Detection of Hydrophilic Coating on Biomedical Devices via Fluorescent Nanoparticles

Sadie Clark, Emilee Rickabaugh, Jamen Cannon, Jessop Oliver | Utah State University

Introduction

Surface properties of devices are one of the largest indicators of biocompatibility. Hydrophilic coatings on sheath introducers for intravenous catheters have been shown to reduce complications in their use

- Current detection of the coating is destructive
 - o Relies on statistical sampling
 - Results in significant loss of viable product, and a loss of significant revenue and material for biomedical companies

A proposed alternative includes the addition of a fluorescent nanoparticle:

 ThermoFisher Fluoromax nanoparticles show promising optical and biocompatible properties

Figure 1 – Intravenous Catheter Sheath Introducer

These sheaths have a hydrophilic coating that helps with functionality and biocompatibility of the device.

Table 1- Gonjometer Results

Sample	Left Contact Angle	Right Contact Angle	Average
Un-coated Sheath	110.5 ± 9.7°	108.4 ± 11.4°	109.5 ± 9.6°
Coated Sheath	54.7 ± 4.7°	50.4 ± 2.9°	52.6 ± 4.19°
Coated Sheath With Fluorophore	61.3 ± 4.4°	53.8 ± 6.2°	57.5 ± 5.3°

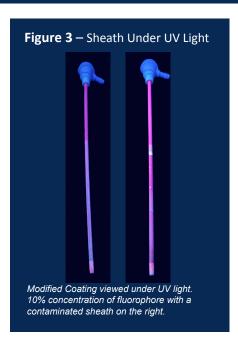
Work completed

Fluorophore additive

- Dilution ratios
 - o 10% v/v chosen
- Coating process
- Goniometer testing
- Statistical analysis

Design solution research

- Toxicity evaluation
- Process incorporation


Results

Goniometer testing on coated sheath with fluorophore

- Hydrophilic properties were conserved
- Further toxicity testing required

Statistical testing on samples

- Identification of uncoated or contaminated sheaths
- Experimental sample (n = 53) produced
 - o 83% accurate identification of contaminated product
 - o 13% of samples falsely identified as contaminated
 - 4% of samples falsely identified as not contaminated

Figure 2 – Goniometer Images

Coated sheath showing hydrophilic properties (left), modified coated sheath with similar hydrophilic properties (center) and uncoated sheath showing hydrophobic properties (right)

Future Work

Next steps of this project include:

- Second round of statistical analysis with comparison to Congo Red Dye test
- Determine biocompatibility
- Cost and repeatability analysis
- Quantification of visual inspection
- Incorporation on assembly line

