Pear fruit sawfly

[Hoplocampa brevis]

Marion Murray, IPM Project Leader • Ryan Davis, Arthropod Diagnostician

Do You Know?

• The common name given to Hoplocampa brevis is pear sawfly. Because another pear sawfly (Caliroa cerasi, also known as pear slug) is common in Utah, we will refer to this species as pear fruit sawfly.
• Pear fruit sawfly is an infrequent pest of pear in Utah, first identified in the state in 2015.
• It causes damage when larvae tunnel through developing pears in spring.
• Injured fruits are deformed and drop prematurely.
• Management is by a single application of an insecticide plus oil, or oil alone, near pear’s pre-bloom stage.

Pear fruit sawfly (Hoplocampa brevis) has been reported on pears in Virginia, Pennsylvania, Maryland, and Ontario, Canada, and was first identified in Utah in 2015. It is native to parts of Asia. Pear fruit sawfly is different from another pear pest of a similar name that strictly feeds on foliage—pear sawfly, which is also known as pear slug (Caliroa cerasi). Pear fruit sawfly feeds exclusively within pear fruitlets for approximately six weeks from early to mid-spring.

DESCRIPTION AND LIFE CYCLE

The pear fruit sawfly adult is a small, fly-like wasp that is reddish-yellow in color. It measures about 3/16-inch long. Most of the adults are female, and they reproduce parthenogenetically (without mating).

Adults start emerging from the soil starting at the pear pre-bloom stage, with a majority of the population emerging over a 5 to 7 day period. During the day, they can be found in the flowers, feeding on pollen and nectar. Eventually, each female lays a single egg within the flower epidermis, toward the center of the calyx, repeating the egg-laying process in up to 40 flowers.

After feeding within fruits, sawfly larvae drop to the ground and don’t emerge as adults until the following spring.

After one to two weeks, each egg hatches into a larva, which then tunnels into the developing pear fruitlet to feed on the flesh and consume the seeds.

The larva is cream to yellowish-grey in color, with a red-brown to dark black head. When mature, it measures 1/3-inch long. During this stage, each larva can enter and exit multiple fruits over a period of 20 to 34 days, passing through five instars. Once fully mature (late May to mid June), the larvae drop to the soil, burrow to a depth of 2 to 7 inches, and form a silky cocoon. The sawflies remain...
Female adult pear fruit sawflies feed on nectar and pollen of pear flowers before laying eggs. In the soil until the following spring, at which time they pupate and emerge as adults. Approximately 25% of pupae remain in the soil an additional year. There is one generation per year.

Pear (Pyrus communis)

Pear fruit sawfly larvae feed exclusively within pear fruitlets. Symptoms of fruits with a larva tunneling inside include:

- deformed and swollen shape
- blemished skin
- round hole located near the calyx, accompanied by black decay and wet frass
- premature fruit drop

To distinguish pear fruit sawfly from codling moth, keep these factors in mind:

- symptoms of pear fruit sawfly will appear weeks before codling moth
- sawfly frass is wetter and darker
- sawfly larvae are smaller, darker in color, and have 7 pairs of prolegs (as opposed to codling moth’s 4)

Infested fruits will drop to the ground after the larva has exited. Orchard or tree injury fluctuates from year to year. The insect population size and amount of damage depends upon the previous year’s damage level, whether adult flight is synchronized with pear bloom, the level of fruit set, and overwintering conditions. In Utah, losses have been

HOSTS

Pear (Pyrus communis)
minor, but in highly infested orchards in Europe, growers have reported up to 70% loss, primarily on borders. Early-blooming varieties are more susceptible.

MANAGEMENT

Monitoring
Start monitoring the pear orchard for adult sawflies in March or April at three-day intervals, and continue through bloom. Shake branches over white cardboard or a cloth tray to determine their presence. After fruitlets form, inspect them for holes, oozing, and/or for frass caused by sawfly larval feeding.

Cultural Control
Where applicable, tilling or cultivating the soil in autumn between tree rows can expose the larval cocoons to predators (birds, beetles, and other) and cold winter temperatures.

Although not tested, late-blooming varieties (such as Anjou, Bosc, Comice, Magness, Orient, Seckel) may be less affected.

Insecticide Treatment Decision-Making
No treatment threshold for the presence of adults or amount of fruit damage has been determined. In general, treatments should be implemented based on the previous year’s damage level, the current crop load, and the presence of adults at flowers (based on monitoring).

If the crop load is high, anecdotal evidence suggests that damage from pear sawfly will be “absorbed” by crop thinning, and therefore, intervention may not be necessary. If the crop load is light, the injury could cause a greater negative impact.

Conventional Insecticides
If a treatment is necessary, the target stage using an insecticide is the adult, and there are two treatment windows: pre-bloom (also known as delayed-dormant) and petal fall.

In Utah, there are no products specifically labeled for this pest, but typical delayed-dormant or petal-fall products for other pests have been shown to be effective in Canada, in the Province of Ontario.

Utah pear growers have found success with a single delayed-dormant treatment. They reported that the use of horticultural oil (2% rate) mixed with a broad-spectrum insecticide (such as carbaryl, a pyrethroid, or diazinon) labeled for pear, reduced losses by about 90%.

Organic Options
For organic control, use oil alone at the delayed-dormant stage. Alternatively (or in addition), the use of beneficial nematodes may be used to target larvae in the soil. Research in Italy found that applying a mix of Heterorhabditis bacteriophora and Steinernema carpocapsae to the soil just before the larvae drop from the fruits to the ground (late May to early June) resulted in zero adult sawfly emergence the following year, as compared to 20 adults in the untreated control.

Nematodes require consistent soil moisture at application and for several months afterward, so this practice may not be effective or practical in Utah.

REFERENCES AND RESOURCES

G. G. Dustin. 1966. Occurrence in Ontario of the Pear Fruit Sawfly, Hoplocampa brevis (Klug). The Canadian Entomologist. 98:267

Photo Credits:

1. AgroAtlas, Agricultural Ecological Atlas of Russia and Neighboring Countries
2. Kamil Holy, BioLib

Precautionary Statement: Utah State University Extension and its employees are not responsible for the use, misuse, or damage caused by application or misapplication of products or information mentioned in this document. All pesticides are labeled with active ingredients, directions for use, and hazards, and not all are registered for edible crops. “Restricted use” pesticides may only be applied by a licensed applicator. The pesticide applicator is legally responsible for proper use. USU makes no endorsement of the products listed herein.

Utah State University is committed to providing an environment free from harassment and other forms of illegal discrimination based on race, color, religion, sex, national origin, age, disability, or veteran’s status. USU’s policy also prohibits discrimination on the basis of sexual orientation in employment and academic related practices and decisions. Utah State University employees and students cannot: Because of race, color, religion, sex, national origin, age, disability, or veteran’s status, refuse to hire; discharge; promote; demote; terminate; discriminate in compensation; or discriminate regarding terms, privileges, or conditions of employment, against any person otherwise qualified. Employees and students also cannot discriminate in the classroom, residence halls, or in on/off campus, USU-sponsored events and activities. This publication is issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Kenneth L. White, Vice President for Extension and Agriculture, Utah State University.