Analysis of the Relationship Between Oxytocin **Receptor Mutations**, **Oxytocin Receptor Binding and Autism**

Presented by: Ethan Dayley Faculty Mentor: Dr. Sara Freeman In consultation with: Dr. Jill Lundell

Why are we studying autism?

- An estimated 1 in 44 children have Autism Spectrum Disorder (ASD) in the US
- ASD has a huge range of symptom severity, which is why we now call it Autism <u>Spectrum</u> Disorder rather than just autism
- It has a really big impact on people's lives, and by understanding it better we might be able to help people with ASD live better, more fulfilled lives

If it's such a big deal, why haven't we solved this yet?

First off, ASD symptoms are complicated and tightly bound with a huge variety of factors

Image showing symptoms of autism

Do their brains look any different?

Interestingly, ASD doesn't seem to cause any obvious differences in macro brain structure.

Spot the difference

Image comparing ASD and NT brains See Haar, et al. (2016) Well, ok, what about a smaller scale? Are there any likely causes?

The oxytocin hormone is closely linked to social interactions

Diagram of oxytocin interacting with an oxytocin receptor See: Mitchel et al. (1998) Well, ok, what about a smaller scale? Are there any likely causes?

The oxytocin hormone is closely linked to social interactions

Diagram of oxytocin interacting with an oxytocin receptor See: Mitchel et al. (1998)

That's... great. Have you actually found anything?

As it turns out, yes!

Figure comparing ventral pallidum (VP) and Nucleus Basalis of Meynert (NBM) OXTR binding levels See Freeman et al. (2018)

Cool, but why just those places?

They're important for some specific aspects of ASD.

Let's start with the nucleus basalis.

Autistic Group

Figure showing differences in gaze between ASD and NT subjects. See Senju and Johnson (2009)

Control Group

Ok, but what about the ventral pallidum?

Turns out it also has close ties to ASD behaviors

Figure showing ventral pallidum's role in reward pathway. See Smith et al. (2009).

Time out! Why is this happening?

Let's talk about those SNPs for a second...

OXTR gene diagram Source: ensembl database, April 2022

.... and the stuff around them

OXTR gene regulation diagram Source: ensembl database, April 2022

.... and the stuff around them

OXTR gene regulation diagram Source: ensembl database, April 2022

OK, what did you do?

We figured out what SNPs they had!

Image of Illumina Infinium Assay

Image of genotype clustering

Norm Theta

What did we find?

UMAP Visualization (Disorder)

Let's look at some numbers!

Call: Im(formula = oxtr_density_in_nbm ~ . - oxtr_density_in_vp - Sample_ID -Disorder, data = red_data_tbl)

Residuals: Min 1Q Median 3Q Max 23.8 -144.4 0.0 130.2 1109.2 -1123.8 -144.4

Coefficients:

Coefficients:	121	22	22	98 W W84	
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3667.06	7718.11	0.475	0.64399	
RaceAfrican American	1337.75	1114.23	1.201	0.25512	
RaceCaucasian	725.66	1201.54	0.604	0.55813	
RaceHispanic	2039.06	1946.55	1.048	0.31733	
Age_yrs	99.61	30.75	3.239	0.00788	**
SexMale	-355.57	508.30	-0.700	0.49875	
rs17365093	-539.42	562.25	-0.959	0.35798	
rs78062775	-821.28	927.64	-0.885	0.39491	
GSA.rs77943865	-683.20	1241.26	-0.550	0.59304	
rs2268492	157.53	439.29	0.359	0.72669	
rs2268495	-180.18	954.54	-0.189	0.85372	
rs2268491	1106.92	635.73	1.741	0.10951	
rs34992398	-677.38	758.61	-0.893	0.39101	
rs1465386	666.92	668.62	0.997	0.33997	
rs2324728	299.79	492.42	0.609	0.55502	
rs918316	228.03	967.08	0.236	0.81792	
rs34880121	-1337.24	526.54	-2.540	0.02750	*
rs237885	-844.27	701.14	-1.204	0.25381	
rs237899	-355.64	684.08	-0.520	0.61345	
rs53576	684.50	735.33	0.931	0.37190	
rs237891	-442.00	497.63	-0.888	0.39344	
GSA.rs61183828	2239.36	1274.38	1.757	0.10664	
Signif. codes: 0 '*	**' 0.001	'**' 0.01	'*' 0.05	'.' 0.1	6 7

Residual standard error: 818.9 on 11 degrees of freedom (15 observations deleted due to missingness) Multiple R-squared: 0.8205, Adjusted R-squared: 0.4778 F-statistic: 2.394 on 21 and 11 DF, p-value: 0.06848

Posiduals:							
Min 10 Medi	an 30	Max					
-1350.8 -382.9 0	0.0 337.2	1101.0					
Coefficients:							
	Estimate S	td. Error	t value	Pr(> t)			
(Intercept)	-5211.58	8575.15	-0.608	0.5557			
RaceAfrican American	1006.11	1237.96	0.813	0.4336			
RaceCaucasian	1052.37	1334.97	0.788	0.4472			
RaceHispanic	3236.89	2162.70	1.497	0.1626			
Age_yrs	-21.80	34.17	-0.638	0.5366			
SexMale	-808.64	564.75	-1.432	0.1800			
rs17365093	1343.10	624.69	2.150	0.0546			
rs78062775	1933.76	1030.65	1.876	0.0874	×		
GSA.rs77943865	-3648.21	1379.09	-2.645	0.0228	*		
rs2268492	1123.80	488.07	2.303	0.0418	sk.		
rs2268495	921.08	1060.54	0.869	0.4037			
rs2268491	1387.84	706.32	1.965	0.0752	•		
rs34992398	735.09	842.85	0.872	0.4018			
rs1465386	-388.33	742.86	-0.523	0.6115			
rs2324728	-429.51	547.10	-0.785	0.4490			
rs918316	-145.04	1074.47	-0.135	0.8951			
rs34880121	714.13	585.01	1.221	0.2477			
rs237885	-581.93	778.99	-0.747	0.4707			
rs237899	1180.25	760.04	1.553	0.1487			
rs53576	-87.68	816.98	-0.107	0.9165			
rs237891	-593.81	552.88	-1.074	0.3058			
GSA.rs61183828	-646.19	1415.89	-0.456	0.6570			
signif, codes: 0 '**	*' 0.001 '	**' 0.01 '	*' 0.05	·.' 0.1	1 1	1	

Multiple R-squared: 0.8556, Adjusted R-squared: 0.5798 F-statistic: 3.103 on 21 and 11 DF, p-value: 0.02832

Let's look at some numbers!

Call: lm(formula = oxtr_density_in_nbm ~ . - oxtr_density_in_vp - Sample_ID -Disorder, data = red_data_tbl)

Residuals: Min 1Q Median 3Q Max -1123.8 -144.4 0.0 130.2 1109.2

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3667.06	7718.11	0.475	0.64399	
RaceAfrican American	1337.75	1114.23	1.201	0.25512	
RaceCaucasian	725.66	1201.54	0.604	0.55813	
RaceHispanic	2039.06	1946.55	1.048	0.31733	
Age_yrs	99.61	30.75	3.239	0.00788	安安
SexMale	-355.57	508.30	-0.700	0.49875	
rs17365093	-539.42	562.25	-0.959	0.35798	
rs78062775	-821.28	927.64	-0.885	0.39491	
GSA.rs77943865	-683.20	1241.26	-0.550	0.59304	
rs2268492	157.53	439.29	0.359	0.72669	
rs2268495	-180.18	954.54	-0.189	0.85372	
rs2268491	1106.92	635.73	1.741	0.10951	
rs34992398	-677.38	758.61	-0.893	0.39101	
rs1465386	666.92	668.62	0.997	0.33997	
rs2324728	299.79	492.42	0.609	0.55502	
rs918316	228.03	967.08	0.236	0.81792	
rs34880121	-1337.24	526.54	-2.540	0.02750	*
rs237885	-844.27	701.14	-1.204	0.25381	
rs237899	-355.64	684.08	-0.520	0.61345	
rs53576	684.50	735.33	0.931	0.37190	
rs237891	-442.00	497.63	-0.888	0.39344	
GSA.rs61183828	2239.36	1274.38	1.757	0.10664	
Signif. codes: 0 '*	**' 0.001	'**' 0.01	'*' 0.05	'.' 0.1	''1

Residual standard error: 818.9 on 11 degrees of freedom (15 observations deleted due to missingness) Multiple R-squared: 0.8205, Adjusted R-squared: 0.4778 F-statistic: 2.394 on 21 and 11 DF, p-value: 0.06848

Disorder, data =	red_data_	tbl)		cy_111_1101	Samp (C_10	
Residuals:						
Min IQ Med	ian :	SQ Max				
-1350.8 -382.9	0.0 337.	2 1101.0				
Coefficients:						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-5211.58	8575.15	-0.608	0.5557		
RaceAfrican American	1006.11	1237.96	0.813	0.4336		
RaceCaucasian	1052.37	1334.97	0.788	0.4472		
RaceHispanic	3236.89	2162.70	1.497	0.1626		
Age_yrs	-21.80	34.17	-0.638	0.5366		
SexMale	-808.64	564.75	-1.432	0.1800		
rs17365093	1343.10	624.69	2.150	0.0546		
rs78062775	1933.76	1030.65	1.876	0.0874		
GSA.rs77943865	-3648.21	1379.09	-2.645	0.0228	*	
rs2268492	1123.80	488.07	2.303	0.0418	*	
rs2268495	921.08	1060.54	0.869	0.4037		
rs2268491	1387.84	706.32	1.965	0.0752		
rs34992398	735.09	842.85	0.872	0.4018		
rs1465386	-388.33	742.86	-0.523	0.6115		
rs2324728	-429.51	547.10	-0.785	0.4490		
rs918316	-145.04	1074.47	-0.135	0.8951		
rs34880121	714.13	585.01	1.221	0.2477		
rs237885	-581,93	778.99	-0.747	0.4707		
rs237899	1180.25	760.04	1.553	0.1487		
rs53576	-87.68	816.98	-0.107	0.9165		
rs237891	-593.81	552.88	-1.074	0.3058		
GSA.rs61183828	-646.19	1415.89	-0.456	0.6570		
signif. codes: 0 '*	**' 0.001	'**' 0.01	'*' 0.05	'.' O.1	' ' 1	

(15 observations deleted due to missingness) Multiple R-squared: 0.8556, Adjusted R-squared: 0.5798 F-statistic: 3.103 on 21 and 11 DF, p-value: 0.02832

So it's figured out then?

It's definitely a start, but let's make sure this makes sense! Here's what we've found so far:

- There is some structure to the data, but it's not clearcut
- Subject age and three different SNPs (genetic mutations) seem to be impacting OXTR binding levels
- We can explain about 50% of the OXTR binding variation with the factors we're looking at

What's next?

Image of in-situ hybridization conducted in Freeman lab

Image of GWAS study

Citations

Maenner, Matthew J., et al. "Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2018." *MMWR Surveillance Summaries* 70.11 (2021): 1.

Haar, Shlomi, et al. "Anatomical abnormalities in autism?." Cerebral cortex 26.4 (2016): 1440-1452.

Mitchell, Bryan F., Xin Fang, and Susan Wong. "Oxytocin: a paracrine hormone in the regulation of parturition?." Reviews of reproduction 3 (1998): 113-122.

Freeman, Sara M., et al. "Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and midbrain." Translational psychiatry 8.1 (2018): 1-11.

Senju, Atsushi, and Mark H. Johnson. "Atypical eye contact in autism: models, mechanisms and development." Neuroscience & Biobehavioral Reviews 33.8 (2009): 1204-1214.

Smith, Kyle S., et al. "Ventral pallidum roles in reward and motivation." Behavioural brain research 196.2 (2009): 155-167.

Huguet, Guillaume, και Thomas Bourgeron. 'Chapter 2 - Genetic Causes of Autism Spectrum Disorders'. Neuronal and Synaptic Dysfunction in Autism Spectrum Disorder and Intellectual Disability. Επιμέλ. Carlo Sala και Chiara Verpelli. San Diego: Academic Press, 2016. 13–24. Web.

Howe, Kevin L. κ.ά. 'Ensembl 2021'. Nucleic Acids Research 49.D1 (2021): D884–D891. Web.

Acknowledgements

- Without Dr. Freeman's support and guidance, none of this would have been possible
- Dr. Lundell provided substantial help with the statistical design of this research project and helped resolve many issues

Questions?

(You can ask me to go back to a slide)

Running out of time to ask your question? Go ahead and shoot me an email at eedayley@gmail.com.