Astronomical Antenna for a Space Based Low Frequency Radio Telescope

K.A. Quillien1, S. Engelen1, E. K. A. Gill1, D. M. P. Smith2, M. J. Arts2, A.-J. Boonstra2

1 Delft University of Technology, Chair of Space Systems Engineering, The Netherlands
2 ASTRON, Dwingeloo, The Netherlands

August 13, 2013
Overview

- Radio astronomy
- OLFAR mission
- OLFAR hardware
- Conclusion
Radio Astronomy

VLA Source: John Fowler (2012)

VLBI Source: NASA
Low Frequency Radio Astronomy

• LOFAR (Low Frequency Array)
 • 18+18 stations
 • 10 – 250MHz
 • Max baseline 1500km
Low Frequency Radio Astronomy

- Distortions < 50 MHz
- Opaque < 10 – 30 MHz
- RFI

Source: G. H. Tan et al. (2000)

[Graph showing noise temperature vs. frequency with LOFAR highlighted]
Low Frequency Radio Astronomy

- RAE 1 (1968)
 - Active ionosphere
 - Man made RFI
 - Auroral Kilometric Radiation

- RAE 2 (1973)
 - Very poor angular resolution (~30°)

Source: J.K. Alexander et al. (1975)
OLFAR

Nano-Satellite Swarm (1)

- **Location:** Moon Orbit / Earth-Moon L2
- **Number of nodes:** >10, scalable
- **Node platform:** Nano-satellite
- **Frequency range:** 0.3-30 MHz
- **Max. baseline:** 100 km
OLFAR

Nano-Satellite Swarm (2)

- Very high redundancy
- Very low node complexity
- Very high expansion possibility
- Very high autonomy
OLFAR

Status

• Completed activities:
 • Lunar orbit design and analysis
 • Lunar transfer orbit

• Currently active:
 • Reaction control thruster design
 • (Science) Antenna subsystem design
 • Energy supply

• Starting:
 • L2 point orbit design and analysis
 • Transfer orbit to L2/L4/L5
OLFAR

Challenges

- 30 Watt power generation
- Low frequency radio antennas
- Fully autonomous, adaptable (true) swarm
- COTS
- 3U CubeSat nano-satellite
Astronomical Antennas

Subsystem Design (1)

- Monopoles
 - 6 x 4.8 meter

- Active electronically short (Nordholt) antennas
 - Compact
 - Flat response over wide bandwidth

- ↑ length -> ↑ efficiency
Astronomical Antennas

Subsystem Design (2)
Astronomical Antennas

RF properties (1)

\(\lambda/4\) resonance - monopole

\(\lambda/4\) resonance - dipole
Astronomical Antennas

RF properties (2)

> $\lambda/2$ resonance - monopole

> $\lambda/2$ resonance - dipole
Astronomical Antennas
Subsystem Design (3)
Solar Arrays
Conclusions

- OLFAR is progressing
- Essential hardware (antennas, solar panels) prototyped
- Science requirements can be achieved with subsystem
- Astronomical antenna properties investigated
- Precursor missions to be investigated
Questions?