Power Efficient Pulsed Plasma Thruster with Precise Control of High Voltage Generation

Marcos Compadre

Presented by Craig Clark
Introduction (I)

- Pulsed Plasma Thrusters (PPTs) are high-specific-impulse, low-power electric thrusters.
- Teflon used as propellant. Ablation of Teflon produces Plasma.
- High-energy storage element (some Joules). Voltage of 1-2kV,
- Igniter allows main discharge (5-10kV).
- Plasma accelerated by Lorentz force: Thrust!
- No pressure vessel to keep the launch provider happy.
Introduction (II)
Introduction (III)

- Clyde Space Ltd and Mars Space Ltd have been working together on the development of different types of PPTs for both CubeSats and Nanosatellites.

- Experience and different test campaigns allow the improvement and development of new topologies.
Need for Thrust

• Lifetime of LEO Nanosatellites and CubeSats limited by natural de-orbiting.
• Flight Formation.
• Attitude Control.
• Low-thrust maneuvers.
Requirements and Constraints

• Limited space in the satellite: Our target is to fit within a 0.3U enclosure.
• Limited power allocated: Low power consumption.
• Precise and repeatable generation of voltages.
• Low noise – conducted and emitted.
• Accurate control of the firing process.
New Topology (I)

- Analog circuit for high generation of high voltages (main discharge capacitors & spark plug).
- Digital circuit to interface with the rest of the satellite and the analog circuit (MCU, Communications, Command Signals).
- Galvanic isolation between both digital and analog circuits.
New Topology (II)
Main Discharge Capacitors

• Circuit uses a Flyback topology:
 – Inherent galvanic isolation between low (6V) and high voltages (1-2kV).
 – Precise control of the level of charge/energy of the main discharge capacitors.
Spark Plug (I)

• Other circuits use voltage multipliers topologies which produce a burst of pulses.

• Our PPT uses a Flyback converter:
 – Single pulse is accurately generated.
 – Power consumption reduced by the use of a two stages circuit.
 – Repeatability of the pulse generation.
 – 5-10kV output
Spark Plug Circuit (II)

• Double stage circuit:
 – Fist stage: Flyback converter charges a capacitor.
 – Second stage: energy of the capacitor dumped into the primary winding of a high voltage transformer.

Result:
High Voltage generated on the Spark Plug
Digital Interface

- Interfaces with the satellite On Board Computer.
- Controls the charge of the bank of capacitors and firing sequence.
- Use of RS422 or I²C protocols.
Results

• The electronics have been tested with two different discharge chambers:
 – For Nanosatellites
 – For CubeSats

• Tests have been carried out in a vacuum chamber simulating real LEO conditions.

• Thrusters have undergone 1 million shots.

• Transformers designed and potted at Clyde Space.
Characteristics of the PPT for CubeSats

- Specific Impulse = 600s
- Total Impulse: 44Ns (dV of 11m/s of a 3U (4Kg)
- Impulse Bit = 40 uNs (thrust of 40uN if the PPT is fired at 1Hz)
- Propellant stored on board = 7g
- Voltage for digital interface = CubeSat 3V3 Bus
- Voltage for high voltage generation = battery bus.
- Final version housed in enclosure.
- Available to buy now for $17,250.
Thank you for your interest!

Any questions?