Novel Nano-Sized, Chitosan-Coated, Meta-Vivianite and its Solubility in an Electrolyte Solution and a Soil Saturated **Paste Extract**

Li-Ting Yen^{1,4}, David Britt², Joan McLean³, Anne Anderson², Yao-Tung Lin⁴, Astrid Jacobson¹

¹Dept. of Plants, Soils and Climate, USU, ²Dept. of Biological Engineering, USU, ³Utah Water Research Laboratory, ⁴Dept. of Soil & Environmental Sciences, NCHU

Graphical Abstract

- Objectives

- Synthesize nano-sized chitosan-coated metavivianite (CTmetaVT).
- Characterize the metavivianite (metaVT) and CT-metaVT.
- **Evaluate the kinetics of Fe and P release from metaVT and CT**metaVT in known solutions (0.01 M KCl and a calcareous soil saturated paste extract (SPE)).

-Material & Methods-

- I. Synthesis of metaVT & CT-metaVT
 - Ammonium phosphate + ferrous sulfate, at 4 °C under Ar atmosphere

II. Characterization of metaVT & CT-metaVT

2-D surface

Zeta potential analysis for surface charge

- N, C, H, O content (Elemental Analyzer, EA)
- Surface composition (X-Ray Photoelectron Spectroscopy, XPS)

III. Solubility experiments

Continuous experiment kept shaking in the dark

Sampling times: 0, 24, 48, 72, 96,

Samples are centrifuged and 120, 144, 168 h filtered to remove NPs

Results & Discussions

I. Thickness and surface charge

	Morphology	Thickness (nm)	Ζ
metaVT	Feather-like	24.9	
CT-metaVT	Feather-like	38.9	
СТ	-	-	

CT-metaVT	0.32	1.31	2.59
metaVT	0.14	0.06	2.26
	N %	C %	Н%

III. X-ray photoelectron spectra (XPS)

- Conclusions.

Email: li-ting.yen@usu.edu astrid.jacobson@usu.edu

IV. Total Fe and P concentration in electrolyte solution (0.01 M KCl, pH 5.6)

Acknowledgments –

- This work is supported by USDA NIFA, AFRI project 2016-08771; and UAES project **UTAO-1341**
- The USU Core Microscopy Facility and SEM were supported by NSF CMMI 1337932
- Thanks to David Powelson, Justin Deakin, & Joshua Hortin for laboratory assistance