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ABSTRACT

Lunar Tidal Effects in the Electrodynamics of the

Low-Latitude Ionosphere

by

Brian D. Tracy, Master of Science
Utah State University, 2013

Major Professor: Dr. Bela G. Fejer
Department: Physics

We used extensive measurements made by the Jicamarca Unattended Long-Term
Investigations of the Ionosphere and Atmosphere (JULIA) and Incoherent Scatter Radar
(ISR) systems at Jicamarca, Peru during geomagnetic quiet conditions to determine the
climatologies of lunar tidal effects on equatorial vertical plasma drifts. We use, for the
first time, the expectation maximization (EM) algorithm to derive the amplitudes and
phases of the semimonthly and monthly lunar tidal perturbations. Our results indicate, as
expected, lunar tidal effects can significantly modulate the equatorial plasma drifts. The
local time and seasonal dependent phase progression has been studied in much more
detail than previously and has shown to have significant variations from the average
value. The semimonthly drift amplitudes are largest during December solstice and
smallest during June solstice during the day, and almost season independent at night. The

monthly lunar tidal amplitudes are season independent during the day, while nighttime



v
monthly amplitudes are largest and smallest in December solstice and autumnal equinox,
respectively. The monthly and semimonthly amplitudes decrease from early morning to
afternoon and evening to morning with moderate to large increases near dusk and dawn.

We also examined these perturbation drifts during periods of sudden stratospheric
warmings (SSWs). Our results show, for the first time, the enhancements of the lunar
semimonthly tidal effects associated with SSWs to occur at night, as well as during the
day. Our results also indicate during SSWs, monthly tidal effects are not enhanced as
strongly as the semimonthly effects.

(126 pages)



PUBLIC ABSTRACT
Lunar Tidal Effects in the Electrodynamics of the
Low-Latitude Ionosphere
Brian D. Tracy, Master of Science
Utah State University, 2013

In order to model and perform better forecasts of the upper atmosphere, we have
studied variations in the equatorial ionosphere due to lunar tidal forcing. We used
extensive measurements made by the Jicamarca Unattended Long-Term Investigations of
the Ionosphere and Atmosphere (JULIA) and Incoherent Scatter Radar (ISR) systems at
Jicamarca, Peru during geomagnetic quiet conditions to determine the season, local time,
and lunar age-dependent lunar tidal effects on equatorial vertical plasma drifts. The
amplitudes and phases of the semimonthly and monthly lunar tidal perturbations were
derived using a least squares method. Our results indicate that, as expected, lunar tidal
effects can significantly modulate the equatorial plasma drifts. The local time and
seasonal dependent phase progression has been studied in much more detail than
previously and has shown to have significant variations from the average value. The
semimonthly drift amplitudes are largest during December solstice and smallest during
June solstice during the day and almost season independent at night. The monthly lunar
tidal amplitudes are season independent during the day, while nighttime monthly
amplitudes are largest and smallest in December solstice and autumnal equinox,
respectively. The monthly and semimonthly amplitudes decrease from early morning to

afternoon and evening to morning with moderate-to-large increases near dusk and dawn.
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We also examined these perturbation drifts during periods of sudden stratospheric
warmings (SSWs), which is a meteorological event where the polar vortex is displaced or
splits and which has been known to be associated with a large increase in planetary wave
activity. Our results show, for the first time, the enhancements of the lunar semimonthly
tidal effects associated with SSWs to occur at night, as well as during the day. Our results
also indicate during SSWs monthly tidal effects are not enhanced as strongly as the

semimonthly effects.
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CHAPTER 1

INTRODUCTION

1.1. The Earth’s Atmosphere

The Earth’s atmosphere extends from the surface of the Earth to many thousands
of kilometers. The composition, temperature, pressure, and charge density of the
atmosphere are season, local time, altitude, latitude, and longitude dependent. The
characteristics of these parameters were discussed in detail by several authors [e.g.,
Schunk and Nagy, 2009; Kelley, 2009]. The classification of the neutral atmosphere by
temperature for a typical midlatitude is displayed in Figure 1-1. From the ground to about
10 km, the temperature decreases with a lapse rate of about 7 K/km in the troposphere.
The temperature trend reverses at the tropopause leading to an increase in the
stratosphere, which is largely due to the absorption of ultraviolet radiation by ozone. The
temperature trend reverses again at the stratopause, at about 50 km. Radiative cooling in
the mesosphere creates a very sharp temperature decrease that leads to the coolest
atmospheric temperatures (about 130-190 K ) at the mesopause (about 95 km). Above the
mesopause, in the thermosphere, the temperature increases drastically due to the
absorption of extreme ultraviolet and ultraviolet radiation to values that vary
considerably, but are often above 1000 K.

The neutral atmosphere is well mixed below about 100 km (homosphere) with a
composition of 78% N2, 21% 02, and 1% trace gases. Above the turbopause
(heterosphere), the various gases begin to separate according to mass into different layers

with heavier molecules at lower altitudes and lighter atoms at higher altitudes. Above
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Figure 1-1. Typical profiles of neutral atmosphere temperatures and plasma densities as
a function of height [from Kelley, 2009].

500 km, in the exosphere, the neutral densities are low enough that, although the

temperature trend does not change, collisions are no longer important and individual

particles follow ballistic-style motions.

1.2. The Earth’s Ionosphere

The ionosphere, the ionized portion of the upper atmosphere, extends from about
60 to 1000 km, covers the whole Earth, and is formed primarily by ionization of the
atmospheric gases by solar EUV and soft X-ray radiation. Like the neutral atmosphere,
the ionosphere is local time, season, latitude and longitude dependent. The plasma, thus

formed, is balanced by the recombination of electrons and ions and loss due to transport



to other regions. Typical ionospheric plasma densities are less than 1% of typical neutral
densities. Despite the relatively low density of the plasma, the resultant currents and
electric fields produced have a profound impact on the region.

The ionosphere displays a layered structure with different composition, reaction
rates, and dynamics at different altitudes (see Figure 1-1). The D-region extends from
about 60 km to 90 km and is heavily dominated by chemical production and loss
processes and collisions with the neutral atmosphere. The dominant ions here are NO*
from Lyman series-alpha hydrogen radiation at a wavelength of 122 nm, O,", and other
positive and negative molecular ions from X-ray radiation and water cluster ions from
hydration primarily with NO* and O," . The E region is defined from about 90 km to 150
km and is also heavily dominated by chemical loss processes. The major ions are NO*,
0O,", and N,". As the loss processes for both the D and E regions are quite fast, the plasma
densities in these regions decrease quickly after sunset.

The F region is the region from about 150 km to 500 km. During the day, this
region has two subregions, F; (150-250 km) and F, (250-500 km). In the F, region,
chemical production and loss processes are still dominant, whereas in the F, region, both
chemical loss and transport processes are important. The main ion in this region is O".
The peak plasma density occurs in this region as a result of a balance between chemical
production and loss processes and plasma transport. The daytime peak plasma density
(10° cm™) is roughly a factor of ten greater than that in the E region and two orders of
magnitude smaller than that of the neutral density. At night, the F region does not die out

due to the high composition of atomic ions; however, the nighttime peak plasma densities
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can be as low as 10* cm™ in the post-midnight period. The topside ionosphere is generally
defined to be the region above the F-region peak (500 -800km), while the protonosphere,
above about 800 km, is the region where the lighter atomic ions (H" and He") are the
primary constituents of the plasma.

The ionosphere is further classified according to geomagnetic latitude. At high
latitudes the magnetic field lines are almost vertical and electric fields and currents due to
the solar wind-magnetosphere interaction are imposed on the ionosphere and form the
primary drivers of plasma drifts and currents. At midlatitudes the magnetic field lines
have sizable inclinations, but generally do not link the ionosphere with the hot, tenuous
plasmas of the magnetosphere and solar wind. Here electric fields from high and low
latitudes, atmospheric tides, and planetary and gravity waves play major roles in the
dynamics. At low latitudes the magnetic field lines are almost horizontal, and as a result,
the ionosphere is primarily driven by dynamo electric fields of tidal origin; however,

storm-time effects can, and often do, play a large role in the dynamics of the region.

1.3. Overview of This Work

This work focuses on short-term, low-latitude electrodynamic variability. Electric
fields at these latitudes control the composition and distribution of the ionospheric plasma
and strongly affect the generation of plasma waves and density structures over a large
range of scale sizes. The resultant ionosphere strongly affects a large range of space-
based industrial applications including navigation and communication.

Equatorial vertical plasma drifts are driven by these electric fields and are the

primary drivers in several low-latitude ionospheric effects, including the equatorial



fountain, and the development of equatorial spread F (a plasma instability). Several
authors have determined the monthly average behavior of these drifts; however, the short-
term variability is not yet quantified. To address this problem, our team is undertaking a
multiyear study of the short-term variability of these drifts with the goal of producing a
long-term empirical model of the drifts by a perturbative method. In this work, we review
the climatology of the plasma drifts and their short-term variability and then focus on an
important source of this variability, lunar tidal effects.

In Chapter 2, we first briefly review the basic ionospheric quiet-time
electrodynamic processes including the E and F region dynamos. Then, we review the
climatological geomagnetic quiet equatorial plasma drifts dependence on local time,
season, solar flux, and longitude as derived from radar and satellite measurements. We
conclude this chapter by briefly mentioning some of the sources of the short-term
variability of the equatorial drifts.

In Chapter 3, we present a detailed study of the lunar tidal effects on the
electrodynamic, low-latitude vertical plasma drifts over Jicamarca, Peru. This Chapter
largely extends the study of lunar tidal effects on equatorial ionospheric electrodynamics
published by Fejer and Tracy [2013], including the first detailed study of lunar diurnal
tidal effects. In Chapter 4, we summarize our results and offer suggestions for future

work on studies of equatorial ionospheric electrodynamics.



CHAPTER 2

LOW-LATITUDE IONOSPHERIC PLASMA DRIFTS

2.1. Introduction

Electric fields and plasma drifts play fundamental roles in the dynamics of the
upper atmosphere. Low-latitude electric fields drive the equatorial electrojet and
ionospheric electrodynamic (ExB) plasma drifts. These processes control the composition
and distribution of the ionospheric plasma and strongly affect the generation of plasma
waves and density structures over a large range of scale sizes (tens of cm to hundreds of
kilometers). At low latitudes, the accurate specification of the temporal and spatial
variations of the ionospheric plasma drifts constitutes the main challenge for improved
forecasting of ionospheric weather, which can strongly affect the performance of the
rapidly increasing number of space-based navigation systems, as pointed out by several
authors [e.g., Fejer, 2011].

The morphology of equatorial plasma drifts have been extensively studied over
the last 40 years using incoherent and coherent scatter radar measurements [e.g.,
Woodman, 1970; Chau and Woodman, 2004], daytime equatorial magnetic field [e.g.,
Anderson et al., 2002], and nighttime ionosonde observations [e.g., Abdu et al., 2007].
These studies determined the average seasonal, solar cycle, and magnetic effects on the
low-latitude plasma drifts, and their control over the F-region plasma density distribution
[e.g., Fejer, 1997]. In the last two decades, measurements on board the Atmospheric
Explorer-E (AE-E), San Marco, Republic of China Satellite (ROCSAT-1), Dynamics

Explorer-B (DE-2), Defense Meteorological Space Probe (DMSP), CHAMP and
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C/NOFS satellites provided detailed information on the longitude-dependent, low-latitude
plasma drifts, equatorial electrojet, total electron content (TEC), and spread F. These
studies were recently reviewed by Fejer [2011].

The basic electric field and plasma drift generation mechanisms have been
determined by complementary experimental and theoretical numerical modeling studies
[e.g., Richmond, 1995b]. Numerical models include global upper atmosphere three-
dimensional, time-dependent National Center for Atmospheric Research (NCAR) models
(TIEGCM, TIME-GCM, MTIEGCM) [e.g., Fesen et al., 2000; Hagan and Forbes, 2002,
2003; Richmond et al., 2003; Vichare and Richmond, 2005], the Coupled Thermosphere-
Ionosphere-Plasmasphere model (CTIP) [e.g., Millward et al., 2001], and the Sami2 is
Another Model of the Ionosphere (SAMI2) model [e.g., Huba et al., 2000]. A model
incorporating global experimental ionospheric data through a Gauss-Markov Kalman
filter and a physics-based model is the Global Assimilation of Ionospheric Measurements
(GAIM) [Schunk et al., 2002; Scherliess et al., 2004, 2006]. Storm-time ionospheric
effects were studied using the coupled global ionospheric and convection models [e.g.,
Huba et al., 2005; Maruyama et al., 2007].

In the following sections we will review the present understanding of the
fundamental plasma ionospheric quiet-time drift generating mechanisms, including the E-
and F-region dynamos, and then discuss their season, solar cycle and longitude-

dependent climatologies. Finally, we will briefly discuss their short-term variability.

2.2. E- and F-region Dynamo and Polarization Fields

Low-latitude, quiet-time plasma drifts are primarily driven by E- and F-region



neutral winds of tidal origin, but are also affected by F-region polarization fields, gravity
and plasma pressure driven currents, conductivity changes, and lower atmosphere gravity
and planetary waves [e.g., Richmond, 1995a, 1995b]. During geomagnetic storms, solar
wind-magnetosphere dynamo and ionospheric-disturbance dynamo can significantly alter
the plasma drifts [e.g., Fejer, 1997]. In this section we briefly describe the E- and F-
region dynamos, which are the primary drivers of the plasma drift during geomagnetic
quiet times.

The solar diurnal tide, caused by solar heating of the atmosphere, drives the low-
latitude E-region neutral wind system [Richmond, 1995a]. This heating occurs primarily
in the stratosphere and troposphere, and these tidal oscillations propagate upward to
1onospheric heights. Above about 30° latitude as the semidiurnal tide becomes dominant,
the diurnal tide cannot propagate upwards and is trapped in the stratosphere. The lunar
semidiurnal tide (period of 12.4 hours) creates the next strongest neutral wind system, but
its strength is one order of magnitude smaller than those of the solar tides [Schunk and
Nagy, 2009].

The solar quiet (Sq) current system is the result of the solar-generated neutral
wind field's interaction with the E-region plasma. The Sq current system's strength
follows the Pedersen conductivity, maximizing at 150 km around noon when the
Pedersen conductivity maximizes, and very small at night due to low plasma densities.
The Sq currents maximize at about 30° latitude and decrease at higher and lower
latitudes.

The E-region dynamo are mapped along magnetic field lines to F-region heights.



In the nighttime mid- and low-latitude ionosphere, the dynamo effects of F-region
thermospheric neutral winds also generate electric fields and currents. During the day, the
high E-region conductivity shorts out these polarization electric fields; therefore, daytime
E- and F-region plasma drifts are primarily driven by E-region electric fields. At night,
the local F-region dynamo is the dominant plasma drift generation mechanism.

At the equatorial dusk terminator, the F-region dynamo is no longer completely
shorted out by the E-region due to low E-region conductivity. This results in negative
charges piling up and generating an Eastward polarization electric field. This eastward
electric field is then mapped back up to the F-region where it drives large upward ExB
plasma drift velocities on the dayside of the terminator and downward drifts on the
nightside. This large evening upward drift is commonly known as the prereversal velocity
enhancement. These electric fields are the major drivers of electrodynamic plasma drifts
(V=ExB/B?). These low-latitude ionospheric drifts are the subject of our

study.

2.3. Quiet-Time Plasma Drifts

Most of the data about plasma drifts at equatorial latitudes comes from incoherent
scatter radar (ISR) measurements at the Jicamarca Radio Observatory near Lima, Peru
(11.95°S, 76.87°W, magnetic dip 2°N). This ISR operates at 50 MHz and is capable of
measuring the plasma temperature, density, composition, and ion drift velocity as
functions of altitude and time from the backscatter due to thermal fluctuations in the
plasma. Jicamarca F-region plasma drifts are measured typically between 200-800 km

with a height resolution of 15-25 km and a time resolution of 1-5 min. These data are
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most accurate near the F peak (generally between 300-600 km), where the signal-to-noise
ratio is highest, and the drifts generally do not change much with altitude. Most of the
past studies of Jicamarca drifts have used height-averaged values with an integration time
of 5 min. In this case, the accuracy of the vertical and zonal drift is about 1m/s and 10
m/s, respectively, during the day with larger values at night. Over Jicamarca, an F-region
upward (eastward) plasma drift velocity of 40m/s corresponds to an eastward
(downward) electric field of ImV/m.

The characteristics of the quiet-time vertical and zonal F-region plasma drifts
were described in several publications [e.g., Fejer, 1997, 2011; Scherliess and Fejer,
1999]. Figure 2-1 shows the local time and season-dependent Jicamarca average vertical
plasma drifts and the corresponding results from the Scherliess-Fejer empirical model for
low, moderate and high solar flux magnetic quiet conditions. These drifts have large day-
to-day variability at all local times. They are upward during the day and downward at
night with typical values of 25 m/s except near sunrise and sunset where they can vary
considerably with solar flux. The prereversal enhancement is season and solar flux
dependent with the largest effects seen in December solstice and Equinox. Figure 2-2
shows the solar-flux dependence of the evening prereversal enhancement in more detail.
These drift velocities increase linearly during Equinox from 10 m/s during solar
minimum to well above 50 m/s for solar flux over 200 units. Peak prereversal
enhancement velocities during June solstice are best fit by a quadratic for low values of
solar flux and a constant peak drift of 20 m/s for high flux values. December solstice

peak prereversal enhancement velocities can be fit equally well by a linear or quadratic fit
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Figure 2-1. Jicamarca F-region average season and solar-flux-dependent vertical
(positive upward) plasma drifts. The scatter bars represent the standard deviation and the
solid lines show results from an empirical model [after Scherliess and Fejer, 1999].

and have a minimum around 10 m/s and a maximum around 50 m/s for solar flux above
200 units.

Over the last decade, daytime (between about 0800 and 1600 LT) equatorial
vertical and zonal plasma drifts over Jicamarca have also been derived from Doppler
measurements of coherent radar echoes at altitudes near 150 km using the Jicamarca
Unattended Long-term lonosphere and Atmosphere (JULIA) radar system [e.g., Kudeki

and Fawcett, 1993; Chau and Woodman, 2004]. JULIA uses the large antenna array and

low transmitted power allowing for longer and more frequent runs than the more
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expensive ISR system. Typically these drifts have a time resolution of 5 minutes. Under
these conditions these drift measurements have typical accuracies of 1/2 m/s and 5 m/s in
the vertical and zonal directions, respectively. Numerous studies have shown the vertical
drifts measured by this method are indicative of the vertical drifts at F-region heights, but
the zonal drifts have poor to fair agreement with the F-region zonal drifts [e.g., Chau and
Woodman, 2004 and references therein]. The climatology and the day-to-day variability
of the JULIA drifts was recently modeled by Alken [2009]. Figure 2-3 shows the
climatology of the ISR and JULIA drifts as a function of season and LT. The difference
between them is indicative of the gradient in the drifts as a function of altitude. The ISR
drifts have larger values in the morning for all seasons and typically smaller values in the
afternoon. June solstice, the ISR, and JULIA drifts are almost identical with the only
difference being the morning peak is slightly larger in the ISR data.

Equatorial daytime vertical plasma drifts are also now routinely derived from the
difference in magnetic fields from a pair of stations, one over the equator and the other a
few degrees off equator at about the same longitude. Vertical drifts derived from data
obtained at Jicamarca and Piura (5.2°S, 80.6°W; 6.8°magnetic) are generally in good
agreement with 150 km and F-region drifts measured at Jicamarca; however, their
accuracy can be affected by magnetic field changes produced by variable low-latitude E-
region winds [e.g., Fang et al., 2008]. Since 1992 ionosonde-derived drifts have also
routinely been obtained at Jicamarca. These drifts generally agree with the ISR-measured
drifts from about sunset to sunrise and during periods of high magnetic activity [e.g.,

Bertoni et al., 2006].
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Equatorial F-region zonal plasma drifts have been routinely made at Jicamarca

since 1970 [e.g., Woodman, 1972]; however, less frequently than the corresponding

vertical drifts. These drifts are derived from the difference of line-of-sight measurements

from two beams perpendicular to the geomagnetic field, one from a beam pointed 2.5° to

the east and the other from a beam pointed 4.3° to the west of vertical. These morphology

of the Jicamarca zonal drifts has been reviewed in several papers [e.g., Fejer et al., 2005;

Fejer, 2011]. Figure 2-4 shows the season and local time-dependent Jicamarca average

zonal drifts and the corresponding results from the Fejer et al. [2005] empirical model for

low, moderate and high solar flux magnetic quiet conditions. These drifts are westward
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Figure 2-4. Jicamarca average season and solar-flux-dependent zonal (positive eastward)
plasma drifts. The error bars represent the standard deviation and the solid lines result
from an empirical model [from Fejer et al., 2005].
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during the day with typical values of about 40 m/s and eastward at night with much larger
magnitudes. The daytime drifts and morning and afternoon times of reversal vary little
with solar flux. The time of the evening peak occurs earlier for all seasons with
increasing solar flux. The evening peak’s dependence on solar flux is shown in more
detail in Figure 2-5. The December solstice and equinox evening peaks are almost
identical and increase roughly linearly with solar flux from 100 m/s at solar minimum to
180 m/s at solar maximum. The June solstice evening peaks vary less with solar flux. It
increases from 100 m/s at solar minimum to 150 m/s at solar maximum with the increase

tapering off for higher solar fluxes.
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Figure 2-5. Solar flux dependence of the nighttime F-region eastward peak velocity
[from Fejer et al., 2005].
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2.4. Longitude Dependence of the Vertical and Zonal Plasma Drift

Coley et al. [1990] presented the initial results of equatorial vertical plasma drifts
measured by the low-inclination (19.6°) AE-E satellite during 1977-1979. They showed
the local time dependence of the longitudinally averaged low-latitude AE-E satellite ion
drift meter data is consistent with the Jicamarca ISR drifts. Fejer et al. [1995], using the
same data set, determined the average dependence of these drifts on solar flux and season
for four longitude sectors. Scherliess and Fejer [1999] incorporated the AE-E drift data
and 1968-1999 ISR data from Jicamarca into the first detailed season and solar-cycle-
dependent global empirical model of the equatorial vertical plasma drifts. This drifts
model, derived using cubic-b splines, has been used extensively in the validation of
theoretical models. Regional empirical models have been presented by Batista et al.
[1996] and Sastri [1996].

Fejer et al. [2008] used five years (1999-2004) of ion drift measurements at an
altitude of 600km on board the ROCSAT-1 satellite to study and empirically model the
local time, longitudinal, seasonal, and solar cycle dependence of the equatorial F-region
vertical plasma drifts. These model drifts are in good agreement with the Jicamarca drifts
presented by Scherliess and Fejer [1999] as shown in Figure 2-6. The longitude
dependence of the ROCSAT-1 model drifts is significantly more accurate than that of the
Scherliess and Fejer [1999] model due to the much larger number of ROCSAT
measurements. The ROCSAT-1 model also shows much larger prereversal velocity
enhancements during December Solstice and equinox.

Figure 2-7 shows the local time, seasonal and longitudinal dependence of quiet-
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time equatorial vertical plasma drifts for moderate solar flux conditions derived from
ROCSAT-1 data. These drifts are upward during the day with typical values of 20-40 m/s
and downward at night with typical values of 20 m/s. These drifts have large longitudinal
variations in all seasons and local times, especially in the morning and dusk sectors.

Figure 2-8 shows the ROCSAT-1 model drifts in more detail highlighting their
solar flux dependence. The equinox and December solstice morning drifts do not change
much with solar flux, but the afternoon and evening upward drifts and the nighttime
downward drifts increase with solar flux. Figure 2-8 also shows the increase of the
evening prereversal enhancements with solar flux is noticeably longitude dependent
during December and June solstice. The evening reversal times do not change with solar
flux, except in the American sector during June solstice. The morning reversal times
generally occur earlier with decreasing solar flux.

Figures 2-7 and 2-8 both show strong wavenumber-4 longitudinal modulation on
the upward drifts during equinox and June solstice. Figure 2-9, which displays the
longitude and season-dependent average vertical drifts for 0900-1200 LT and 1300-1600
LT, shows this pattern in more detail. The equinox, June solstice and December eastern
hemisphere morning and afternoon peaks are at nearly identical longitudes. The
December solstice western hemisphere morning and afternoon drifts have considerably
different longitude dependence leading to not as clear wavenumber-4 signature as in the
other seasons. This pattern has also been found in many different in-situ and remote
sensing measurements [e.g., Sagawa et al., 2005; Immel et al., 2006; Hartman and

Heelis, 2007; Kil et al., 2008; Scherliess et al., 2008; Fang et al., 2009, Huang et al.,
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Figure 2-8. Local time, longitude and solar flux variation of the quiet-time vertical
plasma drift for eight longitude sectors and three seasons as derived from ROCSAT-1
data [from Fejer et al., 2008].

2010].

Numerous studies suggest the wavenumber-4 structure appears to be
predominantly due to the modulation of the zonal electric field by the eastward
propagating diurnal tide with zonal wavenumber s=-3, often called DE3 [Hagan et al.,
2007]. This vertically propagating tide is thought to be generated by the longitude-
dependent latent heating resulting from deep tropical tropospheric convection [e.g.,
Hagan and Forbes, 2002; Oberheide et al., 2006]. Numerical simulation using the TIME-
GCM indicate the wavenumber-4 evening structure in the equatorial ionization anomaly

observed by the IMAGE satellite can be explained by the electrodynamic effects of the
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DE3 tide [Hagan et al., 2007].

Figures 2-7 and 2-8 showed the prereversal enhancement of the vertical drifts is
strongly longitude, solar flux, and season dependent. This is shown in greater detail for
moderately large flux conditions in Figure 2-10. The equinoctial peaks vary between 25
m/s over Asia to 45 m/s over the Americas. The December solstice peak values are
smallest, approximately 5 m/s, near 180°E and largest over the Americas, with values

between 30-50 m/s. The June solstice peak values vary between about 5 m/s and 25 m/s
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Figure 2-10. Longitude dependence of the prereversal enhancement for three seasons as
derived from ROCSAT-1 data [from Fejer et al., 2008].
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with the maxima located around 15°E and from 180°E to 120°W. The December and June
solstice peak values are largely anti-correlated, suggesting their control by the magnetic
field, line-integrated conductivities.

While the local time, seasonal, and solar flux dependence of the zonal drifts for a
given region has been studied extensively [e.g., Coley and Heelis, 1989; Fejer et al.,
1991, 2005; Maynard et al., 1995], the longitudinal dependence of zonal drifts has not
been studied in detail until recently. Jensen and Fejer [2007] presented the initial study of
the longitudinal dependence of the zonal drifts measured between August 1981 and
February 1983 onboard the Dynamics Explorer-2 (DE-2), but only in large local time
bins and selected seasons, as local time and season were locked together in these
measurements. Huang et al. [2010] presented the ion density and drift velocities from the
Defense Meteorological Satellites Program (DMSP) F13 and F17 satellites as a function
of season and longitude for two local times. They found wavenumber 4, 3, and 2
structures during equinox, June solstice, and December solstice, respectively. Huang et
al. [2012] used data from several instruments onboard the Communication/Navigation
Outage Forecasting System (C/NOFS) and Gravity Recovery and Climate Experiment
(GRACE) satellites to show broad plasma depletions generally occur in specific
longitudes and their location appears to be related to the longitudinal dependence of the
zonal drifts.

Recently Fejer et al. [2013] presented the first detailed longitudinal, seasonal, and
local time-dependent climatology of equatorial zonal drifts using three years (May 2008-

February 2011) of Vector Electric Field Investigation (VEFI) data from onboard the
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C/NOFS satellite. The C/NOFS satellite is in a low-Earth orbit (13°), covering
geographic latitudes -12° to 12° and having a perigee of 400 km and an apogee of 850
km. These satellite data agree well with the incoherent scatter radar data, as shown in
Figure 2-11. The radar and satellite data presented are the average quiet time F-region
zonal plasma drifts and correspond to altitudes of about 400 km for the radar and 650 km
for the satellite. The standard deviations of these data are about 15 m/s during the day and
40 m/s at night for the radar measurements and 20 m/s during the day and 45 m/s at night
for the satellite data. These large standard deviations are due, in part, to the large day-to-
day variability of the drifts, as evidenced by the very small 2-3 m/s standard error of the
mean for the satellite drifts for all local times. The drifts measured by the two instruments
follow the same pattern as a function of local time for each season; however, the drifts
measured by C/NOFS have smaller eastward drifts and larger westward drifts. This
difference may be due to a difference in the altitudes of the measurements. The afternoon
drift reversal time is the same, but the morning drift reversal time is generally earlier for
the satellite data.

Figure 2-12 shows the local time- and longitude-dependent average quiet time
equatorial zonal plasma drifts derived from C/NOFS VEFI data for three seasons,
December solstice (November-February), equinox (March-April and September-
October), and June solstice (May-August). These drifts are westward during the day and
eastward at night with large longitudinal variations. The equinocial data and solstice data
show four and three clear bulges with strong wavenumber 4 and 3 patterns, respectively.

The equinocial data also show a strong, short-lived westward peak just before sunrise for
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Figure 2-11. Average F-region quiet-time zonal (positive eastward) plasma drift as a
function of local time and season from C/NOFS VEFI measurements over the Peruvian
equatorial region and from the Jicamarca radar [from Fejer et al., 2013].

most longitudes.

Figure 2-13 shows the C/NOFS zonal drifts data in more detail for eight selected
longitude sectors. The standard deviations are about 20 m/s during the day and 40 m/s at
night for all longitudes. The corresponding standard error of the means are about 2 and 3

m/s, respectively. The early morning drifts are strongly westward for short amounts of
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Figure 2-12. Local time, season, and longitude-dependent average zonal plasma drifts
from VEFI measurements onboard the C/NOEFS satellite [from Fejer et al., 2013].
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time, especially during equinox where they can reach values of 60 m/s. The daytime
drifts vary between 40-70 m/s depending on longitude, with peak values occurring about
120° and 300°. There is about an hour difference in the evening reversal time between the
eastern and western hemisphere during the solstices (16.5+0.5LT), while the evening
reversal time (17LT) is almost longitude independent during equinox. The nighttime
eastward values are highest in the premidnight sector with peak values of about 110 m/s

in the 240°-300° sector. The post-midnight drifts remain eastward until about 5 LT where
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Figure 2-13. Local time and longitude variation of the average low-solar-flux quiet-time
zonal plasma drift for eight longitude sectors and three seasons from VEFI measurements
onboard the C/NOFS satellite [from Fejer et al., 2013].
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they reverse to westward once more. The time of this reversal shows greatest seasonal
variability at about 240°.

Figure 2-14 shows the longitude and seasonal variation of the zonal drifts for
1000- 1400 LT and 1400- 1800 LT. The midday drifts have magnitudes of 40- 70 m/s
with the largest values occurring near 120° and 300°. The afternoon drifts have values
between -30 m/s and 20 m/s with June solstice having the largest value near 270°. The
longitude dependence of the drifts is almost uniform for all the seasons in the eastern
hemisphere. In the western hemisphere, however, the solstice drifts are anticorrelated. In
the eastern hemisphere, the equinox drifts have nearly the same magnitude as the drifts
from June solstice, whereas in the western hemisphere the equinox drifts follow the
December solstice drifts in the 180°-300° sector and those of the June solstice drifts in
the 300°-360° sector. Wavenumber-4 pattern is clearly seen in the afternoon drifts.

Figure 2-15 shows the longitude and seasonal variation of the zonal drifts for
1800- 2100 LT and 2100- 2400 LT. Near dusk, the drifts increase in magnitude from the
eastern to the western hemisphere and have similar longitude structures for all seasons
with a clear wavenumber-4 pattern. In the 2100- 2400 LT sector, the drifts peak around
280° for all seasons. June solstice average drifts for 2100- 2400 LT increases from 30 m/s
in the eastern hemisphere to 90 m/s in the western hemisphere. Due to the late peak times
of June solstice near 280°, the drifts are largest for this season. Equinox drifts have a
wavenumber-4 pattern that mostly controls the longitudinal dependence of the drifts
during 2100- 2400 LT. The exception is the enhancement of one of the peaks of the

wavenumber-4 pattern to unusually high values near 280°. December solstice is nearly
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Figure 2-14. Longitude and seasonal dependence of the zonal plasma drift for two local
time sectors as measured by VEFI onboard the C/NOFS satellite [from Fejer et al.,
2013].
longitude independent; however, still having a peak around 280° and traces of a
wavenumber-4 pattern is noticeable in the December solstice drifts. The post-midnight

drifts exhibit only weak longitudinal dependence up to about 03 LT and have typical

values of about 30 m/s [Fejer et al., 2013].
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Figure 2-15. Longitude and seasonal dependence of the zonal plasma drift for two local
time sectors, including prereversal enhancement, as measured by VEFI on board the
C/NOFS satellite [from Fejer et al., 2013].

2.5. Ionospheric Weather
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Ionospheric variability is larger during storm events than during solar quiet days.

This is especially true during the super fountain effect and prompt penetration electric
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fields. In this section, we consider only quiet-time ionospheric drift variability.
Information on storm-time variability are available in Fejer [2011] and references
therein.

The quiet-time variability is largely due to lower atmospheric processes. Short-
term (few hours) variability in the electrodynamics is believed to be related with gravity
wave effects. Longer period variability (up to about a month) is probably related to the
effects of complex changes in tidal forcing of global winds, and effects of planetary
waves and irregular winds in the dynamo region. Lunar semidiurnal tidal modulations of
equatorial vertical drifts over Jicamarca have amplitudes of up to 6 m/s in the Northern
winter [Stening and Fejer, 2001]. Large oscillations with two-day and longer periods (5-,
10-, 16-day) were identified in the intensity of the equatorial electrojet and ionization
anomaly. These oscillations occur simultaneously with planetary wave activity. There is
strong evidence these ionospheric electrodynamic perturbations result from the nonlinear
interaction of planetary waves and diurnal and semidiurnal tides [e.g., Parish et al.,
1994]. Jicamarca F-region vertical drifts suggest largest variability occurs during dawn-
noon sector and during March equinox solar minimum conditions [Fejer and Scherliess,

2001].
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CHAPTER 3

LUNAR TIDAL EFFECTS ON THE EQUATORIAL PLASMA DRIFTS

3.1. Introduction

In this chapter, we present and discuss some recent results on the study of quiet time
variability in electrodynamics of the low-latitude ionosphere due to lunar tidal effects.
Tidal effects are known to create variations in the oceans, atmospheric pressure,
geomagnetic fields, ionospheric currents and electric fields, and electron densities [e.g.,
Chapman and Bartels, 1940; Matsushita, 1967, and references therein; Chapman and
Lindzen, 1970; Schwiderksi, 1979]. The lunar tide has attracted considerable attention
despite the relatively small size because, in principal, the forcing mechanism is exactly
known, which creates the ideal situation for comparison between models and data.
Further the lunar tide is of interest because, depending on the sampling perspective, it can
be responsible for considerable day-to-day variability; quantification of the lunar tide
within the ionosphere can thus lead to improved prediction of ionospheric parameters. In
this chapter, we focus on lunar tidal effects on the equatorial vertical plasma drifts, their
enhancements during Sudden Stratospheric Warming (SSW) events, and effects on the
occurrence of equatorial spread F. This chapter includes significantly more detailed
studies of the topics covered in Fejer and Tracy [2013].

Periodic oscillations that occur at lunar periods are referred to as the lunar daily
variation or, more commonly, the lunar tide. These tides are driven by the centripetal
force and gradients in the gravitational field and can be greatly amplified due to local

topology. In the ionosphere, lunar tidal currents arise due to modulation of the dynamo
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generated electric fields [Matsushita, 1967]. Vial and Forbes [1994] showed the tidal
wind field associated with the semidiurnal lunar tide propagates vertically and is capable
of penetrating into the ionospheric E region. The tidal winds, in turn, modulate the solar-
driven wind fields and influence the dynamo-generated ionospheric currents and electric
fields. This process generates the lunar current system, which is superimposed upon the
larger solar quiet current system.

The general characteristics of the lunar tides in the lower atmosphere and in
Earth's geomagnetic fields have been discussed in detail by Chapman and Bartels [1940]
and Chapman and Lindzen [1970], respectively, and the following information is
summarized from these sources. The moon revolves around the Earth in 27 days, 7 hours,
and 43 minutes, (the sidereal period), so the mean lunar day, or average interval between
two successive passages of the moon across any terrestrial meridian, is 24 hrs, 50.47
minutes. The moon revolves around the Earth relative to the line through the center of the
sun in 29.5306 days. This period is called a lunation, lunar cycle, or the synodic or lunar
month. Lunar age, v, measures what part of the lunar month the Earth, moon, sun system
is in. Lunar age is calculated based on the angle, v, between the meridian half-planes
through the sun and moon (positive values are associated with the moon being east of the
sun), see Figure 3-1. New moon corresponds to v=0, and the values of v at one-eighth
phase, first quarter (half moon), full moon, and so on, are n/4, n/2, &, and so on. The local
apparent lunar (solar) time is measured from the east longitude t (t) of any station P
relative to the meridian opposite to that containing the moon (sun). Figure 3-1 shows

how, if angular measure is used for these three parameters, the phase law
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LOCAL TIME MEASUREMENTS ON EARTH

i’

Figure 3-1. Local solar time, t, local lunar time, t, lunar age, v, and the relationship
between them is shown for a point, P, on the Earth, E. The sun is represented by the
shaded semicircle at the bottom of the figure labeled S and the moon is represented by
the small shaded circle labeled M.
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t=T+v, (1)
is clearly valid.

A lunar semidiurnal tide is one that repeats twice with respect to a lunar day in the
form

asin(21)+bcos(21), 2)
where a and b are amplitudes. A lunar diurnal tide is one that repeats once in a lunar day
in the form

csin(t)+dcos(t). 3)
Using the phase law found above, t=t1+v, these can be rewritten as functions of t and v
yielding,
asin[2(t-v)]+bcos[2(t-v)], and 4)

csin(t-v)+dcos(t-v). (5)
Thus a lunar semidiurnal (diurnal) tide repeats twice (once) in solar local time for any
given lunar age and similarly the semidiurnal (diurnal) lunar tide repeats twice (once) in
lunar age for any given local time.

The intensity of the plasma drifts is dependent upon not only the driving winds,
but also on the electrical conductivity of the ionosphere. The ionospheric conductivity is
basically, a function of the the electron density, and thus largely depends on solar local
time. A daily variation of the lunar tidal effects on the vertical plasma drifts in a solar
time frame is called the luni-solar tide. Equations 4 and 5, when modified to include solar
time-dependent amplitudes, represent the luni-solar tidal effects as

a(t)sin[2(t-v)]+b(t)cos[2(t-v)], and (6)
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c(t)sin(t-v)+d(t)cos(t-v). (7)

Simplifying these yields
a'(t)sin(2v)+b'(t)cos(2v), and (8)
c'(t)sin(v)+d'(t)cos(v). 9)

A harmonic analysis of data using equations 8 and 9 would yield the luni-solar tidal
effects; however, these could also be termed as lunar semimonthly and lunar monthly
variations due to the periodic variations with respect to a lunar month. This is similar to
the procedure followed by Yamazaki et al. [2012a].

Until recently studies of lunar tidal effects have focused primarily on the
semidiurnal component in magnetic variations due to ionospheric currents and in
1onosonde observations. The lunar tidal modulation of the intensity of the equatorial
electrojet has been known for several decades [e.g., Bartels and Johnson, 1940; Rastogi
and Trivedi, 1970; Rastogi, 1974]. The initial study on lunar tidal effects on equatorial
electrojet horizontal plasma drifts was by Tarpley and Balsley [1972] using Jicamarca
radar measurements. The electrojet horizontal drifts are proportional to the F-region
vertical plasma drifts and zonal electric field [e.g., Kelley, 2009]. The lunar semidiurnal
tidal effects on the vertical drifts over Jicamarca were studied by Stening and Fejer
[2001]. They found the effects were season dependent being strongest in December
solstice and the effects were independent of solar flux. Lunar tidal modulations in the
equatorial ionosphere were also studied using ionospheric maps of global positioning
system (GPS) total electron content (TEC) [Pedatella and Forbes, 2010], low-latitude

ionospheric sensor network data [Eccles et al., 2011], and CHAMP [Liihr et al., 2012]
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satellite measurements. Pedatella et al. [2012a] examined, in detail, the semidiurnal lunar
tide climatology in surface pressure, and zonal and meridional winds in the mesosphere

and thermosphere using the Whole Atmosphere Community Climate Model (WACCM).

3.2. Data and Methodology

As mentioned in Chapter 2, the Jicamarca incoherent scatter radar measures F-
region plasma drifts typically between about 200 and 800 km [e.g., Woodman, 1970].
However, most past studies have used drifts averaged over about 250-600 km, where they
do not change much with altitude. In this case, the accuracy of the vertical drifts is about
1-2 m/s for an integration time of 5 min. Since 2001, daytime (between about 0800 and
1600 LT) plasma drifts have been derived from Doppler observations of coherent echoes
at altitudes of about 150 km using the low-power Jicamarca Unattended Long-term
Ionosphere and Atmosphere (JULIA) radar system [e.g., Chau and Woodman, 2004].
Over Peru, an ionospheric upward (eastward) plasma drift velocity of 40 m/s corresponds
to an eastward (downward) electric field of about 1 mV/m.

We used 1660 days from 2001 - 2013 of JULIA and 862 days from 1968 - 2010 of
ISR vertical drift data from Jicamarca Radio Observatory (11.95°S, 76.8°W). As
mentioned earlier, the JULIA measurements are restricted to daytime. In our analysis, we
restricted our data to quiet times (Kp<3 and considered data during SSWs separately).
The distribution of our data over the lunar cycle is shown in Figure 3-2. ISR data displays
a strong bias towards the new moon, which handicaps our study of the luni-solar monthly
tidal effects (period of 29.5306 solar days). The JULIA data does not display this

limitation and allowed a more detailed study of these effects.
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Lunar tidal effects were derived by first placing the drift data in 5- or 30-minute
local time and day after the new moon bins. We then averaged the data in each bin and
found the mean perturbation drift with respect to the lunar month averaged value. Fejer
and Tracy [2013] followed the same procedure up to this point; however, they then used a
Fast Fourier Transform to find the amplitudes and phases of the lunar tidal effects. In
contrast, we applied the expectation maximization (EM) algorithm [Dempster et al.,
1977; Wu, 1983; Moon and Stirling, 2000] to these perturbations in each local time bin to
find the maximum likelihood amplitudes and phases. The EM algorithm provides
estimates of the amplitudes and phases for sections of the data (local time and day after
new moon bins) that are empty. This was especially beneficial for the ISR data set as we
were able to study the luni-solar monthly tidal effects despite the bias in the data. The EM
algorithm consists of two primary steps: an expectation step, followed by a maximization
step. The expectation is obtained with respect to the unknown underlying variables, using
the current estimate of the parameters and conditioned upon the observations. The
maximization step then provides a new estimate of the parameters. These two steps are
iterated until convergence, which is guaranteed to a local maximum [e.g., Wu, 1983]. In
our study the model to maximize was of the form
Asin(2nx/t)+Bcos(2nx/t), (10)
where A and B are the parameters to maximize, x is the days after the new moon, and t is
the period. The expectation step then finds the expected value of the missing data (local
time and day after the new moon bins without data) and this process is repeated until

convergence. As the missing values were assumed to be random and to have a Gaussian
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Figure 3-2. Days of data during each day of the lunar cycle from the ISR and JULIA
radar systems at Jicamarca, Peru.
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distribution in our application of the algorithm, this process is identical to a least squares
analysis. These maximum likelihood estimates are then converted into an amplitude and
phase of the form

Asin(2nx/t)+Bcos(2nx/t)=Csin(2nx/t+o). (11)
The phase is finally converted into the day after new moon of maximum lunar
amplification the lunar day of max by
Lyvax=(n/2-¢)t/2n+nt, (12)

where n is any integer.

3.3. Lunar Tidal Effects

Figure 3-3 shows the average vertical drift perturbations as a function of local time
and day after new moon for December solstice, which was obtained using all available
Jicamarca ISR quiet time (Kp <3) drifts from April 1968 to April 2010 when the average
F10.7 solar flux index was about 120. This data base consists of 275 days of
measurements. In this case, we first placed the residual drifts in 30-min local time and
day after new moon bins and averaged the data in each bin. Our database is much larger
during the day than at night when we have between zero and ten data per bin. Then, for
each local time bin, we determined the mean perturbation drift and their variation relative
to the lunar month averaged value. Finally, we performed three-point running averages on
the resulting data. Figure 3-3 shows the lunar daytime semimonthly lunar tidal effects
have 5-6 m/s amplitudes, which is similar to the value reported by Stening and Fejer
[2001] for the semidiurnal lunar tidal effects. The nighttime lunar semimonthly effects

also appear to be comparable to the daytime values, and thus larger than the 2-3 m/s
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Figure 3-3. Equatorial vertical plasma drift perturbations (positive upward) as a function
of local time and day after the new moon derived from Jicamarca incoherent scatter radar
measurements during December solstice.

values derived by Stening and Fejer [2001]. Lunar monthly effects are also noticeable in
Figure 3-3. It is important to note, however, the Jicamarca incoherent scatter radar
database has significantly more measurements close to new moon than to full moon as a
result of the standard scheduling of the so-called World Days with complementary optical
observations, which certainly biased the results shown in Figure 3-3. From October
through March the extraction of nighttime lunar tidal effects from Jicamarca incoherent
scatter drift data is further complicated by the frequent occurrence of equatorial spread F,

which precludes these measurements. This task is most difficult during December solstice
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when, over Jicamarca, spread F is strongest and longest lasting [Fejer et al., 1999].
Daytime lunar tidal effects on the Jicamarca drifts can be studied more easily using the
more extensive, and evenly distributed in lunar age, JULIA database (more than 1600
days from August 2001 to April 2013). Figure 3-4 shows the local time variation of
daytime (between about 0800 and 1600 LT) vertical drift perturbations as a function of
days after new moon for November-February in the top panel, and bihourly averaged
perturbation drifts in the bottom panel. In this case, we have excluded data during SSW
events, which will be discussed later. The average solar decimetric flux index during
these measurements was about 100. These results were derived using the same procedure
described above, except we used 5-min data. In Figure 3-4, semimonthly lunar
perturbation drifts are again the dominant feature having amplitudes of about 5 m/s.
Lunar monthly modulations are also noticeable. During this season, the amplitude of the
lunar monthly perturbation is of the order of 2 m/s. Since for December solstice moderate
solar flux conditions, the daytime average upward drift velocities vary between about 15
m/s in the morning to about 4 m/s during midafternoon. Lunar tidal effects significantly
modulate these drift velocities. We note in Figure 3-3 the largest drifts between 0800 and
1000 LT occur at about 16-18 days after the new moon whereas in Figure 3-4 (based on a
much larger and better suited database) they appear near 0-3 days after the new moon.

This difference results from the sampling bias in the incoherent scatter radar database.

3.3.1. Luni-Solar Semimonthly Tidal Effects
Figures 3-3 and 3-4 have showed the average perturbation drifts. Figures 3-5 and 3-

6, in contrast, show just the maximum likelihood lunar semimonthly drifts derived from
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Figure 3-4. Daytime vertical plasma drift perturbations as function of local time and day
after new moon for November-February derived from JULIA data (top panel) and bi-
hourly average of the daytime perturbation vertical drifts (center and bottom panels).
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the JULIA data using the EM algorithm for 3 four-month seasons and 6 bimonthly
periods, respectively. The amplitudes are strongest during December solstice and weakest
during June solstice. The phase progression is also seasonal dependent having the
steepest slopes during June solstice. Figure 3-7 shows the three-point smoothed 9-15 LT
bimonthly average amplitudes and phases of the lunar semimonthly drifts. In these data,
the standard deviations were less than 1 m/s and 0.5 days, respectively. Figure 3-7 shows
largest drifts near December solstice and smallest around June solstice, which is in good
agreement with the Stening-Fejer data, except for the larger amplitudes of the JULIA
drifts during the autumnal equinox, and also with the seasonal variation derived from
Peruvian equatorial electrojet magnetic field data (Stening, 2011). WACCM simulations
of the atmospheric lunar semidiurnal tide climatology in the mesosphere-lower
atmosphere showed a primarily semiannual variation in the zonal and meridional winds
with maxima near December and June solstice [Pedatella et al., 2012b].

The JULIA data indicate the daytime lunar semimonthly perturbation drifts do not
have significant solar flux dependence, as reported previously by Stening and Fejer
[2001]. Fejer and Tracy [2013] showed during January-February, when the lunar
semimonthly effects are the strongest, the daytime drifts decrease by about 2 m/s from
early morning to late afternoon. Figure 3-8 similarly shows during July-August, when
lunar tidal effects are weakest, the amplitudes of the bihourly averaged lunar
semimonthly daytime drifts decrease by about 4 m/s from early morning to late
afternoon, although this result should be used with caution due to the large standard

deviations in the morning data. Stening [1989] suggested the variation of the amplitude of
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Figure 3-5. Daytime maximum likelihood luni-solar semimonthly lunar drifts as derived
from JULIA data for three seasons.
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Figure 3-6. Daytime maximum likelihood luni-solar semimonthly lunar drifts as derived
from JULIA data for six bimonthly periods.
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Figure 3-7. Bimonthly variation of the amplitudes and phases of daytime (9-15 LT)
maximum likelihood luni-solar semimonthly vertical perturbation drifts as derived from

JULIA data.

the semidiurnal lunar tide as a function of local time could be due to interactions with the
diurnal and semidiurnal solar tides as they rise through the atmosphere.

Figure 3-9 shows the day and nighttime maximum likelihood lunar semimonthly
drifts derived from ISR data for 3 four-month seasons. Figures 3-10 and 3-11 show these
data for bimonthly periods during the day (8-16 LT) and at night (18-06LT), respectively.

The daytime amplitudes are strongest during December solstice and weakest during June
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solstice. The nighttime amplitudes are similar across the seasons with a particularly large
increase in amplitude near dusk. There is a phase shift around dusk, which is seasonally
dependent.

As partially explained above, the phase progression of the lunar semidiurnal tide
comes from the difference in the time it takes for the sun (24hrs) and moon (24.8hrs) to

be over the same spot on the Earth. This would lead to the time of maximum increase
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Figure 3-8. Local time variation of the amplitudes and phases of maximum likelihood
luni-solar semimonthly daytime drifts during July-August from JULIA data.
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Figure 3-9. Day and nighttime maximum likelihood luni-solar semimonthly perturbation
drifts as derived from ISR data for three seasons.
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Figure 3-10. Daytime maximum likelihood luni-solar semimonthly perturbation drifts as
derived from ISR data for six bimonthly periods.
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Figure 3-11. Nighttime maximum likelihood luni-solar semimonthly perturbation drifts
as derived from ISR data for six bimonthly periods.
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being about one hour later each day. This phase progression is displayed in Figure 3-12
(which shows the January-February data from Figures 3-10 and 3-11 for two solar local
time and lunar cycles, and the calculated and theoretical phase progressions). In our
work, we will define a phase that increases in Lyax with an increase in local time as
positive (think about finding the slope of the lines in Figure 3-12). As the calculated luni-
solar semimonthly tidal effects generally follows the expected phase progression for the
lunar semidiurnal tidal effects, we conclude the lunar semidiurnal tide is the primary
driver of luni-solar semimonthly effects, as expected. The variations from the expected
value give an idea as to the lunar tidal coupling with other atmospheric tides. The large
change in phase at night could be explained, if there is a phase shift in the lunar tidal
winds with altitude, by the switch in the primary drivers of the drifts from E-region
dynamo to F-region dynamo. Further, if there is a phase shift with altitude, then as the
height of the dynamo layer shifts with solar local time, the phase progression, while
generally following the expected value, will vary with the phase of the altitude of the
dynamo layer.

We found these phase progressions to be seasonally dependent with the steepest
slopes during June solstice and generally the best agreement with theory during spring
equinox. The general pattern of the phase progression found is shown in Figure 3-12. It
is approximately linear until dawn where there is a phase shift, then an s-shaped slope
during the day, which on average, follows the expected slope, but is steeper near dusk and
dawn, and finally a phase shift at dusk and another linear slope. The negative slope that

appears during some bimonthly phase shifts agrees with the expected slope if you make it
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negative. Note, March-April and September-October both have positive phase
progressions with slightly different slopes that results in them having slightly different
phases during the day and being largely anticorrelated at night. These differences results
in the smaller amplitudes and negative slope at night during the equinoctial calculation.
The difference in these bimonthly periods highlights the need to take care in calculating
lunar tidal effects for four-month seasons.

The bimonthly variation of the lunar semimonthly drifts is shown in Figure 3-13,
which shows the 9-15 LT bimonthly average amplitudes and phases, and Figure 3-14,
which shows the 20-06 LT bimonthly average amplitudes and phases. In these data, the
standard deviations were less than 1 m/s and 0.5 day, respectively. Figure 3-13 shows
largest drifts near spring equinox and smallest around June solstice, which is in good
agreement with the Stening-Fejer data, except for the larger amplitudes of the ISR drifts
during the autumnal equinox. Note, the phase progression we found during the autumnal
equinox is different than the rest of the data analyzed here. As Stening and Fejer [2001]
fixed the phase progression (slope) and then found the amplitude and phase (intercept),
this could explain the smaller amplitudes obtained by them during this time period.
Figure 3-14 shows smallest amplitudes during the equinoxes and largest amplitudes
during the solstices. As noted above, the values are significantly larger than the values
obtained by Stening and Fejer [2001]; however, note they used 18-06 LT for their
nighttime values, and as there is typically a large phase shift around 19LT averaging on
both sides of the phase shift, which would significantly decrease the calculated

amplitudes. Figure 3-15 shows the average of the twelve bimonthly lunar semimonthly
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Figure 3-13. Bimonthly variation of the amplitudes and phases of daytime (9-15 LT)
maximum likelihood luni-solar semimonthly vertical perturbation drifts as derived from

ISR data.
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maximum likelihood luni-solar semimonthly vertical perturbation drifts as derived from

ISR data.
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amplitudes and phase as a function of local time as derived from the ISR data. Figure 3-
15 shows the semimonthly amplitude is on average 4 m/s, being slightly larger at night
than during the day, and with large increases around dusk and dawn. Figure 3-16 shows
the excellent agreement between the bimonthly, semimonthly amplitudes and phases as
derived from ISR and JULIA data except the phase during June solstice, when the

amplitudes are the smallest.

3.3.2. Luni-Solar Monthly Tidal Effects

Several recent studies examined the effects of lunar tides on the low-latitude upper
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Figure 3-15. Local time variation of the yearly average amplitudes of the luni-solar
semimonthly perturbation drifts as derived from the ISR data. This was found by
computing the local time variation for each bimonthly period and then averaging the
twelve bimonthly periods together.
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atmosphere and ionosphere [Pedatella and Forbes, 2010; Eccles et al., 2011; Stening,
2011; Liihr et al., 2012] and noted the lunar semidiurnal tide does not explain all the
variation through the lunar month. Fejer and Tracy [2013] showed JULIA data during
December solstice has lunar diurnal drifts with an amplitude about 2 m/s. Similarly
Figure 3-17 illustrates lunar monthly effects on the November-February ISR vertical

drifts. This tidal component has an average amplitude of about 2 m/s during the day and a
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Figure 3-17. Local time variation of average ISR vertical drift velocities for periods
starting close to new and full moon.
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much larger value around dusk. The ISR daytime data disagrees with the JULIA data,
which because of the large number of days of data and lack of bias, is probably the most
correct; however, there is reason to believe the nighttime values are more representative
of the actual values. As mentioned later, the large increase of the prereversal velocity
enhancement around full moon gives rise to more frequent occurrence of strong
equatorial spread F. This was pointed out initially by Aveiro and Hysell [2010]. We will
now look at these effects derived first from the JULIA and then the ISR data, and finally
compare them.

Figures 3-18 and 3-19 show the maximum likelihood lunar monthly perturbation
drifts derived from the JULIA data using the EM algorithm for 3 four-month seasons and
six bimonthly periods, respectively. The amplitude is similar across all seasons, while
the expected phase progression is most distinct during January-February and March-
April. Several bimonthly periods show a distinct phase shift around 14 LT. June solstice
again has the steepest slopes, with July-August being almost straight up and down. Figure
3-20 shows the three-point smoothed 9-15 LT bimonthly average lunar monthly
perturbation amplitudes and phases. In these data, the standard deviations were less than
1 m/s and 0.5 days, respectively. The lunar monthly perturbation amplitude is
independent of season with an amplitude of about 1.5 m/s.

Figure 3-21 shows the average of the bimonthly lunar monthly perturbation
amplitudes and phase as a function of LT as derived from the JULIA data. Similar to the
semimonthly tidal effects, the lunar monthly tidal effect weakens from early morning to

late afternoon.
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derived from JULIA data for three seasons.
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Figure 3-19. Daytime maximum likelihood luni-solar monthly perturbation drifts as
derived from JULIA data for six bimonthly periods.
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Figure 3-22 shows the day and nighttime maximum likelihood lunar monthly

perturbation drifts derived from ISR data for 3 four-month seasons. Figures 3-23 and 3-

24 show these data for bimonthly periods during the day (8-16 LT) and at night (18-

06LT), respectively. The daytime amplitudes are almost season independent and smaller

than the nighttime amplitudes during December solstice and equinox. There are large

phase shifts near dusk and dawn in all seasons and around 14 LT during some bimonthly

periods. There is no current understanding of what drives the lunar monthly tidal effects

and its phase progression. Assuming it is caused by dynamo-driven electric fields of lunar

diurnal tidal origin (the lunar diurnal tides are also unexplained) and modulated by its
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Figure 3-21. Local time variation of the average amplitudes and phases of the luni-solar
monthly perturbation drifts as derived from JULIA data. This was found by computing
the local time variation for each bimonthly period and then averaging the twelve
bimonthly periods together.
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drifts as derived from ISR data for three seasons.
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Figure 3-23. Daytime maximum likelihood luni-solar monthly perturbation drifts as
derived from ISR data for six bimonthly periods.

66



JICAMARCA ISR
CALCULATED LUNI-SOLAR MONTHLY
2001-2010, Kp <3

Hdv-dviN g34-Nvr

NAM-AYIN

onvy-1Nr

1250d3s

03A-AON

T LN EL N L L L AL L HL N LA L L
8 12 16 20 24 28 32 36 40 44 48 52 56 60

o
=

DAYS AFTER THE NEW MOON

Figure 3-24. Nighttime maximum likelihood luni-solar monthly perturbation drifts as
derived from ISR data for six bimonthly periods.
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interaction with other atmospheric tides would lead to the same slope, but different
period, as the semidiurnal case. Figure 3-25 shows the January-February data from
Figures 3-23 and 3-24 for two local time and lunar cycles, and the calculated and
theoretical phase progressions. As in the semidiurnal case, a phase that increases in Lyax
with an increase in local time will be defined as positive. The expected phase progression
is seen clearest in January-February. Note, July-August again has a very steep slope. The
monthly and semimonthly lunar tidal effects are seen to have similar phase progressions;
compare Figures 3-10 and 3-11 with 3-23 and 3-24. Specifically, at night the
semimonthly and monthly tidal phase progressions are positive during March-April and
May-June, steepens during July-August, is transitioning during September-October, and
is negative during November-December and January-February. January-February
monthly phase progressions follows an s-shaped slope during the day similar to the
semimonthly case; compare Figures 3-25 and 3-12. This s-shaped pattern is followed, to
some extent, in all bimonthly periods, with the importance of each slope varying
according to local time and bimonthly period. The negative slopes are an indication of
other factors coupling with the lunar tides and more work should be done to determine
the lunar tide's dependence on such things as solar flux and conductivity.

Figures 3-26 and 3-27 show the bimonthly average lunar monthly amplitudes and
phases for 9-15 LT and 20-06 LT, respectively. In these data, the standard deviations were
less than 1 m/s and 0.5 day. The daytime amplitude is largest in December solstice and
smallest in early June solstice. The nighttime amplitude is strongest in late December

solstice and weakest in late June solstice. It is interesting to note the similarity between
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Figure 3-26. Bimonthly variation of the amplitudes and phases of daytime (9-15 LT)
maximum likelihood luni-solar monthly vertical perturbation drifts as derived from ISR

data.
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maximum likelihood luni-solar monthly vertical perturbation drifts as derived from ISR

data.
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the nighttime amplitudes derived here and the daytime semimonthly amplitudes derived
earlier. Figure 3-28 shows the three-point smoothed average of the bimonthly lunar
monthly and semimonthly amplitudes as a function of local time as derived from the ISR
data. The monthly amplitude is larger during the night than at day, and only has moderate
increases near dusk and dawn. The monthly amplitude is similar to the size of the
semimonthly at night and about half of the size during the day.

Figure 3-29 shows good agreement between the bimonthly, monthly amplitudes as

derived from ISR and JULIA and reasonable agreement between the phases except for
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Figure 3-28. Local time variation of the average amplitudes of the luni-solar
semimonthly and monthly perturbation drifts as derived from ISR data. These were
found by computing the local time variation for each bimonthly period and then
averaging the twelve bimonthly periods together.
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daytime (9-15 LT) maximum likelihood luni-solar monthly vertical perturbation drifts as
derived from JULIA and ISR data.
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during December solstice. We believe the JULIA data to be more representative of the

actual value.

3.4 Lunar Tidal Effects During Sudden Stratospheric Warmings

The low-latitude ionospheric response to sudden stratospheric warmings (SSWs) has
been an area of extreme interest in recent years [e.g., Vineeth et al., 2009; Chau et al.,
2009, 2010; Sridharan et al., 2009; Goncharenko et al., 2010a, b; Fejer et al., 2010,
2011; Yue et al., 2010; Rodrigues et al., 2011; Liu et al., 2011; Park et al., 2012;
Yamazaki et al., 2012a, b]. These events are characterized by large-scale metereological
changes in the winter polar atmosphere, driven by the rapid growth of upward
propagating quasi-stationary planetary (Rossby) waves, rapid growth of waves from the
polar troposphere, and their interaction with the mean circulation, that last for several
days or even a few weeks [e.g., Matsuno, 1971; Andrews et al., 1987; Liu and Roble,
2002; Holton, 2004].

The initial studies on arctic SSW effects on the equatorial upper atmosphere found
large, multiday mesospheric wind changes and afternoon reversals of the equatorial
electrojet [e.g., Stening et al., 1996; Vineeth et al., 2009; Sridharan et al., 2009]. Chau et
al. [2009] showed large daytime semidiurnal perturbations lasting for several days in the
F-region vertical drift velocities over Jicamarca during the 2008 minor warming event.
Similar velocity perturbations observed during following SSWs were associated with
changes in low-latitude total electron content and peak electron densities [e.g.,
Goncharenko et al., 2010b; Chau et al., 2010; Yue et al., 2010]. Simulations using the

TIME-GCM suggested observed velocity perturbations were due to large changes on the
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migrating and nonmigrating tides as a result of their nonlinear interaction with quasi-
stationary planetary waves [Liu et al., 2010]. Fejer et al. [2010, 2011] pointed out these
large semidiurnal electrodynamic perturbations shift to later local times with lunar age
and suggested they result from strongly enhanced lunar semidiurnal tidal wave effects.
Numerical simulations using the Whole Atmosphere Model (WAM) suggested initially
the equatorial electrodynamic perturbations during the large 2009 SSW event were due to
a large increase in the amplitude of the eight-hour terdiurnal low-atmospheric tide at the
expense of the more typical semidiurnal tides [Fuller-Rowell et al., 2011].

Figure 3-30 shows the maximum likelihood lunar semimonthly drifts derived from
the ISR data for November-February using the EM algorithm for periods with (bottom
panel) and without (top panel) sudden stratospheric warmings. Figure 3-30 shows the
semimonthly lunar tidal drifts associated with periods of SSW are much larger, but follow
the same phase progression as the lunar tidal drifts from nonstratospheric warming
periods. Figure 3-31 presents bihourly averaged Jicamarca daytime perturbation drifts,
the climatological lunar semimonthly, the stratospheric temperatures at 10 hPa (about 32
km) over 90°N, and zonally averaged zonal winds over 60°N winds during the 2010 SSW
event. In this case, the residual drifts data were obtained from incoherent scatter radar
measurements up to the morning hours of February 4, and later from 150 km JULIA data;
the stratospheric data were obtained from the National Center for Environmental
Prediction (NCEP). In this period geomagnetic activity was low and the F10.7 index was
about 80. Figure 3-31 shows large quasi-two-day modulations on the vertical drifts, and

enhanced multiday perturbations following closely the lunar semimonthly drifts after the
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warming onset. The onset of these large semimonthly perturbations occurs near new and
full moon during northern winter warming periods. Early morning data in Figure 3-31
suggests the occurrence of an additional process, which downshifted the early morning
perturbation drifts. Fejer et al. [2011] also reported largely enhanced lunar semimonthly
vertical drift perturbations during other arctic winter low and high solar flux SSW events.
This study suggested the amplitudes of the perturbation drifts are largest during early
morning periods, as is the case for the lunar semimonthly drifts, and during low solar flux
conditions.

Several more recent studies have presented ground-based and satellite
measurements consistent with the suggestion enhanced lunar semidiurnal tidal effects
play fundamentally important roles on low-latitude electrodynamic perturbations during
SSW events [Liu et al., 2011; Park et al., 2012; Sumod et al., 2012; Yamazaki et al.,
2012a, b].

Theoretical simulations showed the migrating lunar semidiurnal lunar tide is strongly
enhanced during warmings [e.g. Stening et al., 1997]. Pedatella et al. [2012b] presented
extensive Whole Atmosphere Community Climate Model (WACCM) simulations on the
average mesosphere and lower thermosphere solar and lunar tidal response based on 23
moderate-to-strong SSWs. This study showed the changes in the equatorial vertical
plasma drifts during solar maximum and minimum conditions SSWs are similar to
observations only when the lunar tide is included in the simulations. The simulations also
showed changes in the vertical drifts for solar minimum that were almost double those for

solar maximum, which is consistent with the observations presented by Fejer et al.
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Figure 3-31. Jicamarca bimonthly averaged vertical plasma drift perturbations and high-
latitude temperatures and winds during the 2010 SSW event. The smooth curves denote
the climatological luni-solar semimonthly drifts. The closed and open circles below the
top panel indicate the days of new and full moon, respectively. The vertical line indicates
the SSW onset [after Fejer et al., 2011].
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[2011]. Yamazaki et al. [2012b], on the other hand, did not find significant solar flux
variation in the lunar tidal low-latitude magnetic field ionospheric response to SSWs.
Global studies of the low-latitude ionosphere during SSWs using ground-based and
CHAMP satellite magnetic field measurements of the equatorial electrojet during arctic
winter SSW events suggested the low-latitude ionospheric response varies with longitude
[Fejer et al., 2010; Anderson and Araujo-Pradere, 2010]. Simulation studies indicate
these SSW-induced changes in the vertical velocity occur at all longitudes with the largest
perturbations in the 12-15 local time sector [Fang et al., 2012; Pedatella et al., 2012b].
SSW events are known to be much more common in the Northern than in the Southern
Hemisphere due to the significantly stronger topographically forced planetary wave
activity in the Northern Hemisphere [Holton, 2004]. The first recorded major Southern
Hemisphere warming event occurred during September-October 2002. High-latitude
middle atmosphere-mesosphere temperature perturbations during this warming were the
subject of numerous experimental and model studies [Siskind et al., 2005; Coy et al.,
2005; Liu and Roble, 2005]. Olson [2012] and Olson et al. [2013] presented the initial
study on equatorial electrodynamic effects during this SSW event using magnetic field
measurements from ground-based stations in Peru and from the CHAMP satellite. This
study suggests multiday electrodynamic perturbations resembling those typically
observed during Northern Hemisphere warming events occur in response to Southern
Hemisphere equinoctial, but not to June solstice, events. These results further suggest the
relationship between SSW events and enhanced lunar semidiurnal tidal effects as lunar

semidiurnal tide effects are significantly larger during equinox than during June solstice.
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3.5. Equatorial Spread F Short-Term Variability
The solar cycle, season, longitude, and geomagnetic activity-dependent climatology of
equatorial spread F has been fairly well understood for over two decades, but only
modest progress has been made on the understanding and forecasting of its variability,
especially under geomagnetically quiet conditions. Aveiro and Hysell [2010] used about
1500 nights of JULIA data to determine the climatology of spread F, its persistence (i.e.,
one-day lag correlation), and correlation with the phase of the moon. This analysis
indicated during low geomagnetic activity and moderate solar flux equinoctial periods
when the mean occurrence rate is about 50%, the occurrence of premidnight topside
spread F over Jicamarca follows the occurrence of the previous day 65% of the time. The
correlations of day-to-day occurrences were negligible during the solstices and very small
in the postmidnight sector for all seasons. Aveiro and Hysell [2010] also showed a high
correlation between lunar phase and premidnight spread F occurrence during December
solstice high solar flux quiet (Kp < 4) conditions, with highest probability of occurrence
close to full moon. This correlation was negligible at moderate and low solar flux values
and other seasons. We have derived a similar relationship between the occurrence of
strong spread F and lunar age using November-February incoherent scatter and JULIA
data from 1968 to 2010. It is well known the evening height of the equatorial F layer
(controlled by the vertical plasma drift velocity) plays a fundamental role in generation
and evolution of spread F [e.g., Fejer et al., 1999]. Figure 3-32 compares the average
vertical drifts during November-February centered over Jicamarca around the quarter

moons, derived from the ROCSAT-1 data and the ISR data. Figure 3-32 clearly shows
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lunar monthly perturbation effects that are particularly large near sunset, which are

consistent with a higher occurrence of strong and topside spread F following a full moon.

The ROCSAT-1 daytime data shown in Figure 3-32 is in good agreement with the JULIA

data shown above. In spite of the limitations mentioned earlier and the discrepancy in the

daytime data, the Jicamarca incoherent scatter radar measurements suggest a similar

relationship between the early night average vertical drifts as the ROCSAT-1 data.
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Figure 3-32. Average vertical plasma drifts (positive upward) derived from ROCSAT-1
(top panel) and ISR (bottom panel) measurements for periods starting close to the new
and full moons, 3-17 and 18-2 days after the new moon, respectively.
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CHAPTER 4

CONCLUSIONS

We have discussed some recent results on the quiet-time variability of equatorial
electrodynamic effects measured over Jicamarca. Our data confirm the importance of
lunar semimonthly and monthly tidal effects on the equatorial vertical plasma drifts,
which have been largely ignored in past studies. Lunar semimonthly effects are most
important during December solstice when they significantly modulate the vertical plasma
drifts and undergo large enhancements in response to SSW events. We have shown lunar
monthly tidal effects can be easily detected, not only during the day, as suggested in
earlier studies, but also in the early night period during December solstice when they
modulate the occurrence of topside and strong equatorial spread F.

This chapter summarizes our main results and also presents suggestions for future

work.

4.1. Summary of Results

Vertical ion drift velocity data from Jicamarca have been analyzed for a lunar
semimonthly tide using a maximum likelihood fitting method. Daytime (9-15LT)
amplitudes range from 4 m/s during November-April to 2 m/s during June-September.
Nighttime amplitudes are about 4 m/s, being slightly smaller during both equinoxes. The
semimonthly amplitude decreases from morning to afternoon, has a large increase around
dusk, and is fairly constant throughout the night. Phase progression as a function of local

time was studied in detail for the first time. We confirmed the phase shift between day
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and night (about SLT and 19LT) and pointed out the s-shaped curve of the daytime lunar
semimonthly perturbation drifts. Further, we found the phase progression to be seasonally
dependent, being steepest in June solstice. Some bimonthly periods that are commonly
combined for seasonal studies have been found to have significant differences in their
lunar tidal effects, such as March-April and September-October.

Vertical ion drift velocity data from Jicamarca have also been analyzed for a lunar
monthly tide using a maximum likelihood fitting method. Daytime (9-15LT) amplitudes
are about 1.5 m/s throughout the year. Nighttime monthly amplitudes range from 5 m/s
during June solstice to 3 m/s during autumn equinox. The diurnal amplitude decreases
from morning to afternoon and evening to morning with slight increases at dusk and
dawn. Phase progression as a function of local time has also been analyzed. Negative and
positive slopes have been found that are local time and bimonthly dependent. The slopes
are steepest during June solstice and often negative near dusk and dawn. There are large

phase shifts around dusk, dawn, and 14LT for several bimonthly periods.

4.2. Suggestions for Future Work

We have shown the luni-solar monthly lunar tide phase progression has
similarities to the phase progression of the luni-solar semimonthly lunar tide. Both of
these experience large phase shifts near dusk and dawn and deviate slightly from the
expected linear slope. We suggest further studies of the dependence of the phase of the
lunar tidal effects on solar flux, conductivity, and altitude to help quantify the origin of
these phase shifts. We further suggest modeling efforts of equatorial vertical plasma drifts

that include lunar tidal coupling with other atmospheric tides to explain the local time
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dependence of the phase progression.

We have also shown the amplitudes of lunar monthly vertical drift modulation
effects are similar in size to the semimonthly effects at night, and can significantly
contribute to the development of ESF. The understanding of these important effects
warrants detailed theoretical and modeling studies of the complex processes involved. We
suggest modeling studies of the possible sources of a luni-solar lunar monthly tide.

We focused solely on lunar tidal effects on the vertical drifts in the Peruvian sector
of the ionosphere. Preliminary studies using other databases have shown lunar tides to
have longitude- and latitude-dependent effects and to be present in zonal drifts. We
suggest similar studies to discover the lunar tidal effects on zonal drifts and the vertical
and zonal lunar tidal perturbation drifts latitude and longitude dependence.

We have shown the lunar tide can be a significant portion of the quiet-time
variability of the vertical drifts. We suggest an updated empirical model to take this
variability into account since this would lead to highly improved low-latitude ionospheric

forecast models.
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