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ABSTRACT

Weyl Gravity as a Gauge Theory

by

Juan Teancum Trujillo, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. James T. Wheeler
Department: Physics

In 1920, Rudolf Bach proposed an action based on the square of the Weyl tensor or

CabcdCabcd where the Weyl tensor is an invariant under a scaling of the metric. A variation

of the metric leads to the field equation known as the Bach equation. In this dissertation,

the same action is analyzed, but as a conformal gauge theory. It is shown that this action is

a result of a particular gauging of this group. By treating it as a gauge theory, it is natural

to vary all of the gauge fields independently, rather than performing the usual fourth-order

metric variation only. We show that solutions of the resulting vacuum field equations are

all solutions to the vacuum Einstein equation, up to a conformal factor – a result consistent

with local scale freedom. We also show how solutions for the gauge fields imply there is

no gravitational self energy.

(109 pages)
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PUBLIC ABSTRACT

Weyl Gravity as a Gauge Theory

Juan Teancum Trujillo

A gauge theory is a theory in which the governing functional, known as the action,

remains invariant under a continuous group of local transformations that form its symme-

try. Each of the known fundamental interactions in the universe, such as electricity and

magnetism, can be explained as arising from a particular gauge theory. Gravitation is no

exception. Just as calculus can be used to find the value of a variable that maximizes or

minimizes a function, calculus of variations can be used to find the equations, known as the

field equations, that extremize the action, and these are the main equations of interest. Solv-

ing, or finding solutions to these equations, provides the physical predictions or describes

the expected physical results from a particular theory. Different actions with different sym-

metries may or may not be equivalent. In this work, we consider a theory of gravity whose

action is invariant under local scale transformations, but as a gauge theory under the micro-

scope of the entire range of such transformations. We show what the implications are and

how this might give a better and fuller description of reality.
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CHAPTER 1

INTRODUCTION

1.1. History

Beginning with Einstein’s theory of general relativity in 1915 [1], gravity as a gauge

theory emerged gradually. Although not strictly a gauge theory, it utilized some impor-

tant concepts. For example, herein lay the idea of the covariant derivative, and from that,

the connection. Generalizations were soon to follow. Much to Einstein’s delight, Her-

mann Weyl introduced the concept of parallel transfer [2, 3] in which vectors associated

with different points on a manifold could be compared. Weyl stated, “All physical quanti-

ties have a world-geometrical meaning,” [3] in his attempt to unify electromagnetism with

gravitation. As a starting point for a physical theory, he wrote down the quadratic cur-

vature action, S =
´

Ri
jklR

jkl
i
√

gdx, although he created a nonintegrable theory in trying

to identify the electromagnetic potential with the gauge field of dilatations, or local scale

transformations.1 In fact, it was Weyl himself who was the first to apply the word gauge2

to a physical theory [4]. Rudolph Bach3 [6] introduced the concept of the Weyl curvature

tensor, which is invariant under these scale transformations. In keeping with ideas of Weyl,

he, too, constructed a curvature-squared action from this tensor 4.1. A variation of this ac-

tion, with respect to the metric, leads to the celebrated Bach equation (4.25) which will be

discussed in further detail in this work. With the advent of quantum mechanics, London [7]

realized that Weyl’s nonintegrable factor could be be purely imaginary, and in the presence

of an electromagnetic field, become the phase factor associated with wavefunctions. Upon

seeing this, Weyl realized the phase factor could be made local and formalized his findings

with the U(1) formulation of electromagnetism. In his paper [8], he introduced the concept

1It was Einstein himself who noted these size changes would be unphysical since in the case of atoms,
their spectra depends only on their chemical classification and not on their histories [4].

2The term was originally used to denote the distance between the rails of a railroad track. Since tracks of
various gauges, or widths, were in use, it seems only appropriate that the same terminology be used to denote
the scale factor for the metric.

3Bach was a pseudonym. His given last name was Förster [5].
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of the tetrad and generalized the covariant derivative to include the connection for abelian

groups.

Building on the work of Weyl, Yang and Mills4 were able to create an SU(2) invariant

theory for nuclear interactions, and thus, were able to extend the concept of the curva-

ture, or a field strength, to a nonabelian group [10]. Without realizing that Yang and Mills

were also concurrently generalizing gauge theory, Ryoyu Utiyama was able to do so for

Lie groups [11], and in particular, to the Lorentz group. The first gauge theory of gravity

can be attributed to him. Simplifying the discussion of Utiyama, Kibble [12] stated the

Lorentz transformations “become arbitrary functions of position” and “they may be inter-

preted as general coordinate transformations and rotations of the vierbein system.” Utiyama

and Kibble helped pave the way by requiring gauge theories of gravity to be Lorentz in-

variant. Ne’eman and Regge [13] formalized a gauge theory construction of gravity by

using the techniques developed by Cartan, Kobayashi and Nomizu [14, 15]. Ivanov and

Niederle [16] considered a gauge theory of gravity based explicitly on the Poincaré group.

Kaku, Townsend, and Nieuwenhuizen wrote a quadratic Lorentz curvature action based on

the conformal group with Lorentz, dilatational, and special conformal symmetry [17] and

showed how it reduced to Bach’s action (4.1). In fact, the action they consider is (5.67)

without the addition of quadratic dilatational curvature term. They specifically refer to

Bach’s action as Weyl gravity, 5 a terminology which we use in the remainder of this work.

1.2. Recent work

Some recent work has been completed on Weyl gravity. Among the motivation for

studying theories based on the work of Weyl are because the “fourth-order terms can pre-

vent the big bang singularity of GRT [General Relativity Theory]; the gravitational poten-

tial of a point mass is bounded in the linearized case; the inflationary cosmological model

4C.N. Yang did, on occasion, meet with Weyl, but their interaction never led to a discussion on physics,
or even mathematics [9].

5From their paper [17], it is apparent they believe (4.1) was written by Weyl. Unmistakably, both Weyl
and Bach were students of David Hilbert at Göttingen [5].
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is a natural outcome of this theory” and that they tend to be “renormalizable at the one-loop

quantum level” [18], which is a property not shared by standard general relativity. In an

attempt to extend these results, Mannheim and O’brien [19] claim a spherically symmetric

solution to the Bach equation [20], reducible to the Schwarzchild metric, introduces a lin-

ear term to the gravitational potential, which can then be used to reproduce galactic rotation

curves without having to resort to dark matter. Sultana et al. [21] claim fitting parameters in

the same metric to perihelion procession in the case of Mercury agree with those obtained

from the galactic rotation curves, as well as with the observed perihelion shift.

Likewise, Edery and Paranjabe have proposed tests in Weyl gravity measuring “the

deflection of light and time delay in the exterior of a static spherically symmetric source” in

which the extra parameter “imitates the effect of dark matter” [22], and the results seem to

agree with what has been determined experimentally. Lobo [23] considered the conditions

for traversable wormholes in this theory. Klemm [24] discussed how certain exact solutions

to the Bach equation can be interpreted as topological black holes.

1.3. Overview

In this work, we present the more generally known results and techniques first and

culminate with our findings. We begin with the standard construction of general relativity in

Chapter 2 in which a covariant derivative, with its properties, is defined. We then show how

it transforms under changes in coordinates, how the covariant derivative acts on forms, and

how parallel transport leads to metric compatibility. Then we use the covariant derivative

to define the Riemann curvature tensor, the Ricci tensor, the Ricci scalar, and show their

transformation properties. From the transformation properties, an action is constructed and

is varied with respect to the dynamical fields to arrive at the field equations, from which we

get the Einstein equation.

In Chapter 3, we present general relativity as a gauge theory of the Poincaré group. This

is accomplished by first defining the transformations of this group, their infinitesimal trans-
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formations, and then their commutators. The differential relationship between the forms

dual to the infinitesimal transformations, via the structure equations, is shown, as well as

the corresponding relationships through the Bianchi identities. The quotient method is pre-

sented and tensors are then identified, from which an action functional with the desired

symmetry is formed. We show how varying the action leads to field equations that are in

agreement with the more standard construction of general relativity.

Chapter 4 shows the construction of Weyl gravity by presenting the Weyl curvature

tensor and a quadratic action formed from it. We then show how the Gauss-Bonnet identity

can be used to rewrite the action and the field equation that comes from varying the metric,

and the connection between this theory and general relativity. Chapter 5 presents Weyl

gravity as a gauge theory of the conformal group in the same way general relativity was

presented as a gauge theory of the Poincaré group in Chapter 3. Chapter 6 shows solutions

to the gauge theory solve the Bach equation. In Chapter 7, we show all solutions to this

gauge theory are conformal transformations of solutions to the vacuum Einstein equation.

Lastly, in Chapter 8, we discuss how the field equations show no gravitational self energy

exists and that even with an arbitrary conformal factor, no length changes are possible. We

also summarize our results.
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CHAPTER 2

GENERAL RELATIVITY

In this chapter, we present the standard formulation of general relativity, beginning

with the covariant derivative and how it transforms under general coordinate transforma-

tions. From this, we find the transformation of the Christoffel connection within the covari-

ant derivative and define metric compatibility, from which we arrive at a definition of the

Christoffel connection. We then show how to arrive at the standard tensors starting with

the Riemann curvature tensor and its contractions. Lastly, we present an action and vary it

to arrive at the Einstein equation.

2.1. The covariant derivative and the Christoffel connection

General relativity embraces the concept of general coordinate invariance, i.e. a theory

that is independent of the choice of coordinates that one chooses to express it in. One of the

fundamental concepts of this theory is the notion of the covariant derivative , Dα , which

expresses how vectors on a manifold are differentiated. Its utility is manifest in that it can be

used to compare vectors, which reside on different tangent spaces (or co-tangent spaces) of

the manifold. In this section, we present the properties of the covariant derivative and show

how the Christoffel connection, as a fundamental part of this derivative, transforms under

a change of coordinates. Using the definition of the covariant derivative on contravariant

vectors, we derive the form of the covariant derivative on covariant vectors, or forms. We

show what the implications of parallel transfer are for the covariant derivative of the metric.

From the results of parallel transfer (metric compatibility) and the covariant derivative of

forms, we solve for the Christoffel connection in terms of the metric and its derivatives.
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2.1.1. Properties of the covariant derivative

The covariant derivative is an object, which must be linear in the sense that

Dα (α f +βg) = αDα f +βDαg (2.1)

for constants α and β and tensors f and g of the same rank. It must also follow the Leibniz

rule,

Dα( f g) = f Dαg+gDα f . (2.2)

The covariant derivative of a contravariant vector is defined as

Dαvβ ≡ ∂αvβ +Γ
β

µαvµ , (2.3)

where Γ
β

µα is a Christoffel symbol or simply the connection. With a coordinate transfor-

mation matrix for the vector field from coordinates xβ to yα or Jacobian matrix given by

Jα

β
=

∂yα

∂xβ

and the inverse transformation matrix from coordinates yα to xβ or inverse Jacobian matrix

given by

J̄β

α =
∂xβ

∂yα
,

covariance is defined as

D
′
αv′β =

(
Dαvβ

)′
, (2.4)

where

v′β ≡ Jβ

µvµ , (2.5)

D
′
α (∂ ,Γ) = Dα

(
∂
′,Γ′
)
, (2.6)
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and (

Dαvβ

)′
= Jµ

αJβ

νDµvν . (2.7)

From conditions (2.5), (2.6), and (2.7), we get

(
Jµ

α∂µ

)(
Jβ

νvν

)
+Γ

′β
µα

(
Jµ

νvν
)
= Jµ

αJβ

ν

(
∂µvν +Γ

v
ρµvρ

)
. (2.8)

Renaming indices so the arbitrary vectors drop out and multiplying both sides by Jν

σ , we

find

Γ
′β

σα = Jν

σ Jµ

αJβ

ρΓ
ρ

νµ − Jν

σ Jµ

α∂µ

(
Jβ

ν

)
. (2.9)

This gives the transformation of the Christoffel connection under general coordinate trans-

formations.

The Christoffel connection is defined to be symmetric on the final two indices. If we

define a more general connection, we introduce a new tensor. Anti-symmetrizing on the σ

and α indices, we find

Γ
′β

[σα]
= Jν

σ Jµ

αJβ

ρΓ
ρ

[νµ]
. (2.10)

With the inhomogeneous part now gone, the anti-symmetric part transforms linearly and

homogeneously under general coordinate transformations, and we identify this part as a

tensor called the torsion.

2.1.2. Covariant derivative of a form

From the Leibniz rule (2.2), we have the covariant derivative of the contraction of a

vector with a 1-form is given by

Dα

(
wβ vβ

)
= wβ D

(
vβ

)
+D(wβ )v

β . (2.11)
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Since the left side has no free indices, we have Dα

(
wβ vβ

)
= ∂α

(
wβ vβ

)
; therefore,

Dα

(
wβ vβ

)
= wβ ∂α

(
vβ

)
+∂α

(
wβ

)
vβ , (2.12)

and consequently,

∂α

(
wβ

)
vβ = wβ Γ

β

µαvµ +Dα(wβ )v
β . (2.13)

Solving for the covariant derivative from the right side and stripping the arbitrary vector

gives

Dα(wβ ) = ∂α

(
wβ

)
−wµΓ

µ

βα
(2.14)

as the covariant derivative of a
(0

1
)

tensor.

2.1.3. Metric compatibility

Suppose that vα and wα are two vector fields that are covariantly constant along a curve.

That is

uαDαvβ = 0 (2.15)

and

uαDαwβ = 0 (2.16)

for all points on a curve with tangent vector ua. Put differently, moving along a curve, the

vectors in each vector field do not change and maintain their orientation.

Since the orientation does not change, we demand the inner product, vβ wβ , must also

not change either, i.e.,

uαDα

(
vβ wβ

)
= 0, (2.17)

which is the same as

uαDα

(
gµνvµwν

)
= 0. (2.18)



9
Expanding (2.18) gives

uαDα

(
gµν

)
vµwν +gµνuαDα (vµ)wν +gµνvµuαDα(wν) = 0, (2.19)

which becomes

uαDα

(
gµν

)
vµwν = 0. (2.20)

Since this must hold for arbitrary vectors uα , vµ , and wν , this becomes

Dα

(
gµν

)
= 0, (2.21)

which is the condition for metric compatibility.

2.1.4. Solution for the Christoffel Connection

Because of metric compatibility (2.21), we may write a sum-sum-difference rule given

by

0 = Dαgµν +Dµgνα −Dνgαµ . (2.22)

Writing out the covariant derivative of forms as given by (2.14) and simplifying, we arrive

at

0 = ∂αgµν +∂µgνα −∂νgαµ −2gνβ Γ
β

αµ . (2.23)

Solving for the term with the Christoffel symbol and contracting with an inverse metric

(and renaming indices) we find

Γ
α
µν =

1
2

gαβ
(
gνβ ,µ +gβ µ,ν −gµν ,β

)
, (2.24)

where a comma defines a partial derivative
(
gµν ,β ≡ ∂β gµν

)
. This gives the Christoffel

connection in terms of the metric and its derivatives.
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2.2. Tensors in general relativity

Tensors are important for forming actions that are invariant under a particular group

of transformations. In the previous section, we arrived at one tensor, the torsion, which

transformed linearly and homogeneously under general coordinate transformations. Using

the covariant derivative, we arrive at one more, the Riemann curvature tensor. Taking two

contractions of this tensor gives us two more, the Ricci tensor, and the Ricci scalar.

2.2.1. Riemann Curvature Tensor

The Riemann curvature tensor comes from a commutator of two covariant derivatives

acting on a vector, that is

[
Dµ ,Dν

]
wα = DµDνwα −DνDµwα . (2.25)

Using the definition of the covariant derivative (2.3), we arrive at

[
Dµ ,Dν

]
wα =

[
Γ

α

βν ,µ −Γ
α

β µ,ν +Γ
ρ

βν
Γ

α
µρ −Γ

ρ

β µ
Γ

α
ρν

]
wβ . (2.26)

We then define

Rα

β µν
≡ Γ

α

βν ,µ −Γ
α

β µ,ν +Γ
ρ

βν
Γ

α
µρ −Γ

ρ

β µ
Γ

α
ρν (2.27)

as the Riemann curvature tensor so

[
Dµ ,Dν

]
wα = Rα

β µν
wβ . (2.28)

Since the covariant derivative transforms as a tensor via (2.6) and wα is a tensor, we con-

clude Rα

β µν
is a tensor with transformation property given by

R̃α

β µν
= J̄ρ

ν J̄σ

β
J̄γ

µJα

δ
Rδ

σγρ . (2.29)
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2.2.2. Ricci tensor and Ricci scalar

The Ricci tensor and the Ricci scalar are contractions of the Riemann curvature tensor.

That is,

Rµν = Rα
µαν . (2.30)

It transforms as

R̃µν = J̄α
µ J̄β

νRαβ . (2.31)

Lastly, the Ricci scalar is defined as

R = gµνRµν , (2.32)

and it transforms as

R̃ = g̃µν R̃µν

= Jµ

α Jν

β
gαβ J̄ρ

µ J̄σ
νRρσ

= gµνRµν , (2.33)

and therefore,

R̃ = R (2.34)

so the Ricci scalar is invariant under general coordinate transformations.

2.2.3. Transformation of the metric and volume element

The metric transforms as

g′µν = J̄ρ

µ J̄σ
ν gρσ . (2.35)
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Using g as the determinant of the metric and J̄ as the determinant of the inverse Jacobian

metric, the determinant of (2.35) is

g′ = J̄2g. (2.36)

Taking a square root of both sides yields

√
g′ = J̄

√
g. (2.37)

Since

Ja
bJ̄b

c = δ
a
c, (2.38)

taking the determinant of both sides yields

JJ̄ = 1, (2.39)

where J is the Jacobian so (2.37) can be written as

√
g′ =

1
J
√

g. (2.40)

The relation between differential forms and ordinary coordinate differentials is

d4x↔ 1
4!

εµναβ dxµ ∧dxν ∧dxa∧dxβ , (2.41)

where εµναβ is the Levi-Civita symbol. Changing coordinates,

d4x′ ↔ 1
4!

εµναβ Jµ

ρJν
σ Jα

λ
Jβ

τ dxρ ∧dxσ ∧dxλ ∧dxτ , (2.42)

which gives

d4x′ =
1
4!

Jερσλτdxρ ∧dxσ ∧dxλ ∧dxτ (2.43)
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so

d4x′ = Jd4x. (2.44)

Defining the volume form as

dV =
√
−gd4x (2.45)

then in different coordinates and using (2.40) and (2.44), we have

dV ′ =
(

1
J
√
−g
)(

Jd4x
)

(2.46)

and dV ′ = dV so the volume form remains unchanged by general coordinate transforma-

tions.

2.2.4. Summary

Having obtained the Riemann curvature tensor, Rα

β µν
, as a commutator of two covariant

derivatives, we contract on the first and third index to get the Ricci tensor, Rµν , and then

contract with the metric to arrive at the Ricci scalar, R. The transformation properties of

these tensors is summarized below:

R̃α

β µν
= J̄ρ

ν J̄σ

β
J̄γ

µJα

δ
Rδ

σγρ , (2.47)

R̃µν = J̄α
µ J̄β

νRαβ , (2.48)

R̃ = R, and (2.49)

dV ′ = dV. (2.50)

These can be combined to form invariant scalar actions.

2.3. Action and field equations

In this section, we use our set of tensors to construct an action. Using calculus of

variations, we vary the action with respect to its independent fields, the metric and the
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Christoffel connection, to arrive at the field equations. That is, we find the equations that

extremize this particular functional. We consider their implications.

2.3.1. Action

There are many possible actions that could be constructed that would be invariant under

general coordinate transformations. The simplest one is one constructed linearly from the

Ricci scalar,

S =

ˆ
R
√
−gd4x. (2.51)

This is known as the Einstein-Hilbert action. We consider two methods of the variation of

S, the Palatini variation and the second-order variation.

2.3.2. Palatini variation of the metric

In the Palatini variation, we vary the metric and the connection independently. Using

(2.32), we can expand (2.51) as

S =

ˆ
gµνRµν

√
−gd4x. (2.52)

Variation of this action with respect to the metric gives

δgS =

ˆ [
δ (gµν)Rµν

√
−g+Rδ

(√
−g
)]

d4x. (2.53)

The variation of the determinant is given by

δ
(√
−g
)
=

1
2
√
−ggµν

δgµν . (2.54)

Given

gµν
δ
(
gµν

)
=−δ (gµν)gµν , (2.55)
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we may write (2.54) as

δ
(√
−g
)
=−1

2
√
−ggµνδ (gµν) . (2.56)

Substitution of (2.56) into (2.53) yields

0 =

ˆ [
Rµν −

1
2

gµνR
]

δ (gµν)d4x, (2.57)

from which the field equation can be extracted for an arbitrary variation of the metric:

0 = Rµν −
1
2

gµνR. (2.58)

The Einstein tensor is then defined as

Gµν ≡ Rµν −
1
2

gµνR, (2.59)

so the field equation from the variation of the metric can also be written as simply

Gµν = 0. (2.60)

This is the vacuum Einstein equation.

2.3.3. Variation of the connection

The Palatini variation also requires us to vary the connection, Γα
µν , which is assumed

to be symmetric, but not necessarily Christoffel. From (2.52), a variation of the connection,

gives

δΓS =

ˆ
δΓ

(
Rµν

)
gµν
√
−gd4x. (2.61)
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Contracting on an index from the definition of the Riemann curvature tensor (2.27) to get

the Ricci tensor and then taking a variation of the connection, we find

δRµν = Dν

(
δΓ

α
µα

)
−Dα

(
δΓ

α
µν

)
. (2.62)

Substituting (2.62) into (2.61) and integrating by parts, we find

ˆ [
Dα

(
gµν
√
−g
)

δ
β

ν −Dν

(
gµν
√
−g
)

δ
β

α

]
δΓ

α

µβ
d4x = 0, (2.63)

and the field equation becomes

Dα

(
gµν
√
−gδ

β

ν

)
−Dν

(
gµν
√
−gδ

β

α

)
= 0. (2.64)

Contracting on β and α (and with n = 4), we find

Dν

(
gµν
√
−g
)
= 0. (2.65)

Substituting this back into (2.64) we are left with

Dα

(
gµβ
√
−g
)
= 0. (2.66)

Finally, assuming covariant constancy of the volume element, Dα

√
−g = 0, we have

Dαgµβ = 0, (2.67)

which is the condition for metric compatibility (2.21).
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2.3.4. Second-order variation of the metric

In the Palatini variation of the metric, only the metric appearing explicitly was varied.

However, in a second-order variation, the metric dependence of the Ricci tensor must also

be considered. In that case, the initial variation gives three terms instead of two:

δgS =

ˆ [
δg

(
gcd
)

Rcd
√
−g+gabRabδg

(√
−g
)
+gab

δg (Rab)
√
−g
]

d4x.

Because in the second-order variation the Ricci scalar is assumed to depend on the Christof-

fel connection, its variation can be written as

δRab = Db (δΓ
c
ac)−Dc (δΓ

c
ab) . (2.68)

The variation of the Christoffel connection with respect to the metric is given by

δΓ
a
bc = δgaege f Γ

f
bc +gad

δgedΓ
e
cb +

1
2

gad (δgcd;b +δgdb;c−δgbc;d) . (2.69)

Substituting this into (2.68) gives

δRab =
1
2

gcdDbDa (δgcd)+
1
2

gcdDbDc (δgda)−
1
2

gcdDbDd (δgac)

−1
2

gcdDcDaδgbd−
1
2

gcdDcDb (δgda)+
1
2

gcdDcDd (δgab;dc) . (2.70)

Contracting the variation of the Ricci tensor with respect to the metric to give the third term

in the original variation, then integrating by parts and using metric compatibility gives

gab√−gδg (Rab) =−DeDe (√−g
)

δ

(
gab
)

gab−DaDb
(√
−g
)

δgab, (2.71)
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and since the volume form is covariantly constant, i.e. D(

√
−g) = 0, we find

gab√−gδg (Rab) = 0, (2.72)

and the remaining terms in the variation give the vacuum Einstein equation (4.26). In

this case, the Palatini and second-order variation result in the same field equation, but in

general, this is not the case. For Weyl gravity, the two variations give different results.

2.3.5. Summary

Having formed an action entirely from the Ricci scalar and the volume element, we

varied it to find the field equations. The Palatini variation of the metric gave the vacuum

Einstein equation. In this particular case, the second-order variation also gave the vacuum

Einstein equation. Lastly, assuming a covariantly constant metric determinant, the variation

of the Christoffel connection implied a covariantly constant metric.
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CHAPTER 3

GENERAL RELATIVITY AS A GAUGE THEORY

In this chapter, we review general relativity as a gauge theory of the Poincaré group.

We begin by defining the transformations of this group and then find the corresponding

infinitesimal transformations, or generators. We take commutators of these generators to

determine its Lie algebra. From the Lie algebra, the relations between the forms dual to the

generators are found, otherwise known as the Maurer-Cartan structure equations. The inte-

grability condition for the structure equations, or Bianchi identities, are also determined.

Once the basic information information of the group is extracted, we turn to the quotient

method, as developed by Cartan, Kobayashi, and Nomizu [14, 15] and used by Ne’eman

and Regge [13]. The general basic steps to forming a gauge theory by the quotient method

are fivefold. First, given a Lie group, G , we determine a Lie subgroup, H ⊂ G , which will

act as our symmetry group. Second, we form the group quotient, G /H , and generalize

the manifold and the connections from the structure equations to form the field strengths or

curvatures. In this particular case, the Lie group, G , is the Poincaré group and the symmetry

group, H , is the group of Lorentz transformations. Third, we identify the tensors from

the available symmetries, objects that transform linearly and homogeneously. Fourth, we

form an action from the available tensors. The action should be invariant under the local

symmetry transformations. Once the action is formed, the final step is to vary the action

with respect to its independent forms, and together with the structure equations and the

Bianchi identities, we try to find solutions for all the connection forms.

3.1. Group generators for the Poincaré group

Since general relativity as a gauge theory is based on the Poincaré group, a description

of this group and its properties are in order. The Poincaré group is a semidirect product

of two Lie groups: the group of Lorentz transformations and the group of translations. In

this section, we present the mathematical definitions of the Lorentz transformations and
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translations, and find their infinitesimal transformations.

3.1.1. Lorentz transformations

The Lorentz transformations, represented by Λa
b are transformations that preserve the

Minkowski metric, given by

ηab =



−1

1

1

1


. (3.1)

This is represented by

ηabx̃ax̃b = ηabxaxb, (3.2)

where

x̃a = Λ
a

bxb (3.3)

and xb is a space-time vector. Transformations close to the identity can be represented by

Λ
a

b = δ
a

b + ε
a

b, (3.4)

where εa
b is the generator of the Lorentz transformations. Substituting (3.4) and (3.3) into

(3.2) and keeping only terms that are first order in εa
b, we find

εdc =−εcd, (3.5)

and so the generators are antisymmetric. To get a function space representation of this

metric we write

xa ' xa + ε
a
bxb. (3.6)
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Using

δ
b
d = η

bc
ηcd (3.7)

and

δ
a
e =

∂

∂xe xa (3.8)

it is possible to pull out an arbitrary vector, i.e.,

xa '
(

1+ ε
ec

ηcdxd ∂

∂xe

)
xa. (3.9)

Using the express antisymmetry of εa
b, the generator of the Lorentz transformations can

then be represented by

Mab =
1
2
(xa∂b− xb∂a) . (3.10)

Raising an index with the metric and defining the antisymmetric projection operator,

∆
ac
db ≡

1
2
(δ a

dδ
c
b−η

ac
ηdb) , (3.11)

the generator of the Lorentz transformations can now be expressed as

Ma
b = ∆

ac
dbxd

∂c. (3.12)

3.1.2. Translations

Translations are given by

x̃a = xa +aa, (3.13)

which can be written as

x̃a = (1+ac
∂c)xa. (3.14)
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Factoring out the arbitrary vector and constant, the generator is given by

Pb =
∂

∂xb = ∂b. (3.15)

3.2. Lie algebra for the Poincaré group

The Lie algebra of the Poincaré group is the set of all possible commutators from the

generators, i.e.,

[GA,GB] = c C
AB GC, (3.16)

where GA is a group generator, and c C
AB is what is known as a structure constant. We have

[Ma
b,M

c
d] =

1
2

(
δ

c
bδ

a
f δ

h
d−δ

a
dδ

h
bδ

c
f −ηbdη

ch
δ

a
f −η

ac
ηb f δ

h
d

)
M f

h, (3.17)

[Ma
b,Pc] =−∆

a f
cb Pf . (3.18)

A commutator of the generator of translations with itself is zero since partial derivatives

commute (order of differentiation does not matter). Since there are only two sets of genera-

tors in this group, no other commutators are possible. Using G(a
b)

to represent the generator

of Lorentz transformations with indices a and b and G(·c)
to represent the generator of the

translations with index c, (3.17) and (3.18) can be represented as

[
G(a

b)
,G(c

d)

]
= c

(
f
h

)
(a

b)(
c
d)

G( f
h

), (3.19)

[
G(a

b)
,G(·c)

]
= c

( ·f )
(a

b)( ·c)
G( ·

f

). (3.20)

Straightaway, we have

− c

(
f
h

)
(c

d)(
a
b)

= c

(
f
h

)
(a

b)(
c
d)

=
1
2

(
δ

c
bδ

a
f δ

h
d−δ

a
dδ

h
bδ

c
f −ηbdη

ch
δ

a
f −η

ac
ηb f δ

h
d

)
, (3.21)
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and

c
( ·f )

(a
b)( ·c)

=−∆
a f
cb , (3.22)

which are the nonvanishing structure constants for the Poincaré group.

3.3. Maurer-Cartan structure equations of the Poincaré group

For any Lie group, there exists a one-to-one correspondence between contravariant vec-

tors and covariant vectors, or between the generators and forms, expressed by

〈
ω

A,GB

〉
= δ

A
B. (3.23)

Expanded out,

ω
A = ω

A
MdxM (3.24)

and

GA = GM
A

∂

∂xM , (3.25)

where xM are coordinates on the group manifold. Likewise, there is a one-to-one corre-

spondence in a coordinate basis,

〈
dxM,

∂

∂xN

〉
= δ

M
N . (3.26)

Combining (3.23) with (3.26) gives

ω
A
N GN

B = δ
A
B, (3.27)

which implies

ω
A
N = ḠA

N =
[
GA

N

]−1
. (3.28)
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Substitution of (3.25) into the commutator relation for generators (3.16) and utilizing (3.28)

gives the Maurer-Cartan equation for a Lie group given by

dω
C =−1

2
c C

AB ω
A∧ω

B, (3.29)

where d is the exterior derivative and where dωA = ∂M
(
ωA

N
)

dxM ∧dxN . For the Poincaré

group, the possible indices are

A ∈ {(a
b) ,(

a
·)} , (3.30)

and the possible forms then become

ω
A ∈

{
ω(a

b),ω( a
· )
}

≡ {ωa
b,e

a} . (3.31)

Here, ωa
b is the gauge field or the form that is dual to the generator of the Lorentz transfor-

mations. Another name for this particular form is the spin connection. Likewise, ea is the

gauge field of the translations. Another name for this form is the solder form.

3.3.1. Structure equation for Lorentz transformations

For the Lorentz transformations, (3.29) becomes

dω(a
b) =−1

2
c (a

b)

(c
d)
(

e
f

) ω(c
d)∧ω

(
e
f

)
. (3.32)

Using (3.31) and the structure constant from the commutator of two Lorentz transforma-

tions (3.17), (3.32) becomes

dω
a
b = ω

c
b∧ω

a
c. (3.33)
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3.3.2. Structure equation for translations

For the translations, we have

dω
( ·c) =−1

2
c

( ·f )
(a

b)( ·c)
ω(a

b)∧ω
( ·c)− 1

2
c

( ·f )
( ·c)(a

b)
ω

( ·c)∧ω(a
b). (3.34)

Using the structure constant from the commutator of the Lorentz transformations and the

translations (3.22), we find

dea = eb∧ω
a
b. (3.35)

3.3.3. Poincaré structure equations with curvature

The connection may be generalized, thereby adding curvature. The two equations

(3.33) and (3.35) become

dω
a
b = ω

c
b∧ω

a
c +Ra

b, and (3.36)

dea = eb∧ω
a
b +Ta, (3.37)

where Ra
b is the Riemann curvature tensor and Ta is the torsion. Notice (3.36) can be

rewritten to give

Ra
b = dω

a
b−ω

c
b∧ω

a
c (3.38)

as a definition for Ra
b.

3.3.4. Independence of lifting

In a particular gauging, all of the forms and curvatures must be expanded in the forms

that do not span the fibers. That is, we want them to be independent of gauge or of the

forms in the vertical direction [25]. Since the symmetry group in this theory is the Lorentz
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group, we have

ω
a
b = ω

a
bcec, (3.39)

Ra
b =

1
2

Ra
bcdec∧ ed, and (3.40)

Ta =
1
2

T a
bceb∧ ec. (3.41)

3.4. Bianchi identities for the Poincaré group

Taking the exterior derivative of another exterior derivative yields zero; that is, d2ω = 0

for any p-form ω . Thus, taking the exterior derivative of each of our structure equations

with curvature gives differential relations between the curvatures, called the Bianchi iden-

tities. In this section, we find the Bianchi identities for both the Lorentz transformations

and the translations. These are the integrability conditions for equations (3.36) and (3.37).

3.4.1. Lorentz Transformations

Taking the exterior derivative of both sides of (3.36) gives

0 = dω
c
b∧ω

a
c−ω

c
b∧dω

a
c +dRa

b. (3.42)

Substituting (3.36) for dωc
b and dωa

c gives

0 = dRa
b +Rc

b∧ω
a
c−ω

c
b∧Ra

c, (3.43)

which is the covariant derivative as given by (2.3) where the Christoffel connection is re-

placed by the spin connection. This is the covariant exterior derivative and (3.43) can be

written as

DRa
b = 0. (3.44)
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3.4.2. Translations

Starting with the structure equation for curvature (3.37) and taking an exterior derivative

of both sides gives

0 = deb∧ω
a
b− eb∧dω

a
b +dTa. (3.45)

Substituting (3.37) for deb and (3.36) for dωa
b and simplifying gives

0 = Tb∧ω
a
b− eb∧Ra

b +dTa (3.46)

or

DTa = eb∧Ra
b. (3.47)

3.5. The covariant derivative and transformation properties

In this section, we find the transformation properties of the connection forms, as well

as that of the curvatures, by requiring covariance of the gauge covariant derivative.

3.5.1. Transformation of the connection

The covariant exterior derivative in (3.43) acts on the Riemann curvature tensor. Using a

generic connection form given by ωA
B acting on a generic vector, vA, the covariant derivative

is defined as

DvA = dvA +ω
A
BvB. (3.48)

Demanding covariance as in (2.4),

D̃ṽA =
(

D̃vA
)

(3.49)

or

D̃
(

gA
BvB
)
= gA

BDvB, (3.50)
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where

D̃vA = dvA + ω̃
A
BvB. (3.51)

Using gA
B to represent local gauge transformations (local group elements) and ḡA

B as its

inverse, solving for the transformed connection gives

ω̃
A
B = gA

Dω
D
CḡC

B−d
(

gA
C

)
ḡC

B. (3.52)

Notice the similarity of this equation to (2.9).

3.5.2. Transformation of the curvature

For a general Lie group, the connection in the Maurer-Cartan equation is generalized,

resulting in the addition of the curvature RC to it:

dω
C =−1

2
c C

AB ω
A∧ω

B +RC. (3.53)

This equation can be written in the adjoint representation by multiplying it by a structure

constant c E
DA . Defining

ω
E

D ≡ −c E
DA ω

A (3.54)

RE
D ≡ −c E

DA RA, (3.55)

Eq. (3.53) becomes

−d
(
ω

E
D
)
=−1

2
c A

BC c E
DA ω

B∧ω
C−RE

D. (3.56)

Using the Jacobi identity given by c A
[BC c E

D]A = 0, which can be written as

c A
BC c E

DA =−c A
CD c E

BA − c A
DB c E

CA , (3.57)
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and solving for the curvature in (3.56) gives

RA
B = dω

A
B−ω

C
B∧ω

A
C, (3.58)

which transforms as

R̃A
B = dω̃

A
B− ω̃

C
B∧ ω̃

A
C. (3.59)

Substitution of the transformation of the connection (3.52) shows the curvature transforms

as a tensor,

R̃A
B = gA

CRC
DḡD

B. (3.60)

3.6. The quotient method and tensors

In this section, we make the transformation properties for both the connection forms and

curvatures infinitesimal. We then apply the quotient method by requiring independence of

lifting, eliminating all terms containing transformations that lie on the base manifold. From

the remaining terms, we identify the tensors, in preparation to forming an action.

3.6.1. Transformation of the connection forms

The transformation of the forms comes from using 3.52 using the allowed indices for the

group in question 3.30. Letting the indices A =
(a

b

)
, 3.52 becomes

ω̃
a
b = ga

dω
d
cḡc

b−d(ga
c) ḡc

b, (3.61)

and right away, we see the spin connection is not a tensor.

To see how different objects transform, it is helpful to make the group elements in-

finitesimal. Infinitesimal group elements behave the same way as ordinary group elements.

Letting gA
D→ δ A

D +ΛA
D and ḡC

B→ δC
B−ΛC

B, (3.52) becomes, to first order

ω̃
A
B = ω

A
B−ω

A
CΛ

C
B +Λ

A
Cω

C
B−d

(
Λ

A
B

)
. (3.62)
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Setting the lower B index from these terms to · and letting the rest run from 0 to 3, (3.62)

gives the transformation of the solder form,

ω̃
a = ω

a−ω
a
cΛ

c +Λ
a
dω

d−d(Λa) . (3.63)

With the understanding ωa ≡ ea, Λa is a generator of the translations, and Λa
d is the gener-

ator of the Lorentz transformations, (3.63) becomes

ẽa = ea−ω
a
cΛ

c +Λ
a
ded−d(Λa) . (3.64)

Since this gauging has only Lorentz symmetry, terms containing generators of the transla-

tions must be eliminated, so (3.64) becomes

ẽa = ea +Λ
a
ded, (3.65)

and this is clearly the linearization of

ẽa = ga
ded. (3.66)

The solder form transforms linearly and homogeneously with a Lorentz transformation,

and so can be identified as a tensor.

3.6.2. Transformation of the curvatures

Just as in the case for the transformation of the spin connection, taking the transforma-

tion of the curvature 3.60 and letting A =
(a

b

)
gives

R̃d
c = gd

aRa
bḡb

c, (3.67)



31
and the Riemann curvature tensor transforms linearly and homogeneously under a Lorentz

transformation and an inverse Lorentz transformation.

To find how the torsion transforms, again we allow the transformations to become in-

finitesimal and up to first order in the generators 3.60 we have

R̃A
B = RA

B−RA
CΛ

C
B +Λ

A
CRC

B. (3.68)

Dropping the lower B index and allowing the other indices to run from 0 to 3, 3.68 becomes

R̃a = Ra−Ra
bΛ

b +Λ
a
bRb. (3.69)

With the understanding that Ra ≡ Ta and imposing Lorentz symmetry 3.69 becomes

T̃a = Ta +Λ
a
bTb, (3.70)

which is clearly the linearization of

T̃d = gd
aTa. (3.71)

The torsion, then, transforms linearly under a Lorentz transformation and is also a tensor.

3.6.3. Transformation of the Levi-Civita symbol

Because Lorentz transformations have determinant one,

εabcd = εabcd det(Λa
b) , (3.72)

which is equivalent to

εabcd = εe f ghΛ
e
aΛ

f
bΛ

g
cΛ

h
d. (3.73)
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Because inverse Lorentz transformations are also Lorentz transformations with a determi-

nant of one, we may write (3.73) as

εabcd = εe f ghΛ̄
e
aΛ̄

f
bΛ̄

g
cΛ̄

h
d. (3.74)

Hence, the Levi-Civita symbol is also a tensor under Lorentz transformations.

3.6.4. Summary

The tensors found by making the transformation properties of the curvature and con-

nection forms infinitesimal are the Riemann curvature tensor, the torsion, and the solder

form. The Levi-Civita symbol was also found to be a tensor. The transformation properties

of each are given by

R̃d
c = gd

aRa
bḡb

c, (3.75)

T̃d = gd
aTa, (3.76)

ẽa = ga
ded, and (3.77)

εabcd = εe f ghΛ̄
e
aΛ̄

f
bΛ̄

g
cΛ̄

h
d. (3.78)

From this, we proceed to form an action.

3.7. Action and field equations

In this section, we form an action from the available tensors, and vary it with respect to

its independent fields, the spin connection and the solder form.

3.7.1. Action

One possible action to form from (3.75) - (3.78) is

S =

ˆ
Rab∧ ec∧ ed

εabcd. (3.79)
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All of the raised indices transform with Lorentz transformations and all of the lowered

indices transform with inverse Lorentz transformations. Because of horizontality (3.40),

Rab may be written as 1
2Rab

e f ee∧ e f , and the action may be written as

S =

ˆ
1
2

Rab
e f ee∧ e f ∧ ec∧ ed

εabcd. (3.80)

At this point, we recognize that ee∧ e f ∧ ec∧ ed may be replaced by εe f cd√−gd4x. Con-

tracting on the two Levi-Civita symbols, the action (3.79) can be written as

S =−1
2

ˆ
R
√
−gd4x, (3.81)

which is the Einstein-Hilbert action (2.51) up to a constant (the field equations remain

unchanged).

3.7.2. Variation of the spin connection

The variation of the spin connection only affects the Riemann curvature tensor since

that is the only place where it appears, i.e.,

δωS =

ˆ (
δωRab

)
∧ ec∧ ed

εabcd, (3.82)

where

Ra
b = dω

a
b−ω

c
b∧ω

a
c. (3.83)

Varying the above expression with respect to the spin connection gives δRa
b = D

(
δωa

b

)
and consequently,

δRab = D
(

δω
ab
)
. (3.84)
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After covariant integration by parts (3.82) becomes

δωS =

ˆ
2δω

ab∧Dec∧ ed
εabcd. (3.85)

Setting the variation to 0 to extract the field equation gives

ec∧Ded
εabcd = 0. (3.86)

From the structure equation of the solder form (3.37), the torsion may be written as Ta =

dea +ωa
b∧ eb. The right side of this equation is recognized as the covariant derivative of

the solder form, so it can be written as Ta = Dea. Substitution of this into (3.86) gives

0 = ec∧Td
εabcd = 0. (3.87)

Expanding the torsion, wedging with another solder form, and taking the Hodge dual gives

T d
e f ε

cge f
εcabd = 0. (3.88)

After expanding the two Levi-Civita symbols, we have

T d
bdδ

g
a +T g

ab = 0. (3.89)

Contracting the g with a indices gives T d
bd = 0, and consequently

T c
ab = 0, (3.90)

so there is no torsion as a consequence of the field equation.

Vanishing torsion has an effect on the Bianchi identities. The Bianchi identity resulting
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from taking the exterior derivative of structure equation of the solder form (3.46) becomes

0 = eb∧Ra
b. (3.91)

Expanding Ra
b in terms of the solder form gives

Ra
[bcd] = 0, (3.92)

which is the first Bianchi identity.

3.7.3. Variation of the solder form

Since the Riemann curvature tensor only depends on the spin connection, a variation of

the action given by (3.79) only affects what is visible giving

δeS =

ˆ
2Rab∧ ec∧δed

εabcd. (3.93)

The field equation then becomes

2Rab∧ ec
εabcd = 0. (3.94)

Wedging with another solder form and taking the Hodge dual adds another Levi-Civita

symbol:

2Rab
e f εabcdε

e f cg√−g = 0. (3.95)

Expanding the two Levi-Civita symbols gives

Rab−
1
2

ηabR = 0, (3.96)
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which is the vacuum Einstein equation (2.58). Adding Λea∧ eb∧ ec∧ edεabcd to the action

and following the same procedure yields

Rab−
1
2

ηabR−Ληab = 0, (3.97)

which is the vacuum Einstein equation with a cosmological constant.

Second-order variation of spin connection

For the second-order variation, we assume the compatible connection, which in this

case means vanishing torsion. Varying the spin connection in terms of the solder form

gives ˆ (
2Rab∧ ec∧δed

εabcd +2δeω
ab∧Dec∧ ed

εabcd

)
= 0. (3.98)

Since Dea = Ta, and that vanishes from the Palatini variation, we are then left with

2Rab∧ ec
εabcd = 0, (3.99)

which again yields the Einstein equation.

3.7.4. Summary

The action (3.79) written in forms was shown to be equivalent to the Einstein-Hilbert

action (2.51) written with the Ricci scalar. Varying the spin connection led to the condition

of vanishing torsion while varying the solder form led to vacuum Einstein equation, as in

the case of varying of the metric in standard general relativity.
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CHAPTER 4

WEYL GRAVITY

In this chapter, we present the action generally associated with Weyl gravity. We also

present the Gauss-Bonnet term and use it to rewrite the action. We give the field equa-

tion resulting from varying the action with respect to the metric and discuss its relation to

general relativity.

4.1. Action and field equation

Using the ideas of Weyl [2], in 1920 Rudolph Bach [6] proposed a quadratic action

that would be invariant under the conformal group, which he constructed from the Weyl

curvature tensor or the conformal curvature, given by

S =

ˆ
CabcdCabcd

√
|g|d4x, (4.1)

where the Weyl curvature tensor, Cabcd , is defined as the traceless part of the Riemann

curvature

Cabcd = Rabcd− 1
n−2

(
Rac

η
bd−Rad

η
bc−Rbc

η
ad +Rbd

η
ac
)

+
1

(n−1)(n−2)
R
(

η
ac

η
bd−η

ad
η

bc
)
. (4.2)

It is constructed so contractions between any two indices gives 0, e.g.

ηacCabcd = 0. (4.3)
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Taking (4.2) and solving for Rabcd gives

Rabcd = Cabcd +
1

n−2

(
Rac

η
bd−Rad

η
bc−Rbc

η
ad +Rbd

η
ac
)

− 1
(n−1)(n−2)

R
(

η
ac

η
bd−η

ad
η

bc
)
. (4.4)

Contracting with itself gives

RabcdRabcd =CabcdCabcd +
4

(n−2)
RabRab−

2
(n−2)(n−1)

R2 (4.5)

and in n = 4 dimensions, we have

RabcdRabcd =CabcdCabcd +2RabRab−
1
3

R2. (4.6)

The action is then

S =

ˆ
CabcdCabcdd4x

=

ˆ (
RabcdRabcd−2RabRab +

1
3

R2
)

d4x. (4.7)

4.1.1. Gauss-Bonnet invariant

The Gauss-Bonnet invariant, or the Euler character, is given by a curvature-squared

term as

χE =
1
4

ˆ
Rab∧Rcd

εabcd. (4.8)

Varying this functional with respect to the spin connection or the gauge field of the
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Lorentz transformations, ωa

b gives

δ χE =
1
2

ˆ (
D
(

δω
ab
)
∧Rcd

εabcd

)
=

1
2

ˆ (
D
(

δω
ab
)

εabcd ∧Rcd
)
, (4.9)

where D is a covariant exterior derivative. Since the covariant derivative is Leibniz, we

have

D
(

δω
ab

εabcd ∧Rcd
)

= D
(

δω
ab
)

εabcd ∧Rcd−δω
abD(εabcd)∧Rcd

−δω
ab

εabcd ∧D
(

Rcd
)
, (4.10)

and so solving for D
(
δωab)εabcd ∧Rcd and substituting

δ χE =
1
2

ˆ (
D
(

δω
ab
))
∧Rcd

εabcd

=
1
2

ˆ (
D
(

δω
ab

εabcd ∧Rcd
)
−δω

abD(εabcd)∧Rcd +δω
ab

εabcd ∧D
(

Rcd
))

=
1
2

ˆ (
d
(

δω
ab

εabcd ∧Rcd
)
−δω

abD(εabcd)∧Rcd +δω
ab

εabcd ∧D
(

Rcd
))

=
1
2

ˆ (
−δω

abD(εabcd)∧Rcd +δω
ab

εabcd ∧D
(

Rcd
))

. (4.11)

The first term is a total divergence that depends only on the topology. To evaluate this

further, we want to know what the covariant derivative of the Levi-Civita symbol is with

respect to the Lorentz transformations. We have

D(εabcd) = dεabcd +ω
e
aεebcd +ω

e
bεaecd +ω

e
cεabed +ω

e
dεabce

= ω
e
aεebcd +ω

e
bεaecd +ω

e
cεabed +ω

e
dεabce. (4.12)

Using the transformation of the Levi-Civita (3.73), expanding the Lorentz transformations
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in as infinitesimal transformations gives

εabcd ≈ εe f gh (δ
e
a + ε

e
a)
(

δ
f
b + ε

f
b

)
(δ g

c + ε
g
c)
(

δ
h
d + ε

h
d

)
= εabcd + εabchε

h
d + εabgdε

g
c + εebcdε

e
a + εa f cdε

f
b (4.13)

so

0 = εebcdε
e
a + εaecdε

e
b + εabedε

e
c + εabceε

e
d, (4.14)

up to first order, where εa
b is any antisymmetric object. The same relationship holds with

forms, as well, replacing εe
a→ ωe

a. Doing so gives

0 = εebcdω
e
a + εaecdω

e
b + εabedω

e
c + εabceω

e
d (4.15)

which is exactly, D(εabcd), so we conclude

D(εabcd) = 0 (4.16)

and the variation becomes

δ χE =
1
2

ˆ (
δω

ab
εabcd ∧D

(
Rcd
))

. (4.17)

This vanishes identically by the second Bianchi identity (3.44).

Expanding in components,

Rab∧Rcd
εabcd = Rab

e f ∧Rcd
gheg∧ eh∧ ee∧ e f

εabcd, (4.18)

and using

eg∧ eh∧ ee∧ e f = ε
e f gh

Φ, (4.19)
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where Φ is a generic volume form, we have

Rab∧Rcd
εabcd = Rab

e f Rcd
ghε

e f gh
εabcdΦ. (4.20)

Expanding out and simplifying (and taking the Hodge dual to eliminate the generic volume

form) gives

Rab
e f Rcd

ghε
e f gh

εabcd = 4R2−16Rb
cRc

b +4Rab
cdRcd

ab (4.21)

so

χE =

ˆ (
Rab

cdRcd
ab−4Rb

cRc
b +R2

)
Φ. (4.22)

4.1.2. Alternate form of the action using the Gauss-Bonnet term

Given the action formed by the square of the conformal curvature (4.7), we may make

use of the Gauss-Bonnet form of the Euler character, χE , (4.22) whose variation is identi-

cally zero. Since this is an invariant, we may equally use

Sχ = S−χE

= 2
ˆ (

RbcRbc−
1
3

R2
)

d4x (4.23)

for Weyl gravity.

4.1.3. Variation of the metric

Using the techniques in the subsection Second-order variation of the metric, along with

the proper scaling, the second-order variation of the action as given by (4.23) with respect
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to the metric becomes

0 =
1
3

DcDdR−DaDa
(

Rcd−
1
6

ηcdR
)

+Rabe
cRabed +2Rb

cRdb−
1
3

RRdc

+
1
4

(
Rabe f Rabe f −2RabRab +

1
3

R2
)

gcd (4.24)

as also determined by Mannheim [26]. Alternatively, this may be written as

0 = 2DdDbCabcd−CabcdRbd, (4.25)

which is otherwise known as the Bach equation [6]. The Bach equation may also be found

by directly varying (4.1).

4.2. Relationship to general relativity

In general relativity, the absence of matter fields in any particular region gives rise to

the vacuum Einstein equation (2.60). Taking its trace and contracting it with the metric,

gab, gives R−2R = 0 in four dimensions, and hence, R = 0. With this condition,

Rab = 0, (4.26)

which must be true of all vacuum solutions in general relativity. In Weyl gravity, 4.24 may

be written solely in terms of the Ricci tensor and the Ricci scalar, so Rab = 0 is a solution

to the field equation of this theory. Hence, all vacuum solutions of general relativity are

also vacuum solutions of Weyl gravity. Sultana et al. have shown Weyl gravity contains

other solutions, so the converse is not true [27]. Indeed, equations (4.24) and (4.25) are

fourth-order metric differential equations. For example, they give the following example
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of a metric that is not conformal to an Einstein metric [21],

ds2 =−B(r)dt2 +
dr2

B(r)
+ r2 (dθ

2 + sin2
θdφ

2) ,
where

B(r) = 1− β (2−3βγ)

r
−3βγ + γr− kr2.
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CHAPTER 5

WEYL GRAVITY AS A GAUGE THEORY

In considering general relativity as a gauge theory, we began with the Poincaré group

and gauged by the Lorentz transformations, leaving the translations to span the base man-

ifold. The conformal group is a larger group which includes the Poincaré group as a sub-

group. In forming a gauge theory that might also lead to general relativity, or at least have

a theory that shares many of the same solutions, the quotient formed from this group min-

imally should have Lorentz symmetry and also leave the translations in the base manifold.

Since the conformal group includes scale transformations, which may be attributed to a

choice of local units, dilatational symmetry is desirable (some examples of local units in-

clude redshift or CMB temperature). The only remaining subgroup is the special conformal

transformations and a choice must be made as to whether to include them in the fibers, or

not. If we are to not have special conformal symmetry, we must have an eight-dimensional

theory – four dimensions spanned by the solder form and four dimensions spanned by the

forms dual to the gauge fields of the special conformal transformations. If we have special

conformal symmetry, then we have a four-dimensional theory, as we might expect when

not specifically considering Weyl gravity as a gauge theory of the conformal group, as in

Chapter 3. Taking the conformal group and gauging by the Lorentz transformations, dilata-

tions, and the special conformal transformations is called the auxiliary gauging since the

gauge field of the special conformal transformations acts as an auxiliary field rather than a

new, physical field [28].

5.1. Generators of the conformal group

Whereas the Poincaré group, the group of translations and Lorentz transformations

(rotations), is the group that preserves the metric or the line element, the conformal group

is the group that preserves the line element up to a factor [29], and therefore, admits a

wider range of transformations. Aside from the two that define the Poincaré group, we also
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have dilatations and special conformal transformations. We define them and show their

infinitesimal transformations.

5.1.1. Special conformal transformations

Special conformal transformations are defined for compactified Minkowski space in

Cartesian coordinates by taking a coordinate, inverting it, translating it, then inverting again

in the following manner:

xa→
xa

x2 +ba(
xa

x2 +ba
)2 =

xa

x2 +ba

1
x2 +

2bcxc
x2 +b2

=
xa +bax2

1+2bcxc +b2x2 . (5.1)

Up to first order in ba, (5.1) may be written as
(
xa +bax2)(1+2bbxb + . . .

)−1. Using the

Taylor approximation formula of (1− x)−1 = 1− x+ x2− x3 + . . . for
(
1+2bbxb + . . .

)−1

along with (3.8), and pulling out the arbitrary coordinate, the generator of this subgroup is

given by

Ka =−2xaxb
∂b + x2

∂a. (5.2)

The free index may be raised using the metric.

5.1.2. Dilatations

Dilatations are performed by taking a coordinate and resizing it. That is,

xa→ eλ xa. (5.3)

Expanding the conformal factor in Taylor series eλ = 1+λ +λ 2+ ... up to first order in λ ,

and using (3.8), the generator of the dilatations is given by

D = xa
∂a. (5.4)
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5.1.3. Summary of generators for the conformal group

Along with the generators for Lorentz transformations (3.12) and the generators for

translations (3.15), the generators for the entire conformal group are given by

Ma
b = −∆

ac
dbxd

∂c, (5.5)

Pa = ∂a, (5.6)

Ka =

(
1
2

η
abx2− xaxb

)
∂b, (5.7)

D = xa
∂a. (5.8)

These are sufficient for finding the Lie algebra.

5.2. Lie Algebra of the conformal group

Taking all possible commutators of the generators as given by Eqs. (5.5) through (5.8)

generates the Lie algebra of the conformal group:

[Ma
b,M

c
d] = −1

2

(
δ

c
bδ

a
f δ

h
d−δ

a
dδ

h
bδ

c
f −ηbdη

ch
δ

a
f −η

ac
ηb f δ

h
d

)
M f

h, (5.9)

[Ma
b,Pc] = ∆

a f
cb Pf , (5.10)

[Ma
b,K

c] = −∆
ca
bdKd, (5.11)[

Pa,Kb
]

= −δ
b
aD+2∆

bd
ca Mc

d, (5.12)[
D,Kb

]
= δ

b
cKc, (5.13)

[D,Pa] = −δ
b
aPb. (5.14)

Identifying the structure constants from the Lie algebra using (3.16), we have

c

(
f
h

)
(a

b)(
c
d)

=−1
2

(
δ

c
bδ

a
f δ

h
d−δ

a
dδ

h
bδ

c
f −ηbdη

ch
δ

a
f −η

ac
ηb f δ

h
d

)
, (5.15)
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c
( ·f )

(a
b)( ·c)

= ∆
a f
cb , (5.16)

c (d
· )

(a
b)(c
·)

=−∆
ca
bd, (5.17)

c ( ··)

( ·a)(b
·)

=−δ
b
a, (5.18)

c (c
d)

( ·a)(b
·)

= 2∆
bd
ca , (5.19)

c (c
·)

( ··)(b
·)

= δ
b
c, (5.20)

c ( ·b)
( ··)(

·
a)

=−δ
b
a, (5.21)

where
(a

b

)
denotes the Lorentz transformations, (a

·) denotes the special conformal transfor-

mations, ( ·a) denotes the translations, and ( ··) denotes the dilatations. All other structure

constants are zero.

5.3. Maurer-Cartan structure equations of the conformal group

Using the general Maurer-Cartan structure equation (3.29) and the structure constants

(5.15)-(5.21), we arrive at the following structure equations for the conformal group

dω
a
b = ω

c
b∧ω

a
c +2∆

ad
cb fd ∧ ec, (5.22)

dea = ec∧ω
a
c +ω ∧ ea, (5.23)

dfb = ω
c
b∧ fc + fb∧ω, (5.24)

dω = ec∧ fc, (5.25)

where fd is the gauge field of the special conformal transformations and ω is the gauge

field for the dilatations or the Weyl vector. Changing the connection, the same equations

acquire a Lorentz curvature, Ω
a
b, special conformal curvature, Sb, translational curvature

or torsion, Ta, and dilatational curvature, Ω, to become
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dω
a
b = ω

c
b∧ω

a
c +2∆

ad
cb fd ∧ ec +Ω

a
b, (5.26)

dea = ec∧ω
a
c +ω ∧ ea +Ta, (5.27)

dfb = ω
c
b∧ fc + fb∧ω +Sb, (5.28)

dω = ec∧ fc +Ω. (5.29)

These equations define the curvatures for our conformal gauge theory.

5.4. Bianchi identities of the conformal group

As in the case of the Poincaré group, we take an exterior derivative for each of the

structure equations to arrive at its Bianchi identities.

5.4.1. Spin connection

Starting with the structure equation for the solder form (5.27), we take another exterior

derivative to get that d2ωa
b = 0, which becomes

0 = d(ωc
b)∧ω

a
c−ω

c
b∧ (dω

a
c)+d(fb)∧ ea− fb∧dea

−η
ad

ηcbd(fd)∧ ec +η
ad

ηcbfd ∧ (dec)+dΩ
a
b. (5.30)

Substituting from the structure equations (5.26) through (5.29) gives

0 = DΩ
a
b +2∆

ad
cb (Sd ∧ ec− fd ∧Tc) . (5.31)
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5.4.2. Solder form

Starting with the structure equation for the solder form (5.27), we take another exterior

derivative to get that d2ea = 0, which becomes

0 = (dec)∧ω
a
c− ec∧ (dω

a
c)+(dω)∧ ea−ω ∧ (dea) . (5.32)

Substituting from the structure equations (5.26) through (5.29) gives

0 = DTa +Ω∧ ea− ec∧Ω
a
c. (5.33)

5.4.3. Weyl vector

Starting with the structure equation for the Weyl vector (5.29), we take another exterior

derivative to get that d2ω = 0, which becomes

0 = (dec)∧ fc− ec∧ (dfc)+dΩ. (5.34)

Substituting from the structure equations for the solder form (5.27) and for the special

conformal transformations (5.28) gives

0 = dΩ+Tc∧ fc− ec∧Sc. (5.35)

5.4.4. Special conformal transformations

Starting with the structure equation for the special conformal transformations (5.28),

we take another exterior derivative to get that d2fb = 0, which becomes

0 = (dω
c
b)∧ fc−ω

c
b∧ (dfc)+(dfb)∧ω− fb∧ (dω)+dSb. (5.36)
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Substituting from the structure equations (5.26) through (5.29) gives

0 = DSb +Ω
c
b∧ fc− fb∧Ω. (5.37)

5.4.5. Summary

Equations (5.37), (5.35), (5.31), and (5.33) put together give

0 = DSb +Ω
c
b∧ fc− fb∧Ω, (5.38)

0 = dΩ+Tc∧ fc− ec∧Sc, (5.39)

0 = DΩ
a
b +2∆

ad
cb (Sd ∧ ec− fd ∧Tc) , (5.40)

0 = DTa +Ω∧ ea− ec∧Ω
a
c. (5.41)

In the absence of torsion and special conformal curvature, we have

0 = Ω
c
b∧ fc− fb∧Ω, (5.42)

0 = dΩ, (5.43)

0 = DΩ
a
b, (5.44)

0 = Ω∧ ea− ec∧Ω
a
c. (5.45)

5.5. The quotient method and tensors

In this section, we use the linear transformation properties of the curvatures and con-

nection forms applied to the conformal group. We also apply the quotient method by elim-

inating any terms that contain transformations found on the base manifold (translations).

From this, we identify the tensors to form an action.
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5.5.1. Transformations of the connection forms

Using the infinitesimal transformation relation for the connection forms (3.62), we fol-

low the same procedure we did with the connection forms in the Poincaré group with the

difference that the group indices now run from 0 to 5. Also, using the relations between

connection forms in the conformal group given by (A.56) - (A.63), we get the following

transformations for the forms under infinitesimal conformal transformations,

ω̃
a
b = ω

a
b−ω

a
cΛ

c
b +Λ

a
cω

c
b− ea

Λb,

+η
ac

Λcηbded−η
acfcηbdΛ

d +Λ
afb−d(Λa

b) , (5.46)

ẽa = ea−ω
a
cΛ

c− ea
Λ+Λ

a
cec +Λ

a
ω−d(Λa) , (5.47)

f̃b = fb +Λcω
c
b− fcΛ

c
b +Λfb−ωΛb−d(Λb) , (5.48)

ω̃ = ω +Λcec− fcΛ
c−d(Λ) , (5.49)

where ωa ≡ ea, ωa = fa, Λa is an infinitesimal local translation, Λa
d is a local Lorentz

transformation, Λa is a local special conformal transformation, and Λ is a local dilatation.

Since in the auxiliary gauging we have only Lorentz, dilatational, and special conformal

symmetry, we eliminate all terms with translational generators. Equations (5.46) - (5.49)

become

ω̃
a
b = ω

a
b−ω

a
cΛ

c
b +Λ

a
cω

c
b− ea

Λb +η
ac

Λcηbded−d(Λa
b) , (5.50)

ẽa = ea− ea
Λ+Λ

a
cec, (5.51)

f̃b = fb +Λcω
c
b− fcΛ

c
b +Λfb−ωΛb−d(Λb) , (5.52)

ω̃ = ω +Λcec−d(Λ) . (5.53)

From the terms containing the inhomogeneous exterior derivatives, it is clear the spin

connection, the gauge field of the special conformal transformations, and the Weyl vector
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are not tensors. However, up to first order, the three terms from the transformation of the

spin connection can be collected to give

ẽa = (δ a
c +Λ

a
c)ec (1−Λ) , (5.54)

which is the linearization of

ẽa = ga
cecḡ. (5.55)

(5.55) may also be derived by expanding (3.52) in terms of the indices a, 4, and 5, and

requiring that ga
4 = ga

5 = 0, since these are group elements of the translations. The solder

form, therefore, transforms as a tensor under a Lorentz transformation and a dilatation.

5.5.2. Curvature transformations

Using the infinitesimal transformation relation for the curvatures (3.68), we follow the

same procedure we used with the curvatures in the Poincaré group with the difference that

the group indices now run from 0 to 5. Also, using the relations between curvatures in the

conformal group given by (A.66) - (A.73), we get the following transformations for the

curvatures under the full conformal group,

Ω̃
a
b = Ω

a
b−Ω

a
cΛ

c
b +Λ

a
cΩ

c
b−Ta

Λb,

+Λ
aSb +η

ac
ΛcηbdTd−η

acScηbdΛ
d, (5.56)

T̃a = Ta +Λ
a
cTc−Ω

a
cΛ

c−Ta
Λ+Λ

a
Ω, (5.57)

S̃b = Sb +ΛcRc
b−ScΛ

c
b +ΛSb−ΩΛb, (5.58)

Ω̃ = Ω+ΛcTc−ScΛ
c, (5.59)

where Ra ≡ Ta is the torsion, Ra = Sa is the special conformal curvature, and R = Ω is

the dilatational curvature. We will call Ω
a

b the Lorentz curvature to distinguish it from the

Riemann curvature. As with the forms, because of the imposed symmetry, we eliminate all
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terms that contain local translations. Equations (5.56) - (5.59) then become

Ω̃
a
b = Ω

a
b−Ω

a
cΛ

c
b +Λ

a
cΩ

c
b−Ta

Λb +η
ac

ΛcηbdTd, (5.60)

T̃a = Ta +Λ
a
cTc−Ta

Λ, (5.61)

S̃b = Sb +ΛcΩ
c
b−ScΛ

c
b +ΛSb−ΩΛb, (5.62)

Ω̃ = Ω+ΛcTc. (5.63)

A priori, torsion is the only piece of the full curvature that transforms separately as a tensor.

All the other curvatures mix with one another. However, since it is a tensor it is consistent

to set the torsion to zero Ta = 0 in (5.60) and (5.63). This results in

Ω̃
a
b = Ω

a
b−Ω

a
cΛ

c
b +Λ

a
cΩ

c
b, (5.64)

Ω̃ = Ω, (5.65)

while the transformation of Sa is unchanged. With vanishing torsion, the dilatational cur-

vature becomes an invariant. Using the the full transformation property of the curvature

(3.60) and expanding in terms of the indices a, 4, and 5, and requiring ga
4 = ga

5 = 0 results

in

Ω̃
a
b = ga

cΩ
c
d ḡd

b, (5.66)

so the two curvature tensors in the gauging are the Lorentz curvature and the dilatational

curvature.

5.6. Action and field equations

There is no action linear in the conformal curvatures that is also scale invariant and we

must go to quadratic order. With vanishing torsion, the most general even-parity quadratic
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action that can be formed from curvatures is given by

S =

ˆ [
αΩ

a
b∧
∗
Ω

b
a +βΩ∧ ∗Ω

]
, (5.67)

where α and β are arbitrary constants and ∗ is the Hodge dual [28]. We now find the field

equations for this action, once again, using a Palatini-type variation in which all connection

forms are varied.

5.6.1. Field equations

Varying the Weyl vector, ω , the gauge field of the special conformal transformations,

fa, the spin connection, ωa
b, and the solder form, ea, gives

∗d∗Ω = 0, (5.68)

2α∆
ac
dbed ∧ ∗Ωb

a = βec∧ ∗Ω, (5.69)

D∗Ωb
a = 0, (5.70)

4α f cd
Ωcadb +2β facΩ

c
b = 2βQab−4αΘab, (5.71)

respectively, where Θab is the energy-momentum tensor built from the Lorentz curvature

and Qab is the energy-momentum tensor built from the Weyl curvature given by

Θab = Ω
c
daeΩ

d e
cb − 1

4
Ω

c
de f Ω

d e f
c ηab, (5.72)

Qab = ΩacΩ
c
b −

1
4

ΩcdΩ
cd

ηab. (5.73)
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In components, (5.68) - (5.71) become

1√
|g|

(
∂α

(
Ω

αβ
√
|g|
))

= 0, (5.74)

α2∆
ac
dbΩ

b ed
a

√
|g| = βΩ

ec
√
|g|, (5.75)

Dc
Ω

b
acd = 0, (5.76)

4α f cd
Ωcadb +2β facΩ

c
b = 2βQab−4αΘab. (5.77)

With all the field equations identified, the next step is to find solutions for each of the gauge

fields.
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CHAPTER 6

SOLVING THE FIELD EQUATIONS

Once an action has been constructed with the desired symmetry and the field equations

have been extracted by varying that action with respect to its independent fields, the next

step is to solve those field equations using the structure equations and, if needed, their

corresponding Bianchi identities. In this section, we find the solutions to each of the gauge

fields in closed form, whenever possible, and show how we use those solutions to find the

solutions for the remaining fields.

6.1. Special conformal transformations

Taking the field equation of the special conformal transformations, (5.69) adding a third

solder form via a wedge product and using (2.45) gives

0 = 2αΩ
c
acb +βΩab. (6.1)

Taking the trace of Bianchi identity of the solder form (5.45) gives

Ω
a
bad = Ωdb. (6.2)

Using this condition in (6.1) gives

(2α−β )Ωab = 0, (6.3)

which for (2α−β ) 6= 0 gives

Ωab = 0, (6.4)

so the dilatational curvature vanishes. Returning to (6.1), we see

Ω
a
bad = 0. (6.5)
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Using the definition of the conformal curvature (4.2) and defining the curvature of ωa

b

to be

Ra
b = dω

a
b−ω

c
b∧ω

a
c, (6.6)

the conformal curvature may be written as

Ca
b = Ra

b− ea∧RRRb + eb∧RRRa (6.7)

or

Ca
b = Ra

b−2∆
ad
cb ec∧RRRd, (6.8)

where

RRRb ≡
1

(n−2)

(
Rb−

1
2(n−1)

Reb

)
(6.9)

is the Schouten tensor [30] and where Ra = Rabeb. Solving for the Riemann curvature and

substituting into (5.26) gives

Ω
a
bcd =Ca

bcd−∆
ae
cb (Red + fed)+∆

ae
db (Rec + fec) . (6.10)

Contracting on the a and c indices and imposing the field equation (6.5) gives

0 = (n−2)(Rbd + fbd)+η
ce

ηdb (Rec + fec) . (6.11)

Contracting with the metric, this becomes

0 = 2(n−1)
(

η
dbRbd +η

db fbd

)
, (6.12)

which for dimensions n > 1 is

η
dbRbd +η

db fbd = 0; (6.13)
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and therefore, substituting (6.13) back into (6.11)

fbd =−Rbd (6.14)

or equivalently fb = −RRRb so the gauge field of the special conformal transformations is

identically the negative of the Schouten tensor. This result was shown by Crispim-Romāo

[31].

6.2. Weyl vector

Vanishing dilatational curvature as a consequence of the field equation for the special

conformal transformations (6.5) implies the structure equation for the Weyl vector remains

in its original form (5.25). Writing fa = fabeb =−Rabeb and substituting into (5.25) gives

dω = −Rabea∧ eb. (6.15)

Because Rab is symmetric, the right side vanishes, giving that the Weyl vector is closed,

dω = 0. (6.16)

This implies the Weyl vector takes the pure gauge form

ω = dφ , (6.17)

giving the Weyl vector as the gradient of an arbitrary function.

6.3. Equivalence to conformal gravity

Substituting the Schouten tensor for the special conformal transformations in (6.10),

we have

Ω
a
bcd =Ca

bcd. (6.18)
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The gauge field of the special conformal transformations has acted as an auxiliary field to

turn the Lorentz curvature into the conformally invariant Weyl curvature [28, 31]. Using

this condition and also the condition that the dilatational curvature be zero (6.5), the action,

Eq. (5.67), becomes

S =

ˆ [
αCa

b∧
∗Cb

a

]
. (6.19)

Expanding out the Hodge dual, we get (4.1) up to a sign (the field equations remain un-

changed by this overall sign). The gauge theory, therefore, results in the same action as

Weyl gravity.

6.4. Spin connection

Expanding the Hodge dual in the field equation for the spin connection (5.70) and

writing it in components gives

DaΩ
a
bcd = 0. (6.20)

6.5. Solder form

In this section we show how the field equation for the solder form (5.77) simplifies. The

energy-momentum tensor constructed from the dilatational curvature vanishes by virtue of

a field equation, while the energy-momentum tensor constructed from the Lorentz curvature

vanishes from a Gauss-Bonnet identity.

6.5.1. Local identity from the Gauss-Bonnet

We have seen that varying the connection in the Gauss-Bonnet expression for the Euler

character, χE =
´ (

Rab
cdRcd

ab−4Rb
cRc

b +R2) vanishes identically by the second Bianchi

identity. It must, therefore, also vanish if we restrict the variation of the connection to the

metric variation, performing a second-order variation of χ . Explicitly writing the metric,
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we may write the Gauss-Bonnet integrand as

RabcdRabcd−4RbcRbc +R2 =
(
−Ra

d f eRd
acb−4Re f Rbc +RbeR f c

)
g f cgbe, (6.21)

so the variation leads to

0 = δ χE ,

=

ˆ (
−2δRa

b f eRb
acbg f cgbe−8δRe f g f cgbeRbc +2δRbegbeR f cg f c

)
g f cgbe√−gd4x

+

ˆ (
−Ra

d f eRd
acb−4Re f Rbc +RbeR f c

)
δ

(
g f cgbe√−g

)
d4x. (6.22)

From the first-order variation of the metric, we had

δ

(
g f cgbe√−g

)
= δ

(
g f c
)

gbe√−g+g f c
δ

(
gbe
)√
−g+g f cgbe

δ
(√
−g
)
. (6.23)

Utilizing

δ
(√
−g
)
=

1
2
√
−ggab

δgab (6.24)

and

δ (gae) =−ghegai
δ (ghi) , (6.25)

we find the explicit metric variation gives

δ1SGB =

ˆ (
−2Rabd f Rabe f gce−4RadRabgcb−2RRdc

)
δ (gcd)

√
−gd4x, (6.26)
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and the internal variation gives

δ2SGB =

ˆ
[−
(

2DbDaRbdca +2DbDaRdcba +2DbDaRcbad
)

δgcd
√
−g

−
(

4gcdDbDaRab−8DaDdRac +4DaDaRcd
)

δgcd
√
−g

+
(

2gcdDaDaR−2DdDcRcd
)

δgcd
√
−g]d4x. (6.27)

Substituting the variation of the Ricci tensor with respect to the metric (2.70) into (6.26),

along with integrating the necessary terms by parts twice gives, combining δ1SGB and

δ2SGB,

0 = −2DbDaRbdca−2DbDaRdcba−2DbDaRcbad

−4gcdDbDaRab +8DaDdRac−4DaDaRcd

+2gcdDaDaR−2DdDcRcd

+

(
−1

2
Rabe f Rabe f −2RabRab +

1
2

R2
)

gcd

−2Rabd f Rabe f gce−4RadRabgcb−2RRdc. (6.28)

Using the identities

DeRe f gh = DgRh f −DhR f g (6.29)

along with

DcRca =
1
2

DaR (6.30)

and

DbDaRab =
1
2

DaDaR (6.31)
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gives a completely algebraic identity

0 = Rab f dR c
ab f −2RadRc

a−2ReaRedac

+RRdc− 1
4

(
Rabe f Rabe f −4RabRab +R2

)
gcd. (6.32)

6.5.2. Vanishing energy-momentum tensors

The solder form field equation (5.71) contains an energy-momentum tensor, Qab (5.73),

formed from the dilatational curvature and an energy-momentum tensor, Θab (5.72), formed

from the Lorentz curvature. The dilatational energy-momentum tensor vanishes since the

dilatational curvature vanishes (6.4),

Qab = 0. (6.33)

Since in this theory the Lorentz curvature, Ωa
bcd , is equivalent to conformal tensor

(6.18), then the energy-momentum tensor of the Lorentz curvature can be written as

Θab =Cc
daeC

d e
cb − 1

4
Cc

de fC
d e f
c ηab. (6.34)

Substitution of the conformal curvature in terms of the Riemann tensor, Ricci tensor, and

Ricci scalar yields

Θab = −Rcdµ

bRcdµa +2RcµRcbµa−RabR

+2Rc
bRca +

1
4

(
Rcde f Rcde f −4RcdRcd +R2

)
ηab, (6.35)

which, up to a factor of -1, is equivalent to the algebraic expression (6.32), which comes

from varying the Gauss-Bonnet term with respect to the metric. This was an unexpected
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feature of this theory. We, therefore, have

Θab = 0. (6.36)

6.6. Equivalence to Bach equation

In this section, we recover the Bach equation by performing a second-order variation

of the action with respect to the spin connection, and show the Palatini variations result in

a more restricted form of the same equation. Right away, we can write the variation using

(5.77) and (5.70),

δeS =

ˆ (
4α f cd

Ωcadb +2β facΩ
c
b +4αΘab−2βQab

)
Aabd4x

+

ˆ
2αD

(
∗
Ω

b
a

)
∧δeω

a
b, (6.37)

where Aa
be = δea. In the following, we find δeωa

b in order to substitute into (6.37).

In a torsion-free Riemannian geometry, the field equation for the solder form (3.35) is

dea = ec∧ω
a
c. (6.38)

Immediately, this can be written as

Dea ≡ dea− ec∧ω
a
c = 0, (6.39)

or that the covariant derivative of the solder form vanishes. A variation of (6.39) with

respect to both the solder form (putting it in coordinates) and the spin connection gives

Dµδe a
ν −Dνδe a

µ = eb
µδω

a
bν − eb

νδω
a
bµ . (6.40)

In order to solve for the variation of the spin connection, we isolate it and cycle the indices
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giving

δωαµν −δωανµ = ηabe b
α

(
Dµδe a

ν −Dνδe a
µ

)
, (6.41)

δωµνα −δωµαν = ηabe b
µ (Dνδe a

α −Dαδe a
ν ) , and (6.42)

δωµνα −δωανµ = ηabe b
ν

(
Dαδe a

µ −Dµδe a
α

)
. (6.43)

Adding the first two and subtracting the third,

2δωαµν = −
(

Dν

[
ηabδe b

µ e a
α

]
−Dµ

[
ηabδe b

ν e a
α

])
−
(

Dα

[
ηabe a

µ δe b
ν

]
−Dν

[
ηabe a

µ δe b
α

])
+
(

Dµ

[
ηabe a

ν δe b
α

]
−Dα

[
ηabe a

ν δe b
µ

])
. (6.44)

Using the variation of the metric with respect to the solder form

δ
(
gµν

)
= 2ηabδ

(
e a

µ

)
e b

ν (6.45)

we write (6.44)

2δωαµν = −1
2
(
Dνδgµα −Dµδgνα

)
−1

2
(
Dαδgνµ −Dνδgαµ

)
+

1
2
(
Dµδgαν −Dαδgµν

)
, (6.46)

and after combining terms, contracting with basis forms and raising an index, we get

δω
a
b =−

1
2

η
cae α

c e µ

b

[
Dαδgνµ −Dµδgνα

]
dxν , (6.47)

which is the variation of the spin connection with respect to the metric. Substituting into
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(6.37) gives

δeS =

ˆ (
4α f cd

Ωcadb +2β facΩ
c
b +4αΘab−2βQab

)
Aabd4x

+

ˆ
4α

[
DdD

(
∗
Ω

d
a

)]
∧δea.

Eliminating the basis forms and simplifying gives

δeS =

ˆ (
4α fcdΩ

cadb +2β f a
cΩ

cb +4αΘ
ab−2βQab

)
Aabd4x

+

ˆ (
4αDcDdΩ

cadb
)

Aabd4x.

The full second-order field equation from the variation of the solder form is

4αDcDdΩ
cadb +4α fcdΩ

cadb +2β f a
cΩ

cb +4αΘ
ab−2βQab = 0. (6.48)

Once again, since the dilatational energy-momentum tensor vanishes (6.33) due to zero

dilatational curvature (6.4), (6.48) becomes

4αDcDdΩ
cadb +4α fcdΩ

cadb +4αΘ
ab = 0. (6.49)

Imposing a vanishing Lorentz or conformal energy-momentum tensor (6.36) results in

4αDcDdΩ
cadb +4α fcdΩ

cadb = 0. (6.50)

Substitution of the Weyl curvature tensor for the Lorentz curvature (6.18) and the Schouten

tensor for the gauge field of the special conformal transformations (6.14) gives

4αDcDdCcadb−4αRcdCcadb = 0. (6.51)
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Substitution of the Schouten tensor (6.9) in coordinates exactly recovers the Bach equation

(4.25). The full field equation would then be written as

0 = 2αDdDbCabcd−αCabcdRbd. (6.52)

However, considering Weyl gravity as a gauge theory, we vary each gauge field inde-

pendently. In particular, from the field equation of the variation of the spin connection, we

have the divergence of conformal curvature is zero (6.20), which implies

2αDdDbCabcd = 0. (6.53)

Imposing that condition on the Bach equation (4.25) gives the more restrictive condition,

αCabcdRbd = 0. (6.54)

This implies all solutions in this theory solve the Bach equation. However, the converse is

not necessarily true; the solutions that satisfy the Bach equation do not imply each of the

terms vanishes separately.

6.7. Summary

For the gauge field of the special conformal transformations and the Weyl vector, we

found that

fb = −RRRb, and (6.55)

ω = dφ . (6.56)

Precisely because the gauge field of the special conformal transformations is the Schouten

tensor, this implies Ωa
bcd = Ca

bcd and the quadratic Weyl curvature action is equivalent to
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the quadratic Lorentz curvature action (with an added quadratic dilatational curvature). The

field equation for the spin connection was found to be equivalent to the vanishing covariant

divergence of the conformal tensor. Since the dilatational curvature was found to be zero,

the energy-momentum tensor constructed from it also vanishes. The energy-momentum

tensor constructed from the Weyl curvature tensor is also zero because it was found to be

equivalent to the second-order variation of the Gauss-Bonnet term. We conclude, while all

solutions of the gauge theory satisfy the Bach equation, they must also satisfy the vanishing

divergence of the conformal tensor (6.20).
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CHAPTER 7

CONSEQUENCES

One of the hallmarks of any conformal theory is it admits classes of solutions related by

a conformal transformation. That is, if gµν is a solution, then so is e2φ gµν . In this chapter,

we explicitly show the necessary condition for this to happen, and show how this condition

arises naturally from the field equations (5.68) - (5.71).

7.1. Riemannian gauge

In this section, we show how we recover a Riemannian space by choosing a gauge in

which the Weyl vector vanishes.

7.1.1. Structure equations

Under conformal transformations, the structure equations for the conformal group (5.26)

- (5.29) remain unmodified; that is, we have invariance under

ω̃
a
c = ω

a
c, (7.1)

ẽa = eχ ′ea, (7.2)

f̃c = e−χ ′fc, (7.3)

ω̃ = ω +dχ
′, (7.4)

where χ ′ is an arbitrary function of space and time. Since dilatational curvature vanishes as

a consequence of the field equations (6.4), and since the Schouten tensor is the gauge field

for the special conformal transformations, which is symmetric, the structure equation for

the Weyl vector (6.16) becomes dω = 0, so the Weyl vector has the form ω = dφ (6.17).

This implies there is a gauge χ ′ =−φ , where the Weyl vector vanishes, which we call the

Riemannian gauge. With a zero Weyl vector, the structure equation for the solder form
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(5.23) reduces to

dea = eb∧ω
a
b, (7.5)

which is the torsion-free structure equation for the solder form in the Poincaré group (3.35).

Then ωa
b becomes the usual Poincaré spin connection and the curvature of ωa

b defined

in Eq. (6.6) is the Riemann curvature tensor,

dω
a
b = ω

c
b∧ω

a
c +Ra

b. (7.6)

This equation, along with (7.5), comprise the two structure equations from the Poincaré

group in a Riemannian geometry (3.35) and (3.36). The metric in such a theory will be

Riemannian.

7.2. Integrability

In this section, we show how the spin connection must transform in a Riemannian

geometry, or in the Riemannian gauge, when conformal transformations, χ , of the solder

form (or of the metric) are considered. Then, we show how the Riemann curvature tensor

changes under conformal transformations. We then find the condition that must be satisfied

for the transformed Ricci tensor to vanish, which is a condition on the derivatives of χ ,

which we write as χa ≡ e µ
a ∂µ χ . Since this condition includes the exterior derivative of

χa, we take another exterior derivative to determine the integrability condition.

7.2.1. Conformal change of basis

A conformal change of basis of the solder form in the Riemannian gauge gives

ẽa = eχea, (7.7)

where χ is an arbitrary function of space and time. We treat this, for the present, as a

change of basis, but not a change of gauge. The structure equation for the solder form in
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the Riemannian gauge or in a Riemannian geometry (7.5) becomes

dẽa = ẽc∧ ω̃
a
c. (7.8)

To preserve (7.8), we require the spin connection to transform as

ω̃
a
b = ω

a
b +2∆

ac
dbχced. (7.9)

The Riemann curvature Ra
b = dωa

b−ωc
b∧ωa

c becomes

R̃a
b = dω̃

a
b− ω̃

c
b∧ ω̃

a
c, (7.10)

and substituting (7.9) we find (7.10) may be written as

R̃a
b = Ra

b +2∆
ac
db

[
Dχc−

(
χeχc−

1
2

ηecχ
2
)

ee
]
∧ ed. (7.11)

Using (6.7) and (6.9), we may write Ra
b and R̃a

b in terms of their Weyl and Ricci parts,

Ra
b = 2∆

ac
dbed ∧RRRc +Ca

b, and (7.12)

R̃a
b = 2∆

ac
dbẽd ∧R̃RRc +Ca

b. (7.13)

Substitution of (7.11) into (7.13) and comparing to (7.12) gives the transformation of the

Schouten,

R̃RRc = e−χ

[
RRRc−Dχc +

(
χeχc−

1
2

ηecχ
2
)

ee
]
. (7.14)

Since the Schouten tensor can be written in terms of the Ricci tensor, and since this defi-

nition may be inverted to write the Ricci tensor solely in terms of Rc, the vanishing of R̃RRc

implies the vanishing of the Ricci tensor and R̃RRc vanishes if, and only if, there exists χe
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such that

RRRc−Dχc +

(
χeχc−

1
2

ηecχ
2
)

ee = 0. (7.15)

7.2.2. Integrability condition

Writing out the covariant exterior derivative in (7.15) gives

dχa = χbω
b
a +RRRa +

(
χbχa−

1
2

ηbaχ
2
)

eb. (7.16)

Taking an exterior derivative of both sides gives

0 = dRRRa +RRRb∧ω
b
a +χc

(
Rc

a +2∆
cd
baRRRd ∧ eb

)
. (7.17)

The first two terms become the covariant exterior derivative of the Schouten tensor. The last

term in parentheses is the Weyl curvature as given by (7.12). The integrability condition

for χa then becomes

0 = DRRRa +χcCc
a. (7.18)

Writing this out in components and stripping the basis, we may also write (7.18) as

0 = Ra[b;c]+χdCd
abc. (7.19)

The integrability condition restricts what RRRa and Cd
abc must be in order for there to exist

a solution for χa such that R̃RRc vanishes. In this case, there exists a gauge where (7.15) is

satisfied, i.e.,

RRRc = Dχc−
(

χeχc−
1
2

ηecχ
2
)

ee, (7.20)

which implies

R̃RRc = 0, (7.21)
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which also implies Rab (g̃) = 0 where

g̃αβ = e2χgαβ . (7.22)

7.3. Field equation implies integrability

In this section, we show how, in a Riemannian geometry, the field equation for the spin

connection, or the vanishing of the covariant divergence of the Weyl curvature tensor, leads

to the same integrability condition (7.17).

7.3.1. Equivalence to integrability condition

Expanding D̃aC̃a
bcd gives

D̃aC̃a
bd f = ∂aC̃a

bd f −C̃a
bc f ω̃

c
da−C̃a

bdeω̃
e
f a +C̃c

bd f ω̃
a

ca−C̃a
cd f ω̃

c
ba, (7.23)

where ω̃
a
b is the transformed connection given by (7.9) and C̃a

bcd = e−2χCa
bcd (B.6). In

n = 4 dimensions, (7.23) simplifies to

D̃aC̃a
bd f = DaC̃a

bd f +χcC̃c
bd f . (7.24)

In a Riemannian geometry, Bianchi’s second identity tells us the covariant exterior

derivative of the Riemann curvature two-form is zero (3.44). This identity is valid in the

Riemannian gauge. Solving for the Riemann curvature from (6.7) gives

Ra
b = Ca

b +2∆
ad
cb ec∧RRRd. (7.25)
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Substituting this into (3.44) and taking a contraction gives

0 = Ca
bcd;a +(n−3)(Rbd;c−Rbc;d)

+ηdb
(
R;c−Ra

c;a
)
+ηcb

(
Ra

d;a−R;d
)
. (7.26)

Contracting with ηcb gives

Rc
d;c = R;d, (7.27)

which can then be substituted back into (7.26) to give

0 = DaCa
bcd +Rb[d;c] (7.28)

in n = 4 dimensions. Notice the field equation for the spin connection (6.20) implies (7.28)

may be written as

0 = Rb[d;c]. (7.29)

Under a change of basis, (7.28) becomes

0 = D̃aC̃a
bcd + R̃b[d;c]. (7.30)

Substitution of (7.24) into (7.30) immediately yields

0 = R̃b[c;d]+χeC̃e
bcd, (7.31)

which is precisely the integrability condition for χa (7.19) for conformal Ricci flatness of

the new metric, ẽa. This implies ẽa is conformal to a Ricci-flat metric or there exists an

êa = eξ ẽa such that Rab (êa) = 0. However, it follows êa = e(χ+ξ )ea, so ea is conformal to
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êa. This implies that the integrability condition also holds in the original basis,

0 = Rb[c;d]+(χ +ξ )eCe
bcd. (7.32)

However, from (7.29), this reduces to

(χ +ξ )eCe
bcd = 0. (7.33)

For a generic Ce
bcd , this implies (χ +ξ )b = 0 so ψ = χ +ξ is constant and (7.14) may be

written as

RRRc (êa) = e−ψ

[
RRRc (ea)−Dψc +

(
ψeψc−

1
2

ηecψ
2
)

ee
]
. (7.34)

Since ψe is zero, −Dψc +
(
ψeψc− 1

2ηecψ2)ee = 0, and RRRc (êa) = 0, then (7.34) reduces

to

0 =RRRc (êa) = e−ψRRRc (ea) , (7.35)

which implies RRRc (ea) = 0. So, in the Riemannian gauge, which is the gauge in which the

Weyl vector vanishes, the Schouten tensor must be zero.

Returning to an arbitrary gauge, we recall f̃a = e−χ ′fa (7.3) and fa =−RRRa (6.14), which

means

R̃RRa = e−χ ′RRRa, (7.36)

which may also be written as

R̃RRa = e−χ ′
[
RRR

(α)
c (ea)+DWc−

(
WeWc−

1
2

ηecW 2
)

ee
]

(7.37)

when decomposing the spin connection into ωa
b =αa

b−2∆ac
dbWced , where αa

b is the metric-

compatible connection and Wc is the Weyl vector. Since R̃RRa = 0, then R̃RRa = 0 for any χ ′, so

RRRa is invariant under any conformal transformation. If the Schouten tensor is zero in any
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particular gauge, then it must be zero in all gauges, and we have demonstrated it vanishes

in the Riemannian gauge. If the Schouten tensor vanishes, then so does the Ricci tensor, so

as a result, this theory admits conformal classes of Ricci-flat solutions.

7.4. Summary

The solution for the Weyl vector allows us to choose a gauge. From the full conformal

space, we were able to choose a gauge in which ω = 0, or the Riemannian gauge, recover-

ing the structure equation for solder form and spin connection for the Poincaré group (5.23)

and (3.36). Once in this gauge, we wanted to be able to compute what happened to these

same equations in a conformal change of basis. The reason for going from the Riemannian

gauge to an arbitrary gauge was to see how objects from this gauge transformed, i.e. the

Riemann curvature tensor (7.11). Of particular interest was Schouten tensor, whose van-

ishing implies the Ricci tensor vanishes. We were able to show how RRRa transformed while

leaving the Riemannian gauge and found the condition for it to vanish (7.15). From this,

we were able to show the condition on the curvatures for χa to exist in order to lead to

Ricci-flat solutions, otherwise known as the integrability condition (7.18).

We then approached this problem a little differently. We computed the divergence of

the Weyl curvature tensor under a change of basis. Using the Bianchi identity (3.44), as

well as the field equation for the spin connection (6.20), we showed how this implied the

same integrability condition, which showed the Schouten tensor, as well as the Ricci tensor,

must be zero in the Riemannian gauge. From the transformation property of the gauge field

of the special conformal transformations, which makes it a tensor, the Ricci tensor must be

zero in all gauges, so all conformal transformations of Ricci flat solutions are permissible.



76
CHAPTER 8

DISCUSSION

From field equation of the spin connection (6.20) and from the integrability condition

(7.18), we have shown all metrics that are conformal to Ricci-flat metrics are solutions to

this theory. That is, any metric that causes the Ricci tensor to vanish can be multiplied by a

conformal factor, and this also satisfies the field equations. That is, all vacuum solutions to

General Relativity are solutions to vacuum Weyl gravity as a gauge theory, together with

vacuum solutions up to an arbitrary conformal factor. This is a consequence of the inherent

local scale freedom, or the freedom to choose units that depend on location in space-time.

We now show the field equation for the solder form can be written as the energy-momentum

of the Schouten tensor. We also show how the solutions to Weyl vector are related to size

change in the following sections.

8.1. Energy-momentum tensor of the Schouten tensor

We recall from the variation of the solder form, we had the energy-momentum tensor

of the dilatational curvature (5.73) given by

Qab = ΩacΩ
c
b −

1
4

ΩcdΩ
cd

ηab, (8.1)

and the energy-momentum tensor of the Lorentz curvature or the Weyl curvature tensor

(6.34) given by

Θab =Cc
daeC

d e
cb − 1

4
Cc

de fC
d e f
c ηab.

Qab was zero because the dilatational curvature is zero (6.4). Θab is zero because it is

equivalent to the second-order variation of the Gauss-Bonnet term (6.32). In each case, the

energy-momentum tensor has the same form. Likewise, energy-momentum tensor of the
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Schouten tensor can be written compactly as

Eab = RbcR
c

a −
1
4
RcdR

cd
ηab. (8.2)

Substituting the definition of the Schouten as given by

Rab =
1
2

(
Rab−

1
6

ηabR
)

(8.3)

and multiplying by 8 gives

8Eab = 2RbcR c
a −

2
3

RRab−
1
2

ηabRcdRcd +
1
6

ηabR2. (8.4)

The first-order, or Palatini, variation of the Gauss-Bonnet gives

0 =−1
4

(
Rabe f Rabe f −4RabRab +R2

)
gcd +Rab f dR c

ab f −4RadRc
a +RRdc. (8.5)

The difference between this variation and the second-order variation (6.32) gives the iden-

tity

RabRadbc = RadRc
a. (8.6)

Written out, the field equation for the solder form (6.54) can be expressed as

CabcdRbd = RabcdRbd−
2
3

RRac +Ra
bRbc− 1

2
RbdRbd

η
ac +

1
6

R2
η

ac. (8.7)

Using our identity (8.6), the field equation is identically (8.4) and so (6.54) becomes

Eab = 0. (8.8)



78
We believe this is a statement that there is no gravitational self-energy. That is, gravitational

fields themselves do not produce gravitational fields through an explicit source term. In

terms of just the energy-momentum tensors, the field equation (5.77) may also be written

as

8αEab = 2αΘab−β (−RbcΩ
c

a−Qab) (8.9)

where each of the components vanishes identically.

One obvious solution to (8.8) is Rab = 0. Using (8.3), this may be written as

Rab−
1
6

ηabR = 0, (8.10)

which is equivalent to the vacuum Einstein equation (2.58). Once again, the solutions are

identical.

8.2. Physical size change

Size change in a conformal theory is brought about by the exponential of the integral of

the Weyl vector, e
´

ω , where, in general, the integral depends on the path taken in spacetime.

Since lengths are determined by comparisons to standards at the same location, we may

write

L =
le
´ x2

x1 C1
ω

l0e
´ x2

x1 C2
ω

; (8.11)

l can be thought of the length of the object in question, l0 is the length of the standard,

where x1 is the starting location in spacetime of both and x2 is the final location of both.
´ x2

x1 C1
ω is then the integral of the object through its own path (path 1), and

´ x2
x1 C2

ω the

integral of the standard through its path (path 2), where the two paths need not be the same.

If the two integrals return the same values, there will be no size change measured when at

point x2 as compared to point x1. However, if
´ x2

x1 C1
ω >

´ x2
x1 C2

ω , there will be expansion

and if
´ x2

x1 C1
ω <

´ x2
x1 C2

ω , there will be an observable shrinkage. The solution to the Weyl
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vector indicates it must be the gradient of a function, φ (6.17). This implies the value of

each integral depends on the arbitrary function, φ , only at positions x1 and x2, regardless

of path taken. Since the starting point and ending point in each integral is the same, both

integrals will take the same value; it will always be the case that L = l/l0, so there will be

no size change in this theory, even if units depend on space and time.

8.3. Summary

In this work we presented the standard formulation of general relativity. Using the

transformation of the covariant derivative and the Christoffel connection, we were able to

construct a scalar action composed the Ricci scalar that was invariant under general coordi-

nate transformations. From this action, the independent fields, the metric and the connec-

tion, were varied to find the field equations, and the result was the Einstein equation and the

condition for metric compatibility. From here, we presented general relativity as a gauge

theory of the Poincaré group. From the group elements, the infinitesimal transformations

were found, and from this, the Lie algebra. From the structure constants of the Lie alge-

bra, the structure equations were formed for the corresponding gauge fields and then the

Bianchi identities, or the integrability conditions, by administering another exterior deriva-

tive to the structure equations. From the transformation properties of the curvature and the

connection for the entire group, the transformation of individual curvatures and connec-

tions were found, and a scalar linear action, the Einstein-Hilbert action was constructed.

The two independent fields, the solder form and the spin connection, were varied to yield

the Einstein equation and vanishing torsion, respectively.

As with general relativity, with Weyl gravity as a gauge theory, we followed the same

basic procedure. A quadratic scale-invariant action formed from the Weyl curvature ten-

sor was constructed and the metric was varied to yield the Bach equation (4.25). We then

considered Weyl gravity as a gauge theory of the full conformal group and formed the

most general even-parity, quadratic action from the curvatures that was invariant under
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local Lorentz transformations, as in the case of general relativity as a gauge theory, but

also under local scale transformations, or dilatations. We then proceeded to vary this ac-

tion with respect to its independent fields. Since the conformal group is a larger group

than the Poincaré group, there were more fields to vary, and hence, more field equations.

Solving the field equations, together with the structure equations, yielded zero dilatational

curvature (6.4), so the Weyl vector could be written as the gradient of an arbitrary func-

tion (6.17). It was also found the Lorentz curvature was equivalent to the Weyl curvature

tensor (6.18). With these two conditions, the action could equivalently be written as the

quadratic conformal tensor action in the standard presentation of the theory. It was also

found the gauge field of the special conformal transformations was the negative of the

Schouten tensor (6.14). Varying the solder form gave rise to two energy-momentum ten-

sors, one constructed from the dilatational curvature (5.73) and another constructed from

the Lorentz curvature (5.72). The dilatational energy-momentum tensor vanishes by virtue

of zero dilatational curvature and the Lorentz energy-momentum tensor vanished for be-

ing equivalent to the second-order variation of the Euler character (6.32). In the case that

the fields are not varied independently, but including a variation of the spin connection in

terms of the solder form, we recover the Bach equation. However, a Palatini variation of

the spin connection results in the covariant divergence of the Weyl curvature tensor being

zero giving the restricted Bach equation (6.54).

Given the gauge freedom inherent in this theory, we were free to choose a gauge in

which the Weyl vector was zero. In this gauge, which we called the Riemannian gauge, we

recovered the torsion-free structure equation for the solder form (7.5). We were also able

to write the structure equation for the spin connection as if from the Poincaré group (7.6).

To see how the equations transformed in this gauge, we allowed a change of basis and we

were able to see how the Schouten tensor transformed and from this, find a necessary and

sufficient condition for it to vanish (7.15). From this condition, we took another exterior

derivative to find the integrability condition (7.18) for the existence of χ that caused this
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tensor to vanish, which is equivalent to the Ricci tensor being zero. We found the same

integrability condition from the field equation for the spin connection under conformal

transformations (7.31). This showed Weyl gravity as a gauge theory not only admits solu-

tions that are Ricci flat, but equivalence classes of solutions that are conformal to metrics

that are Ricci-flat.

Lastly, we showed the restricted Bach equation can be written as the energy-momentum

tensor of the Schouten tensor (8.4). Since the field equation sets this to zero, this seems

to imply there exists no gravitational self energy. The final result was to show although

the conformal factor is arbitrary, the Weyl vector is its gradient, so integration, along a

closed loop, equals zero, and so there will be no size change, a phenomenon consistent

with observations.

8.4. Future work

In this work, we have considered Weyl gravity as a purely classical theory. Although

there are claims this theory is renormalizable and free of ghosts [26, 32], it would nonethe-

less be noteworthy to check, especially considering that Weyl gravity as a gauge theory of

the conformal group is no longer a fourth-order theory. Another aspect of this work is we

were considering Weyl gravity in the auxiliary gauging, that is, with dilatational, Lorentz,

and special conformal symmetry. Since the Lorentz curvature and the dilatational curvature

are also tensors when we gauge by just the Lorentz transformations and dilatations, we can

consider the same theory in the biconformal gauging.1 This would provide a base space

that can be identified as a phase space, rather than the conventional four-dimensional con-

figuration space. Lastly, in this work, we only considered the vacuum solutions. It would

be interesting to also consider the same theory with matter sources.

1It would not be the most general theory quadratic in the curvatures since there are other tensors not
present in the auxiliary gauging, notably, the torsion and special conformal curvature.
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APPENDIX A

SO(4,2) CONFORMAL GROUP REPRESENTATION

The conformal group is the group that preserves light cones. We know that a light cone

is described by a four-vector with zero proper length (neither space-like nor time-like).

Hence, it is given by

xαxα = ηαβ xαxβ = 0, (A.1)

where α takes values from 0 to 3. We can multiply this by a constant and the equation is

still satisfied,

λxαxα = 0. (A.2)

Translating the light cone off the origin gives

λ (xα −aα)(xα −aα) = 0. (A.3)

Expanding (A.3) gives

λx2−2λaαxα +λa2 = 0. (A.4)

From this, we make the identification

Bα ≡ λaα , (A.5)

B4 ≡ λ , (A.6)

B5 ≡ 1
2

λa2, (A.7)

and (A.4) becomes

B4x2−2Bαxα +2B5 = 0. (A.8)

Squaring Bα gives

BαBα = 2B4B5 (A.9)
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so

BαBα −2B4B5 = 0. (A.10)

Any map from light cones to light cones is equivalent to mapping

(Bα ,B4,B5)→
(
B̃α , B̃4, B̃5

)
(A.11)

or

λ (xα −aα)(xα −aα)→ λ̃ (xα − ãα)(xα − ãα) , (A.12)

provided

B̃α B̃α −2B̃4B̃5 = 0. (A.13)

We write this constraint using

ηAB =


ηab

0 −1

−1 0

 . (A.14)

Since η45 = η45 =−1,

ηABBABB = BaBa−2B4B5. (A.15)

Because of (A.10), (A.15) becomes

ηABBABB = 0. (A.16)
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The conformal group is, therefore, the group of transformations preserving the six-dimensional

light cone at the origin. When ηAB is diagonalized, then

ηAB =



−1

1

1

1

1

−1


(A.17)

so its signature is (4,2) and its determinant is unity. The group is, therefore, SO(4,2).

We recall with the Lorentz transformations, we were trying to keep the invariant mag-

nitude the same (3.2). In the case of these transformations from light cone to light cone,

we’re trying to keep the same invariant magnitude of 0 the same so

ηABx̃Ax̃B = ηABxAxB, (A.18)

or

ηAB

(
Λ

A
CxC
)(

Λ
B
DxD)= ηCDxCxD, (A.19)

where, in this case, ΛA
B must be a general element of the conformal group. Just as in the

Lorentz transformations alone (3.5), we find that letting

Λ
A
B = δ

A
B + ε

A
B (A.20)

implies

εCD =−εDC, (A.21)
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so in this representation, the generators of the conformal group are antisymmetric. The

generators are then defined in the following manner:

[Mab]AB =

 εab 0

0 0

 , (A.22)

[Pa]AB =



0 −1

0 1

0 1

0 1

1 −1 −1 −1 0 0

0 0


, (A.23)

[Ka]AB =



0 −1

0 1

0 1

0 1

0 0

1 −1 −1 −1 0 0


, (A.24)

[D]AB =



0

0

0

0

0 −1

1 0


, (A.25)

where, as mentioned before, Mab is the generator of the Lorentz transformations, Pa is the

generator of the translations, Ka is the generator of the special conformal transformations,
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and D is the generator of the dilatations. εab are the same generators of the Lorentz group

as defined in (3.4). Since the group indices on each generator are naturally mixed indices,

we may use ηAC to raise the first index of each generator:

[Pa]
A
B =



0 1

0 1

0 1

0 1

0 0

−1 1 1 1 0 0


, (A.26)

[Ka]
A
B =



0 1

0 1

0 1

0 1

−1 1 1 1 0 0

0 0


, (A.27)

[D]AB =



0

0

0

0

−1 0

0 1


. (A.28)
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Exponentiating the generators to get to the group elements gives

e(b
α Pα ) =



1 b0

1 b1

1 b2

1 b3

1 0

−b0 b1 b2 b3 1
2bαbα 1


, (A.29)

e(c
α Kα ) =



1 c0

1 c1

1 c2

1 c3

−c0 c1 c2 c3 1 1
2cαcα

0 1


, (A.30)

and

e[λD] =



1

1

1

1

e−λ 0

0 eλ


. (A.31)

To show what these group elements do, we have them each act on a vector given by V =[
B0 B1 B2 B3 B4 B5

]T

or otherwise,
[

Bα B4 B5

]T

and return a vector given

by
[

B̃α B̃4 B̃5

]T

.
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Translations

A translation acting on V returns


B̃α

B̃4

B̃5

=


Bα +bαB4

B4

bαBα + 1
2bαbαB4 +B5

 . (A.32)

Solving for aα in (A.5) (with raised indices) gives aα = Bα

λ
, which is equivalent to

aα =
Bα

B4 (A.33)

when using (A.6). Under a translation, (A.33) becomes

ãα =
B̃α

B̃4 . (A.34)

Substituting B̃α and B̃4 from (A.32) into (A.33) returns

ãα = aα +bα . (A.35)

Letting aα → xα gives

x̃α = xα +bα , (A.36)

which is clearly a translation. An inverted coordinate is given by dividing a coordinate

by its squared magnitude. Taking (A.33), dividing both sides by a2 to get an inverted

coordinate and multiplying the numerator and denominator in the fraction to the right by

1
2λ gives

aα

a2 =
Bα

2B5 . (A.37)
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After a translation, this becomes

ãα

ã2 =
B̃α

2B̃5 . (A.38)

Substitution of B̃α and B̃5 from (A.32) yields

ãα

ã2 =
Bα

2B5 +
bα B4

2B5

2bα Bα

2B5 + bα bα B4

2B5 +1
. (A.39)

Designating yα ≡ Bα

2B5 and recognizing B4

2B5 =
1
a2 , which is the same as y2 (if aα = xα ), then

(A.39) becomes

ỹα =
yα +bαy2

2bαyα +b2y2 +1
. (A.40)

Comparing this transformation to (5.1), we recognize (A.40) as a special conformal trans-

formation. That is, translations translate ordinary coordinates but transform inverse coor-

dinates by special conformal transformations.

Special conformal transformations

The special conformal group element (A.30) on the same vector, V , returns


B̃α

B̃4

B̃5

=


Bα + cαB5

cαBα +B4 + 1
2cαcαB5

B5

 . (A.41)

As in the case with the translations, substituting B̃α and B̃4 from (A.41) gives

x̃α =
Bα

B4 + cα B5

B4

cα
Bα

B4 +
B4

B4 + cαcα 1
2

B5

B4

. (A.42)

From (A.33), we recognize

xa =
Ba

B4 . (A.43)
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Squaring xa in (A.43) and utilizing (A.9), we get

xαxα =
2B5

B4 . (A.44)

Substituting (A.43) and (A.44) into (A.42) and letting cα → 2cα yields

x̃α =
xα + cαx2

2cαxα + c2x2 +1
. (A.45)

To see what the inverse coordinates are doing under special conformal transformations,

we write (A.38) as

ỹα =
B̃α

2B̃5 . (A.46)

Substituting B̃α and B̃5 from (A.41) gives

ỹα = yα + cα (A.47)

after the same relabeling of the arbitrary constant as in (A.45). Special conformal transfor-

mations translate inverse coordinates.

Dilatations

The special conformal group element (A.30) on the same vector, V , returns


B̃α

B̃4

B̃5

=


Bα

e−λ B4

eλ B5

 . (A.48)

Following the same procedure as with the translations and special conformal transforma-

tions gives

x̃α = eλ xα (A.49)
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and

ỹα = e−λ yα , (A.50)

so coordinates and inverse coordinates transform oppositely.

Forms and curvatures

From the antisymmetry of the generators εAB (A.21), we have

ε
A
B =−η

AC
ηBDε

D
C, (A.51)

where ηAB is the metric for the full representation space (A.14). The same relation also

holds for forms, that is,

ω
A
B =−η

AC
ηBDω

D
C. (A.52)

Restricting the group indices to be Lorentz (0 to 3) or 4 and 5, we have

ω
A
B ∈

{
ω

a
b,ω

4
b,ω

a
4,ω

4
4,ω

4
5,ω

5
b,ω

b
5,ω

5
5,ω

5
4

}
. (A.53)

Likewise, we have

ηAB ∈ {ηab,η45,η54} (A.54)

with η45 = η54 = 1 and all other elements zero. Since ηAB is its own inverse, we also have

η
AB ∈

{
η

ab,η45,η54
}

(A.55)
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with η45 = η54 = 1. Expanding the relation for forms (A.52) using the allowed forms

(A.53) and the nonzero metric elements (A.54)-(A.55), we find

ω
a
4 = η

ac
ω

5
c, (A.56)

ω
4
b = ηbdω

d
5, (A.57)

ω
4
4 = −ω

5
5, (A.58)

ω
4
5 = 0, (A.59)

ω
a
5 = η

ac
ω

4
c, (A.60)

ω
5
b = ηbdω

d
4, (A.61)

ω
5
5 = −ω

4
4, (A.62)

ω
5
4 = 0. (A.63)

The only independent forms are given by

ω
A
B ∈

{
ω

a
b,ω

4
b,ω

a
4,ω

4
4
}
, (A.64)

and these same forms may also be expressed as

ω
A
B = {ωa

b, fb,ea,ω} , (A.65)

which is the spin connection, gauge field of special conformal transformations, solder form,

and Weyl vector.

Since the curvatures in the conformal group have the same sets of relations as the forms,
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we also have

Ra
4 = η

acR5
c, (A.66)

R4
b = ηbdRd

5, (A.67)

R4
4 = −R5

5, (A.68)

R4
5 = 0, (A.69)

Ra
5 = η

acR4
c, (A.70)

R5
b = ηbcRc

4, (A.71)

R5
5 = −R4

4, (A.72)

R5
4 = 0. (A.73)

The independent vectors are then given by

RA
B ∈

{
Ra

b,R
4
b,R

a
4,R

4
4
}
, (A.74)

and these same curvatures may be expressed as

RA
B ∈ {Ra

b,Sb,Ta,Ω} , (A.75)

which is the Riemann curvature, special conformal curvature, torsion, and the dilatational

curvature.
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APPENDIX B

INVARIANCE OF WEYL CURVATURE TENSOR

Under conformal transformations, the decomposition of the Riemann curvature tensor

into the Weyl curvature tensor and the Schouten tensor (7.12) becomes

R̃a
b = C̃a

b−2∆
ac
dbR̃c∧ ẽd. (B.1)

Substituting the transformation of the Riemann curvature (7.11) and explicitly antisym-

metrizing to write in coordinates gives

2C̃a
bcde2φ −2∆

ae
dbR̃ece2φ +2∆

ae
cbR̃ede2φ = 2Ca

bcd−2∆
ae
dbRec +2∆

ae
cbRed

+2∆
ae
db

[
Dcφe−

(
φcφe−

1
2

ηceφ
2
)]

−2∆
ae
cb

[
Ddφe−

(
φdφe−

1
2

ηdeφ
2
)]

.(B.2)

Taking a trace on the a and c indices gives

ηdbR̃e2φ +(n−2)R̃bde2φ = ηdbR+(n−2)Rbd

−(n−2)
[

Ddφb−
(

φdφb−
1
2

ηdbφ
2
)]

−ηdb

[
η

aeDaφe−
(

η
ae

φaφe−
1
2

nφ
2
)]

. (B.3)

Contracting on the b and d indices gives the condition for the transformation of the Schouten

scalar:

R̃e2φ = R−Db
φb +

(
2−n

2

)
φ

2. (B.4)

Substitution of (B.4) into (B.3) gives the transformation of the Schouten tensor in coordi-

nates:

R̃bde2φ = Rbd−
[

Ddφb−
(

φdφb−
1
2

ηdbφ
2
)]

. (B.5)
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Notice this is essentially the same equation as (7.14). Substitution of (B.5) into (B.2) gives

C̃a
bcd = e−2φCa

bcd, (B.6)

so, up to a conformal factor, the Weyl curvature tensor is indeed invariant under conformal

transformations.
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