Applying University Small Satellite Program Lessons to a Career in the Aerospace Industry

T. Hevers
E. Daehler
M. Peck
Meet the Authors

- Authors investigate the professional relevance of the UNP from three perspectives:

 - **University Principal Investigator:** Mason Peck
 - Cornell University Associate Professor
 - Former UNP PI (CUSat and Violet)

 - **Student Participant/Early Career Professional:** Tricia Hevers
 - Former CUSat Program Manager and ADCNS Lead
 - GN&C Engineer at Boeing Satellite Systems: August 2012

 - **Industry Program Manager:** Erik Daehler
 - Senior Manager for small satellite businesses at Boeing
 - Launched the Phantom Phoenix and 702SP
Presentation Overview

- **Background:**
 - Cornell University Satellite (CUSat) team
 - Launching in 2013
 - Program Manager and ACS Lead
 - Boeing Space & Intelligence Systems:
 - August 17th, 2012
 - GN&C and Systems Engineering

- **Goal: The UNP is:**
 - New approach to student education
 - Stresses experiential learning
 - Next generation engineering leaders

- **Lessons learned as applied to industry:**
 - Technical challenges
 - Leadership
 - Communication
University Nanosat Program (UNP)

- **American response to the demographic cliff**
 - 15% of the workforce is eligible to retire
 - Grow to **55%** in the next 10 years
 - < 5% of undergraduate degrees in engineering fields

- **Sponsored by:**
 - American Institute of Aeronautics and Astronautics (AIAA)
 - Air Force Research Laboratory (AFRL)
 - Air Force Office of Scientific Research (AFOSR)
 - National Aeronautics Space Administration (NASA)

- **Primary Objective:** Improve the (undergraduate) educational approach to build a stronger workforce right out of school

- **Participation:**
 - 28 universities
 - 4500 undergraduate students
UNP Competition

- **Compete:**
 - 10-13 universities (per cycle)
 - aggressive 2 year design cycle

- **Demonstrate:** progress on a problem of immediate technical relevance to the U.S. Air Force

- **Day-in-the-life of an Aerospace Engineer:**
 - “Hands on” satellite experience
 - Design, build, and test
 - Complete 6 reviews
 - Participate in out-reach events
 - Launch!
Joining: What have I gotten myself into?

- **Participated**: sophomore year (Fall 2009) through graduate school
- **Combine**: cutting-edge technology with “hands on” learning opportunities
- **Missions**: dynamic, technically relevant
 - Developing autonomous inspection systems
 - Validating new flight hardware
 - Astro and earth science missions
- **Fast Integration**: Two year, aggressive schedule
- **High Expectations**: industry standards, professionalism

<table>
<thead>
<tr>
<th>“A” Grade Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentor others so that they can become more productive, faster.</td>
</tr>
<tr>
<td>Recognize that every engineering decision on a complex system like CUSat is interdisciplinary and habitually consider the impact of your decisions on other systems.</td>
</tr>
<tr>
<td>Follow up with people to be sure that they give you what you need on time.</td>
</tr>
<tr>
<td>Dynamically manage the schedule to pull in deadlines when work goes well or shift deadlines while accommodating the rest of the subsystems when things go wrong.</td>
</tr>
<tr>
<td>Seek more responsibility rather than hoping someone else will take care of problems you notice.</td>
</tr>
</tbody>
</table>
Day-In-The-Life Experience

- Work every portion of the satellite mission in a 2 year design cycle:
 - Mission definition
 - Dynamics simulations
 - Mechanical and electrical design
 - Integration and testing
 - Writing software
 - Building ground stations
 - Developing ROPs
 - Performing mission operations

- Student leaders gain exposure with industry’s historical weaknesses:
 - Customer interactions
 - Project management
 - Mentoring
First Year Experiences

- Experienced professionals who possess:
 - a broad understanding of spacecraft engineering
 - Some detailed subsystem knowledge
 - Industry in-sight

- Professional networks:
 - Connect with other UNP graduates
 - Other professional networks

- Once UNP graduates enter industry:
 - Assume: greater responsibility
 - Given: more challenging work
 - Engage: in mentoring faster
 - Implement: new styles of communication
 - Easily integrate: into existing teams

- UNP experience gives new hires a distinct advantage
Value of UNP to Industry

- **Bring the experience of an engineer:**
 - Cross-disciplinary
 - Fundamental understanding
 - Faster absorption
 - Engage in mentoring

- **Transfer the latest methods and theory from universities:**
 - Wiki style documentation
 - Recruiting and bring people up to speed
 - Close physical collaboration
 - White boards
 - Reusability/maintenance
 - Maximizing standardization, minimizing the change, reduce cost
Summary

- UNP challenges traditional academic curricula by providing an experiential learning opportunity that trains the next generation of engineering leaders.

- Graduates:
 - Understand teamwork, communication, leadership
 - Cross-disciplinary experience
 - Ready to challenge the status quo:
 • Bring new technology to teams
 • Implement new methods
 - Better retention
 - Accelerated career growth

- “It’s successes are measured by the immediate and continuing contributions that alumni make to the aerospace industry and the value is reflected in companies that hire UNP graduates.”
Thank You

The authors would like to thank the following people for their help and support throughout this process:

Mason Peck, Erik Daehler, Andrew Robertson, Duane Dier, Ossi Saarela, Richard Fowell, Bryan Welsch, Richard Milford, Cheryl Sampson, 2012 FCE new hires, the Phantom Phoenix team, Matt Ulinski, Mark Campbell, James Lloyd, Kevin Meissner, David Voss, Melody Ford, Amanda Pietruszewski, the UNP-Program Office, Cornell’s Mechanical and Aerospace Engineering Department, CUSat and Violet teams

and the many others who have reviewed paper and presentation drafts