

Isolation and Characterization of Plant Growth Promoting Endophytic Bacteria from the Root Nodules of Ceanothus velutinus Teja Sai Ellanki Narendra and Amita Kaundal*

Introduction

- *Ceanothus velutinus* is an evergreen shrub native to the Intermountain West region of the US
- The center for water-efficient landscaping (CWEL) recommended this plant for sustainable landscaping as its moderately drought tolerant
- Roots of these plants form a symbiotic relationship with Plant growth-promoting endophytic bacteria (PGPE) that aids in nutrient uptake,

lowers ethylene levels under stress conditions, production of metabolites and thus plays a vital role in plant growth and development.

• They are more beneficial because of their close association with the plants and are used as biofertilizers to substitute chemical fertilizers

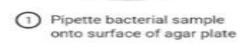
Objectives

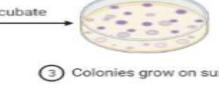
- Isolation and characterization of endophytic bacteria from the nodules
- Isolation of Frankia and testing for nodulation in Snowbrush
- Studying the effect of identified PGPE on plant growth and development in alfalfa & maize

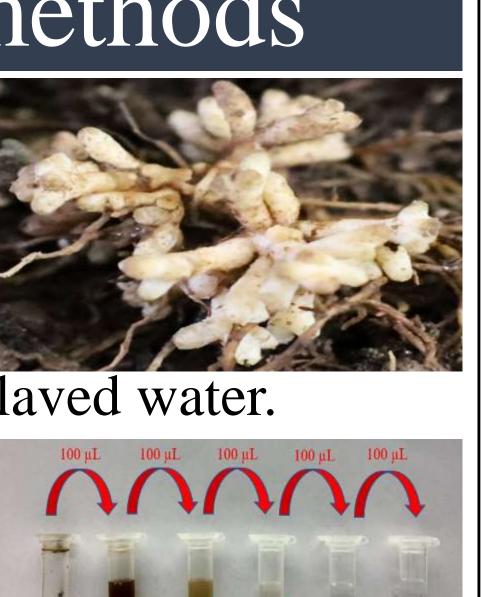
Materials and methods

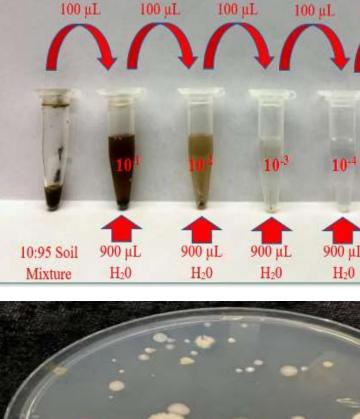
1. Nodule extract

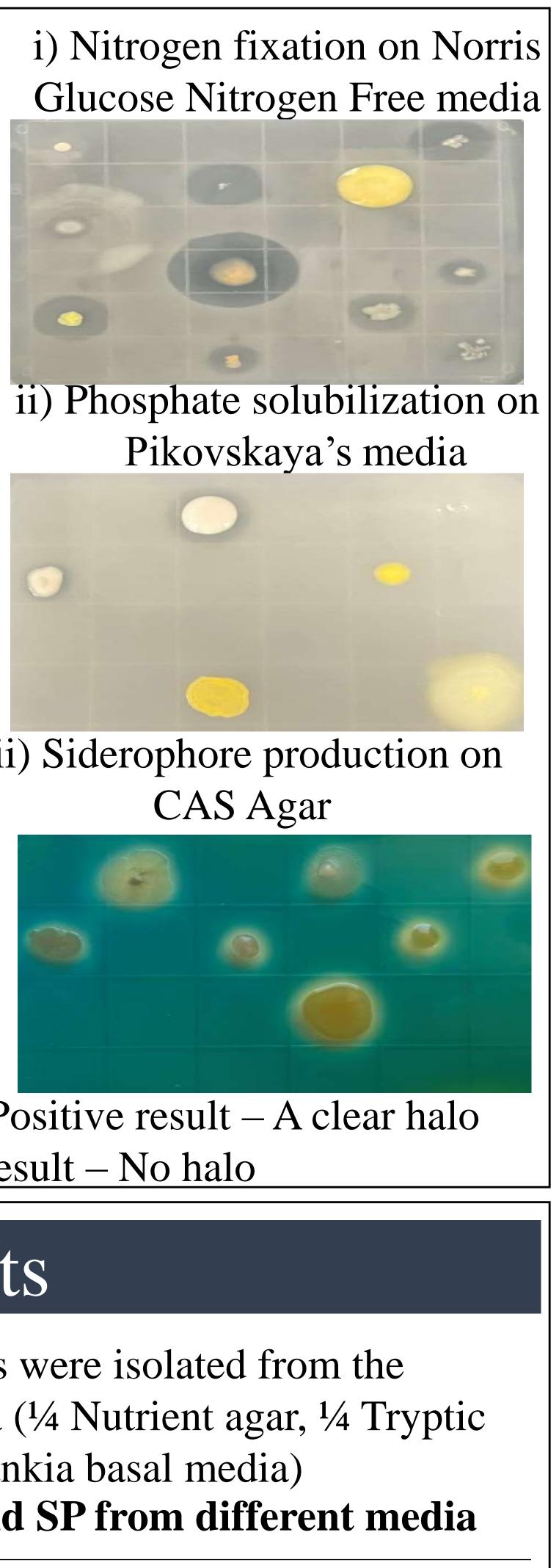
Root nodules from green-house grown *Ceanothus velutinus* were surface sterilized, ground and

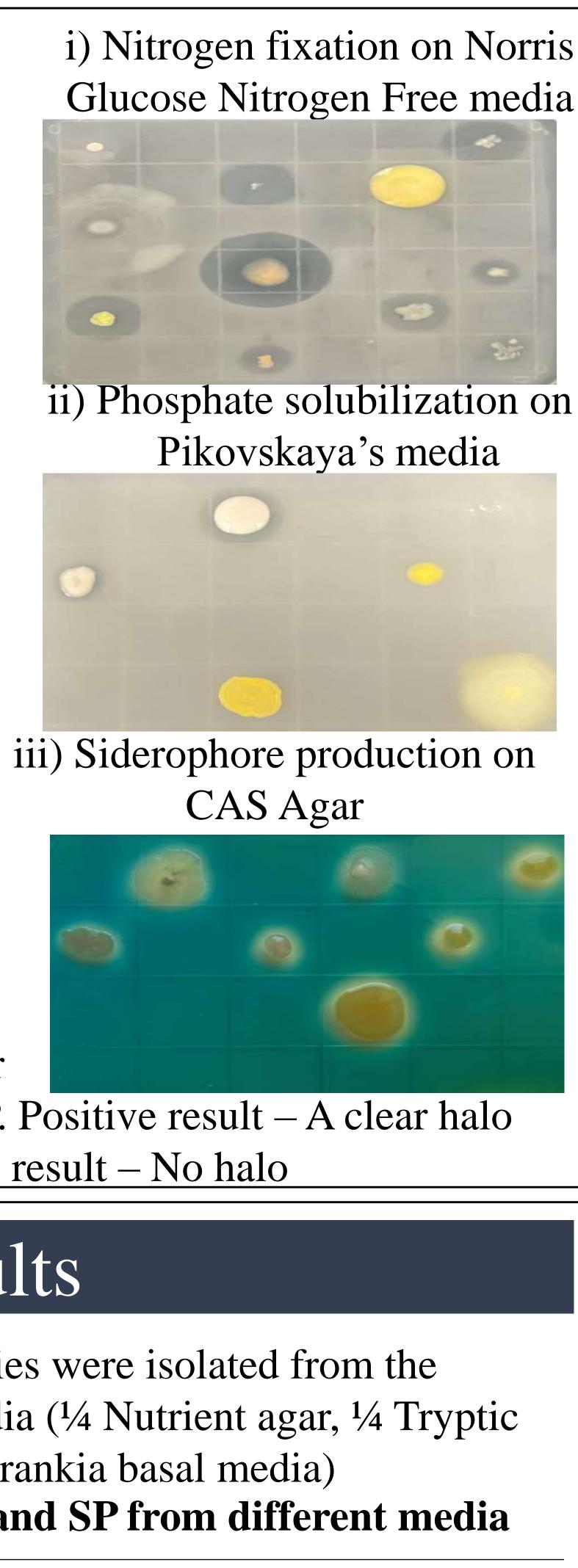

particles were suspended in autoclaved water.


2. Isolation


2.1 Serial dilution


The extract was serially diluted to a scale of concentrations 2.2 Spread plate method


Department of Plants, Soils, and Climate, Utah State University, Logan, UT, 84321, USA



4. Identification Colonies were identified by 16S r RNA sequencing and BLAST search **5. Morphology**

Each identified colony was tested for following characteristics NF, PS, SP. Positive result – A clear halo around the bacterial colony Negative result – No halo

Results

A total of one hundred and six colonies were isolated from the nodules by using four different media (¹/₄ Nutrient agar, ¹/₄ Tryptic soy agar, Yeast mannitol agar and Frankia basal media)

 Table 1: Isolates showing NF, PS, and SP from different media

Media	Total isolates	No. of isolates sequenced	NF	PS	SP
¹∕₄ NA	32	18	78%	11%	83%
1⁄4 TSA	36	21	86%	14%	57%
YMA	18	7	71%	14%	100%
FBM	20	7	29%	29%	57%

Bacterial Isolates	16S rRNA sequencing	NF	PS	SP	Plant growth promoting activities (literature study)
TKE - 1	Streptomyces misionensis	++	+	+	Phytopathogen biocontrol
TKE - 27	Paenibacillus alba	+	+	++	Not determined
TKE - 30	Pseudomonas chlororaphis	++++	+	+++	Biocontrol agent
TKE - 31	Leclercia adecarboxylata	++++	+	+	Drought tolerant
TK_NE_1 5	Paraburkholderi a dioscoreae	+++	+	++	Biofertilizer

Clear halo zone diameters produced by bacteria grown on different media: (-) no clear zone, (+) 5-10 mm, (++) 10-15 mm, (+++) 15-22 mm, (++++) >22 mm

17% PS, and 74% SP

maize Frankia will be isolated

showing all the three characteristics

Conclusion

• Most of the identified PGPE belonged to the genus *Bacillus*, Streptomyces, Variovorax and Paenibacillus • From the total isolates, 66% of identified PGPE showed NF,

• Unable to isolate Frankia by using Frankia basal media • But, identified Frankia by metagenomic study confirms that Frankia is present in the nodules of Snowbrush

Future work

• Cocktail of identified PGPE will be tested on alfalfa and

• Ultracentrifugation will separate nodule vesicles, and

• Identified Frankia will be tested for inducing nodulation in snowbrush under green-house conditions