ESPA Satellite Dispenser for ORBCOMM Generation 2

Joe Maly, Jim Goodding Moog CSA Engineering
Gene Fujii, Craig Swaner ORBCOMM

13 August 2013
ESPA Satellite Dispenser for OG2 Constellation

• ORBCOMM Low Earth Orbit constellation
 – Global asset monitoring and messaging services
 – Original constellation: 35 satellites launched in late 1990s.
 – Generation 2 (OG2) satellites upgrade and expand network

• OG2 satellites manufactured by Sierra Nevada Corp (SNC) with payload from Boeing Argon ST
 – Eighteen satellites
 – More data capacity, more robust messaging services

• Two launches on SpaceX Falcon 9 v1.1
 – Environmental assessments: acoustics, shock, quasi-static loads

• Satellite dispenser built on ESPA rings
 – First constellation using ESPA multi-payload adapter
 – Other constellations are considering similar ESPA configurations, e.g., COSMIC2, PlanetIQ
EELV Secondary Payload Adapter

• ESPA ring family originated in late ‘90s to provide capability to Air Force for launching small experimental payloads
 – CSA Engineering designed ring under AFRL/Space Vehicles SBIR contract with funding and technical guidance from DoD Space Test Program

• Prototype designed for Atlas V and Delta IV
 – Flight qualified as secondary payload adapter for EELV Medium
 • 15,000-lb primary satellite
 • Six “ports” with 15” interface provide mounts for six 400-lb secondaries
 – Installed at Standard Interface, 62” bolt circle at top of upper stage

• First flight of ESPA in March 2007 on STP-1 mission

• ESPA is modular, standard component of space launch infrastructure
 – Provides proven route to orbit
Primary design objective: *Minimize impact on primary*

- Ring height originally 24 inches so only small fairing volume taken away from primary
- Structure is stiff in all directions: minimal impact to primary
- SoftRide vibration isolation systems available to reduce environmental loads and provide de-coupling of small sat from primary satellite
ESPA as Constellation Satellite Dispenser

- Constellation launches first considered in 2002
- ULA sponsored study by SpaceDev and CSA in 2007
- ORBCOMM feasibility study for ESPA dispenser on Falcon 9 in 2012
 - Stacking ESPA rings as multi-satellite dispenser avoids custom adapter and minimizes development effort
 - ESPA Grande selected to accommodate OG2 satellite size (not weight)

2002 constellation concept
OG2 Satellites

- OG2 augments network with more subscriber transmitters and receivers, with higher data rate capabilities
- Satellites manufactured by industry team led by SNC
 - Peak solar array power at End of Life ~670W
 - 3-axis-stabilized nadir pointing, yaw-axis sun-tracking ACS system
 - 34AHr Li-Ion batteries
 - Weight 392 lb (178 kg)
- Fully reprogrammable software defined radio provided by Boeing’s Argon ST subsidiary
 - Enhanced messaging capabilities, increased capacity, Automatic Identification Systems (AIS) service
OG2 Dispenser Configuration

Dispenser configuration for OG2 Mission 1

- Two ESPA rings, SoftRide, custom flat plate adapters, electrical harnesses for power, data, separation signals
OG2 Launch Environment Mitigation

- ESPA Dispenser employs vibration isolation to mitigate structure-borne vibration and shock
- Moog CSA SoftRide whole-spacecraft vibration isolation
 - SoftRide has flown on 28 missions to date, including Falcon 9 CRS-1 Mission in October 2012 with prototype OG2 spacecraft
 - CRS-1 telemetry confirmed hardware functionality
 - Isolation of entire launch stack or assembly of multiple satellites is feasible
- Analysis determined OG2 stack isolation preferable to isolating each spacecraft
- Coupled loads analysis has demonstrated performance
ESPA Grande

- Developed as ESPA variant to provide capacity for larger and heavier secondary payloads compared to standard ESPA
 - Original sizing from 2004 NASA engineering study for proposed New Millennium mission
 - Mission was not funded, but CSA completed design under NASA Ames SBIR contract in 2007
- OG2 ESPA has four 24” ports on 42”-tall ring
 - ESPA 4-24-42
- First ESPA 4-24-42 shipped August 5
ESPA 24-inch Port Capability

• 24” bolt circle enables secondary payloads to 700 lbs (318 kg)
 – 24” diameter is consistent with other adapters including CubeStack wafer adapter for CubeSats
 – Separation systems available from PSC, SNC, RUAG

• ESPA Grande secondary capability compared to standard “ESPA-class” 15” interface
OG2 Mounting on ESPA Grande

- ESPA Grande used because of OG2 volume, not weight
- Spacecraft mounted on interface plate to adapt to ESPA 24” port with 36 fasteners
 - Standard fastener 1/4-28, but size increased to 5/16-24 to accommodate 15g in all axes (OG2 satellite qual level)
- To minimize launch-site integration time, adapter integrated to spacecraft prior to shipment
 - Satellite shipping containers accommodate ESPA interface plates
Electrical Harness

- Dispenser electrical harness distributes power, data, and separation signals from launch vehicle to OG2 satellites
 - Connector interfaces, cable capacity, mechanical routing coordinated with SpaceX and SNC
 - Brackets for connector bulkheads, and routing of harness across ESPAs and across SoftRide system

- Assembly per NASA-STD-8739.4

- 8-satellite stack with simple mechanical and electrical interfaces to the LV
Falcon 9 v1.1 Launch Environment

- F9 Payload User’s Guide flight environments reviewed with SpaceX in preparation for ESPA Dispenser CDR
 - Critical loading environments: quasi-static loads, acoustics, shock
- Analyses demonstrated all Dispenser elements except SoftRide isolators have positive margins due to all flight events with no-test safety factors
 - OG2 SoftRide flexures were subjected to qualification program, and all SoftRide flight parts have been acceptance tested
- Actual loads, accelerations, deflections computed with coupled loads analysis
 - Dispenser modeled in detail including SoftRide damping matrix
SoftRide Whole-Spacecraft Vibration Isolation

• Mechanical isolation acts as low-pass filter to attenuate vibration energy above isolation frequencies
• Whole-spacecraft isolation typically implemented to mitigate one or more known launch load events
 – e.g. solid-rocket motor resonant burn, random vibration MPE
 – Requires linear system for all load events, including tensile preloads from 2g to compression loads of 6g or more
 – SoftRide employs all-metallic load path with parallel viscoelastic damping
• Flight heritage on 9 vehicles ranging from Minotaur to Delta IV Heavy
 – SoftRide must be included in Mission coupled loads analyses
• Falcon 9 v1.1 new vehicle and design environments still being developed
 – SoftRide is risk reduction due uncertainty in structure-borne loads
Dispenser Strength and Dynamics

- Strength analysis performed in NASTRAN with model of payload stack coupled to Falcon 9 Payload Attach Fitting
 - SoftRide modeled with NASTRAN Direct Matrix Input at a Grid (DMIG)
 - Satellites with interface adapters included as Craig-Bampton models
- SoftRide analysis showed ample margins on strength and minimum mode frequencies with temperature dependent damping modeled over flight temperature range
 - “Rocking” at 10 Hz
 - “Bounce” at 25 Hz
Vibro-acoustic Environment

- Model created and analysis performed with VA-One
 - Payload stack subjected to max predicted acoustic environment
- Model predicted payload stack vibration at spacecraft interface and spacecraft deck
 - Predictions compared to acceptance requirements
 - OG2 spacecraft have random vibration limit specification
- Analysis showed acceptable response levels
 - Spacecraft/Dispenser interface predictions for vibration are compliant to interface requirements
 - Payload and equipment deck predictions comply with acceptance requirements

Falcon 9 v1.1 Payload Fairing Acoustic Environment Requirement; 139.6 dB OASPL
Shock Environment

- F9 Payload User’s Guide shock environment at Dispenser interface to PAF
 - OG2 spacecraft have Dispenser interface shock requirement
- Shock attenuation through Dispenser estimated with distance attenuation factors and experience-based joint attenuation factors, combined with test-based SoftRide shock attenuation
 - Predicted shock due to launch vehicle induced events is compliant to Dispenser/Spacecraft interface requirement

Falcon 9 Shock Environment, Launch Vehicle Side of 62” Interface
Integration

• Integration activities at launch site on very tight schedule
 – Facilitated by modular ESPA features and eight identical satellites

• Integration activities prior to shipment
 – Mating of satellites to Flat Plate Adapters at SNC in Louisville
 – Integration of harnesses to ESPAs at Moog CSA in Mountain View

• Ground support equipment and Interface Control Documents for assembly of Integrated Payload Stack
Mission 2

- Falcon 9 to launch remaining spacecraft of ORBCOMM Generation 2 constellation
 - Planned for 2014
- Satellite Dispenser based on Mission 1 Dispenser with capability added for at least one more spacecraft
Acknowledgments

Dustin Doud, SpaceX
Jim Christensen, Sierra Nevada Corporation
John Stolte, Chris Becek, Tony Hopko, ORBCOMM
Chris Paavola, Scott Pendleton, John Howat,
 John Shepard, Kevin Noble, Moog CSA Engineering