

NSF Engineering Research Center

Advancing Sustainability through Powered Infrastructure for Roadway Electrification

A Novel Composite Hybrid Energy Storage System for Hybrid and Electric Vehicles

Marium Rasheed[∗]

Hongjie Wang[∗] , **Regan Zane**[∗] , **Dragan Maksimovic**† , **Khurram Afridi**‡ , **Gregory L. Plett**§ and **M. Scott Trimboli**§

∗ Utah State University, † University of Colorado at Boulder, ‡ Cornell University, §University of Colorado at Colorado Springs

Vision and Outcome

Aim

Need to establish sustainable mitigation pathways that limit greenhouse gas emissions by encouraging the widespread adoption of electric vehicles through countering range anxiety

The **first** capacitively-coupled **energy storage system** that **reduces electric vehicle battery system weight by 40%*** to **counter range anxiety**.

More energy for the same weight: increase in range *compared to a conventional single-chemistry battery system

Compromise

Present day **battery systems are large, heavy** and **costly** and **limit the electric**

Cell structure **limits power and energy capability**

- **High energy density cells**
	- Require thick electrodes and low porosity -> high resistance -> low specific power
- **High power density cells**
	- Require thin electrodes and high porosity \sim low resistance \sim low specific energy

[1-4]

Specific energy \propto Range Specific power ∝ Acceleration

CHESS Architecture

- Combines an AC-coupled **power-dense** battery and **energy-dense density battery** in parallel
- Low-power **active battery management system**

[8-11]

[7]

CHESS Architecture Operation

Equivalent circuit model of CHESS Impedance plot of CHESS

UtahStateUniversity

Active Battery Management System

- Energy balancing
- SOC balancing

Power-optimized battery pack

Specifications

- Power = 1.2 kW
- $Cost = USD$ 156
- Weight = $300 g$

CHESS Design Parameters system requirements load profile US06 drive cycle 260 V V_{bus} 100 kW \boldsymbol{P} \boldsymbol{E} 20 kWh $SOC_{E,init}$ 95% $SOC_{P,init}$ 50% Ragone plots Figure 2 equivalent circuit model parameters of battery chemistries Design constraint $ASOC_F$ 85% • Complex and $C_{\text{rateE,max}}$ $\boldsymbol{\Lambda}$ 60 $C_{\text{rateP,max}}$ $C_{\rm rateE,min}$ \mathcal{L} 40 $C_{\text{rateP,min}}$ 3 V, 200 V $V_{\rm cell,rated,}$ $V_{\rm rated}$ Equivalent coupled system Energy leg design Capacity circuit Find $N_{\text{s E}} = V_{\text{bar}}/V_{\text{nom E}}$ and let $N_{\text{n E}} = 1$ to compute $Q_{\text{nom,E}} = E/(N_{\text{s,E}}N_{\text{p,E}}V_{\text{nom,E}}/SC_{\text{E}})$ and specify $R_{\text{cell,E}}$ with several model Compute $RQ_E = Q_{\text{nom,E}}R_{\text{cell,E}}$ and scale by E_{max}/E^* to get RO_F variables Determine $R_{cell,E} = RQ_E/Q_{\text{nom,E}}$ to obtain updated $R_{s,E}$ Calculate $W_{\rm E} = E_{\rm E}/E_{\rm max}$ and Ragone Voltage $P_{\rm E} = C_{\rm rateE, max} Q_{\rm nom, E} V_{\rm min, E} N_{\rm s, E} N_{\rm n, E}$ plot • **Objective:** ratio Power leg design Find $P_P = P - P_E$ to calculate $Q_{\text{nom,P}} = P_{\text{P}}(V_{\text{bus}}C_{\text{rateP,max}})$ and specify $R_{\text{cell,P}}$ **reduce weight** Compute $RQ_P = Q_{\text{nom},P} R_{\text{cell},P}$ and scale by P°/P_{max} to get RQ_P Weight Obtain updated $R_{cell,P} = RQ_P/Q_{nom,P}$ compared to a Iteration variables $N_{\text{S,P,min}} \leq N_{\text{S,P}} \leq N_{\text{S,P,max}}$ $\tau_{\min} \leq \tau \leq \tau_{\max}$ or traverse over values of suitable commercially available supercapacitors conventional Optimization process Number of Battery Select $N_{\text{S,P}}$, and τ or C Compute $R_{\rm S,P} = N_{\rm S,P} R_{\rm cell,P}/N_{\rm P,P}$, where $N_{\rm P,P} = 1$ Compute $C = \tau/(R_{S,E} + R_{S,P})$ or select from available cells chemistry values single- $V_{\text{cap,init}} = V_{\text{OCV,E}} (SOC_{\text{E,init}}) N_{\text{S,E}} - V_{\text{OCV,P}} (SOC_{\text{P,init}}) N_{\text{S,P}}$ Simulate system from Figure 1 and obtain i_E , i_P , i_{load} , v_{bus} , v_P , v_{cap} If $\mathbf{C}_{\text{rateE,min}} \!\!<\!\! = \mathbf{C}_{\text{rateE}} \!\!<\!\! = \mathbf{C}_{\text{rateE,max}}$ chemistry and $C_{\text{rateP,min}} \leq C_{\text{rateP}} \leq C_{\text{rateP,max}}$ and $\Delta SOC_E = 85\%$ and $v_{\rm cap,cell} < {\bf V_{cell,rated}}$ and $v_{\rm cap} < {\bf V_{rated}}$ Cut-off Series Determine E_{cap} and E_{P} to obtain W_{cap} and W_{P} Calculate $W_{\text{CHESS}} = W_{\text{P}} + W_{\text{cap}}$, and W_{conv} battery solution Compute $W_R = 100(I - (W_{\text{CHESS}}/W_{\text{conv}}))$ frequency resistance

PIRE

UtahStateUniversity

Design result Find $W_{\text{R,max}}$ and adjacent system parameters for optimal system size

CHESS Design Procedure

Identify system requirements and design constraints

Determine size of energy-dense battery based on energy requirement

Determine size of power-dense battery based on capacitor selection and power requirement

Select least weight solution that satisfies design specifications

Case Study

64 miles range PHEV (8 US06 drive cycles, 80 minutes total time)

System requirements

Design constraints

*Comprises of 50 Ah NMC cells

Weight reduction 40 % 22 %

20 kWh, 100 kW CHESS Hardware Setup

based energy-dense battery

High-voltage contactors and fuses 2 series-connected 88 F supercapacitor modules

CHESS Hardware Validation

Simulation Hardware

400

 $\begin{array}{c}\n\sum_{\substack{\text{90} \\ \text{odd } 3}} 300\n\end{array}$

100

 $100₁$

50

 -50

 -100^l

 $\left\lceil 0 \right\rceil$

 $\text{current}\left[\text{A}\right]$

 $\boldsymbol{0}$

Improving Health of Batteries through Energy Balancing

Conclusions and Future Work

Pathway to Sustainable Electrified Transportation

The **first** capacitively-coupled **energy storage system** that **reduces electric vehicle battery system weight by 40%*** to **counter range anxiety**.

More energy for the same weight: increase in range *compared to a conventional single-chemistry battery system

References

[1] S. Stewart, V. Srinivasan, and J. Newman, "Modeling the performance of lithium-ion batteries and capacitors during hybrid-electric-vehicle operation," Journal of The Electrochemical Society, vol. 155, pp. A664–A671, 09 2008.

[2] J. Christensen, V. Srinivasan, and J. Newman, "Optimization of lithium titanate electrodes for high-power cells," Journal of The Electrochemical Society, vol. 153, pp. A560–A565, 03 2006.

[3] A. Pelz, M. Gr¨unebaum, and H.-D. Wiemh¨ofer, "Hybrid electrolytes for lithium ion and post lithium ion batteries," in Encyclopedia of Interfacial Chemistry, K. Wandelt, Ed. Oxford: Elsevier, 2018, pp. 660–673.

[4] G. Gutmann, "Applications ¨A`ı transportation — electric vehicle: Batteries," in Encyclopedia of Electrochemical Power Sources, J. Garche, Ed. Amsterdam: Elsevier, 2009, pp. 219–235.

[5] https://patentimages.storage.googleapis.com/e8/4d/66/8e557ecdbb6efe/US20120041624A1.pdf

[6] https://patentimages.storage.googleapis.com/88/a0/78/94f8a18d50b392/US20140265554A1.pdf

[7] M. M. Ur Rehman, F. Zhang, R. Zane, and D. Maksimovic, "Control of bidirectional dc/dc converters in reconfigurable, modular battery systems," in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 1277–1283.

[8] D. J. Rogers, L. J. Aslett, and M. C. Troffaes, "Modelling of modular battery systems under cell capacity variation and degradation," Applied Energy, vol. 283, p. 116360, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261920317372

[9] E. Chatzinikolaou and D. J. Rogers, "A comparison of grid-connected battery energy storage system designs," IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6913–6923, 2017.

[10] S.-W. Eom, M.-K. Kim, I.-J. Kim, S.-I. Moon, Y.-K. Sun, and H.-S. Kim, "Life prediction and reliability assessment of lithium secondary batteries," Journal of Power Sources, vol. 174, no. 2, pp. 954–958, 2007, 13th International Meeting on Lithium Batteries. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378775307013389

[11] M. Rasheed, M. Kamel, H. Wang, R. Zane, and K. Smith, "Investigation of active life balancing to recondition li-ion battery packs for 2nd life," in 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), 2020, pp. 1–7.

Thank You

Take a picture to view the full paper and the hardware demonstration video

SPONSORS: National Science Foundation through the ASPIRE Engineering Research Center and its industry partner Tokef LLC

Contact Information

Marium Rasheed Utah State University marium.rasheed@usu.edu

Supervisor: Dr. Regan Zane Utah State University regan.zane@usu.edu

