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CHAPTER 1 

INTRODUCTION 

1.1 Transportation planning 

Transportation systems have a direct impact on economics and the quality of life. 

These systems provide mobility for people and goods, deliver accessibility to various 

locations (e.g., workplaces, schools, and recreational areas), and influence the economic 

activities and growth patterns of a region. With this crucial component of modern society, 

transportation planning is critical for efficient financing, managing, operating, and 

maintaining of the transportation system to achieve development goals.  

The most common paradigm for the transportation planning model in the United 

States, as used by the majority of Metropolitan Planning Organizations (MPOs), is known 

as the ―four-step‖ travel demand forecasting model, as shown in Fig. 1. This four-step 

model includes four modules—trip generation, trip distribution, modal split, and traffic 

assignment—as a mathematical representation of the demand and supply for travel in an 

area. The trip generation module takes socioeconomic information to estimate the travel 

demand within each Traffic Analysis Zone (TAZ). The trip distribution module connects 

the travel demand of each TAZ to determine the travel demand between a pair of TAZs 

as an origin-destination (O-D) pair. The modal split module predicts how a trip between 

an O-D pair will be taken on a given mode of transportation. The final step is the traffic 

assignment module. This module is used to simulate the routes travelers choose to reach 

their destination on a specific mode of transportation. State-of-the-practice traffic 

assignment models adopt the equilibrium principle to equilibrate the travel demand with 

the travel supply (e.g., highway and transit networks) under congestion. These models 
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give the transportation network performance measures, for example, vehicle miles 

traveled (VMT), vehicle hours traveled (VHT), trip length, and volume/capacity (V/C) 

ratio. These resultant model estimations would be used to compare among transportation 

alternatives for supporting the decision-making processes. This study focuses on the final 

step of the four-step travel demand forecasting model. New mathematical programming 

formulations are developed to relax the shortcomings of existing models and 

formulations. Algorithms for solving the proposed models and formulations are also 

provided for real-world implementation. 

 

 
Fig. 1. Four-step transportation planning model  
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1.2 Deterministic user equilibrium model 

The deterministic user equilibrium (DUE) is perhaps the most widely used principle 

for the traffic assignment problem. It is defined as follows: 

The journey costs on all the routes actually used are equal and less than those 

which would be experienced by a traveler on any unused route. (Wardrop, 

1952) 

Travelers in this principle are assumed to minimize their individual travel cost, such 

that only the lowest-cost route is used at equilibrium. In 1956, Beckmann et al. (1956) 

developed this DUE principle into a mathematical programming (MP) formulation. 

Several efficient solution algorithms (e.g., Frank and Wolfe, 1956; Dial, 2006) can be 

used to solve this DUE model in a real-size network. However, the assumption of perfect 

knowledge of network conditions is unrealistic. Travelers do not know the exact travel 

costs of all possible routes in the transportation network, and some travelers do not 

always use the minimum travel cost criterion for their route selection.  

 

1.3 Stochastic user equilibrium model 

To relax the restrictive perfect knowledge assumption, Daganzo and Sheffi (1977) 

suggested the stochastic user equilibrium (SUE) principle. It is defined as: 

No travelers can improve his or her perceived travel cost by unilaterally 

changing routes at SUE. (Daganzo and Sheffi, 1977) 

A random error term is incorporated in the route cost function to simulate travelers’ 

imperfect perception of network travel costs, such that they do not end up selecting only 

the minimum cost route. Therefore, the route choice behavior is probabilistic, as shown 

in Fig. 2.  
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Fig. 2. DUE and SUE models  
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Carlo simulation (Sheffi and Powell, 1982), Clark’s approximation method (Maher, 1992), or 

numerical method (Rosa and Maher, 2002). 

To address the shortcomings of the MNL model, several closed-form route-choice 

models have been developed. These models can be classified into two categories: the 

extended logit models and weibit model, as shown in Fig. 3. The extended logit models relax 

the independently distributed assumption while retaining the Gumbel distributed random 

error terms. These models modify either the deterministic term or the random error term of 

the MNL random utility maximization (RUM) model. The models modifying the 

deterministic term include the C-logit (Cascetta et al., 1996), path-size logit (PSL) (Ben-

Akiva and Bierlaire, 1999), and implicit availability/perception (IAP) (Cascetta et al., 2002) 

models. All three models add a correction term to the deterministic term of the disutility 

function to adjust the choice probability. However, the interpretation of each model is 

different. The C-logit model uses a commonality factor to penalize the coupling routes, while 

both the IAP and PSL models use a logarithmic correction term to modify the disutility 

(hence, the choice probability). The IAP model aims at capturing travelers’ imperfect 

knowledge of available routes. Equivalent MP formulations for these models were recently 

provided by Zhou et al. (2012) and Chen et al. (2012). The models modifying the random 

error term include the paired combinatorial logit (PCL) (Bekhor and Prashker, 1999), cross-

nested logit (CNL) (Bekhor and Prashker, 1999), and generalized nested logit (GNL) 

(Bekhor and Prashker, 2001) models. These models use the Generalized Extreme Value 

(GEV) theory (McFadden, 1978) to incorporate route correlation, hence route overlapping. 

Equivalent MP formulations for these extended logit models were provided by Bekhor and 

Prashker (1999, 2001).  
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Fig. 3. Existing closed-form (probabilistic) route choice and MP SUE models  
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models’ assumption of an equal variance across the routes within the same O-D pair. For 

a more comprehensive review of the extended logit models used in the SUE problem, 

readers are directed to the reviews given by Prashker and Bekhor (2004) and Chen et al. 

(2012). 

Recently, Castillo et al. (2008) proposed the multinomial weibit (MNW) model to 

relax the identically distributed assumption. Instead of the conventional Gumbel 

distribution, this route choice model adopts the Weibull distributed random error terms to 

handle the heterogeneous perception variance. Under the independence assumption, the 

MNW model has a simple analytical form with route-specific perception variance (i.e. non-

identical perception variances with respect to trips of different lengths). However, no 

equivalent MP formulation has been proposed for the MNW-SUE model in the technical 

literature. 

In this dissertation, an analytical closed-form route choice model and its MP SUE 

formulations are proposed to relax both independently and identically distributed 

assumptions. A path-size factor (Ben-Akiva and Bierlaire, 1999) is adopted to modify the 

MNW RUM model to create the path-size weibit (PSW) model, as shown in Fig. 4. 

Specifically, the route overlapping is captured through the path-size factor, and the route-

specific perception variance is handled through the Weibull distributed random error 

terms. Then, both constrained entropy-type and unconstrained MP formulations for the 

PSW-SUE model are developed. In addition, model extensions to consider the demand 

elasticity and combined travel choice of the PSW-SUE model are provided. Unlike the 

logit-based model, these model extensions incorporate the logarithmic expected 

perceived travel cost (EPC) as the network level of service to determine the demand 
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elasticity and travel choice. Qualitative properties of these minimization programs are 

given to establish equivalency and uniqueness conditions, and algorithms to solve the 

proposed models are presented. Numerical examples show that the proposed models can 

produce a compatible traffic flow pattern compared to the MNP-SUE model under 

congestion, and these models can be implemented in a real-size network. 

 

1.4 Objectives 

The objectives of this study were to provide: 

OBJ1. the PSW route choice model, 

OBJ2. an entropy-type MP formulation for the PSW-SUE model, 

OBJ3. a closed-form PSW EPC,  

OBJ4. an unconstrained MP formulation for the PSW-SUE model, 

OBJ5. an unconstrained MP formulation for the PSW-SUE model with elastic 

demand, 

OBJ6. an entropy-type MP formulation for the PSW-SUE model with elastic 

demand, and 

OBJ7. an entropy-type MP formulation for the combined travel choice of the 

PSW-SUE model with elastic demand.  

The first goal was to provide the PSW route choice model to handle both route 

overlapping and route-specific-perception variance problems. Then, an entropy-type MP 

formulation for the PSW-SUE model with route flows as the decision variables was 

developed in OBJ2. Next, a closed-form PSW EPC was derived in OBJ3, which can be 

used to develop an unconstrained MP formulation for the PSW-SUE model with link 

flows as the decision variables in OBJ4. 
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Fig. 4. Contributions of this study 
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Fig. 5.  Dissertation organization 

 

provides a link-based solution algorithm for solving the unconstrained MP formulation, 

and delivers the model extension to consider the demand elasticity. In Chapter 5, an 

entropy-type MP formulation for the PSW-SUE model with an elastic demand and the 

combined mode choice (or modal split) of the PSW-SUE model is presented, and it 

provides a path-based solution algorithm for solving the proposed model in a real-size 

network. Conclusions and remarks for future study are provided in Chapter 6.  
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CHAPTER 2 

LITERATURE REVIEW 

A strongly connected network  ,N A  is considered, where N and A denote the sets 

of nodes and links. Let IJ denote the subsets of N to represent a set of origin-destination 

(O-D) pairs ij. Let ijR  be a set of routes (or paths) between O-D pair ij, which may 

consist of several links a A . In this section, we review the route choice models with a 

closed-form probability expression, their corresponding mathematical programming (MP) 

stochastic user equilibrium (SUE) formulations, and solution algorithms. The section 

begins with the route choice models, including the well-known multinomial logit (MNL) 

model and five extended logit models. Then, the MP SUE formulations for these logit 

models under congestion are provided, followed by the solution algorithms to solve these 

MP SUE formulations in a real-case study.  

 

2.1 Route choice models 

2.1.1 Multinomial logit model 

The MNL model (Dial, 1971) assumes that the perceived route travel cost ij

rG  

follows the extreme value type I distribution or the Gumbel distribution. With this 

assumption, the cumulative distribution function (CDF) of 
ij

rG , mean route travel cost 

ij

rg , and route perception variance  
2

ij

r  can be expressed in Table 1. The mean travel 

cost 
ij

rg  is a function of the location parameter ij

r , the scale parameter ij

r , and the Euler 

constant . Note that the perception variance  
2

ij

r  is a function of ij

r  alone. 
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Table 1: Gumbel distribution 

CDF  ij
rG

F t      1 exp , ,
ij ij
r rt

e t
 

      (1) 

Mean route travel cost ij

rg  
ij

r ij

r





  (2) 

Route perception variance  
2

ij

r  2

2

6 ij

r




 (3) 

 

 

The MNL probability expression can be derived as follows: 

 Pr ; , ,ij ij ij

r r l ijP G G l r r R ij IJ       , (4) 

which corresponds to  

 .., ,..ij ij ij ij

r r r rP H t dt





   , (5) 

where ij

rH  is the partial derivative of the joint survival function w.r.t. 
ij

rt . Under the 

independently distributed assumption, the joint survival function for the Gumbel 

distribution is:  

  
 

exp

exp .

ij ij ij
r r r

ij

ij ij ij
r r r

ij

t

r R

t

r R

H e

e

 

 









 

  
  

  





 (6) 

Then, we have 

   
exp

ij ijijij ij ij
rr r r k k

ij

ttij ij

r rij
k Rr

H
H e e

t

  






   
    

   
 . (7) 

Substituting Eq. (7) into Eq. (5) gives 

   
exp

ij ijijij ij ij
rr r r k k

ij

ttij ij ij

r r r

k R

P e e dt
  








  
  

  
 . (8) 
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To obtain a closed-form probability expression, ij

r  needs to be fixed for all routes as  . 

With this, we have 

   

 

exp

exp .

ijijij ij
rr r k

ij

ij ij ijij
r r kr

ij

ttij ij

r r

k R

t t ij

r

k R

P e e dt

e e e dt

  

  











 



  
  

  

  
  

  





 (9) 

By integrating Eq. (9), we have the MNL probability, i.e., 

 
 

exp

exp
ij

ij

rij

r ij

k

k R

P









, ,ijr R ij IJ   . (10) 

According to Eq. (2), ij

r  is related to 
ij

rg  as follows: 

ij ij

r rg





  . (11) 

Substituting Eq. (11) into Eq. (10) gives the MNL model, i.e.,  

 
 

exp

exp
ij

ij

rij

r ij

k

k R

g
P

g










, ,ijr R ij IJ   . (12) 

Note that  is also known as the dispersion parameter (Dial, 1971). 

The joint Gumbel distribution in Eq. (6) with the fixed  further satisfies the 

stability w.r.t. the minimum operation (Castillo et al., 2008). This important property 

states that joint survival extreme value function at minimum is the same family as the 

marginal survival extreme value function (Castillo et al., 2005). From the joint Gumbel 

distribution with the fixed , the Gumbel survival function at minimum is also the 

Gumbel distribution, i.e.,  
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,0

min
exp

ij

ij
k

k Rij

t

G
H t e

 




  , (13) 

where  

 ,0 1
ln exp

ij

ij ij

k

k R

 
 

   . (14) 

With the stability property, travelers’ choice decisions are assumed to be based on 

their minimum perceived route travel cost, and the probabilistic route choice patterns can 

be determined by the multivariate extreme value distribution (Kotz and Nadarajah, 2000) 

with the Gumbel marginal. Further, we can use the Gumbel distribution to determine the 

EPC. From the stability property, substituting ,0ij  in Eq. (2) gives the MNL EPC: 

 
1

ln exp
ij

ij

ij k

k R


 

 

    . (15) 

Since the constant    will not have an impact on the mathematical programming 

(MP) formulation considered later in this review, we can omit the term   . From    

Eq. (11), the MNL EPC up to a constant can be expressed as a log-sum term as follows:  

 
1

ln exp
ij

ij

ij k

k R

g 
 

   ,  ij IJ  . (16) 

An important property of this EPC is that the partial derivative of the MNL EPC 

w.r.t. the route cost gives back the MNL probability (Daganzo, 1979; Sheffi, 1985), i.e., 

 

 
 

ln exp
1

exp
.

exp

ij

ij

ij

k

k Rij

ij ij

r r

ij

r

ij

k

k R

g

g g

g

g














 


 
 










 (17) 
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Moreover, the MNL model can also be interpreted as the Markovian process 

(Akamatsu, 1996). Travelers are assumed to make a decision at each node (or state) until 

they reach the destination (or final state) according to the MNL choice probability. With 

this, we can use the link-based loading mechanism for the MNL loading (e.g., Dial, 1971; 

Sheffi, 1985; Bell, 1995; Akamatsu, 1996). 

The drawback of the MNL model stems from its underlying assumption of the 

independently and identically distributed (IID) with Gumbel variate. The independently 

distributed assumption comes from the joint Gumbel distribution with independent variate in 

Eq. (6). The identically distributed assumption comes from the fixed θ to obtain a closed-

form probability expression in Eq. (9), since the Gumbel  
2

ij

r  is a function of θ alone (see 

Eq. (3)). As a result, the MNL model has difficulty in handling the route overlapping problem 

(i.e., independence assumption) and the homogeneous perception variance w.r.t. different trip 

lengths (i.e., identical variance assumption). Consider the loop-hole network shown in Fig. 6. 

In this network, all three routes have equal travel cost of 100 units. The two upper routes 

overlap by a portion x, while the lower route is distinct from the two upper routes. According 

to the independently distributed assumption, the MNL model gives the same probability of 

1/3 for each route, regardless of the overlapping portion.  
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Fig. 6. MNL probability on the loop-hole network 
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a) Short network b) Long network 

Fig. 7. MNL probabilities on the two-route networks 

 

  
a) Short network b) Long network 

Fig. 8. MNL perception variances of the two-route networks 

On the other hand, consider a two-route network configuration as shown in Fig. 7. 

For both networks, the upper route travel cost is larger than the lower route travel cost by 

5 units. However, the upper route travel cost is two times larger than the lower route 

travel cost in the short network, while it is only less than 5% larger in the long network. 

The MNL model produces the same flow patterns for both short and long networks. This 

is because each route has the same perception variance of 
2 26   (see Eq. (3)) as shown 

in Fig. 8. As such, the MNL probability is solely based on the absolute cost difference 

irrespective of the overall trip lengths (Sheffi, 1985). 
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2.1.2 Extended logit models 

To relax the independently distributed assumption embedded in the MNL model, 

several closed-form extended logit models have been developed. These models can be 

classified in to two categories: 1) the models modifying the deterministic term of the 

MNL model, and 2) the models modifying the random error term of the MNL model. 

Recall that the MNL model can be written in the random utility maximization (RUM) 

model as (Sheffi, 1985) 

ij ij ij

r r rU g    ,  ,ijr R ij IJ   , (18) 

where ij

r  is the IID Gumbel distributed random error term on route r between O-D pair ij 

whose CDF is 

   1 expij
r

tF t e


   ,  ,ijr R ij IJ   . (19) 

The models modifying the deterministic term introduce a correction factor to ij

rg  to 

adjust the probability of choosing the routes coupling with other routes, and hence the 

route overlapping. These models include the C-logit model (Cascetta et al., 1996) and 

path-size logit (PSL) model (Ben-Akiva and Bierlaire, 1999). The models modifying the 

random error term adopt the Generalized Extreme Value (GEV) theory (McFadden, 

1978) to modify the random error term to allow the correlation, and hence the route 

overlapping. These models includes the cross nested logit (CNL) model (Bekhor and 

Prashker, 1999), generalized nested logit (GNL) model (Bekhor and Prashker, 2001), and 

paired combinatorial logit (PCL) model (Bekhor and Prashker, 1999). This subsection 

begins with the models modifying the deterministic term, followed by the models 

modifying the random error term (or GEV-based model). 
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2.1.2.1 Models modifying the deterministic term 

We start with the C-logit model followed by the PSL model. The C-logit model 

uses a commonality factor ij

rCF  to modify the deterministic term, i.e.,  

 ij ij ij ij

r r r rU g CF     ,  ,ijr R ij IJ   , (20) 

where ij

rCF can be expressed as 

ln

ij

ij
ij rl

r
ij ij

l r
r l

l R

L
CF

L L






 
  
 
 

 ,  ,ijr R ij IJ   , (21) 

ij

rlL  is the length of overlapping section between routes r and l between O-D pair ij, 
ij

rL  is 

the length of route r between O-D pair ij, and   and   are the calibrated parameters. This 

ij

rCF  increases as the overlapping increases. As such, the routes coupling with other routes 

have a higher disutility. Note that there are several forms of ij

rCF  (see Cascetta et al., 1996, 

for more information). From Eq. (20), the C-logit probability can be expressed as  

  
  

exp

exp
ij

ij ij

r rij

r ij ij

k k

k R

g CF
P

g CF






 


 
,  ,ijr R ij IJ   . (22) 

Since the C-logit model modifies the deterministic term, its EPC can be expressed as  

  
1

ln exp
ij

ij ij

ij k k

k R

g CF 
 

    ,  ij IJ  . (23) 

Similar to the C-logit model, the PSL model uses the path-size factor ij

r  to modify 

the deterministic term as follows: 

lnij ij ij ij

r r r rU g     ,  ,ijr R ij IJ   , (24) 

where ij

r  can be expressed as  
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,  ,ijr R ij IJ   , 
(25) 

al  is the length of link a, ij

rL  is the length of route r connecting O-D pair ij , and r  is the 

set of all links in route r between O-D pair ij. This path-size factor  0,1ij

r   accounts 

for different route sizes determined by the length of links within a route and the relative 

lengths of routes that share a link. Note that several studies have provided alternative 

formulations for ij

r  (e.g., Ramming, 2001; Bovy et al., 2008; Prato, 2009). From Eq. 

(24), the PSL probability can be expressed as 
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,  ,ijr R ij IJ   . 

(26) 

Its EPC can be expressed as 

 
1

ln exp
ij

ij ij

ij k k

k R

g  
 

   ,  ij IJ  . (27) 

 

 

2.1.2.2 Models modifying the random error term 

Let  1,.., NG y y  (or G( ) for short) be the  GEV generating function, where 0ny  . 

This GEV generating function satisfies the following properties (McFadden, 1978):  

1) G( ) is non-negative. 

2) G( ) is homogeneous of degree  > 0; that is    1 1,.., ,..,N NG y y G y y       

3)  1lim ,..,
ny NG y y    for all n. 

4) The l
th

 partial derivative of G( ) w.r.t. any combination of l distinct yn’s, n = 1,..,N, 

is non-negative if l is odd and non-positive if l is even. 

With this generating function, the GEV-based probability can be derived by  
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,  ,ijr R ij IJ   , (28) 

where 1 ,..,
ij

ij
Rij

g
gij

rG e e





 
 
 

 is the partial derivative of 1 ,..,
ij

ij
Rij

g
g

G e e





 
 
 

 w.r.t. to 
ij
rg

e


. 

Further, the EPC of the GEV-based model can be derived by 

1
1

ln ,..,
ij
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Rij
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ij G e e






 

   
 

,  ij IJ  . (29) 

We start this subsection with the CNL model followed by the GNL model and the PCL 

model. 

The CNL GEV generating function can be expressed as 

   
1

ij

ij

ij

ij

ijar r

a A r R

G y




 

 
  

 
 

  ,  ij IJ  , (30) 

where  0,1ij  , and  0,1ijar   could be defined as (Bekhor and Prashker, 1999) 

ija
ijar arij

r

l

L
  ,  , ,ija A r R ij IJ    . (31) 

Both parameters represent the overlapping degree, where a larger (smaller) ijar  ( ij ) 

indicates a higher overlapping degree. Using the principle in Eq. (28), the CNL 

probability can be expressed as 
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,  ,ijr R ij IJ   . (32) 

This CNL probability can be decomposed into two levels according to the two-level tree 

structure, i.e.,  



23 

 

|

ij ij ij

r a r a

a A

P P P


  ,  ,ijr R ij IJ   , (33) 

 

 

1

1

exp

exp

ij

ij

ij

ij

ij

ij

ij

ijak k

k R ijij

a

ij

ijbs s

b A s R ij

g

P

g





















 

  
   

   
  

   
   



 

,  ,ijr R ij IJ   , (34) 

 

 

1

| 1

exp

exp

ij

ij

ij

ij

ijar r

ijij

r a

ij

ijak k

k R ij

g

P

g















 
  

 
 

  
 



,  ,ijr R ij IJ   . (35) 

The upper level is represented by the marginal probability ( ij

aP ) of selecting link a 

between O-D pair ij , and the lower level is represented by the conditional probability      

(
|

ij

r aP ) of selecting route r between O-D pair ij passing through link a. Then, using Eq. 

(29), the CNL EPC can be expressed as 

 
11
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  ,  ij IJ  . (36) 

The GNL model is a generalized version of the CNL model. Its GEV generating 

function can be expressed as  

   
1

ija

ija

ij

ij

ijar r

a A r R

G y




 

 
  

 
 

  ,  ij IJ  , (37) 

where ija  is specific to a link level. It could be defined as (Bekhor and Prashker, 2001) 

1
1

ij

ij

ija ijakij
k Rar

r R

 
 



  


,  ,a A ij IJ   . 
(38) 

Using Eq. (28), the GNL probability can be expressed as  
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Similar to the CNL model, the GNL probability can be decomposed into the marginal and 

conditional probabilities as in Eq. (33). The GNL marginal probability (upper level) can 

be expressed as 

 

 

1

1

exp

exp

ija

ija

ij

ija

ija

ij

ij

ijak k

k R ijaij

a

ij

ijbs s

b A s R ija

g

P

g





















 

  
   

   
  

   
   



 

,  ,ijr R ij IJ   , (40) 

and the GNL conditional probability (lower level) can be expressed as 
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By using Eq. (29), the GNL EPC can be expressed as 

 
11

ln exp

ijb

ijb

ij

ij

ij ijbs s

b A s R ijb

g






 
  

  
     

   
  ,  ij IJ  . (42) 

Unlike the CNL and GNL models, the PCL model uses the nest between route pairs 

to handle the route overlapping problem. Its GEV generating function can be expressed as  

   
1 1

1 1

1
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1 1

1

ijrl
ij ij
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  ,  ij IJ  , (43) 

where  0,1ijrl   represents the degree of overlapping between routes r and l, which 

could be defined as (Bekhor and Prashker, 1999) 
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and   is a calibrated parameter. Following the same derivation as the CNL model, the 

PCL probability can be expressed as 
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It can be decomposed into marginal and conditional probabilities as follows: 
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where  
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,  ,ijl r R ij IJ    . (48) 

The PCL marginal probability (upper level) is a multinomial logit probability of 

selecting a route pair rl among the 1ij ijR R   route pairs, and the PCL conditional 

probability (lower level) is simply a binary logit probability of selecting a route from the 

route pair.  
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Fig. 9. Extended logit probabilities on the loop-hole network 

When considering the route overlapping problem in Fig. 9, the extended logit 

models produce different route choice probabilities w.r.t. the overlapping portion x. Note 

that all models use =0.1.  and   are equal to one for the C-logit model, and  is equal 

to one for the PCL model. Each model gives a higher probability of choosing the lower 

route as x increases. When x=100 (i.e., only two routes with equal trip length exist), all 

the extended logit models produce the same probability of 0.5 in choosing two routes.  

 

2.2 Mathematical programming stochastic user equilibrium formulation 

In this subsection, we review a corresponding mathematical programming (MP) 

stochastic user equilibrium (SUE) formulation of the logit route choice models discussed 

in the previous subsection. The MP formulation can be classified into two categories: 1) 

the constrained entropy-type MP formulation and 2) the unconstrained MP formulation. 

The constrained formulation adopts an entropy term to handle the stochastic effect of 

route choice selection, while the unconstrained formulation incoporates the expected 

perceived cost (EPC) to develop a MP formulation. The subsection begins with the 
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constrained entropy-type MP formulation, followed by the unconstrained MP 

formulation. 

 

2.2.1 Constrained entropy-type MP formulation 

The constrained entropy-type MP formulation for the MNL-SUE model can be 

written as (Fisk, 1980)   
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s.t.
ij
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r ij

r R

f q


 ,  ij IJ  , 
(50) 

0ij

rf  ,  ,ijr R ij IJ   . (51) 

where ij

rf  denotes the flow on route r between O-D pair ij, qij is a given demand between 

O-D pair ij, and va is the flow on link a. In Eq. (49), Z1 is the well-known ―Beckmann’s 

transformation‖. Z2 is the entropy term used to capture the probability flow pattern. It 

gives the exponential proportion in the equivalency conditions that is needed in the logit 

probability solution. Eq. (50) is the flow conservation constraint, and Eq. (51) is the non-

negativity constraint.  

To incorporate the route overlapping, both C-logit-SUE and PSL-SUE models add 

another entropy term (Chen et al., 2012; Zhou et al., 2012). The C-logit-SUE model 

incorporates the commonality factor through Z3, i.e.,  
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subject to the flow conservation constraint in Eq. (50) and the non-negativity constraint in 

Eq. (51). Similarly, the PSL-SUE model also incorporates the commonality factor 

through Z3, i.e., 
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 (53) 

subject to the flow conservation constraint in Eq. (50) and the non-negativity constraint in 

Eq. (51). 

On the other hand, the GEV-based models require a modified entropy term. This is 

because these models have a two-level tree structure (i.e., marginal and conditional 

probabilities). In addition, the decision variables are not the same as the MNL-SUE, C-

logit-SUE, and PSL-SUE models where the decision variables are the ordinary ij

rf . The 

decision variables for the GEV-based models also need to correspond the two-level tree 

structure of each model. The CNL-SUE model can be written as (Bekhor and Prashker, 

1999): 
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where ij

arf  is the flow on route r (from link a) between O-D pair ij as the decision 

variable corresponding to the CNL nested structure. Z2 is adopted to incorporate the CNL 

conditional probability (lower level), and Z3 is adopted to incorporate the CNL marginal 

probability (upper level). Similar to the MNL-SUE model, Eq. (55) and Eq. (56) are the 

flow conservation constraint and the non-negativity constraint, respectively. Since the 

GNL model is a generalized version of the CNL model, the GNL-SUE model can be 

expressed as (Bekhor and Prashker, 2001) 

 
 

 

1 2 3

1

0

min

1
ln 1

1
1 ln 1

ij ij
a r ar

ij IJ r Rij

ij ija

ij ij

v f

ij
ij r

a ija ar

a A ij IJ a A r R

ijar

ij ij

ija ar ar

ij IJ a A r R r R

Z Z Z Z

f
h d f

f f





  







 



   

   

  

   
 

   
 
 

    
      

    
    

   

   

 
(57) 

subject to Eq. (55) and Eq. (56). Unlike the CNL and GNL models, the PCL model has a 

two-level tree structure according a route pair. With this, the PCL-SUE model can be 

written as (Bekhor and Prashker, 1999) 

     

 

 

        

 

1 2 3

0

1

1 1

min

1
1 ln 1

1

1
ln 1

1

ij ij
a r ar

ij IJ r Rij

ij

ij

ij ij

v f
ij

r rkij

a ijrk r rk
a A ij IJ r R k r ijrk

r R

ij ijR R
r rk k rkij ij

ijrk r rk k rk
ij IJ r k r ijrk

Z Z Z Z

f
h d f

f f
f f



  
 


 

 



   




   

  

 
 
    
 
 

 
   
 
 

   

  

 
(58) 

s.t.
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