4CL_10, C3H_50, CURS_50 733.2

All at 25 486.6

C3H_10, DCS_50, CURS_10 140

GitHub code

Figure 1: Full pathway from TAL to curcumin


