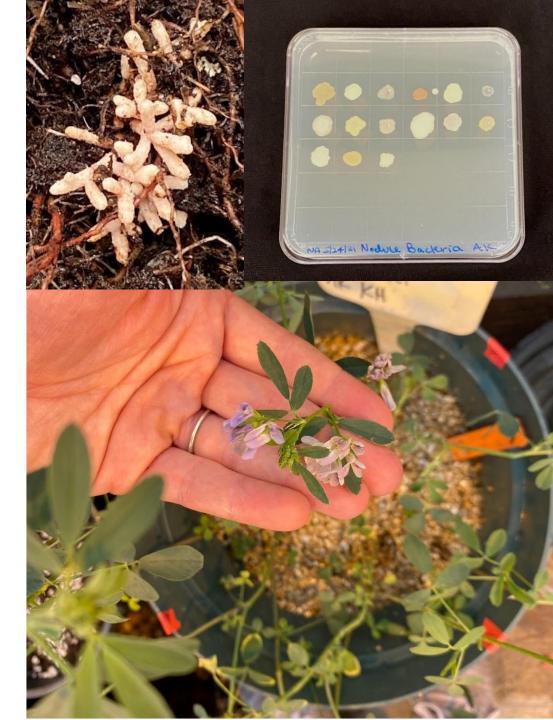
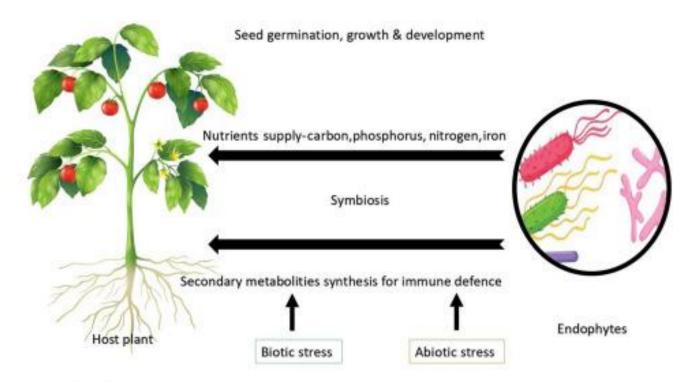
Halotolerant Endophytes


Identification and characterization of plant-growth promoting microbes in saline conditions

Katie Hewitt, Amita Kaundal

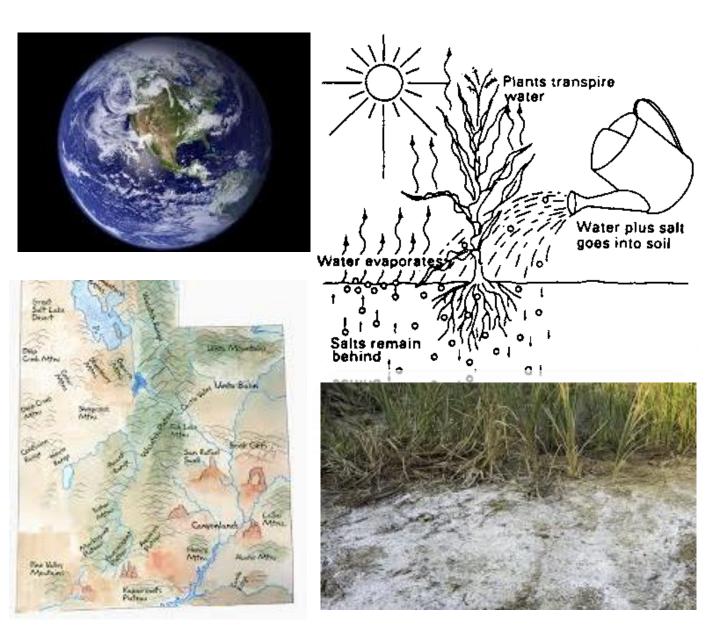
Department of Plants, Soils and Climate


College of Agriculture & Applied Sciences UtahStateUniversity

Endophytes: Microorganisms living between the cells of a Plant

<u>Symbiosis</u>

- Microbes provide available nutrients and hormones to the plant
- Plant provides energy to the microbe in biomaterials



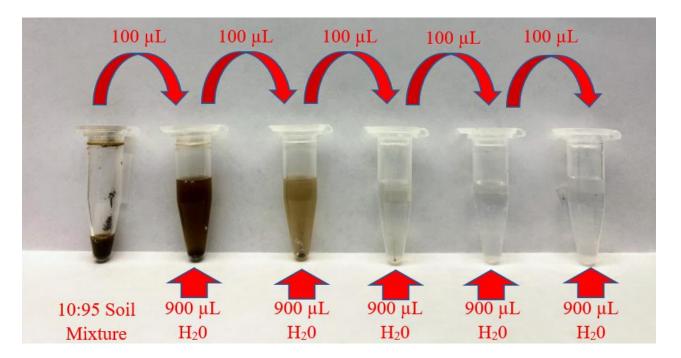
https://www.sciencedirect.com/topics/immunology-and-microbiology/endophyte

Salinity in Utah and Across the World

Salt is a concern for farmers and for food security.

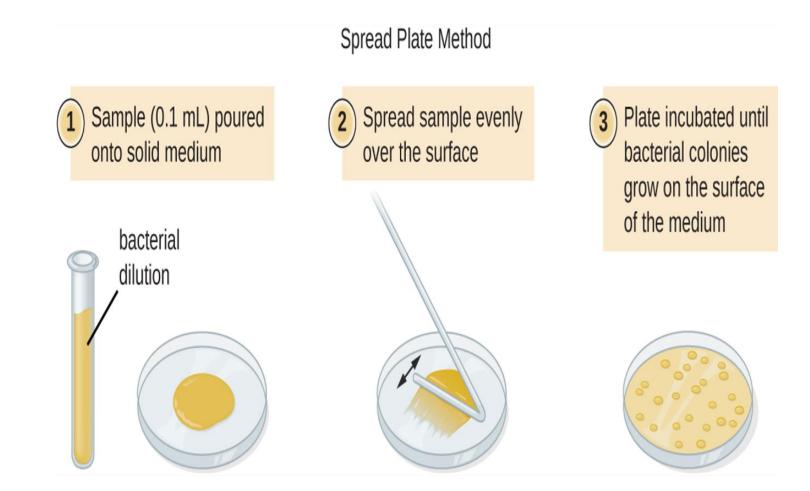
 Increased incidences of drought are forcing the use of more saline irrigation.

Endophytes Extracted from Ceanothus Velutinus (Snow Brush)

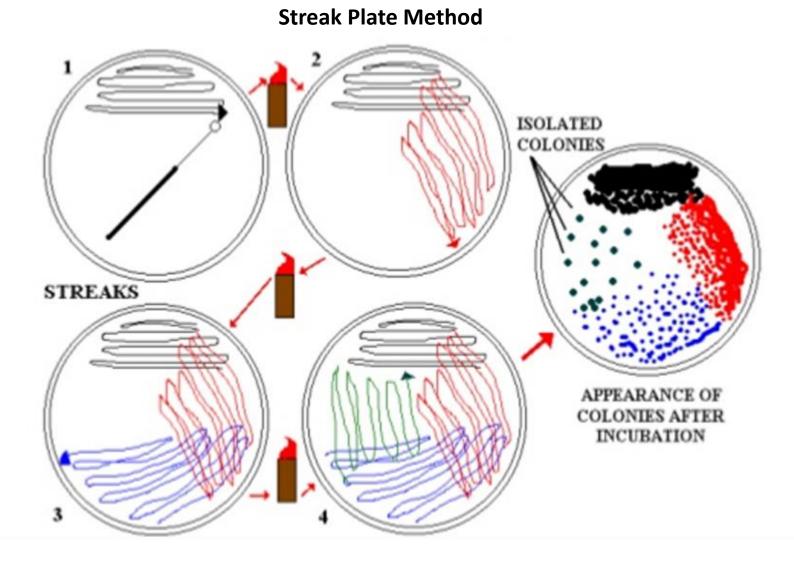

- Native to the Intermountain West
- Resilient to dry, harsh conditions
- Found in previous studies to have a beneficial microbe biome

Extraction of Endophytes

1. Grinding

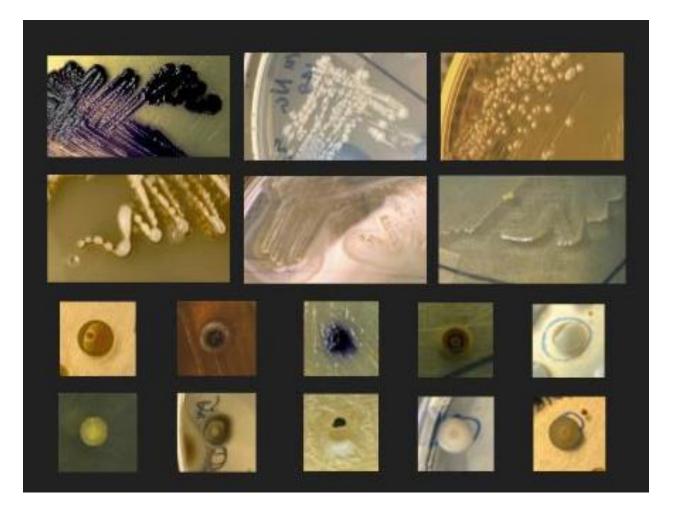

 Root

2. Dilution


Nitrogen-Fixing Nodule induced in greenhouse

Isolation of Endophytes

Purification of Bacterial Cultures

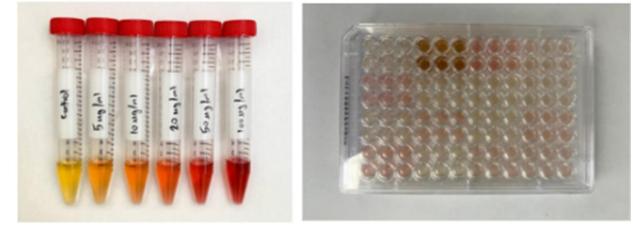

Media: ¼ NA + NaCl Screening for Halotolerance

Isolating on Concentrations of NaCl

0% 2% 4% 6% 8% 10%

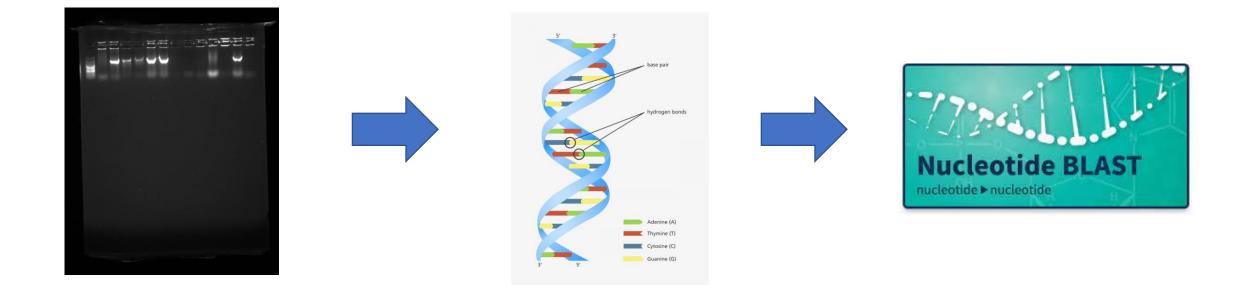
Morphological Characteristics

The following characteristics of each colony were recorded:


- Color
- Size
- Texture
- Opacity
- Morphology

Biochemical Characterization

- Nitrogen Fixation using Norris Glucose media
- Siderophore Production using CAS media
- Phosphate Solubilization using Pikovskaya Agar
- Calorimetry Assay for IAA production



Indole Acetic Acid Production

Sequencing and Identification

- 1. DNA extraction and Amplification
- 2. Sequencing
- 3. Blast Search against 16SrRNA database on NCBI

Results

36 Total Colonies:

- 14 from Nodules
- 22 from Roots

NaCl Concentration (%)	Number of colonies	% Microbes
2%	37	100
4%	30	81
6%	19	51
8%	6	16
10%	1	3

Plant Growth Promoting Activity of Isolates

Biochemical Characteristic	% Microbes
Produce Siderophore	51
Solubilize Phosphate	24
Fix Nitrogen	14
Produce Indole Acetic Acid	24

Nodule Endophytes

Genus	Salinity Tolerance	Siderophore Production	Phosphate Solubilization	Nitrogen Fixation	IAA Production
Massilia	2%	++	+	-	4.51±0.10
Anthrobacter?	6%	++	-	-	17.41±1.00*
Delfitia	4%	++	-	-	2.02±0.19
N/A	2%	++	-	-	0.70±0.08
Brevundimonas	4%	+	-	-	3.47±0.18
Pseudomonas	4%	++	++	-	1.67±0.11
Paenibacillus	2%	-	-	-	7.51±0.06
N/A	4%	-	+	-	0.79±0.17
Bacillus	8%	-	+++	-	14.30±2.37*
<mark>Pseudomonas</mark>	4%	<mark>+</mark>	<mark>+++</mark>	<mark>+++</mark>	<mark>13.64±0.11*</mark>
Bacillus	4%	+	+	-	0.46±0.07
Shinella	4%	++	+	-	4.78±0.07
Bacillus	8%	-	-	-	5.90±0.12
Peribacillus?	4%	++	-	-	6.73±0.08

Root Endophytes

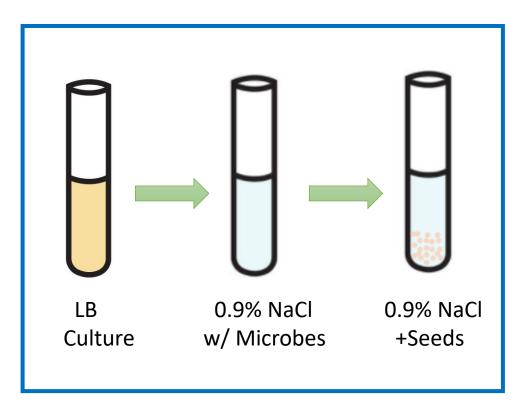
Genus	Salinity Tolerance	Siderophore Production	Phosphate Solubilization	Nitrogen Fixation	IAA Production
Serratia	6%	+	-	+++	2.97±0.06
Serratia	6%	+	-	+++	2.56±0.06
Pseudomonas	2%	+++	+	-	3.75±0.05
Pseudomonas	2%	++++	-	++	5.94±0.01
Pseudomonas	2%	-	-	+	3.59±0.04
Actinobacteria	4%	-	-	-	4.82±0.46
Micrococcus	10%	-	-	-	10.83±0.15
Rhodococcus	6%	-	-	-	0
Micrococcus	8%	+	-	-	10.86±0.07
Anthrobacter?	6%	-	-	-	3.71±0.23
Rhodococcus	6%	-	-	-	0.25±0.06
Stenotrophomonas	6%	++	-	-	1.35±0.05
Bacillus	8%	-	-	-	1.19±0.37
Stenotrophomonas	4%	++	-	-	2.42±0.08

Root Endophytes

Genus	Salinity Tolerance	Siderophore Production	Phosphate Solubilization	Nitrogen Fixation	IAA Production
Rhodococcus	6%	+	-	-	1.25±0.06
Rhodococcus	6%	-	-	-	0.33±0.08
Microbacterium	6%	-	-	-	3.54±0.03
Rhodococcus	6%	+	-	-	3.05±0.06
Pedobacter	6%	-	-	-	0
Streptomyces	2%	-	-	-	?
Streptomyces	8%	-	-	-	0
Paenibacillus?	2%	-	-	-	0

Testing on Alfalfa: Treatment Groups

- 1. Cocktail
 - Four halotolerant bacteria, one high in each growth characteristic

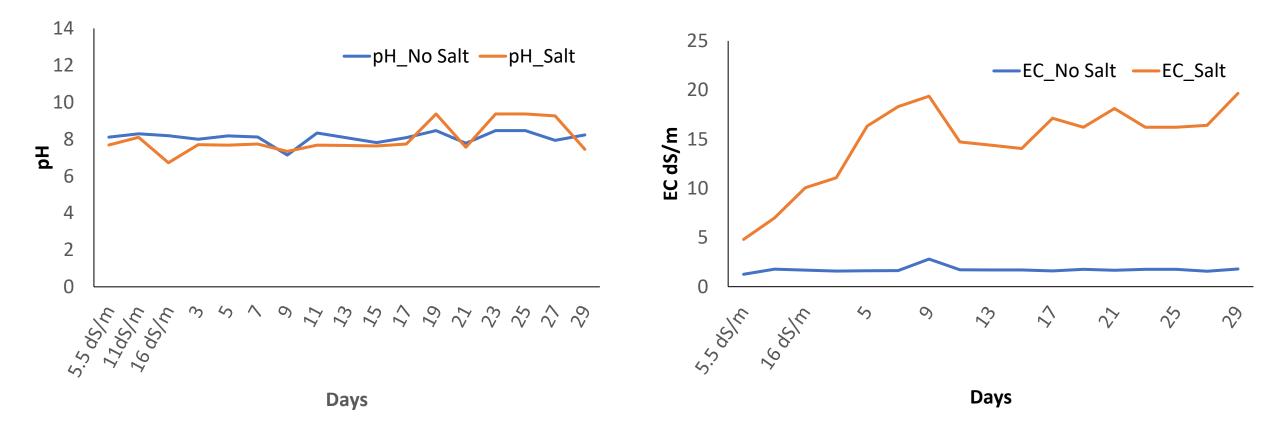

Genus	Salinity Tolerance	Siderophore Production	Phosphate Solubilization	Nitrogen Fixation	IAA Production
Serratia	6%	+	-	<mark>+++</mark>	2.56±0.06
Stenotrophomonas	6%	<mark>++</mark>	-	-	
					1.35±0.05
Anthrobacter?	6%	++	-	-	<mark>17.41±1.00</mark>
Pseudomonas	4%	+	<mark>+++</mark>	+++	13.64±0.11

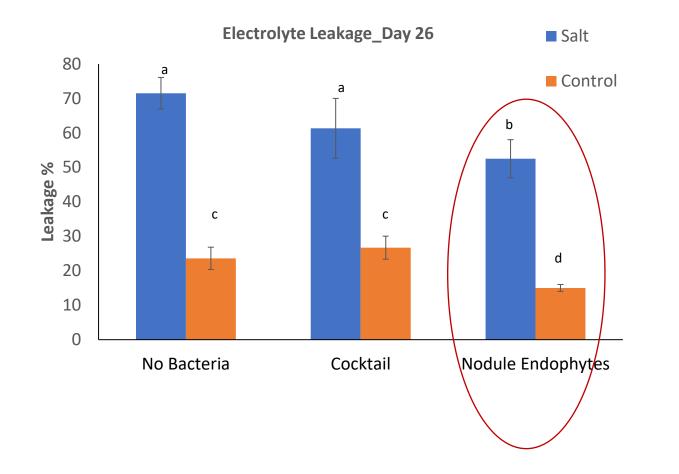
2. All 14 Endophytes from the Nodule

Inoculating Alfalfa Seeds Medicago sativa

- Endophytes were cultured in LB to a density of 1.5 at 600nm
- Cells were pelleted and resuspended in 0.9% NaCl
- Surface Sterilized seeds put in the solution overnight to incubate at 28 Degrees C

Planting & Salt Treatment


- Seeds planted in autoclaved vermiculite, watered with ½ Hoagland's solution
- At germination, plants were reinoculated with Bacterial solution by pouring
- Salt treatment began two weeks after germination (2 NaCl: 1 CaCl salt in ½ Hoagland solution, adding salt gradually to increase over 3 days until it reached 16.5 ds/m)


Plant growth assays

- EC and pH of leachate
- Electrolyte Leakage
- Stomatal Conductance
- Photosynthetic rate
- Biomass
- Gene expression analysis of salt responsive genes,
 - SOS family (SOS1, SOS2, SOS3), NHX1 and NHX2, HKT1
 - Proline (*P5C*)
 - Catalase
 - ABA biosynthesis (*NCED3*)

EC and pH EC of all plants maintained between 16-19 dS/m

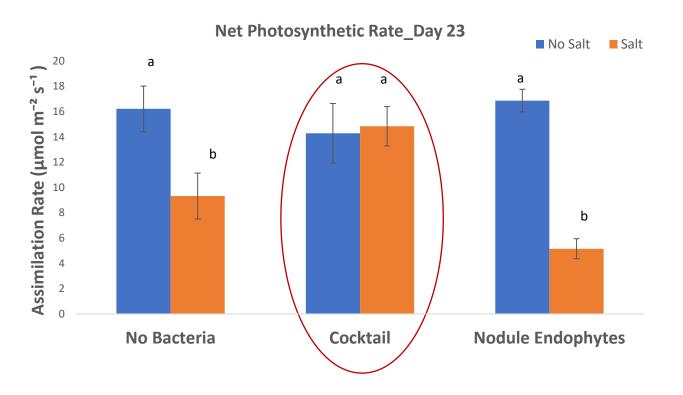
Electrolyte Leakage Assay

ANOVA Single Factor

 No Bacteria vs. Nodule Endophytes *in salt*

P-value ~ 0.0247

 No Bacteria vs. Nodule Endophytes in no salt

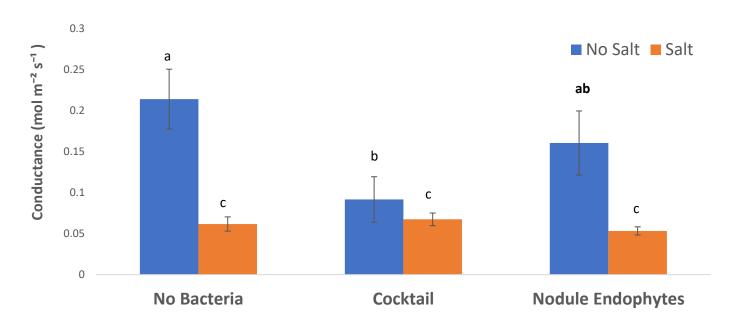

P-value ~0.0235

 No Bacteria vs. cocktail Endophytes in no salt

P-value ~0.0034

Nodule endophyte inoculation showed significant reduction in EL in plants compared to control irrespective of salt treatment.

Net Photosynthetic Rate

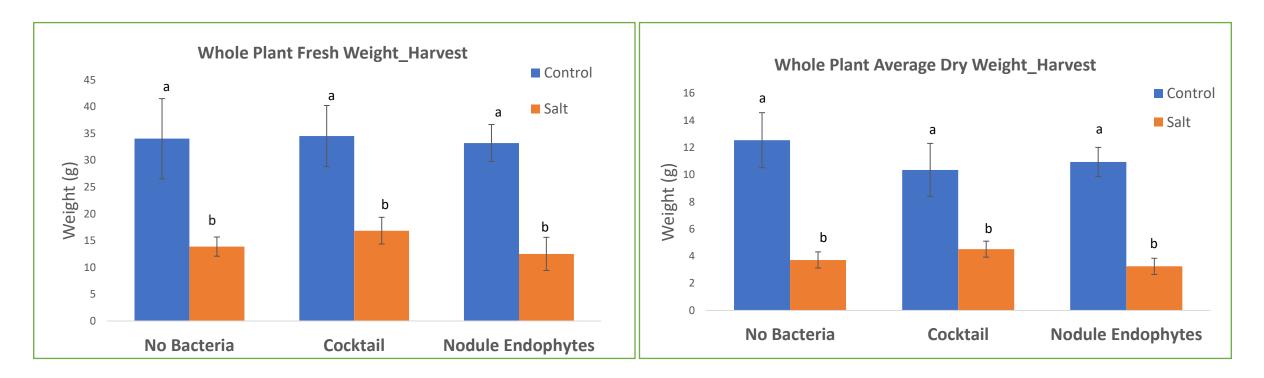


ANOVA Single Factor

 Cocktail in no salt vs. Cocktail in salt P-value ~0.9999

There is not a significant difference in photosynthetic rate between Cocktail plants treated salt and Cocktail plants treated without salt.

Stomatal Conductance


Stomatal Conductance-Day 23

ANOVA Single Factor

 No Bacteria vs. Cocktail in no salt P-value~0.0124

- No significant difference between the bacterial treatments *in salt*
- Cocktail showed significantly less conductance than No Bacteria in no salt

Biomass

- No significant difference between the bacterial treatments within the salt and no salt groups
- Inconclusive result because of genetic diversity between plants

Testing Cocktail Inoculation on Corn Zea mays

No Bacteria

Cocktail

No Bacteria

Cocktail

Conclusion

1. Isolation of endophytes from nodules and roots under salt concentrations

- 100% colonies grew in 2% NaCl
- 50% grew in 6%
- 3% grew at 10%

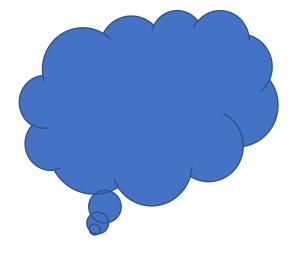
2. Plant growth promoting activities shown by biochemical assays

• Most isolates showed plant growth promoting activity for at least one characteristic measured

3. Selection and testing of 4 bacteria cocktail and of nodule endophytes for on alfalfa and cocktail was tested on corn

Conclusion

- 4. Testing on Crops
 - Bacterial inoculation has been observed to enhance seed germination.
 - Nodule endophytes may help plants maintain electrolyte leakage with and without salt treatment.
 - Cocktail endophytes may help plants maintain photosynthetic rate under salt stress.
 - Cocktail endophytes may negatively affect the plant growth in corn.


Next Steps

- Screening microbes on model plants *Arabidopsis thaliana* and *Medicago truncatula* for plant growth and development
 - Nearly 100 isolates to screen which have plant growth promoting activities species
 - The microbes will be tested in cocktail of different bacteria

How we plan to improve our experiment on crops in the future:

- The screened bacteria (positive for plant growth and development) will be tested on crop plants for plant growth and development under stress
- Alfalfa plants will be propagated by cutting propagation to get uniform genotype to test the microbes.

Statement of Purpose

We hope to discover beneficial endophytes that can be used as **biofertilizers** and *provide a tool for growing food in saline conditions.*

Acknowledgements Thank you to...

Utah State University's Office of Undergraduate Research, for Funding this project (Undergraduate Research and

Creative Opportunity Grant)

- Dr. Amita Kaundal
- My Lab mates
- The Masters Students of the Plants, Soils, and Climate Department at USU

Questions?

