

Energy Extraction from Black Holes Extraction from Black

Holes

Alexandra Chanson

Under the Mentorship of Dr. Maria J. Rodriguez

College

Alexandra Chanson USU Physics PhD Candidate

This work was made possible through a UNSG consortium Fellowship, as well as support through the USU physics
department and my advisor. Dr. M. J. Bodriguez department and my advisor, Dr. M. J. Rodriguez

Intuitively, there is a "rotational induction" within the ergosphere; this allows energy to be extracted from the J= Ma (thermodynamic) charge

4D Magnetospherics

• In fact, considering the ideal Magnetohydrodynamic limit:

$$
\text{Fluid Field:} \qquad S = S_{BH} + S_{matter} \approx S_{BH} + S_{EM} = \int \sqrt{-g} \left(R + \frac{1}{4} F^2 - A \cdot J \right)
$$

Gravitationally Saddled:

$$
\delta S \approx \delta S_{EM}
$$

This action gives vacuum (source free) E&M in curved spacetime:

 $F_{\mu\nu}J^{\nu}=0$

Using the spacetime symmetries, these four equations can be reduced to one, the Stream Equation:

$$
\partial_\theta\left(\frac{I^2}{8\pi^2}-\frac{A\sin^2\theta}{2\Sigma^2}(\Omega_F-\Omega_H)^2(\partial_\theta\psi)\right)=0
$$

Perturbation Method

Perturbation Method

\n• Under cosmic Censorship, here there is only one thermodynamic ratio:

\n
$$
\Delta(r) = r^2 - r_s r + a^2 \quad \Rightarrow \quad \frac{r_+}{M} = \frac{1}{2} \left(1 + \sqrt{1 - \alpha^2} \right) \qquad \alpha = \frac{J}{M^2}
$$

• Then, model symmetries (equatorial) can be used to initialize perturbative solution seeds.

Today, only consider monopole solutions:

$$
\Psi_{\phi} = \Psi_{\phi}^{(0)} + \alpha^2 \Psi_{\phi}^{(1)} + O(\alpha^4) \qquad \frac{\alpha r}{r_0} \ll 1
$$

$$
M\omega_{\phi} = \alpha \omega^{(1)} + O(\alpha^3)
$$

$$
MI = \alpha I^{(1)} + O(\alpha^3) \qquad 0 < \theta < \frac{\pi}{2}
$$

 $^{(i)}$ Indicates the perturbative solution order; e.g., $^{(0)}$ indicates the family of support fields for the α =0-solution.

Then, to control stability of the stability of the light surfaces, the solution can be matched to a di-pole far-field perturbation.

Physics (on-Sheet)

Co-rotation vector, orthogonal to
$$
\eta
$$
, determines a relative frequency measure:

$$
\chi \cdot F = -(\chi \cdot \eta)d\psi = (\Omega_F - \Omega_H)d\psi
$$

And also the F^2 -invariant:

$$
F^2 = \frac{2B_T^2}{-g^T} \Big(1 - \frac{|\chi_F|^2 |d\psi|^2}{2B_T^2} \Big)
$$

On-Sheet Scattering χ_F is always a timelike field sheet Killing Vector.

- conservation laws: $\chi \cdot p = p_t + \Omega_F p_\phi$
	- 2-D Dynamics: only need to fix one toroidal invariant.

$$
F = \frac{I}{2\pi(-g^T)^{1/2}} \epsilon_P + d\psi \wedge \eta \qquad \eta = d\varphi - \Omega_F(\psi) dt
$$

\n
$$
\chi_F = \partial_t + \Omega_F(\psi) \partial_\phi
$$

\n
$$
F = -(\chi \cdot \eta) d\psi = (\Omega_F - \Omega_H) d\psi
$$

\n
$$
F^2 = \frac{2B_T^2}{-g^T} \left(1 - \frac{|\chi_F|^2|d\psi|^2}{2B_T^2}\right)
$$

\n
$$
\frac{\text{On-Sheet Scattering}}{u \cdot F = 0} \text{ always a timelike field sheet Killing Vector.}
$$

\n
$$
u \cdot F = 0 \qquad u^2 = -1
$$

\n
$$
\text{Thus, it measures field sheet}
$$

\n
$$
u \cdot F = 0 \qquad u^2 = -1
$$

\n
$$
\text{Thus, it measures field sheet}
$$

\n
$$
u \cdot F = 0 \qquad u^2 = -1
$$

\n
$$
\text{Thus, it measures field sheet}
$$

\n
$$
u \cdot F = 0 \qquad u^2 = -1
$$

\n
$$
\text{Thus, it measures field sheet}
$$

\n
$$
u \cdot F = 0 \qquad u^2 = -1
$$

\n
$$
\text{Thus, it measures field sheet}
$$

\n
$$
u \cdot F = 0 \qquad u^2 = -1
$$

\n
$$
\text{Thus, it measures that}
$$

\n
$$
\frac{d\mathcal{L}}{dt} = 2\pi \int_0^{\pi} (\Omega_H - \Omega_F) (\psi_\theta)^2 \sqrt{\frac{g_{\varphi\varphi}}{g_{\theta\theta}}} d\theta
$$

\n
$$
\frac{d\mathcal{E}}{dt} = 2\pi \int_0^{\pi} \Omega_F (\Omega_H - \Omega_F) (\psi_\theta)^2 \sqrt{\frac{g_{\varphi\varphi}}{g_{\theta\theta}}} d\theta
$$

$$
\text{Kerr:} \qquad \textbf{d} s^2 \;\; = - \left(1 - \frac{r_s r}{\Sigma} \right) c^2 dt^2 + \frac{\Sigma}{\Delta} dr^2 + \Sigma d\theta^2 + \left(r^2 + a^2 + \frac{r_s r a^2}{\Sigma} \sin^2 \theta \right) \sin^2 \theta \, d\phi^2 - \frac{2 r_s r a \sin^2 \theta}{\Sigma} c dt \, d\phi
$$

5D, Meyers-Perry Black Hole (Single Spinning)

• Consider the d=5 Meyers-Perry metric with a single spin turned off (b=0):

SET:
$$
ds^2 = -\left(1 - \frac{r_s r}{\Sigma}\right) c^2 dt^2 + \frac{\Sigma}{\Delta} dr^2 + \Sigma d\theta^* + \left(r^2 + a^2 + \frac{r_s r a^2}{\Sigma} \sin^* \theta\right) \sin^2 \theta d\phi^2 - \frac{2r_s r a \sin^2 \theta}{\Sigma} c dt d\phi
$$

\n**5D, Meyers-Perry metric with a single spin turned off (b=0):**
\n
$$
ds^2 = -(1 - \frac{m}{\Sigma(r, \theta)}) dt^2 + \sin \theta^2 (a^2 + r^2 + \frac{a^2 m \sin \theta^2}{\Sigma(r, \theta)}) d\phi^2 + \frac{-2 a m \sin \theta}{\Sigma(r, \theta)} dt d\phi + r^2 \cos \theta^2 d\psi^2 + \frac{r^2 \Sigma(r, \theta)}{\Delta(r)} dr^2 + \Sigma(r, \theta) d\theta^2
$$
\n
$$
\Delta(r) = r^2 (r^2 + a^2 - m) \qquad \qquad \Sigma = r^2 + a^2 \cos^2 \theta
$$
\n**Perturbation Scale:**
\n
$$
r_0 = \sqrt{m} \qquad \frac{r_+}{r_0} = \sqrt{1 - \alpha^2}, \qquad \Rightarrow \alpha = \frac{a}{\sqrt{m}}
$$
\nNotice the extra angle's metric function can be directly included into the "Cosine-complex" that dominates near the symmetric zeros of g_{top}
\nNotice the Kerr
\n
$$
r^2 \cos^2 \theta d\psi^2 + \frac{r^2 \Sigma}{\Delta} dr^2 + \Sigma d\theta^2
$$

Perturbation Scale:

• Consider the d=5 Meyers-Perry metric with
 $ds^2 = -(1 - \frac{m}{\Sigma(r,\theta)})dt^2 + \sin \theta^2(a^2 + r^2 + \frac{a^2 m \sin \theta^2}{\Sigma(r,\theta)})d\phi^2 + \frac{a^2 (r,\theta)^2}{\Sigma(r,\theta)}d\phi^2 + \frac{a^2 (r,\theta)^2}{\Sigma(r,\theta)}d\phi^2 + \frac{a^2 (r,\theta)^2}{\Sigma(r,\theta)}d\phi^2 + \frac{a^2 (r,\theta)^2}{\Sigma(r,\theta)}d\phi^2 + \frac{a^2 (r,\theta)^2}{$ Notice the Kerr horizon has masssupport near while the b=0 MP (yellow) does not: presumably, this makes the fitting more dynamic $\frac{1}{-1.0}$ $\frac{1}{-0.5}$ 0.5 1.0

"Cosine-complex" that dominates near the symmetric zeros of g_{td} component, especially at large radius:

$$
\cos^2 \theta d\psi^2 + \frac{r^2 \Sigma}{\Delta} dr^2 + \Sigma d\theta^2
$$

$$
= \Sigma \left(\left(\frac{r d\psi}{a}\right)^2 + \left(\frac{dr}{\frac{\sqrt{\Delta}}{r}}\right)^2 + d\theta^2 \right) - (ar d\psi)^2
$$

Thus, in the b=0 case, the extra coordinate is an r-strong (cylindrical) support space $(U(1)$ -internal) that smoothly envelopes to 0 near the anti-symmetric zeros of g_{td}

Kerr:

 0.5

 1.0

 1.5

5D Flat

Considering constant frequency, $\omega^{(0)} = c_3$

otating, $\alpha = 0$, solutions, the stream equa • Considering constant frequency, $\omega^{(0)} = c_3$, zero current $I^{(0)}=0$, non-

5D Flat
\nConsidering constant frequency,
$$
\omega^{(0)} = c_3
$$
, zero current $1^{(0)}=0$, non-
\nrotating, $\alpha = 0$, solutions, the stream equation can be represented:
\n
$$
(j_{\mu}F^{\mu,\theta})r^4 = \mathcal{L}_{\psi}\Psi_{\psi}H[r,\theta] + \mathcal{L}_{\phi}\Psi_{\phi}G[r,\theta] + K[r,\theta](\omega_{\phi}\delta_{\phi}[\Psi_{\phi}] + \omega_{\psi}\delta_{\psi}[\Psi_{\psi}]) = 0
$$
\n
$$
\int_{\psi}\Psi_{\psi} = r\partial_r \left[\left(\frac{r^2 - m}{r} \right) \partial_r\Psi_{\psi} \right] + \cot\theta \partial_{\theta} \left[\frac{1}{\cot\theta} \partial_{\theta}\Psi_{\psi} \right] \qquad \mathcal{L}_{\phi}\Psi_{\phi} = r\partial_r \left[\left(\frac{r^2 - m}{r} \right) \partial_r\Psi_{\phi} \right] + \tan\theta \partial_{\theta} \left[\frac{1}{\tan\theta} \partial_{\theta}\Psi_{\phi} \right]
$$

5D, F|at

• Considering constant frequency, $\omega^{(0)} = c_3$

rotating, $\alpha = 0$, solutions, the stream equ
 $(j_{\mu}F^{\mu,\theta})r^4 = \mathcal{L}_{\psi}\Psi_{\psi}H[r,\theta] + \mathcal{L}_{\phi}\Psi_{\phi}G[r,\theta] + K[r]$
 $\mathcal{L}_{\psi}\Psi_{\psi} = r\partial_r\left[\left(\frac{r^2 - m}{r}\right)\partial_r\Psi_{\psi}\right] + \cot\theta\partial$ Looking for radially-independent solutions yields: $\Psi_{\phi}^{(0)} = 1 - c_1 \log(\cos \theta)$ 3.5 3.0 Comparing the $\phi^{(0)}$ -order solutions leads us $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ to try the same $\phi^{(1)}$ -order perturbation: 2.0 Keep the φ -flux field $^{(0)}$ -order: $\Psi_{\phi}^{(1)} = f(r) \frac{\sin^2 \theta}{2}$ 1.5

$$
r_0 \omega_{\psi}^{MP} = O(\alpha^3) , \qquad \Psi_{\psi}^{MP} = \Psi_{\psi}^{(0)} + O(\alpha^4)
$$

$$
\begin{aligned} \Psi_{\phi}^{(0)}&=1-c_1\log(\cos\theta)\\ \Psi_{\psi}^{(0)}&=1-c_2\log(\sin\theta) \end{aligned} \quad \Psi_{\phi}^{(1)}=f(r)\frac{\sin^2\theta}{2}
$$

Solutions

• It can be shown that

$$
j_{\mu}F^{\mu,t} = O(a^3) , \qquad j_{\mu}F^{\mu,\phi} = \frac{c_1a}{m} \frac{\sec \theta \partial_r I}{r^3} , \qquad j_{\mu}F^{\mu,\psi} = -\frac{ac_2 \csc^2(\theta) \partial_r I}{mr^3} , \qquad j_{\mu}F^{\mu,r} = O(a^3)
$$

$$
f''(r) - \frac{(m+r^2) f'(r)}{r^3 - mr} + \frac{4f(r)}{m-r^2} - \frac{4(c_1^2 (c_3^2 r^6 - 2c_3 m^2 r^2 + m^3) + \lambda r^4)}{c_1 mr^2 (m-r^2)^2} = 0
$$

 $\frac{c_1a\sec\theta\partial_rI}{m-r^3}$, $j_\mu F^{\mu,\psi} = -\frac{ac_2\csc^2(\theta)\partial_rI}{m r^3}$, $j_\mu F^{\mu,r} = O(a^3)$
 $c_2 = 0$
 $f''(r) - \frac{(m+r^2)\,f'(r)}{r^3-mr} + \frac{4f(r)}{m-r^2} - \frac{4(c_1^2\left(c_3^2r^6 - 2c_3m^2r^2 + m^3\right) + \lambda r^4)}{c_1mr^2\left(m-r^2\right)^2} = 0$

Frobenius type (S These global solutions are usually considered too rigid, but recent results suggest they may indeed be adaptable. $=\frac{c_1a}{m}\frac{\sec\theta\partial_rI}{r^3}$, $j_\mu F^{\mu,\psi} = -\frac{ac_2\csc^2(\theta)\partial_rI}{mr^3}$, $j_\mu F^{\mu,r} = O(a^3)$
 $c_2 = 0$
 $f''(r) - \frac{(m+r^2) f'(r)}{r^3 - mr} + \frac{4f(r)}{m-r^2} - \frac{4(c_1^2(c_3^2r^6 - 2c_3m^2r^2 + m^3) + \lambda r^4)}{c_1mr^2(m-r^2)^2} = 0$

Frobenius type (Singular

recent results may also indicate novel extensions.

Conclusion and Ongoing work

- Perturbative techniques can work in 5D: the non-spinning solution tower has been established. • Inclusion and Ongoing work
• Interturbative techniques can work in 5D: the non-spinning solution
• Were has been established.
• Indeed, there are a number of potentially novel features in the emergent
• Indeed, there are
- Further, constant-frequency power dissipation solutions seem to work;
	- dynamics and topological thermalizations within the matching region
- Results forthcoming

Thank you

Bibliography

- Callebaut, N., Rodriguez, M. J., & Verlinde, H. (2020). Electro-magnetic energy extraction from rotating black holes in AdS. Journal of High Energy Physics, ²⁰²⁰(12), 1-39. **Bibliography**

• Callebaut, N., Rodriguez, M. J., & Verlinde, H. (2020). Electro-magnetic energy
 extraction from rotating black holes in AdS. Journal of High Energy
 Physics, 2020(12), 1-39.

• R. Blandford, "Black H
- R. Blandford, "Black Holes: Nature or Nurture?". youtube.com. 5/20/21. 1:33:02. https://www.youtube.com/watch?v=5R96dE4xwSc
- Gralla, S. E., & Jacobson, T. (2014). Spacetime approach to force-free magnetospheres. Monthly Notices of the Royal Astronomical Society, 445(3), 2500-2534.
-
- R. D. Blandford, R. L. Znajek, Electromagnetic extraction of energy from Kerr black holes, *Monthly Notices of the Royal Astronomical Society*, Volume 179, Issue 3, July 1977, Pages 433–456, https://doi.org/10.1093/mnras