

NSF Engineering Research Center

Advancing Sustainability through Powered Infrastructure for Roadway Electrification

A Novel Composite Hybrid Energy Storage System for Hybrid and Electric Vehicles

Marium Rasheed*

Hongjie Wang* , Regan Zane* , Dragan Maksimovic† , Khurram Afridi‡ , Gregory L. Plett§ and M. Scott Trimboli§

*Utah State University, [†]University of Colorado at Boulder, [‡]Cornell University, [§]University of Colorado at Colorado Springs

Vision and Outcome

Aim

Need to establish sustainable mitigation pathways that limit greenhouse gas emissions by encouraging the widespread adoption of electric vehicles through countering range anxiety

The first capacitively-coupled energy storage system that reduces electric vehicle battery system weight by 40%* to counter range anxiety.

More energy for the same weight: increase in range *compared to a conventional single-chemistry battery system

Compromise

Present day battery systems are large, heavy and costly and limit the electric vehicle range and charging capability

Cell structure **limits power** and energy capability

- High energy density cells
 - Require thick electrodes and low porosity -> high resistance -> low specific power
- High power density cells
 - Require thin electrodes and high porosity
 -> low resistance -> low specific energy

[1-4]

Specific energy ∝ Range Specific power ∝ Acceleration

CHESS Architecture

- Combines an AC-coupled **power-dense** battery and **energy-dense density battery** in parallel
- Low-power active battery management system

[7]

CHESS Architecture Operation

Equivalent circuit model of CHESS

Impedance plot of CHESS

Active Battery Management System

Energy-optimized battery pack

Power-optimized battery pack

- Safety
- Energy balancing
- SOC balancing

- Specifications
- Power = 1.2 kW
- $Cost = USD \ 156$
- Weight = 300 g

CHESS Design Parameters

- Complex and coupled system with several variables
- Objective: reduce weight compared to a conventional singlechemistry battery solution

UtahStateUniversity

SPIRE

System requirements				
load profile	US06 drive cycle			
V _{bus}	360 V			
Р	100 kW			
Ε	20 kWh			
SOC _{E,init}	95%			
SOC _{P.init}	50%			
Ragone plots	Figure 2			
equivalent circuit model par	ameters of battery chemistries			
Design constraints				
	959/			
ASOC _E	85%			
C rateE,max	4			
C rateP,max	80			
C rateE,min	40			
C rateP,min	40 2 V 200 V			
r cell,rated, rated	5 V, 200 V			
Energy leg design	↓ ↓			
Find $N_{s,E} = V_{bus}/V_{nom,E}$ and $Q_{nom,E} = E/(N_{s,E}N_{p,E}V_{nom})$	and let $N_{p,E} = 1$ to compute _EdSOC_E) and specify $R_{cell,E}$			
Compute $RO_r = O$	$_{\text{nom}} \in R_{\text{cell}} \in \text{and scale by}$			
$E_{\text{compute } A \mathcal{Q} \mathcal{E}} = \mathcal{Q}$	to get ROs			
Limav L				
Determine $R_{\text{cell},\text{E}} = RQ_{\text{E}}$	$\sqrt[4]{Q_{\text{nom,E}}}$ to obtain updated $R_{\text{s,E}}$			
Calculate W	$F = F_{-}/F_{-}$ and			
$P_{\rm E} = C_{\rm rateE,max}$	$E = D_E / D_{max}$ and $Q_{nom,E} / V_{min,E} N_{s,E} N_{p,E}$			
Power leg design				
Find $P_{\rm P} = P$	$-P_{\rm E}$ to calculate			
$Q_{\text{nom},P} = P_P / (V_{\text{bus}} C_{\text{rat}})$	(cP,max) and specify R _{cell,P}			
	J.			
Compute $RO_P = O$	$R_{\text{cell P}}$ and scale by			
P°/P_{max}	to get RO _P			
	2.			
	*			
Obtain updated	$R_{\text{cell},\text{P}} = RQ_{\text{P}}/Q_{\text{nom},\text{P}}$			
Iteration variables				
	* V <= V			
$\tau_{min} \ll \tau \ll \tau_{max}$ or trav commercially ava	$v_{S,P} <= N_{S,P,max}$ rerse over values of suitable ilable supercapacitors			
Optimization process	Ļ			
Select N	P, and τ or C			
Compute $R_{SP} = N_{SP}$	$R_{\text{cell P}} / N_{\text{P P}}$, where $N_{\text{P P}} = I$			
Compute $C = \tau/(R_{S,E} + R)$	(S,P) or select from available			
v	values			
$V_{cap,init} = V_{OCV,E}(SOC_{E,init})$	$V_{S,E} - V_{OCV,P}(SOC_{P,init})N_{S,P}$			
Simulate quotem for	m Figure 1 and obtain			
i _E , i _P , i _{load}	bin Figure 1 and obtain			
	res res roads roads res rap			
If C _{rateE,min} <= C _{rateE} <= C _{rateE,max}				
and CrateP,min <=	and CrateP.min <= CrateP <= CrateP.max			
and $\Delta SOC_E = 85\%$				
and $v_{cap,cell} < V_{cell}$,rated and $v_{cap} < V_{rated}$			
Determine E and i	$E_{\rm P}$ to obtain $W_{\rm out}$ and $W_{\rm p}$			
Calculate $W_{current} = W_{current} + W_{current}$ and W_{P}				
Compute $W_{\rm p} = 10001 - (W_{\rm summer}/W_{\rm c})$				
= 1				
Design result				
Find W. and adia	cent system parameters for			
optimal system size				

CHESS Design Procedure

Identify system requirements and design constraints Determine size of energy-dense battery based on energy requirement Determine size of power-dense battery based on capacitor selection and power requirement

Select least weight solution that satisfies design specifications

Case Study

64 miles range PHEV (8 US06 drive cycles, 80 minutes total time)

System requirements

load profile	US06 drive cycle
V _{bus}	360 V
Р	100 kW
Ε	20 kWh
SOC _{E-init}	95%
SOC _{P_init}	50%
Ragone plots	Figure 2
equivalent circuit model par	ameters of battery chemistries

Design constraints

<i>∆SOC</i> _E	85%
C _{rateE,max}	4
C _{rateP,max}	60
$C_{ m rateE,min}$	2
$C_{ m rateP,min}$	40
$V_{ m cell,rated}, V_{ m rated}$	3 V, 200 V

	Architecture			
Parameter	Single	CHESS		
	chemistry	Ideally optimized	Commercially	
	*	elements	available elements	
Weight [kg]	177	107	139	
Volume [m ³]	0.081	0.055	0.075	

*Comprises of 50 Ah NMC cells

Weight reduction

20 kWh, 100 kW CHESS Hardware Setup

Energy storage element	Parameter	Value	
	Chemistry	NMC-Energy	LTO-Power
Battery	Manufacturer	CATL	Toshiba
	Q_{nom} [Ah]	50	2.9
	N_s	108	96
	N_p	1	1
	Manufacturer	Skeleton Technologies	
Supercapacitor	C/module [F]	88	
	$R_{ESR,cap}$ /module [m Ω]	6.2	
	Modules	2 connected in series	

based energy-dense battery

High-voltage 96 series-connected 2.9 Ah contactors and fuses LTO based power-dense battery

2 series-connected 88 F supercapacitor modules

CHESS Hardware Validation

-50

 -100^{1}

0

Simulation

Hardware

300

time [s]

 $\blacksquare i_{\rm E}$

400

 $i_{\rm P}$

500

600

200

i_{load}

100

Improving Health of Batteries through Energy Balancing

Conclusions and Future Work

Pathway to Sustainable Electrified Transportation

The first capacitively-coupled energy storage system that reduces electric vehicle battery system weight by 40%* to counter range anxiety.

More energy for the same weight: increase in range *compared to a conventional single-chemistry battery system

References

[1] S. Stewart, V. Srinivasan, and J. Newman, "Modeling the performance of lithium-ion batteries and capacitors during hybrid-electric-vehicle operation," Journal of The Electrochemical Society, vol. 155, pp. A664–A671, 09 2008.

[2] J. Christensen, V. Srinivasan, and J. Newman, "Optimization of lithium titanate electrodes for high-power cells," Journal of The Electrochemical Society, vol. 153, pp. A560–A565, 03 2006.

[3] A. Pelz, M. Gr[°]unebaum, and H.-D. Wiemh[°]ofer, "Hybrid electrolytes for lithium ion and post lithium ion batteries," in Encyclopedia of Interfacial Chemistry, K. Wandelt, Ed. Oxford: Elsevier, 2018, pp. 660–673.

[4] G. Gutmann, "Applications "A'1 transportation — electric vehicle: Batteries," in Encyclopedia of Electrochemical Power Sources, J. Garche, Ed. Amsterdam: Elsevier, 2009, pp. 219–235.

[5] https://patentimages.storage.googleapis.com/e8/4d/66/8e557ecdbb6efe/US20120041624A1.pdf

[6] https://patentimages.storage.googleapis.com/88/a0/78/94f8a18d50b392/US20140265554A1.pdf

[7] M. M. Ur Rehman, F. Zhang, R. Zane, and D. Maksimovic, "Control of bidirectional dc/dc converters in reconfigurable, modular battery systems," in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 1277–1283.

[8] D. J. Rogers, L. J. Aslett, and M. C. Troffaes, "Modelling of modular battery systems under cell capacity variation and degradation," Applied Energy, vol. 283, p. 116360, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261920317372

[9] E. Chatzinikolaou and D. J. Rogers, "A comparison of grid-connected battery energy storage system designs," IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6913–6923, 2017.

[10] S.-W. Eom, M.-K. Kim, I.-J. Kim, S.-I. Moon, Y.-K. Sun, and H.-S. Kim, "Life prediction and reliability assessment of lithium secondary batteries," Journal of Power Sources, vol. 174, no. 2, pp. 954–958, 2007, 13th International Meeting on Lithium Batteries. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378775307013389

[11] M. Rasheed, M. Kamel, H. Wang, R. Zane, and K. Smith, "Investigation of active life balancing to recondition li-ion battery packs for 2nd life," in 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), 2020, pp. 1–7.

Thank You

Take a picture to view the full paper and the hardware demonstration video

SPONSORS: National Science Foundation through the ASPIRE Engineering Research Center and its industry partner Tokef LLC

Contact Information

Marium Rasheed Utah State University marium.rasheed@usu.edu

Supervisor: Dr. Regan Zane Utah State University regan.zane@usu.edu

