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ABSTRACT 

Unified Model of Charge Transport in Insulating Polymeric Materials 

by 

Alec Sim, Doctor of Philosophy 

Utah State University, 2013 

Major Professor: Dr. JR Dennison 
Department: Physics 

Presented here is a detailed study of electron transport in highly disordered insulating materials 

(HDIM). Since HDIMs do not lend themselves to a lattice construct, the question arises: How can we 

describe their electron transport behavior in a consistent theoretical framework?  In this work, a large group 

of experiments, theories, and physical models are coalesced into a single formalism to better address this 

difficult question.  We find that a simple set of macroscopic transport equations—cast in a new 

formalism—provides an excellent framework in which to consider a wide array of experimentally observed 

behaviors.  It is shown that carrier transport in HDIMs is governed by the transport equations that relate the 

density of localized states (DOS) within the band gap and the occupation of these states through thermal 

and quantum interactions.  The discussion is facilitated by considering a small set of simple DOS models.  

This microscopic picture gives rise to a clear understanding of the macroscopic carrier transport in HDIMs.  

We conclude with a discussion of the application of this theoretical formalism to four specific types of 

experimental measurements employed by the Utah State University space environments effects Materials 

Physics Group. 

(292 pages) 
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PUBLIC ABSTRACT 

Unified Model of Charge Transport in Insulating Polymeric Materials 

Alec Sim, Doctor of Philosophy 

Utah State University, 2013 

Charge transport, charging, and subsequent electrostatic discharge due to interactions with the 

space environment are primary concerns of spacecraft designers. Developing a physical understanding of 

the interactions of charge with the multitude of materials that spacecraft are composed of is a critical step in 

understanding and mitigating both short-term and long-term spacecraft degradation. In particular, the study 

of charge transport in highly insulating materials is critical as they store charge longer, with higher 

capacity, and with greater destructive capability than other materials. 

The Utah State University Materials Physics Group, with the funding of the NASA James Webb 

Space Telescope project and Rocky Mountain Space Consortium, have developed a complete and 

consistent theoretical model that predicts short-term and long-term storage capabilities based on physical 

material parameters. This model is applicable across a wide range of experimental systems designed to test 

specific behaviors that characterize charging phenomena. 

Modeling and understanding the complex relationships between the spacecraft and its 

surroundings are fundamentally based on detailed knowledge of how individual materials store and 

transport charge. The ability to better understand these effects will help make exploring the edges of the 

universe more stable, reliable, and economic.  
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𝑛�𝑒(𝑠)  = Laplace transform of the change in the density of electrons  [𝑁𝐿−3𝑇−1] 

𝑁𝑖𝑛𝑗 = total density of injected carriers [𝑁𝐿−3] 

𝑛ℎ(𝑡) = density of immobile holes per unit volume [𝑁𝐿−3] 

𝑛𝑅𝐼𝐶(𝜀, 𝑡) = density of thermally or RIC generated carriers per unit energy per unit volume [𝑁𝐸−1𝐿−3] 

𝑛𝑡 = density of trapped carriers per unit volume, not the total [𝑁𝐿−3] 

𝑛𝑡(𝜀, 𝑡) = density of trapped carriers (occupied trap states) per unit energy per unit volume [𝑁𝐸−1𝐿−3] 

𝑁𝑡 = total density of (available) localized states per unit volume; (not a trapped carrier), 𝑁𝑡 = 

   ∫𝑁(𝜀)𝑑𝜀  [𝑁𝐿−3] 

ntot(z,t) = total density of carriers per unit volume as a function of spatial position and time [𝑁𝐿−3] 

𝑁𝑣 = total density of valence states per unit volume [𝑁𝐿−3]p = a constant, usually a power 

 [unitless] 

P = polarization density [𝑄𝐿−4𝐸𝑀−1𝑇2] 

𝑃𝑖𝑜𝑛 = probability for ionic transition from one vacancy to another [unitless]  

qi = charge per carrier, where i is the type of carrier: e = electron, h = hole, ex = exciton, etc. [𝑄] 

Qinj = injected charge per unit area [𝑄𝐿−2]  

Q𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑      = accumulated charge [Q] 

r = radius to some point P in the sample or in space [𝐿] 

R = range of a carrier; this can apply to the range of an incident particle penetrating into a material  

  or the range of an electron as it hops from one localized state to the next, typically a mean  

  value  [𝐿] 

𝑅𝑐 = electron capture radius [𝐿] 

𝑅𝑖𝑗 = location of the jth atom with respect to the ith atom; also the range between localized states [𝐿] 

s  = Laplace integration variable [T-1] 
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𝑆(𝑟, 𝑡) = volume charge rate density creation term; has dimensions of [ 𝐿−3𝑇−1] 

sc = capture cross section of conduction electrons by fixed holes [𝐿2] 

t = time [𝑇] 

T = temperature [𝐾] 

TA = TAH reduced-temperature scaling factor [𝐾] 

�́�𝑏𝑒𝑛𝑑  = difficulty with which electric field-dependent changes can be made in the energetic structure  

  of the DOS; modification of the effective temperature [𝐾] 

Tc = critical transition temperature between hopping and TAH transport [𝐾] 

𝑇𝑒𝑓𝑓  = effective temperature; it may depend on many quantities, e.g., field, time, sample  

  temperature [𝐾] 

TF = effective temperature with field dependence [𝐾] 

Tlow = temperature at which the conductivity losses its temperature dependence hopping becomes 

  important [𝐾] 

ttransit = time for drifting carriers to travel from one electrode to another [𝑇] 

𝑡𝜏 = transit time, time for carriers to cross the sample thickness d [𝑇] 

TV = variable range hopping reduced temperature scaling factor [𝐾] 

T0 = characteristic dispersion of states in a given DOS; always coupled with kb to give energy [𝐾] 

𝑇0𝑖 = characteristic dispersion of states in a given DOS; i represent DOS type: e for exponential, l  

  for linear, G for Gaussian [𝐾] 

V = volume [𝐿−3] 

V = electric potential [𝐸𝑄−1] 

𝑣𝐴 = velocity of carriers at some site A [𝐿𝑇−1] 

𝑉𝑎𝑝𝑝 = externally applied voltage [𝐸𝑄−1] 

Vc = critical potential below which no transport occurs [𝐸𝑄−1]  

𝑣𝑒 = velocity of electron [𝐿𝑇−1] 

𝑣𝑖 = velocity of object I  [𝐿𝑇−1] 

〈𝑉𝑗𝑘〉 = average potential between two states j and k [𝐸𝑄−1] 
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𝑣𝑟𝑚𝑠 = root mean squared velocity [𝐿𝑇−1] 

𝑉𝑠(𝑧, 𝑡)  = surface potential  [𝐸𝑄−1]𝑣𝑇  = thermal velocity of carrier [𝐿𝑇−1] 

𝑉𝑇𝐹𝐿 = voltage at which trap filled limit occurs; an onset voltage [𝐸𝑄−1] 

𝑉Ω = transition voltage from Ohmic to SCLC behavior [𝐸𝑄−1] 

𝑉0  = initial potential  [𝐸𝑄−1] 

W = width of energetic distribution of potential wells; band width, in a density of states [𝐸] 

𝑊𝑗 = energy of the jth hop from some other localized state [𝐸] 

y(x) = a function of x [𝐿] 

z = spatial coordinate with unit vector �̂�, generally used to represent a position into a sample [𝐿] 

𝑍𝑐𝑒𝑛𝑡𝑒𝑟   = atomic number [𝑁]  

zp = penetration depth of carriers into a sample also called the range; see range, R [𝐿] 

𝑍𝑉 = complex function of 𝛽𝑉 used in VRH theory [unitless] 

α = dispersion parameter, T/T0 [unitless] 

𝛼𝐴𝐵 = interaction coefficient between two states A and B [𝐿3𝑇 𝑁−1] 

𝛼𝑖 = polarizability for a given process denoted by i: c for space charge, e for electronic, h for  

  hopping, i for atomic, o orientation, tot for total [𝑄2𝑀−1𝑇2]  

𝛼𝑒𝑟  = interaction coefficient between CB and holes [𝐿3𝑇 𝑁−1]  

𝛼𝑒𝑡 = interaction coefficient between CB and trapped states [𝐿3𝑇 𝑁−1]  

𝛼𝑡𝑒 = interaction coefficient between trapped states and CB [𝐿3𝑇 𝑁−1]  

𝛼𝑡𝑟 = interaction coefficient between trapped states and holes [𝐿3𝑇 𝑁−1] 

𝛼𝑡𝑡 = interaction coefficient between trapped states and trap states at the transport energy [𝐿3𝑇 𝑁−1]  

βA = ratio of field energy to thermal energy for thermally activated hopping conductivity [unitless] 

𝛽𝑃𝐹        = Poole-Frenkle factor [unitless] 

βV = ratio of field energy to thermal energy for variable range hopping conductivity [unitless] 

Γ   = gamma function 

∆ = (1+α)-1 parameter used in TOF and RIC to describe power law behavior [unitless] 

𝛿 = some perturbing energy, a small shift in energy [𝐸] 



xix 
𝛿𝜀𝑃𝐹 = change in energy due to Poole-Frenkle effect [𝐸] 

∆́𝛿𝜀𝑃𝐹 = Poole-Frenkle energy change [𝐸] 

𝛿𝑦𝑖𝑒𝑙𝑑       = secondary electron yield coefficient [𝑁] 

∆𝜀𝑡𝑟𝑎𝑝 = high field correction to energy depth of a set of trap states [𝐸] 

∆G = Gibb’s free energy [𝐸] 

ΔH = enthalpy [𝐸𝑁−1] 

∆ℋ = energy separation of states [𝐸] 

∆ℋℎ𝑜𝑝 = energy separation between the trapped charge distribution and the transport band for hopping 

 conductivity [𝐸] 

Δ𝑛𝑒 = number of photo-excited carriers in CB [𝑁]  

Δ𝑥𝑖𝑗 = hopping distance between two sites, i and j [𝐿] 

ϵr = relative permittivity of material [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 

ϵ0 = permittivity of free space [𝑄2𝐿−3𝑀−1𝑇2] 

𝜂 = real space decay constant of the localized wave function for a given state (also called  

  localization length) [𝐿] 

𝜂𝑦𝑖𝑒𝑙𝑑   = backscattered yield for secondary electron emission [unitless] 

𝜃(𝜀) = SCLC correction factor caused by the presence of a DOS [unitless] 

𝜃(𝑧 − 𝑧0) = Heaviside step function at the spatial point z0 [unitless] 

𝜆𝑚 = mean-free path of carriers in a material [𝐿] 

μi = carrier mobility, where i is the type of carrier: e = electron, etc. [𝐿2𝑇−1𝐸−1𝑄] 

𝜇𝑒 = trap-free mobility of an electron in the conduction band [𝐿2𝑇−1𝐸−1𝑄] 

𝜇𝑙𝑜𝑤 = estimate of diffusion limited mobility at or below the recombination limited  

  temperature [𝐿2𝑇−1𝐸−1𝑄] 

𝜇𝑡𝑟𝑎𝑝 = trap-reduced mobility [𝐿2𝑇−1𝐸−1𝑄] 

〈𝜇(𝑡)〉  = time-averaged mobility  [𝐿2𝑇−1𝐸−1𝑄] 

𝑣𝑒𝑡(𝜀) = probability of carrier trapping per unit time as a function of energy [𝑇−1] 

𝑣𝑒𝑟(𝜀) = probability of electron hole recombination per unit time as a function of energy [𝑇−1] 



xx 
𝑣𝑖𝑗  = hopping rate between sites i and j [𝑇−1] 

𝜈𝑖𝑜𝑛 = frequency of escape attempts for an ion in ionic conduction [𝑇−1] 

𝑣𝑡𝑒(𝜀) = probability that an electron will escape from trap per unit time as a function of energy; also  

  called the frequency factor in many applications [𝑇−1] 

νTAH = hopping frequency for thermally activated hopping conductivity [𝑇−1] 

𝑣𝑡ℎ(𝜀) = probability of a trapped election to recombine with a hole per unit time [𝑇−1] 

νVRH = hopping attack frequency for variable range hopping conductivity [𝑇−1] 

v0 = frequency of carrier escapes [𝑇−1] 

ρ = resistivity of a material [𝐸𝑇𝑄−2𝐿] 

𝜌𝑏 = bound charge density [𝑄𝐿−3] 

𝜌𝑓 = free charge density [𝑄𝐿−3] 

𝜌𝑚 = mass density [𝑀𝐿−3] 

𝜌𝑡𝑜𝑡 = total charge density [𝑄𝐿−3] 

𝜌𝑡𝑜𝑡(𝑧, 𝑡) = total charge density at position z and time t [𝑄𝐿−3] 

σ = conductivity [𝑄2𝐿−3𝑇−1𝐸−1] 

∑   = unitless spatial disorder parameter [unitless] 

𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙   = initial total electron yield before charge accumulation [unitless]  

𝜎𝑑 = drift conductivity [𝑄2𝐿−3𝑇−1𝐸−1] 

σdiff = diffusive conductivity [𝑄2𝐿−3𝑇−1𝐸−1] 

σtotal = total conductivity [𝑄2𝐿−3𝑇−1𝐸−1] 

σinital = initial uncharged yield [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 

σP = polarization conductivity [𝑄2𝐿−3𝑇−1𝐸−1] 

σTAH = thermally activated hopping (TAH) conductivity [𝑄2𝐿−3𝑇−1𝐸−1] 

σTAHo = thermally activated hopping reduced conductivity scaling factor [𝑄2𝐿−3𝑇−1𝐸−1] 

𝜎𝑇𝑜𝑡 = total conductivity; i.e., the sum of conductivities [𝑄2𝐿−3𝑇−1𝐸−1] 

σVRH = variable range hopping (VRH) conductivity [𝑄2𝐿−3𝑇−1𝐸−1] 

σVRHo = variable range hopping reduced conductivity scaling factor [𝑄2𝐿−3𝑇−1𝐸−1] 
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𝜎𝑉𝑅𝐻𝑖  = variable rage hopping conductivity for an i type DOS: e for exponential, G for Gaussian,  

  etc. [𝑄2𝐿−3𝑇−1𝐸−1] 

𝜎𝑉𝑅𝐻𝐶−𝑙𝑜𝑤  = low field variable range hopping conductivity for a constant DOS [𝑄2𝐿−3𝑇−1𝐸−1] 

𝜎𝑉𝑅𝐻
𝐶−𝐻𝑖𝑔ℎ = high field variable range hopping conductivity for a constant DOS [𝑄2𝐿−3𝑇−1𝐸−1] 

𝜏 = characteristic onset time for current decay to occur [𝑇] 

𝜏𝐶𝐵 = lifetime of a carrier in the conduction band without trapping [𝑇] 

𝜏𝑑 = relaxation time of SCLC carriers between electrodes [𝑇] 

𝜏𝑒𝑡  = electron lifetime in CB with trapping [𝑇] 

𝜏𝑖𝑠𝑒𝑔 = segregation time for a DOS of type i: e for exponential, G for Gaussian, etc. [𝑇] 

𝜏𝐶,𝐹
𝑠𝑒𝑔 = segregation time for a constant DOS with electric field dependence [𝑇] 

𝜏𝑇𝑖  = thermalization time, 𝜏𝑇, for a DOS of type i:  e for exponential, G for Gaussian, etc. [𝑇] 

𝜏𝑡𝑟𝑎𝑝 = lifetime of a carrier in a trapped state [𝑇] 

Υ = unitless function defined by a transcendental equation [unitless] 

effφ  = effective barrier height [𝐸] 

𝜑 = material work function or energy barrier at metal-insulator interface [𝐸] 

χ = dielectric susceptibility [unitless] 
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AC  = Alternating Current 
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CVC = Constant Voltage Conductivity 

DC  = Direct Current 

DE  = Demarcation Energy 

DFL = Dark Fermi Limit 

DOS = Density of States 

ESD = Electrostatic Discharge 
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HOMO = Highest Occupied Molecular Orbital 
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PF  = Poole-Frenkle 
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SCLC = Space Charge Limited Current 
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CHAPTER 1 

 INTRODUCTION 

This dissertation represents a comprehensive theoretical study of the basic physical principles of 

electron transport in Highly Disordered Insulating Materials (HDIM).  The study of electron transport in 

HDIM requires a fundamentally different approach from materials that have long-range order and use 

conventional band theory, one which focuses on electron transport via localized trap states and the resultant 

understanding of the spatial and energetic distributions of trapped states, their occupancy, and transitions. 

The primary focus of the physics addressed in this dissertation is the electronic structure of highly 

disordered insulating materials that lack any substantial long-range order, and their electrical response 

under charge injection. Ashcroft’s and Merman’s classic text on solid state physics mentions the concept of 

disordered material many times, but refers to amorphous materials only four times, and does not address 

the issues associated with electron transport in HDIM. Largely this is so because Bloch’s theorem and the 

concomitant theoretical simplification from periodic potentials in the Schrodinger equation are insufficient 

to describe disordered transport phenomena, except as a perturbation on the theory of ordered materials.  

There are many types of disordered materials, all of which fall into three categories defined by the 

material’s ability to conduct charge: conducting, semiconducting, and insulators.  Testing by Utah State 

University’s (USU) Material Physics Group (MPG) is driven by the problems associated with spacecraft 

charging on insulating material surfaces; thus, problems associated with charge transport in such materials 

is of key interest.  It is the goal of this dissertation to present a first order, single carrier, theoretical 

framework that brings the many experimental systems used by the USU MPG together in a single 

nomenclature with an emphasis on HDIMs. The HDIM is an extreme example of disorder, and as such, 

requires a different approach to charge transport theory that emphasizes charge carrier transport via 

localized states with spatial and energetic distributions of trap states, their occupation, and transitions 

between the localized states and transport states.  In order to present a complete discussion of the true 

nature of the problems faced, a discussion of the fundamental macroscopic quantities involved in charge 

conduction must be introduced, connected to the microscopic nature, and then applied to many different 

experimental outcomes. 
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The conductivity of a material is the key transport parameter in determining how deposited charge 

will redistribute throughout the system, how rapidly charge imbalances will dissipate, and what equilibrium 

potential will be established under given environmental conditions (Dennison et al., 2009d). Further, the 

conductivity connects the physical make up of a material with the number of available carriers, carrier 

type(s), and the mobility of charge within the material. It is the low charge mobility of insulators that 

causes charge to accumulate where deposited, preventing uniform redistribution of charge and creating 

differential local potentials.  Careful experimental investigations can develop an understanding of the 

contribution of carrier types, carrier density, and their mobility.  As will be shown, this reduced mobility is 

ultimately due to the disordered nature of the material. 

The primary goal of this dissertation is to unify both the experimental and theoretical basis of the 

charge transport models and the related phenomena in HDIMs used in spacecraft design. The accumulation 

and decay of charge in HDIMs is governed by the rate at which charge can escape once deposited in the 

material.  This dissertation then, is about the physics of carriers trapped in HDIMs and their subsequent 

release.   

1.1. Theoretical Framework of Dissertation 

This dissertation represents a completed comprehensive study of the physical underpinnings of 

many response phenomena in the context of different experimental systems for changes in temperature, 

applied field, energy dose and dose rate, electrical breakdown threshold, and time. While this work leaves a 

great deal to be explained, its primary goal is accomplished.  This goal is the unification of many 

theoretical concepts into a single formalism that allows for a consistent progression for modeling future 

experimental studies in HDIMs, while providing a physically based set of analytical and numerical models 

for current USU MPG experiments.   

The development of common theory, common nomenclature, and application of this formalism to 

the specific nature of spacecraft charging is the primary goal of this dissertation.  Currently, the set of 

theoretical ideas needed to comprehensively describe the phenomena seen across an array of spacecraft 

charging experiments (see Fig. 1.1) must be drawn from a number of other related fields.  Recently, it has 

become clear that all of these behaviors may be described in a single theoretical formalism (Montanari and 
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Morshuis, 2005; Teyssedre and Laurent, 2005; Dennison et al., 2009a; Brunson, 2009; Novikov et al., 

2009; Griseri, 2009).  In fact, the majority of the theoretical machinery needed to describe the physics and 

resulting phenomena was developed at Bell Labs and other semiconductor research facilities for an array of 

solid state applications; xerography is a primary example.  As a result, the divergent nomenclature—and 

consequently the ideas surrounding much of the phenomena studied—is difficult to follow; perplexing 

terms with multiple and confusing meanings, such as time of flight, space charge, electrostatic discharge, 

and current decay are good examples.  Further, it has often been the case that necessary work has been done 

FIG 1.1. Materials Physics Group experimental organization diagram and conduction mechanisms.  Each 
box represents a specific conduction mechanism associated with a specific set of experimentally measured 
parameters. (A) Model unification (Sim, 2010). (B) RIC = Radiation Induced Conductivity (Guthrie, 
2013). (C) DCC = Dark Current Conductivity (Brunson, 2009; Dekany and Dennison, 2009). (D) ESD = 
Electrostatic Breakdown (Sim, 2010). (E) SEE = Secondary Electron Emission (Hoffmann, 2010). (F) SVP 
= Small Voltage Probe (Hodges, 2009). (G) POL= Impulse polarization studies (Brunson, 2009). (H) FD = 
Frequency domain polarization studies. 
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without publication (or publication in English), thus obscuring necessary information to understand the 

models. While many excellent texts have been written on the subject of dielectric studies (e.g., Sessler, 

1987; Fothergill, 1998; Kao, 2004; Baranovskii and Rubel, 2006), they are often incomplete and are not 

geared specifically toward spacecraft applications.  

This dissertation is a first step in bringing together a vast set of ideas in a common language to 

provide an interpretation for application to a specific set of real-world results and specific experimental 

tests.  This goal is accomplished by assembling knowledge from a large spectrum of disciplines covering 

nearly every conceivable motivation (regarding charge interaction in solid materials) in a single formalism, 

which allows for the study of electron transport in materials across many experimental systems.  The 

intricate relationships between spacecraft insulators and their surroundings are fundamentally based on a 

detailed knowledge of how individual materials store and transport charge. The key to mitigating these 

effects is an understanding of the time required to dissipate harmful charge imbalances on and within the 

material used in spacecraft construction.  Figure 1.2 gives an estimation of the safety zones associated with 

charge decay times and their corresponding resistivities (Brunson, 2009; Hodges, 2013).  In a simple 

parallel capacitor geometry, the charge decay time is linearly proportional to the resistivity of the material, 

which is a function of electric field, F, incident dose rate, �̇�, time, t, and material temperature, T: 𝜏 ∝

𝜌�𝐹, �̇�, 𝑡,𝑇�. In discussions of material properties in this dissertation, we refer to the conductivity, σ, as the 

fundamental measure of charge transport, where the resistivity (often used in the spacecraft chagrining 

literature) is related to the conductivity by  𝜎�𝐹, �̇�, 𝑡,𝑇� = 𝜌�𝐹, �̇�, 𝑡,𝑇�−1.  The conductivity results from 

the mobility of charge carriers, which is a measure of the ability of charge to move within the material.  

From a spacecraft operations perspective, the times of interest range from seconds to decades, with 

corresponding conductivities from ~ 10−12 (𝛺 𝑐𝑚)−1 to 10−22 (𝛺 𝑐𝑚)−1 for HDIM. 

1.2. Scope of Dissertation 

Work in spacecraft charging covers a broad range of interests including the space environment, 

spacecraft potential studies, solar cell sustainability, control systems damage, and human exposure and 

viability studies (Garrett, 1981; Novikov, 1999; Molinie, 2005; Novikov et al., 2006, 2009; Griseri, 2009). 

Thus, it is critical to understand where contributions can be made and what their impact is.  Figure 1.3 
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gives a graphical overview of the community and the USU MPGs current areas of interest. The three 

classes, in which all spacecraft charging research may be categorized, are given at the top and the collective 

results of the process are shown at the bottom. The reader should keep in mind that each of these boxes 

represents a wide field of interest and that here, only the contribution of the USU MPG has been expanded 

(in blue).  The contributions made by this dissertation are highlighted in yellow under the heading 

Mathematical Models and Programs.  The outcome of the spacecraft interactions figure is identified in the 

bottom two boxes of Fig. 1.3, labeled: (i) methods for predicting the spacecraft reliability and performance 

time, and (ii) recommendations for the spacecraft protection from radiation effects.  While the direct testing 

and characterization of specific materials provides the ultimate measuring stick, such testing is time 

consuming and costly.  The ability to predict these outcomes from a set of reliable models is critical to the 

spacecraft community.  A great deal of research has been done on many different types of materials in other 

disciplines, for example, power line insulation degradation.  This database provides a repository of 

knowledge upon which to test models and subsidize the current spacecraft materials characterization.  This 

dissertation brings together these many sources and models in a single formalism. 

FIG 1.2. Relationship between charge decay time and sample resistivity,  𝜌 =  𝜖0𝜖𝑟𝜏.  Blue lines represent 
the extremes in dielectric constants of (εr=1 and εr=10) typical for spacecraft insulators (Brunson, 2009). 
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Spacecraft in orbit are exposed to intense plasma environments and high energy particles, which 

provide the mechanism by which charge is injected, scattered, and removed leading to large variations in 

spacecraft potential. Charging to high potentials can lead to satellite material modifications, degraded 

instrumentation performance, or induced systems failures (Leach and Alexander, 1995), as well as creating 

potential safety hazards (Hastings and Garrett, 1996; Mandell et al., 2001; Griseri et al., 2005; Novikov  et 

al., 2009).  The ubiquity of highly disordered insulating materials (HDIMs) in the design of spacecraft and 

many other technology components places special emphasis on understanding and modeling the electrical 

properties of the insulators. Detailed study of experimental data and physical models are critical for 

FIG 1.3. Organization of spacecraft interaction effects. The areas where the USU MPG has made major 
contributions are highlighted regions in red.  The areas where this dissertation has made major 
contributions are yellow highlighted text. Diagram adapted from Zatekin et al. (2008).   
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anticipating and minimizing potentially damaging charging phenomena (Hastings and Garrett, 1996; 

Dennison et al., 2006b; Garrett et al., 2007; Ferguson, 2012).  Developing a better understanding of the 

physics of insulating materials, increasing the versatility and reliability of charge transport models, and 

expanding the database of information for the electronic properties of insulating materials can assist 

spacecraft designers in accommodation and mitigating these harmful effects (Hastings and Garrett, 1996; 

Dennison et al., 2006b).  

There are many ways to study the electrical response of HDIMs: particle beam injection; contacts 

(both metallic and semiconducting); or internal charge excitation due to radiation and polarization, either 

by a changing contact potential or field. Each of the experimental systems developed at USU has been 

designed to test specific material behavior.   Figure 1.1 shows the relationship of these experimental 

systems to the theoretical developments presented in this dissertation and their dependence on conductivity.  

In each of these applications, the USU MPG has implemented theoretical models to describe the observed 

behavior. These models essentially address six test configurations as depicted in Figs. 1.4(a) and 1.4(b).  

The illustrations in Fig. 1.4(a) are for electron beam irradiated configurations.  The three illustrations show 

an increasing beam energy that results in either (i) a dusting of electrons on the surface, (ii) deposition of 

charge internal to the material, or (iii) complete penetration through the material.  These three 

configurations are implemented in two MPG experimental systems: (i) the secondary electron emission 

(SEE) chamber (Hoffmann, 2010) with its associated surface voltage probe (SVP) (Hodges, 2013), and (ii) 

the radiation induced conductivity (RIC) chamber (Dennison et al., 2009c). Each of these experimental 

methods provides a slightly different perspective on the trap filling  dynamics, induced conductivity, 

injection method,  and ratio of injected to escaping electrons across a huge energy scale (a few eV to ~ 107  

eV).    

The illustrations in Fig. 1.4(b) show experimental systems that use a parallel metallic contact plate 

configuration. In Fig. 1.4 (b) (i), a simple step function (very-long duration pulse) is applied and the 

response studied, as is done in the constant voltage conductivity (CVC) chamber (Swaminathan, 2004).  

This approach gives information on the polarization, trapping, and space charge injection using sensitive 

electrometers and well-characterized measurement conditions.  Figure 1.4(b) (ii), with a series of 

incremental step increases in applied voltage, is used for the study of electrostatic breakdown (ESD). This 
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is a similar set up as the CVC chamber, but with protective electronics that permit observation of large 

breakdown events but not small charging currents.  In the final experiment method shown in Fig. 1.4(b) 

(iii), the response of the material to a periodic narrow or wide step is studied.   These measurements give 

information about the polarization, charging, and thermodynamic properties of the material near critical 

transitions.  While this last measurement method has not yet been implemented at USU, it is shown in 

Chapter 4 that it is vital to understanding how the early charging in material occurs, in addition to 

FIG 1.4. Simple characterization of experimental configurations. These diagrams provide a comprehensive 
classification of experimental configurations that describe all the ways in which charge is injected into or 
excited within a material by external influences. (a) Electron beam experiments: (i) Surface charge 
deposition for time of fight (TOF) experiments, (ii) bulk charge deposition and electron emission, and (iii) 
penetrating radiation for radiation induced conductivity (RIC). (b) Set of configurations corresponding to 
contact injection mechanisms: (i) Stepped or pulsed (constant) applied voltage measured in the Constant 
Voltage Conductivity (CVC) chamber, also called the Dark Current Conductivity (DCC) chamber, (ii) 
incrementally increased applied voltage measured in the Electrostatic Discharge (ESD) chamber, and  (iii) 
periodic applied voltage measured with an inductance/ resistance/capacitance (LRC) meter to determine the 
frequency dependent polarization characteristics. 
 

(a) 

(b) 

(i) (ii) (iii) 
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predicting information about the breakdown character of the material. All of the test methods depicted in 

Fig. 1.4 [with the exception of Fig. 1.4(b) (iii)] can be measured at USU over wide temperature ranges [~30 

K to ~450 K for Figs. 1.4(a) and ~100 K to ~350 K for Figs. 1.4(b)].   

Chapters 2 and 3 provide a complete theoretical description of electron transport covering a wide 

range of experimental application. These first three chapters set the stage for the development of new 

analytical and numerical models, which are applied in the context of two experimental systems used by the 

USU MPG to study spacecraft charging, a Constant Voltage Conductivity (CVC) chamber system, and a 

Surface Voltage Probe (SVP) system. The value of this approach comes from the fact that each of these 

experiments highlights different electron transport phenomena and charge injection mechanisms, but are 

shown to be the product of a single theoretical formalism.  The specific data analyzed for the two methods 

discussed in Chapters 4 and 5 were acquired for a particular type of highly disordered materials, polymers, 

whose use is quite prevalent in spacecraft applications.  Polymeric insulators can, and usually do, have 

particularly high disorder and require complex models to understand the resulting electrical behavior.  They 

offer an excellent test bed for the theories put forth in this dissertation. 

The USU Material Physics Group (MPG) has been developed to specifically address the 

spacecraft community’s concerns for the charging of materials (Davies and Dennison, 1997; Kite et al., 

2000; Dennison et al., 2004; Sim et al., 2005; Abbott and Dennison, 2005). The USU MPG has built an 

extensive knowledge base of the behaviors observed in many spacecraft materials (Dennison et al., 2009a).  

These databases have been implemented in engineering tools used in spacecraft design (Frederickson et al., 

1989; Dennison et al., 2006a; Dennison et al., 2009a) The accumulation of nearly two decades of work has 

provided the USU MPG with a unique platform from which to study the spacecraft charging problem.   

The current USU MPG spacecraft charging engineering models for electron emission and 

transport are largely static in their predictions.  Therefore, to make significant improvements in predicting 

time-dependent behaviors, new, more sophisticated time-dependent models largely developed for 

photoconductors based on the temperature, electric field, time, radiation dose and dose rate, and ESD event 

history must be applied in the context of the six fundamental systems depicted in Fig. 1.4.  Consider a 

spacecraft near the critical conduction threshold depicted in Fig. 1.3, which undergoes a high-energy event, 

i.e., a sudden high flux of energetic particles. Depending on the charge deposition rate, induced dissipation 
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rate, and local electric field (or event induced field), the event may trigger an ESD and even cause a system 

failure.  The resulting collection of charge and differential fields depends on the individual material’s 

ability to respond in time to the environment.  Not only is the time-dependent single event response 

important, but so is the history of the material (which is also dynamic).  The need for a dynamic description 

of spacecraft charging for all temperatures, fields, doses, dose rates, polarizabilities, and time scales for 

charging or decay is clear.  

1.3. Outline of Dissertation Structure 

The organization of this work begins with an introduction to the spacecraft environment and 

current state of the USU MPG.  This is followed by a description of the macroscopic physics of transport in 

HDIM (Chapter 2), and then an introduction to microscopic transport processes in HDIM (Chapter 3).   

The task of unifying these models is addressed in this dissertation as follows. First, a 

comprehensive review of the literature has been completed and represents the basis for this work.  Second, 

a common nomenclature (see the extensive and detailed Nomenclature section in the forward matter of this 

dissertation) and a unified description of the physical aspects—both from a macroscopic and a microscopic 

viewpoint—are developed and applied to each of the models.  Finally, new information about physical 

connections and understanding are brought to light.  The specific construction of this dissertation lends 

itself toward a decreasing level of theoretical and notational complexity, with a wide knowledge base to 

support and understand the assumptions and theories presented.   

Chapter 2 focuses on transport mechanisms, which involve bulk extended states and (at most) a 

collection of trap states at a single (or mean) trap energy, to develop a comprehensive set of macroscopic 

transport equations, which can be used with many experimental platforms and with numerous types of 

materials with a specific focus on HDIM.  We start with an introduction to simple Ohmic transport and the 

Maxwell equations to develop a basis upon which to understand simple Ohmic transport in ordered states 

but also the fundamental difference between it and charge transport in HDIM.  These ideas are extended to 

more complex types of charge transport, such as drift and diffusion. This sets the stage to introduce the 

fundamental differences between charge transport in ordered materials and disordered materials. Then with 

an understanding of these differences and a set of simple physically motivated processes—built on our 
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understanding of disorder and a model of trapping and detrapping processes—the transport equations are 

derived.  Chapter 2 closes with a discussion of dispersion highlighting the need for a detailed understanding 

of the charge dynamics in the disordered trapped states (i.e., we find that our simple one-dimensional mean 

energy models upon which the transport equations are built must be extended to more complex models of 

disorder). 

Chapter 3 develops the complete theoretical basis upon which our understanding of microscopic 

charge transport is built.  Chapter 3 contains the critical concepts to understand the nature of observed 

behaviors like dispersion.  Chapter 3 is broken into three parts. First, in Section 3.1 an introduction to 

microscopic transport is developed for processes that involve transitions to—or between—an distribution in 

energy of the trap states. This section is crucial to understating the microscopic (or localized state) nature of 

the physics and how such microscopic theories relate to the macroscopic phenomena seen by the 

experimenter.  As we see, it is not the single microscopic process that determines the material behavior, but 

rather the average microscopic processes (i.e., the average trapping and capture rate).  Second, in Section 

3.2 the models of average microscopic systems with connections to macroscopic behavior and applications 

to low-temperature and high field transport are covered.   In this section, the first of the new models for 

low-temperature transport is presented. In particular, it is shown that the average microscopic models are 

consistent with current USU MPG models for low-temperature transport in both the low field and high field 

approximations. Having developed a solid microscopic theoretical framework upon which to connect and 

understand the resulting macroscopic behavior from Chapter 2, we develop the macroscopic phenomena, 

i.e., we recast the transport equations in terms of microscopic phenomena to understand the experimentally 

observed behavior.  

In Chapters 4 and 5, the theoretical models based on Chapters 2 and 3 are extended and the 

resulting analytical expressions are applied to USU MPG data. Two of the major experimental systems in 

Fig. 1.1 are selected for study, the CVC and SVP. Thus, Chapters 4 and 5 bring together a large portion of 

the theoretical machinery to provide a deep understanding of the resulting behavior in each system, test our 

new formalism, and provide a set of new engineering tool, which can be used by spacecraft engineers in 

design.  The resulting applications—cast in this new theoretical framework—provide a clear indication that 

all of the phenomena observed in the systems identified in Fig. 1.1 can be understood in terms of the 
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theoretical formalism presented.   Further, we have found that by specifying how the charge is injected at 

the interface or into the bulk, strong ties can be made to additional phenomena, such as Schottky injection, 

Fowler-Nordheim injection, electron beam injection, and a number of other phenomena that have 

complicated information about the basic nature of HDIM.  

1.4. Concluding Remarks 

In conclusion, this dissertation is a largely theoretical treatment of the physics of charge 

accumulation, emission, transport, and depletion from both a microscopic and macroscopic perspective of 

materials science tailored to a specific set of applications and test methods related to spacecraft charging 

studies conducted at USU.  This work brings together experimental and theoretical work from over 100 

years of study in solid state physics, under a common nomenclature and a unified model of the physical 

mechanisms of conduction in HDIM and applies that knowledge to current USU MPG test systems.  This 

work provides a new benchmark for the theoretical study and prediction of spacecraft charging.  The 

expectations of this work include: 

• Collection and development of theoretical work in a common nomenclature. 

• Extension of current USU MPG mean field models to include a more complete description of material 

make up.  

• Extension of current USU MPG static equilibrium models to include time dependence through use of 

rate equation models.  Application of current theoretical models in charge transport to spacecraft 

applications. 

• Application of resulting extended models to current USU MPG experimental systems  

• Generation of new USU MPG engineering design tools. 

As such, this work represents one of the most complete collections of ideas of the theory of spacecraft 

charging from a materials physics perspective; and yet, it is just a drop in the proverbial (leaky) bucket.   

  



13 
CHAPTER 2 

2. OVERVIEW OF CHARGE TRANSPORT 

2.1. Introduction 

In the field of spacecraft charging, only modest attention from a modeling of perspective has been 

paid to the dynamics of charging in both the collection and dissipation of a space charge in a material.  

Many researchers (Frederickson et al., 1989;  Novikov and Rakov, 1995; Dennison et al., 2009a) have been 

aware of this deficiency, yet the community is still working with a charging code (Davis et al., 2007) that is 

largely static in its predictions. Further, over the last 30 years, since the core of the current NASCAP code 

was created, many advances in the understanding of charging dynamics have been made.  It is a goal of the 

USU MPG to provide the integration of new models, experiments, and theory for the development and 

design of spacecraft systems.  For nearly 20 years, the USU MPG has developed new experimental systems 

that serve as a benchmark for the spacecraft charging community (Dennison et al., 2006a).  Recently, it has 

become clear that a complete nonstatic description of charging is necessary to better avoid damage or even 

destruction of spacecraft (Dennison, 2010; Ferguson, 2012). The questions regarding how a material might 

behave in the space charging environment can be addressed by understanding a given material’s response 

to particle flux, external and internal fields, and temperature as a function of time. In particular, one needs 

to be concerned with three major areas: nondestructive charging and decay, repairable charging, and 

completely destructive irreparable charging (breakdown). All of these areas are dynamic in nature and have 

a strong time, temperature, dose, and electric field dependence.  Further, each of these areas is intimately 

tied to one another and they are related by similar behaviors, physical interpretations, and models. 

The USU MPG models currently include field, dose and temperature dependence, but lack the 

time-dependent components necessary to predict true breakdown time and/or recovery time.  Further, many 

of the USU MPG models are based on a single expression of the disorder in the material, henceforth 

referred to as the density of states (DOS), and in many cases do not reflect the true behavior of the material.  

The necessary theoretical work is presented here to provide time-dependent and low -temperature models, 

which are a function of more realistic expressions of the true material DOS. This outlines a wholly new 

way to understand the nature of HDIM. In all DOS types, the resulting theoretical models provide not only 
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a consistent way to understand behavior in any single experiment, but across all the USU MPG 

experimental systems and numerous other types of experimental systems (Sessler, 1987).  Each of these 

models ties directly to the USU MPG experimental results (Hoffmann et al., 2008; Dennison and Brunson, 

2008; Dennison et al., 2009a; Dennison et al., 2009c; Sim and Dennison, 2010; Wilson and Dennison, 

2010; Hodges, 2013).  In order to highlight the differences between this dissertation’s results and the 

previous work done by the USU MPG, a review of the USU MPG models pertaining to each application is 

given; Chapter 3 introduces applications to low-temperature transport, Chapter 4 discusses applications to 

parallel plate capacitor type configurations, and Chapter 5 presents applications to experimental systems in 

which charge has been embedded in the material by external sources (an electron beam, for example). 

First, a review of fundamental concepts in conduction and the physics of HDIM are provided. As 

with any scientific investigation, the undertaking begins with a review of the current literature, models, 

experiments, and data.  An extensive review was done prior to writing this document. As it turns out, the 

literature can be broken into two distinct bodies of information.  The first is the macroscopic (classical) 

picture using, in one form or another, the Maxwell equations and a continuity equation.  The second case 

describes the microscopic behavior of trapped and free carriers during transport through an HDIM.  I have, 

therefore, arranged this dissertation along the same lines: macroscopic in Chapter 2 and microscopic 

Chapter 3.  Chapters 2 and 3 develop the picture of charge transport that results from the literature review 

and resulting theoretical work. We begin with fundamental principles of physics as they pertain to transport 

theory in HDIM and build a new picture of electron transport in highly disordered insulating materials.   

In the next section we begin with a simple overview of charge transport by evoking the Lorentz 

force law. This leads naturally to a discussion of the Drude equation and the simplest of ideas in 

transporting charge in materials, Ohm’s law. This discussion is presented to provide the reader with a basic 

starting point from which the remaining concepts are built. In particular, once the classical Ohm’s law is in 

place, a discussion of the differences between metals and semiconductors or insulators is made. By adding 

the Maxwell equations in the context of semiconductors, the stage is set to discuss the effects of disorder.  

It is in the difference between semiconducting or insulating crystals and the introduction of disorder that we 

find the final link to understand why disordered transport is so completely different from its more classical 

counterpart.  
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2.2. Fundamental Concepts of Charge Transport 

2.2.1. Simple Conduction 

How can we model charge transport and conductivity in disordered insulators as a function of 

material interactions with incident radiation, 𝑓, electric field, F, temperature, T, position, z, and time, t?  In 

practice, the problem is very complex and requires a detailed understanding of the microscopic mechanism 

that characterizes the interactions of the injected charge with constituents of the material.  The most general 

approach begins with the Lorentz force law, 𝔽 = 𝑞𝑒𝐹 + 𝑣𝑒 × 𝐵.  Here qe is the carrier charge, 𝑣𝑒  is the 

velocity of the electron, and B is the magnetic field.  In nearly all spacecraft studies, the magnetic field B is 

negligible. (Missions are planed that will send spacecraft into intense magnetic fields; the JUNO mission is 

an example.)  For our purposes, we assume a zero magnetic field and the Lorentz law reduces to 𝔽 = 𝑞𝑒𝐹 ; 

from this, an expression for the mean velocity of the electron is obtained by integrating over the time 

between collisions, τ, in a simple metallic medium. The result is 𝑣𝑒 = 𝑞𝑒𝜏𝐹
𝑚𝑒

 .   

Using the Drude model, Ohm’s law is written 𝐽 = −𝑛𝑒𝑞𝑒  𝑣𝑒  and by substituting in the above 

expression for 𝑣𝑒, we have 𝐽 = −𝑛𝑒𝑞𝑒2
𝜏𝐹
𝑚𝑒

 ; J is the current density passing through a unit area and ne is the 

number of electrons per unit volume (or number density) required to produce that current.  Ohm’s law, in 

its most common form, is written as  𝐽 = 𝜎𝐹, where σ is the conductivity of the material.  A comparison of 

these two expressions suggests that the conductivity should be written as   𝜎 = 𝑛𝑒𝑞𝑒𝜇𝑒, where the variable 

 𝜇𝑒 ≡ 𝑣𝑒/𝐹 is the mobility.  The Drude formulation suggests that 𝜇𝑒 = 𝑞𝑒𝜏
𝑚𝑒

.  What is learned from this 

investigation is that the mobility and the number density of available electrons ne are the quantities that 

determine the observed electron transport behavior, i.e. the current. In this case, the mobility is proportional 

to the time between collisions and the number of electrons available to participate must be some function of 

the material or the way that the electrons are injected into the material.  

In metals, there are no problems finding enough electrons to account for changes in current as the 

applied field is changed.  However, as the temperature is increased, the number of collisions with phonons 

increases creating resistance to current flow.  As the Drude formulation suggests, if the mean collision time 

is decreased by increasing the temperature, the electrons see more interactions and hence, a counter force or 
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resistance is observed as a function of the number of scattering events.  This process is always true in a 

conduction band for a typical metal; thus, we expect the resistance to increase as a function of temperature.   

In contrast, consider a semiconductor or perfect insulator (whose very name gives away the next 

step in our discussion).  In a semiconductor, it is largely the excitation of carriers from the valence band 

(VB) across an energy gap to the conduction band (CB) that determines the conductivity.  This process of 

excitation and the basic physics are presented in the solid state physics text by Ashcroft and Merman 

(1976) and reviewed in Section 2.4 and 2.5 of this dissertation.  There is an energy required for charge 

carrier (electron) excitation across the gap, εgap= (εCB – εVB).  The primary difference between a 

semiconductor and an insulator is the size of εgap; at room temperature there is a well-defined number of 

carriers in the CB resulting from thermal excitation, for an insulator there are nearly no carriers.  The 

probability of an electron to make this jump is determined by the temperature of the material; thus, the 

higher the temperature the greater the number of carriers in the CB and the larger the conductivity, which 

results in a larger observed current.  Since, in a metallic state, there are lots of electrons available, the 

effects of collisions can be easily seen. However, in a semiconductor (or worse yet, an insulator) there are 

very few electrons excited to participate in conduction.  Thus, in a semiconductor or insulator, the 

conductivity is largely determined by the number of excited electrons and increases with temperature.  Of 

course, temperature is not the only way to get electrons to jump the gap; one can also provide the requisite 

energy by irradiating the sample with either high energy electrons or photons.  In fact, the conductivity is 

affected by many external stimuli in addition to the material composition.   

For a single electron, the conductivity is defined as  𝜎 = 𝑛𝑒𝑞𝑒𝜇𝑒.  A general form of Ohm’s Law 

for any carrier type can be written as 

 𝜎𝑖 = 𝑛𝑖𝑞𝑖𝜇𝑖, (2.2.1) 

where the subscript i now denotes a carrier type (say e for electron, h for hole, and so on).  Then, the total 

conductivity of a given material is given by  𝜎𝑡𝑜𝑡 = ∑ 𝜎𝑖𝑖 = ∑ 𝑞𝑖𝑛𝑖𝜇𝑖𝑖  , where the summation is over all the 

conductivity mechanism active in a given material, each with a unique carrier type, density, and mobility 

with index i.  The physics to describe a material is found in the dependence of 𝑛𝑖 and μi on temperature, 

time, electric field, and incident radiation.  The constraints for Eq. (2.2.1) are: 
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Charge carriers, qi: The charge on an individual particle, e.g., electron, ion, hole or pseudo-

particle, such as the exciton and polaron.  Of these, only electrons are considered in this 

dissertation (see Section 2.2.2.1).  Holes are assumed to be immobile and pseudo-particles do not 

contribute to the conduction processes in HDIM directly.   

Mobility, 𝜇𝑖��̇�,𝐹,𝑇, 𝑡�: This measures the tendency of an individual charge to move in response to 

the applied field, F. Mobility is defined as the ratio of carrier drift velocity, within the material to 

applied field,  𝜇 ≡  𝜈𝑑
𝐹

.   

Carrier density, 𝑛𝑖��̇�,𝐹,𝑇, 𝑡�: The density of a collection of charges per unit volume can depend 

on material properties, temporal response of charges, and external sources, such as the rate of 

deposited energy density (or dose rate), �̇�, the electric field, F, and temperature, T. In complex 

cases, material properties can be modified, through changes in microscopic structure, as a function 

of �̇�, F, T, and time. 

Here we have ordered the parameters qi, μi, and ni as the charge on each type of carrier, the single carrier 

response, and the collective single carrier density. Given the simple description of macroscopic material 

response as a function of  �̇�,𝐹,𝑇,  and 𝑡, we now ask what mechanisms within the material give rise to 

observed behaviors. 

The answer to this question lies in the categorization of physical phenomena and an understanding 

of how they come about.  There are a large number of observed mechanisms that can contribute to the 

measured current: polarization, spacecharge, diffusion, dispersion, carrier hopping, and secondary electron 

emission (SEE).  Thus, we may write the total measured current as  𝐽𝑡𝑜𝑡 =  ∑ 𝐽𝑖𝑖 .  Some of the processes—

such as polarization, diffusion, and dispersion, are fundamental physical processes that can be explained 

directly from first principles; others, like hopping and space charge limited current (SCLC) are composed 

of other more fundamental processes.  An example is hopping, which involves thermal excitation of 

carriers and the local quantum potential, but can exhibit diffusive or dispersive behavior depending on 

material make up, temperature, and applied voltage. Each of these processes will be introduced in this 

dissertation in order of complexity.  Thus, drift and diffusion are presented first, followed by a discussion 

of the more complex processes. 
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In order to extend this discussion on transport in HDIM, it is necessary to develop a set of 

equations that can describe all the known behaviors.  These equations are called transport equations and 

form the backbone of this dissertation.  First, an introduction to the types of carriers that are considered is 

needed. This is done to justify the use of a single carrier approximation, that carrier being the electron.  The 

presentation of charge types is followed by the natural extension of our discussion to drift and diffusion, 

and finally, the derivation of the first four of the transport equations.   

2.2.2. Charge Types 

The specific focus of this dissertation on conduction in HDIM dictates the essential limitations on 

our consideration of the type of charge carriers, density of states, and the carrier mobility or conduction 

mechanisms.  This dissertation will largely be limited to consideration of electrons as carriers.  However, 

there are many cases, which are beyond the scope of this work, in which other carriers, such as holes, 

excitons, and polarons play a major role in the dark current conduction and photoemission processes (Böer, 

2002; Kao, 2004; Baranovskii and Rubel, 2006; Chen, 2010).  The action of holes does appear in this 

dissertation when we consider radiation induced conductivity, but is sparse and will, therefore, only be 

considered where specifically noted.  What follows is a brief justification for our assumptions and a 

discussion of other types of carriers. 

2.2.2.1. The Single Carrier Approximation 

The idea that we can use a single carrier approximation to describe the behavior of charge 

transport in HDIM has its roots in semiconductor theory, which is based on semi-classical models of 

electron dynamics.    As Ashcroft and Mermin note in their text “many of the concepts used in the theory of 

amorphous solids are borrowed, with little if any justification, from the theory of crystalline solids, even 

though they are only well understood in the context of periodic lattices” (Ashcroft and Mermin, 1976, 

footnote on page 62).   Since the writing of this classic text, there have been numerous advances in 

understanding the differences between crystalline and amorphous systems.  One particularly well known 

example where the line between ordered and disordered systems is well studied occurs in amorphous 

hydrogenated silicon, a-H-Si, whose amorphous semiconducting nature was studied extensively in the late 

60’s and early 70’s and led to a number of insightful discoveries pertaining to a larger class of disordered 
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systems (Davies, 1969; Hertel and Bässler, 2008).  Dennison and Ritter made significant gains in 

understanding the material structure and momentum density of amorphous carbon (Ritter et al., 1984). The 

study of HDIM takes us a step further, as there is often no known ordered counterpart.  In HDIM we have 

the added difficulty of very-low detectible currents rendering the Hall Effect insufficient to determine the 

majority carriers. To further complicate the problem, many researchers have shown the carrier 

concentration in HDIM is bipolar involving electrons, holes, and an interaction between the two (Baudoin, 

2008; Cornet et al., 2008; Chen, 2010).  

While there are numerous techniques for determining the carrier majority, only two stand out as 

consistent, well-studied, and easily accessible ways to approach the problem of carrier majority 

determination in HDIM; these methods are thermally stimulated current emission (TSC) and pulsed electro-

acoustic (PEA) measurements.  Significant work by Sessler and Ieda using TSC have led to determination 

of the energetic distribution of states in the band gap caused by the disorder and, in many cases, the 

majority carrier concentration (Ieda et al., 1972., 1980, 1984, 2003; Gross et al., 1987; Ieda and Suzuoki, 

1997).   Originally suggested by Sessler and Gross, PEA methods study the deposition and transport of 

charge and its density within the material as a function of position and time for both contacting and 

noncontact electrode arrangements.  This approach has provided what will likely be the final word in the 

study of charge transport in HDIM (Gross et al., 1977, 1987; Sessler, 1987; Griseri et al., 2004; Perrin, 

2005).    

All the above information is largely to say we do not know what the majority carrier is in most 

HDIM.  So how can we justify the use of a single electron approximation?  The simple answer is that 

models progress from simple to complex and, since the large majority of our understanding of HDIM is 

taken from semiconductors, we are prone to start in a similar place, i.e. assume a single electron and ask 

what happens in the material due to various interactions.  The second reason was recognized in 

semiconductor work long ago (Rose, 1963); the equations for holes are the same as for electrons with 

differing numbers for relevant physical parameters, relaxation time, or effective mass as examples.   In 

order to obtain a complete set of transport equations for a system that has both electrons and holes of 

comparable mobility, one simple doubles the number of equations and adds an interaction term that defines 

the rate at which electrons and holes can recombine.  As it turns out, there is nearly always a majority 
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carrier (usually the electron).  Finally, the use of a single carrier model is historically driven; most of the 

models in the literature (while admitting that they too fall short of a complete description) are single carrier 

models.  Many authors have recognized this problem, but were able to use the single carrier approximation 

based on experimental designs that limited additional carrier contributions.  For example, in a RIC 

experiment where the sample is in the open configuration (see Fig. 1.4), we are exciting electrons (not 

holes) across the energy gap creating a majority carrier.  In such cases, blocking electrodes are used to 

ensure that bipolar recombination between injected carriers (holes, in this case) from contact surfaces and 

excited electrons does not occur (Sessler, 1987).  In secondary electron emission (charge deposition) 

experiments—where electrons are trapped at some depth in the material—we clearly have an excess of 

electrons that will become carriers in the CB, again assuming that the rear electrode (ground plane) does 

not inject carriers of the opposite sign.  Recently it has become clear that many effects in certain types of 

HDIM (LDPE, for example)—due to bipolar effects—cannot be neglected when internal fields, due to 

charge deposition, are high enough to induce charge injection from the ground electrode (Cornet et al., 

2008; Chen, 2010; Fitting, 2010).  

Since the transport equations for electron carriers can be thought of as one side of a mirror set of 

equations, we need only develop the theoretical ideas for one set.  This, finally, is the strongest reason for 

approaching this dissertation for a single carrier stand point.  As we will see, developing a complete 

description for a single carrier system in the absence of recombination due to an additional carrier 

distribution is already sufficiently challenging and yields a complete model for transport in HDIM.  

2.2.2.2. Holes 

Consider an excited state of a molecule in which an electron has been removed from a filled 

orbital and occupies a previously empty orbital of higher energy (or leaves the influence of the original 

molecule altogether, creating the absence of electron ground state in the original orbital. i.e., an anion).  

One way to describe this modified excited molecular state is as the superposition of the original state for all 

the electrons in the ground state, a state for the excited (or removed) electron, and a state describing the 

now empty state previously occupied by the excited electron.  In a more general way, we can think of 

electrons as being excited from the highest occupied molecular orbitals (HOMO), from neutral states in the 
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gap, or from the VB.  William Shockley summed up the concept of a hole with the following quote: “The 

hole is really an abstraction which gives a convenient way of describing the behavior of the electrons.  The 

behavior of the holes is essentially a shorthand way of describing the behavior of all the electrons” (Kao, 

2004).  In practice, a hole in this work is meant to describe (i) a positively charged entity that can accept an 

electron through the process of recombination, or (ii) the conduction of the absence of the electron 

(Ashcroft and Mermin, 1976).   

2.2.2.3. Other Carriers 

In the study of transport in disordered materials, there is a plethora of quasi-particle types that can 

contribute to conduction.  The exciton and polaron are two examples of these quasi-particles.  Most quasi- 

particles are confined to materials with much higher conductivities or much lower levels of disorder. The 

exciton and polaron are the only two that may play a role in HDIM transport (Kao, 2004).  There are two 

types of exciton, Frenkle and Wannier (Ashcroft and Mermin, 1976).  Of these, only the Frenkle exciton 

may play a part in HDIM conduction; however, its role is likely that of a simple trap and thus, will not be 

distinguished from simple Coulomb trapping in this work.  Polarons may act as intermediaries in low-

temperature transport, discussed in Chapter 3, providing energetic pathways for hopping electrons or acting 

as traps. The action of the polaron is not likely to be detectible at the macroscopic level and does not affect 

the average transport theories discussed in this dissertation.    

This section has established the basis for the electron transport picture and given justification for 

the elimination of quasi-particles (including, holes, excitons, and polarons) as major contributors to the 

current.  Using the electron picture a discussion of the transport equations can now be presented.  

2.3. Macroscopic Transport 

The transport in HDIM is known by many names: multiple trapping, trap controlled transport, 

dark current, etc.  In this dissertation, the charge transport equations will be referred to as the transport 

equations.  This approach provides a bird’s eye view of the physics and is the scaffolding upon which the 

effects of strong disorder found in HDIM can be understood, in addition to providing the necessary 

framework to extend any of the models presented in this dissertation. The transport equations are developed 

from the Maxwell equations and the charge continuity equation in macroscopic media using a given 
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expression for the observed current, 𝐽𝑐.  Further, in many cases the continuity equation must include a 

source term, S, that describes additional changes in carrier flux.  These fundamental equations are: 

∇ ∙ 𝑫 =  𝜌𝑐                                                                                    {Gauss’s Law}, (2.3.1) 

∇ ∙ 𝑩 = 0                                                                                             {Unnamed}, (2.3.2) 

∇ × 𝑭 =  −𝜕𝑩
𝜕𝑡

                                                                             {Faraday’s Law}, (2.3.3) 

∇ × 𝐇 =  𝐉𝒄 + ∂𝐃
∂t

         {Ampere’s Law with Maxwell’s displacement correction}, (2.3.4) 

and 

∇ ∙ 𝐉𝒄 + S(𝐫, 𝐭) =  −∂ρ𝑡𝑜𝑡
∂t

             {Charge continuity equation with source term}. (2.3.5) 

Here 𝜌𝑐 is the free charge density, 𝜌𝑡𝑜𝑡  is the total charge density, 𝜌𝑏  (shown below) is the bound charge 

density, D is the electric displacement field, B is the magnetic field, r is the three-dimensional position 

vector, 𝑆(𝒓, 𝑡) is the injected current that becomes either space charge or migrating trapped charge, and H 

is the magnetizing field.  Only in rare cases is the effect of the magnetic field considered; thus, in general 

we concern ourselves only with Eq. (2.3.1) and Eq. (2.3.5).  Note that inherent in these equations is the 

constitutive relation that relates the total charge density, displacement field and polarization charge given 

by: 

𝜌𝑡𝑜𝑡 =  𝜌𝑏 + 𝜌𝑐.  (2.3.6) 

𝑫 =  𝜖0𝑭 + 𝑷 ≡ 𝜖0𝜖r𝑭. (2.3.7) 

𝜌𝑏 =  −∇ ∙ 𝑷. (2.3.8) 

Here 𝜌𝑡𝑜𝑡 stands for the total charge, 𝜌𝑏  is the bound charge due to polarization, and P for polarization. 𝜖0 

and 𝜖r are the permittivity of free space and the relative permittivity, respectively.  Since the current is the 

sum of effects produced by all species of carriers, molecular, and atomic sites, the charge density can be 

written as 

𝜌𝑖 = 𝑞𝑖𝑛𝑖. (2.3.9) 

Here i denotes the charge species, qi is the electronic charge per carrier, and ni is the charge carrier 

concentration.  Note that we can refer here to charge in trapped states, bands, free charge, or even surface 

charge.  For example, consider a system where we have injected a known amount of electron charge per 

unit volume, 𝜌𝑡𝑜𝑡.  Further assume that some of the charge resides in the CB and some in trapped states in 
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the band gap; then we can write the charge density as 𝜌𝑡𝑜𝑡 =   𝜌𝑒 +  𝜌𝑡 or the number density as  𝑛𝑡𝑜𝑡 =

  𝑛𝑒 +  𝑛𝑡.    

            The difficulty in determining the flavor of macroscopic equations to use is a reflection of the 

complexity of the material and its environment, i.e., boundary conditions, experimental setup, DOS models, 

and population statistics.  One simplification that is effective in reducing the complexity of working with 

these equations is to reduce the 3D expression to a 1D expression.  Next, an approximation for the observed 

current is needed to describe how the charge concentrations change with distance and time.  By doing this, 

expressions for the resulting field and time dependence can be obtained. 

2.3.1. Drift 

 The drift current density can be written as a function of many variables (see Section 2.2.1).  In 

particular, it has been suggested that the mobility, free carrier density, and applied field can all be 

complicated functions of dose rate, temperature, applied field, and time.  For simplicity, assume that the 

density of carriers, ne, and the applied field, F, are functions of both position and time, such that 

𝐽 = 𝑞𝑒𝜇𝑒𝑛𝑒(𝑧, 𝑡)𝐹(𝑧, 𝑡)                           {1D Drift Current Density for electrons}. (2.3.10)
 

  

Here, z is the one-dimensional spatial coordinate direction along which the drift occurs.  This expression is 

true in many metals and semiconductors, and is the simplest possible nonzero expression for the current.  In 

this case, the field and charge concentration both have been allowed to vary as a function of distance and 

time to make a stronger connection with the final form of the transport equations presented at the end of 

this chapter.  Keep in mind that the entire right-hand side of Eq. (2.2.10) can be written as a function of 

applied field, temperature, dose rate, position, and time.  The discussion of the 1D transport equations can 

now nearly be completely captured from this simple expression and manipulation of Gauss’s Law (2.3.1) 

and the continuity equation (2.3.5) as  

∂
∂z

z� ∙ 𝑭 =  𝜌𝑡𝑜𝑡(𝑧,𝑡)
𝜖0𝜖𝑟

                                                                                        {1D Gauss’s Law}, (2.3.11) 

and 

∂
∂z
𝑉 =  −𝐹                                                                                            {1D Scalar potential}, (2.3.12) 

which can be combined as 
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∂2

∂z2
V =  − 𝜌𝑡𝑜𝑡

𝜖0𝜖𝑟
                            {1D Poisson’s Equation or Laplace’s Equation when ρ = 0}, (2.3.13) 

along with 

∂
∂z

Jc + ∂𝜌𝑡𝑜𝑡
∂t

=  𝑞𝑒S(z, t)                                    {1D One dimensional continuity equation},      (2.3.14) 

to yield the two fundamental 1D transport equations. The source term is 𝑆(𝑧, 𝑡); this term represents the 

injection of carriers into the material either by a contacting interface or by high energy impingement of 

carriers. 

The macroscopic equations Eq. (2.3.11) through Eq. (2.3.14) form the backbone of nearly all the 

macroscopic derivations in this dissertation and will come into play frequently in Chapters 3 though 5.  The 

derivation of the complete transport equations begins here with the manipulation of these macroscopic 

equations.  First, we seek a solution for the number of electrons in a material as a function of some external 

source and electric field.  Substituting the drift current from Eq. (2.3.10),   𝜌𝑡𝑜𝑡 =  𝑞𝑒(𝑛𝑒 +  𝑛𝑡) and 

canceling the charge constant, an expression that relates charge density, charge carrier, electric field, and 

charge generation as a function of position and time can be found, 

𝜕𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜕𝑡

+ 𝜇𝑒
𝜕
𝜕𝑧

[𝐹(𝑧, 𝑡)𝑛𝑒(𝑧, 𝑡)] = 𝑆(𝑧, 𝑡). (2.3.15) 

There are many examples where S(z,t) is used to study material properties, most of which do not 

specifically identify the source term (Many and Rakavy, 1962; Weaver et al., 1977; Schmidlin, 1977; 

Arkhipov and Rudenko, 1982c; Rudenko and Arkhipov, 1982b; Rudenko and Arkhipov, 1982c; Monroe, 

1983; Arkhipov et al., 1983; Sessler, 1987; Teyssedre and Laurent, 2005).  As a note to the reader, the 

source term is only occasionally symbolically represented as S(z,t).  The inclusion of the source term allows 

a simple description of processes that create charge internal to the material.  In general, we can think of 

light, electron beams, and contacting electrodes all as the sources.   Equation (2.3.15) will be expanded 

later (see Chapters 4 and 5) to include the dependence of dose, dose rate, temperature, and applied field.   

As an example of the application of Eq. (2.3.15), consider what happens when light of a frequency 

sufficient to excite electrons in a material across the band gap into the conduction band is applied to a 

sample, a semiconductor perhaps.  For a description of the differences between metals, semiconductors and 

insulators, see Section 2.4.1.  This type of excitation is commonly called photoconductivity or  RIC.  

Electrons will be liberated from valence states into the conduction band, leaving holes (assumed 
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immobile 𝜇ℎ~0) and creating an excess of electrons in the CB and therefore, an enhanced current.  Let G(z) 

be defined as a generating term, which describes the interactions and related processes that determine the 

way in which carriers will be excited into the conduction band by the incident light.  Let R(z) be defined as 

the recombination term, with its own set of interactions and processes.  Since S(z,t) is a net source term, we 

can replace S(z,t) with G(z,t)-R(z,t).  While both of these terms are complex functions of the material, 

knowledge of their inner workings is not required to develop the transport equations further.  Thus, for now 

G(z) and R(z) are taken at face value until a full description of their nature can be developed and the 

complete transport equations derived (see Section 2.6).  Now Eq. (2.3.15) can now be written as, 

𝜕𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜕𝑡

+ 𝜇𝑒
𝜕
𝜕𝑧

[𝐹(𝑧, 𝑡)𝑛𝑒(𝑧, 𝑡)] = 𝐺(𝑧) − 𝑅(𝑧). (2.3.16) 

In addition to Eq. (2.3.16), two more pieces are needed to properly describe the system.  The 

relationship between the change in the number of holes or recombination centers must be considered.  This 

expression also follows from the continuity equation and the assumption that the hole generation and 

recombination rates are equal to the electron counterparts (i.e., holes are created when electrons are excited 

to the CB and destroyed when electrons recombine with holes in the VB) and can be written as  

𝑑𝑛ℎ(𝑧.𝑡)
𝑑𝑡

= 𝐺(𝑧) − R(𝑧). (2.3.17) 

Here the number of electron/hole pairs generated per unit time is controlled by G(z) and the 

number of electron/hole pairs that undergo recombination per unit time is R(z). This process of excitation 

and recombination is analogous to pumping water into a fountain.  Energy is supplied by the pump to send 

the water up to some potential and then the excited water returns to the reservoir with an equal amount of 

energy.   

Thus far, only the continuity equation (2.3.15) and a simple expression for the drift current 

(2.3.10) have been used.  Gauss’s law, Eq. (2.3.11), is fundamental to understanding the connection 

between a charge distribution and the electric field or potential.  Equation (2.3.16) and Eq. (2.3.17), along 

with Gauss’s law or Poisson’s equation, form three fundamental equations, which can be used to 

understand many phenomena in metals, pure semiconductors, and pure crystalline insulators.  These three 

1D equations in terms of charge concentration are repeated for clarity: 

∂
∂z

z� ∙ 𝑭 =  𝑞𝑒𝑛𝑡𝑜𝑡/𝜖0𝜖𝑟                                                                                   {Gauss’s Law}, (2.3.18) 
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𝜕𝑛𝑡𝑜𝑡(𝑧,𝑡)

𝜕𝑡
+ 𝜇𝑒

𝜕
𝜕𝑧

[𝐹(𝑧, 𝑡)𝑛𝑒(𝑧, 𝑡)] = 𝐺(𝑧) − 𝑅(𝑧)    

                                  {1D electron continuity equation with Ohm’s law and source terms} (2.3.19)  

and 

𝑑𝑛ℎ(𝑧.𝑡)
𝑑𝑡

= 𝐺(𝑧) − R(𝑧)                             {1D hole continuity equation with source terms}.               (2.3.20) 

The form of these equations changes depending on the sources, sinks, and types of behavior 

considered in the current density equation  𝐽𝑡𝑜𝑡 =  ∑ 𝐽𝑖𝑖  .  It will be shown that a global set of equations that 

describe all possible transport phenomena can be derived and adapted to predict transport phenomena for 

specific experimental applications. With this approach in mind, and the understanding these transport 

equations can be used to go from fields to currents or currents to fields, the discussion is extended to 

diffusion as the next step in developing a complete set of transport equations. 

2.3.2. Diffusion 

Diffusion is one of the fundamental assumptions in semiconductor physics (Ashcroft and Mermin, 

1976; Fraser, 1983; McKelvey, 1993) and was used along with drift by Shockley (1950, 1951, 1976) to 

arrive at the famous semiconductor junction equations.  How is diffusion included in this formulation?  

Diffusion is a simple process by which atoms or molecules move away from each other due to their mutual 

interaction toward some equilibrium value.  Consider a particle moving in a group of similar particles with 

minimal interaction, but with some thermal energy. In this scenario a particle will execute a series of 

motions that are random in nature.  The collection of all possible steps is called the Drunkard's walk (or 

Brownian motion).   Einstein showed that after some large number of steps acting over an average length, a 

carrier will cross a distance using purely thermal energy.  Collectively, we can think of a flux of particles 

that will result in a carrier density change,   

𝑓 =  −𝐷 𝑑𝑛𝑒
𝑑𝑧

,  (2.3.21) 

where D is a constant and given by 

𝐷 = 𝜇𝑒𝑘𝑏𝑇
𝑞𝑒

= 𝑘𝑏𝜏𝑑𝑇
𝑚∗ .                                    (2.3.22) 

The coefficient D is defined as the Einstein diffusion coefficient 𝐷𝑒 , and Eq. (2.3.21) is known as 

Fick’s Law; it can be applied to any diffusive process.  Note that μe is the mobility of the diffusing carrier, 
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T is the temperature, and 𝜏𝑑  is the extended carrier lifetime (in this case, the lifetime of our single electron).  

This leads to the definition of the diffusion current density, 

𝐽𝐷 ≡  𝑞𝑒𝐷𝑒
𝑑𝑛𝑒
𝑑𝑧

.  (2.3.23) 

The total electron current for a system with an applied field, F, and active diffusion is 

𝐽𝑡𝑜𝑡 =  𝐽𝐶 + 𝐽𝐷 = 𝑞𝑒𝑛𝑒𝜇𝑒𝐹 + 𝑞𝑒𝐷𝑒
𝑑𝑛𝑒
𝑑𝑧

.  (2.3.24) 

The sign of the resulting current is a competition between drift and diffusion.  The astute reader may notice 

that we have a positive sign, and this would appear to be a problem; this is due to the fact that qe is –e.  

Further, the field, F, is the negative of the gradient of the potential.  For a detailed description of diffusion 

processes and a detailed discussion of Eq. (2.2.24) (see standard texts by Ashcroft and Mermin (1976) and 

McKelvey (1993). 

As an example, consider the connection between diffusion and the generation and capture of 

electrons.  This example highlights the connection between basic transport and generation-recombination 

models. Consider Fig. 2.1 with an Ohmic drift current passing through a semiconducting sample from 𝐽(𝑧)  

to 𝐽(𝑧 + 𝑑𝑧).  For very small displacements, the current at z+dz can be written as 

𝐽𝑡𝑜𝑡(𝑧 + 𝑑𝑧)  ≅  𝐽𝑡𝑜𝑡(𝑧) + 𝑑𝐽𝑡𝑜𝑡(𝑧) 
𝑑𝑧

 𝑑𝑧,  (2.3.25) 

where the total flux due to the current is 𝐽𝑡𝑜𝑡(𝑧) − 𝐽𝑡𝑜𝑡(𝑧 + 𝑑𝑧) ≅  −𝑑𝐽𝑡𝑜𝑡(𝑧) 
𝑑𝑧

 𝑑𝑧; notice if the gradient is 

zero, the current in is equal to the current out.  Now consider the difference in flux due to generation- 

recombination of carriers, 𝐺(𝑧, 𝑡) − 𝑅(𝑧, 𝑡).  This must be exactly the change in the number of carriers per 

unit volume per unit time, so that 

𝜕𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜕𝑡

= 1
𝑞𝑒

𝑑𝐽𝑡𝑜𝑡(𝑧,𝑡) 
𝑑𝑧

 +   𝐺(𝑧, 𝑡) − 𝑅(𝑧, 𝑡).  (2.3.26) 

Our example does not include effects due to trapping, thus ntot = ne; however, we will use ntot for 

completeness. Recall, from Eq. (2.3.24) that the total current in a system that has active diffusion is 

governed by 

𝐽𝑡𝑜𝑡(𝑧, 𝑡) =  𝑞𝑒𝑛𝑒(𝑧, 𝑡)𝜇𝑒𝐹(𝑧, 𝑡) + 𝑞𝑒𝐷
𝑑𝑛𝑒(𝑧,𝑡)

𝑑𝑧
.  (2.3.27) 

We can now solve for the diffusion enhanced transport equation by combining Eqs. (2.3.26) and 

(2.3.27).  This results in the following expression for the free carrier density: 
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𝜕𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜕𝑡

− 𝜇𝑒
𝜕
𝜕𝑧

[𝑛𝑒(𝑧, 𝑡)𝐹(𝑧, 𝑡)] − 𝑞𝑒𝐷
𝜕2𝑛𝑒(𝑧,𝑡)

𝜕𝑧2
=  𝐺(𝑧, 𝑡) − 𝑅(𝑧, 𝑡).  (2.3.28) 

This equation should look very familiar, as it is Eq. (2.3.16) with the addition of the diffusion term.  In our 

example, the carrier generation is thermal and is not observable for wide band gap materials such as HDIM 

(thermal energy is insufficient to excite electrons across the gap in any measurable amount); only in 

systems with low flux and low fields does the diffusion term dominate the transport term. For further 

comments on the limitations of the diffusion model in the context of charging models see Sessler (1987) 

and Treadgold (1966).    

When a radiation source is used to provide a larger excitation energy (much greater than the 

thermal energy), electrons can be populated across the gap (in the way suggested in our example) in larger 

numbers, drastically affecting the observed current.  The reader should be alerted that in the radiation case, 

we may or may not have diffusion depending on the strength of the carrier density, applied field, and way 

FIG 2.1. Effects of generation and recombination on the drift current flowing in the z direction. A sample 
bounded by two contacts is shown along with a simple reproduction of the conduction and valance band 
energies and with generation-recombination.  The generation and recombination terms are charge source 
and sink terms, respectively. 
 

𝐽(𝑧) 𝐽(𝑧 + 𝑑𝑧) 

𝜺𝑪𝑩 

𝜺𝑽𝑩 

𝐺(𝑧) 𝑅(𝑧) 

z 
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in which incident radiation is cast upon the sample, i.e., a uniform beam of electrons over a narrow region 

versus a beam that covers the sample to any number of other arrangements.    

Having included the correction for diffusion, the one-dimensional transport equations can now be 

written as 

𝐽𝑡𝑜𝑡(𝑡) =  𝑞𝑒𝑛𝑒𝜇𝑒𝐹(𝑧, 𝑡) + 𝑞𝑒𝐷
𝑑𝑛𝑒(𝑧,𝑡)

𝑑𝑧
                                               {Sum of currents Ji}, (2.3.29) 

𝜕𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜕𝑡

− 𝜇𝑒
𝜕
𝜕𝑧

[𝑛𝑒(𝑧, 𝑡)𝐹(𝑧, 𝑡)] − 𝑞𝑒𝐷
𝜕2𝑛𝑒(𝑧,𝑡)

𝜕𝑧2
=  𝐺(𝑧, 𝑡) − 𝑅(𝑧, 𝑡)          

                                                                {1D continuity with generation-recombination},         (2.3.30) 

∂
∂z

(𝑭 ∙ z�) =  𝑞𝑒
𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜖𝑜𝜖𝑟

                                                                              {1D Gauss’s Law},           (2.3.31) 

and 

𝑑𝑛ℎ(𝑧.𝑡)
𝑑𝑡

= 𝐺(𝑧) − R(𝑧)                       {1D hole continuity with generation-recombination}. (2.3.32) 

These four equations describe the transport in terms of the electric field, temperature, position, and time. 

G(z) is driven by the dose rate of an external source.  This can be any number of source types including 

heat, but is more generally used when the conductivity is enhanced by high-energy incident particles or 

light and largely refers to the internal generation of charge.  The materials to which we can apply these 

equations are metals, semiconductors, and insulators.  These ideas have been applied with great success to 

metals and semiconductors, but have seen limited application in the realm of HDIM.   

What else need be considered?  What happens when a material is not periodic or ordered, but 

disordered?  Since the subject of this dissertation is transport in not only disordered but highly disordered 

materials, it is necessary to extend Eqs. (2.3.29) through (2.3.32) to include the effects of disorder.  In the 

introduction to this chapter and Section 2.2, a series of processes were listed and briefly described.  These 

processes are drift, diffusion, space charge limited current, and dispersion.  The first two processes have 

been introduced and lead quite naturally to the transport equations.  The last two require a detailed 

understanding of the nature and effects of disorder present in a material.  We can view this as a transition 

from a perfect ordered world to one in which things are a bit more—and in some cases a lot more—messy.  

In principle, any number of processes can be evaluated by adding terms to the current density equation.  As 

it turns out, approaching the problem from the sum of current densities becomes extremely cumbersome 
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beyond the inclusion of the drift and diffusion.  The cumbersome nature will become clear in Section 2.6.  

Equations (2.3.29) through (2.3.32) are not yet complete and do not accurately describe the behavior of 

HDIM.  The question is why? 

  Consider an electron beam normally incident on an insulating material.  If the beam cannot 

penetrate the material, experimental observations by many researchers—including the USU MPG—have 

shown that a charge body will develop within the material resulting in a complex charge distribution.  This 

distribution is dependent on the incident beam energy, beam fluence, temperature of the material, applied 

and internal electric field, and time; but most importantly, it depends of the nature of the disorder.  The 

charge has become trapped by this disorder and the behavior of that trapped charge is entirely dependent on 

the material properties and any modification of those properties due to the environment. Therefore, a new 

description of the material beyond the simple band model is required. This is the subject of Sections 2.4 

and 2.5.   

2.4. Introduction to Disorder 

How do the conductivity and mobility depend on the material properties when the crystalline order 

is significantly disturbed?  The subject of this dissertation is the answer to this question for highly 

disordered insulating materials.  These materials are generally wide band gap materials with considerable 

intrinsic and extrinsic disorder. The disorder results from a plethora of sources, including concentrations of 

impurity atoms, geometric irregularities, the geometry of polymer chains, and their impurities.  Further, 

these materials are generally composed of polymer chains that do not lend themselves to the simplifications 

of a lattice construct and have a myriad of structural and internal degrees of freedom. Additionally, polar 

groups attached to the chains, crosslinking, and broken bonds have significant influence on carrier mobility 

(Wintle, 2003; Dennison et al., 2009e).  This high level of disorder leads to a density of states (DOS) in the 

gap, with complex energetic and positional dependencies, which will drastically alter classical transport 

mechanisms. 

In order to understand disorder in a physical way, develop a working picture of the interactions 

that affect transport, and provide a consistent theoretical framework upon which to extend current ideas, a 

simple, one-dimensional band model is presented by which we can study the effects of disorder. This 
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simple model starts from the crystalline point of view (upon which semiconductor theory is based) and is 

then extended to highly disordered systems. As it turns out, this simplified approach retains the basic 

notions of a more complete description of band structure and provides the necessary platform to describe in 

a compressive way why disorder affects the transport so dramatically.  In particular, the introduction of 

localization of the atomic orbital wave functions, mobility edge, and a set of simple intraband disorder 

models provide a powerful basis to understand the answer to questions about transport in HDIM. 

2.4.1. Crystalline to Disordered Insulators 

Consider the situation depicted in Fig. 2.2 in which a collection of evenly spaced (1D) periodic 

identical atoms are brought close together.  At zero temperature, and infinite separation, each isolated atom 

has highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) with 

discrete, degenerate binding energies, respectively.  As the atoms are brought together and the bonding and 

anti-bonding orbitals interact, they cause the discrete electron energy states of the individual atoms to form 

quasi-continuous bands separated by well defined “band gaps” (BG). The quasi-continuous symmetric 

bonding orbitals (HUMO) become a valence band and the anti-bonding orbitals (LUMO) become a 

conduction band. Fundamentally, the BG is an energy range in a solid where no allowed electron states 

exist.   A simple calculation using the Kronig-Penny model will produce such a BG (Ashcroft and Mermin, 

1976).  Figure 2.2 depicts a simple representation of the DOS and band gap for a typical crystalline solid. 

This figure retains the basic notions of a density of extended states up to a band edge at the top of the 

valance band at energy 𝜀𝑉𝐵 , a band gap 𝜀𝑔𝑎𝑝 = 𝜀𝐶𝐵 − 𝜀𝑉𝐵 , and further extended states above the bottom of 

the conduction band at energy 𝜀𝐶𝐵.  This simple model and extensions of it are used throughout this 

dissertation to explain the basic concepts of transport in disordered materials. 

The distinction between conductors, semiconductors, and insulators follows from this purely 

quantum mechanical notion of a band gap in the DOS.  The Pauli Exclusion Principle for fermions 

(electrons in this case) requires available states are filled at T=0 from lowest energies up to the Fermi 

energy, εF.  If the threshold for filled states falls within a band, the material is a conductor with the first 

excited states an infinitesimal energy above εF.  By contrast, for semiconductors or insulators, εF falls 

within a band gap and the first excited states is an energy εgap above the highest occupied ground state.  The 
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distinction between a semiconductor and an insulator is one of energy scale.  If, at some finite temperature, 

there is a “reasonable” probability that electrons in the high energy tail of the Fermi distribution of the solid 

will have a thermal energy greater than εgap, the material is termed a “semiconductor”; otherwise, it is an 

“insulator.”   The occupation of the extended states determines the material’s ability to transport charge. 

Thus, by definition, a “highly insulating” material is one in which there are very few, if any, conduction 

electrons in extended states.   

Thus far, only crystalline materials have been discussed, along with their behaviors as a function 

of the band gap. A discussion of the deviations from simple ordered insulating materials is now prudent. 

Although there are many crystalline systems with band gaps sufficient to be called insulators, their 

behavior is consistent with an ordered system, in which a simple band gap structure is observed, (i.e., the 

band gap is empty).  In simple insulating or semiconducting crystals, phonon scattering theory and intrinsic 

semiconductor theory predict the majority carrier mobility or conductivity quite well (Ashcroft and 

Mermin, 1976; Pope, 1982; Sah, 1991). Even for modest disturbances of the lattice, such as the 

introduction of dopants, the conductivity can be easily predicted.  However, in many insulating materials 

FIG 2.2. From single atoms to the density of states. Figure depicts the evolution of bands in a periodic 
arrangement of atoms (crystals) as atoms are brought together spatially.  Here a is the atomic spacing, 𝜀 is 
the energy of a state, 𝜀𝐿𝑈𝑀𝑂  is the lowest unoccupied molecular orbital, 𝜀𝐻𝑂𝑀𝑂 is the highest occupied 
molecular orbital, 𝜀𝐶𝐵   is the conduction band (energy upper-bound), 𝜀𝑉𝐵  is the valence  band (energy 
lower-bound), 𝑁(𝜀) is the density of states and 𝜀𝑓 is the Fermi-level. 
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(polymers as the central example), the observed conductivity is not easily predicted due to extreme disorder 

(Fowler, 1956; Rose, 1961; Schmidlin, 1977; Blythe and Bloor, 2005).   

There are many experimental results that directly highlight the difference between simple 

crystalline insulators and disordered systems (Anderson, 1958; Ashcroft and Mermin, 1976; Zallen and 

Scher, 1971; Pope, 1982; Sah, 1991; Blythe and Bloor, 2005), and many others from the extensive 

references cited in this dissertation.  A clear example of this is found in measurements of the mobility of 

HDIM with respect to trap (impurity) concentration (Sah, 1991).  Consider an impurity atom whose energy 

has been reduced from the CB edge either by intentional introduction of the impurity or by some 

disordered-induced mechanism acceptor that acts as a trap for free carriers.  Since some time is required for 

the carrier to be released from the impurity trap, its progress is impeded. Thus, the higher concentration of 

trap states, the lower the mobility (Ashcroft and Mermin, 1976).  This is in stark contrast to the introduction 

of a donor impurity that will be easily ionized in a standard semiconductor that results in increased electron 

mobility (Ashcroft and Mermin, 1976), and hence, an increase in conduction.  The mobility of free carriers 

that results from disorder in HDIM is a defining factor in determining their behavior.  In order to develop a 

working knowledge of why disordered systems behave in a fundamentally different way from metals and 

ordered semiconductors or insulators, it is necessary to present a detailed discussion of the origins of the 

disordered DOS in the band gap, the basic conduction mechanisms that involve the states in the gap, and 

their effects on mobility and subsequent conductivity.  

2.4.2. Disorder 

There are a number of ways in which a material may develop disorder, which is a deviation from a 

perfect periodic array of constituent atoms of infinite extent.  These include disorder in atom type (or 

substitution disorder), positional disorder (e.g., vacancies, dislocations, or interstitials), finite size disorder 

(e.g., grain boundaries, surfaces and interfaces, and finite crystal size), and more exotic disorder (such as 

spin or magnetic disorder).  Polymeric insulators can have particularly high disorder, and generally require 

very complex models of their structure and resulting DOS; the HDIM considered here are extreme 

examples of disorder in polymers.  In HDIM, the polymer chains do not lend themselves to the 

simplifications of a lattice construct and have myriad structural internal degrees of freedom. Further polar 
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groups attached to the chains, crosslinking, and broken bonds have significant influence on carrier mobility 

(Wintle, 1991; Blythe and Bloor, 2005).  These polar groups can also contribute to an overall material 

polarization, which influences the internal electric field felt by the carriers.  Such disorder leads to 

deviations from the bonds of extended states and band gaps depicted in Fig. 2.2. The resulting localized 

states have energies within the band gap.  In many cases, these localized states will move into the forbidden 

band gap and hence, form trap states for nearly free or injected electrons.   

Before answers to questions about transport can be addressed, an explanation of the role of 

disorder in the localization of states leading to band tails, the mobility gap, and mobility edge must be 

discussed.  The reader should be aware that there are disordered systems, such and polyacetylene, which 

are conducting under certain conditions.  Disordered does not guarantee that the system will be insulating 

or localized (polyacetylene, for example, can be a disordered system and metallic.), but localized states do 

guarantee that the system will have a lower conductivity than the ordered counterpart. In this dissertation, 

the discussion of the effects of disorder will be limited to highly insulating materials whose transport 

characteristics are governed by disorder-induced localization.   

2.4.3. Localization 

To better understand the localized state, we first review the meaning of “localization” and discuss 

Anderson localization.  There are many processes by which localization can occur.  However, all such 

processes have a common concept.  The idea is simple; through some process, the order of the system is 

disturbed altering the atomic orbital wave functions such that interactions with nearby states in the system 

are small as compared with the forces keeping the carrier localized.  Figure 2.3 shows four diagrams for 

atomic wave functions that progress from extended states to strong localization.  Consider the contrast 

between Fig. 2.3 (a)—which is an example of a periodic extended set of wave functions—in contrast to 

Fig. 2.3 (b). In Fig. 2.3 (b), an envelope has formed around a specific atomic site whose wave function has 

become localized.  This is, in essence, what all localized states look like if viewed in terms of their wave 

functions.  This picture is useful to visualize localization, but lacks the relevant detail to completely 

describe the problem.  Now consider Fig. 2.4, which depicts the transition in DOS from a crystalline 

material to a disordered one, and is the next step in the evolution of our simple DOS model.  In this figure, 
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the disorder in the potentials is driving the dispersion of the DOS into the gap.  Figure 2.3 showed the 

atomic view and Fig. 2.4 is the macroscopic one-dimensional average DOS view.  How can we quantify 

this process and understand what the mobility edge means?  

  A seminal form of localization was proposed by Anderson (1958) and later adapted to explain 

conduction in semiconducting materials with doping (Mott, 1961, 1973, 1977, 1981, and 1984; Mott and 

Davis, 1979).  Anderson asked how much energetic disorder is required to induce nearly free conduction in 

a system whose wave functions do not overlap significantly (Pope, 1982). Anderson worked from a 

localized disordered point of view toward a less disordered system in which extended conduction just 

begins to occur, often referred to as a percolation threshold (Zallen, 1983).  Consider a system that is 

localized, with many random atomic energies due to disorder (see Fig. 2.4).  The energy of a given site, εj,  
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FIG 2.3. Schematic illustration of the form of the electron wave function in the Anderson localization 
model. (a) When the wavefunction extent is on the order of or greater than the lattice spacing.  (b) When 
states are just nonlocalized, such that 𝜀 ≥ 𝜀𝑐.  (c) When states are just localized, such that 𝜀 ≤ 𝜀𝑐.  (d) 
Strong localization. After Mott and Davis (1979). 
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FIG 2.4. The effects of disorder on the crystalline DOS.   (a) The DOS diagram for a simple crystal 
potential.  When the potentials of the wave functions are disturbed, a spread of potentials is created of 
width, W.  This leads of a spreading of the states at or near the CB edge into the gap, as shown in (b).  
When strong disorder is introduced, the concepts, of CB or VB edges are no longer valid. The CB and 
VB edges are replaced with the disordered counterpart, the mobility edges.  (c) Periodic potential and 
resulting DOS distribution, with width, W.  (d) Anderson model with random potential ∆𝑉 added to 
potential well depth and the resulting DOS distribution with wider width, W. 
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is a random variable, independent of time.  The probability function describing the spread in values in εj for 

all the particles in the system is given by a width, W.   

Anderson showed that when the interaction between sites j and k—given by some average 

potential, <Vjk>—is less than a critical value, Vc, no extended transport occurs.  This critical value is 

suggested in Figs. 2.3 (b) and 2.3 (c) but not explicitly defined.  As a first step in a quantitative description, 

we make a distinction between localized and delocalized states with the relations 

〈𝑉𝑗𝑘〉 > 𝑉𝑐                                                             (2.4.1) 

for extended states, and  

〈𝑉𝑗𝑘〉 < 𝑉𝑐 and 〈𝑉𝑗𝑘〉 = 𝑊
𝐶0

                                         (2.4.2) 

for localized states. Here 𝐶0 is a numerical constant, which will be defined shortly. 

Alternatively, consider the behavior of a localized state system at T=0 (Zallen and Scher, 1971; 

Elliott, 1990; Legendijk et al., 2009).  From a practical point of view, if one observes an electron at site j 

with  energy, εj, from some time, t=0, to a much later time and finds the electron stays in the region in 

which it started, the state is said to be localized and the electron is, in some sense, trapped.  In this view, the 

electron has a finite probability of remaining within some radius of the initial state and therefore, has little 

or no chance of diffusing away.  This suggests that the spread in energies W means localized states develop 

tails that extend well into the BG, hence their name band tail states.  These band tails can be seen in Fig. 

2.4 (b) extending into the once empty BG.   

The description of the effects of localization has thus far only been described qualitatively.  As it 

turns out, the complete mathematical description originally given by Anderson is quite complex.  However, 

in order to gain a basic understanding of the interaction of wave functions shown in Fig. 2.3 and connect 

those ideas to the dispersion of energies, W, shown in Figs. 2.4 (b) and 2.4 (d), a simple model can be 

developed. 

A simple, but compelling, discussion of the Anderson localization criteria that provides 

quantitative insight into how and why this physical process occurs is presented using a 3D Kronig-Penny 

potential model (Böer, 2002) with a potential energy well depth   

𝑊 = 2𝑚�𝐼, (2.4.3) 
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where the transfer integral is 

𝐼 =  ∫𝜓∗�𝑟 − 𝑅𝑗�𝐻𝜓�𝑟 − 𝑅𝑗+1� 𝑑𝑟. (2.4.4) 

The value, 𝑊, is the band width, Rj is the location of the jth atom,  𝑚 � is called the coordination 

number (the average number of adjacent accessible sites), and I is the transfer integral.  Assuming 

hydrogen-like potentials (a good approximation for Coulomb centers), the transfer integral can be written 

as 

𝐼 = 𝐼0𝑒𝑥𝑝 �−
𝑟
𝑟0
�, (2.4.5) 

with 

𝐼0 =  �3
2
�1 + 𝑟

𝑟0
� + 1

6
� 𝑟
𝑟0
�
2
� �

2𝑚𝑒𝑒2𝜀gnd
ℏ

.  (2.4.6) 

Here the value 𝜀𝑔𝑛𝑑 is the ground state energy of the wave function and the value  𝑟0 =

 � ℏ2

2𝑚 𝜀𝑔𝑛𝑑
  is a characteristic fall off radius for the wave function (not quite a localization radius); for further 

detail, see Böer (2002).  Given this simple model, the question can be asked what happens when we take a 

crystal potential centered about some average well depth, V0 (see Fig. 2.4a) and perturb it by some change 

potential (well depth), ±∆𝑉.  Clearly, this will produce a broader level energy distribution and create tails 

above and below the original CB edge (see Fig. 2.4b).  Assuming a small ∆V << V0, (Mott and Twose, 

1961) obtained the following approximation for the mean-free path of an electron, 

𝜆 =  ℏ
𝜋
� 2
∆𝑉
�
2 𝜈𝑒
𝑎3𝑁(𝜀)

.  (2.4.7) 

Here a is the mean separation of defects to trap sites. 

Using the well-known, nearly free electron approximation for the DOS near the band edge 

(Ashcroft and Mermin, 1976) 

𝑁(𝜀) =  1
2𝜋2

�2𝑚𝑒
∗

ℏ2
�
3/2

√𝜀𝑑𝜀, (2.4.8) 

Böer (2002) has shown that Eqs. (2.4.7) and (2.4.8), in the limit of small ∆V, become 

𝜆
𝑎

=  32𝜋 � 𝐼
∆𝑉
�
2

=  8𝜋
𝑚�2
�𝑊
∆𝑉
�
2
.  (2.4.9) 

Solving Eq. (2.4.9) for W and isolating the parameter, ∆V, the following expression for the spread 

of energies in terms of the change in potential is 
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𝑊 =  �𝜆

𝑎
𝑚�2

8𝜋
�
1/2

∆𝑉.  (2.4.10) 

This result makes quantitative contact with the phenomenological expression given in Eqs. (2.4.1) and 

(2.4.2).  The constant in Eq. (2.4.1) is now shown to be 𝐶0 =  �𝜆𝑚�2/𝑎8𝜋. The condition for localization 

is  𝜆
𝑎
≲ 1.  An estimate of ∆𝑉 can now be made if we chose the coordination number, 𝑚� , to be ~ 4 typical 

for tetrahedrally bonded semiconductors; Eq. (3.1.14) suggests localization will occur for ∆𝑉 ≳  0.35 𝑊.    

For a complete review of these concepts and a detailed approach to estimating the change in potential 

required to cause disorder see Ramakrishna (1985) in Böer (2002).  In the Anderson analysis, the problem 

of localization is treated in a much more rigorous way with attention paid to the subtle details.  The 

expression obtained by Anderson, however, is essentially the same.  For estimations of more accurate 

localization criterion and for definitions of more complex DOS, see Thouless (1974).  For a detailed 

discussion of Anderson localization see Anderson (1958), Mott (1961), Mott and Davis (1979), Blythe and 

Bloor (2005), and Baranovskii and Rubel (2006),   

This section developed a model for the process of localization, dispersion of states into the gap, 

and the understanding that our simple picture of transport from Section 2.3 is inadequate.  The remaining 

questions regard the value of the DOS in the gap and the effect a specific distribution has on the mobility 

and subsequently, the conductivity.   

2.4.4. The Mobility Edge 

  What is the effect of localization and the resulting DOS in the BG on the mobility of carriers? 

Figure 2.5 shows a hypothetical model DOS in which many of the major elements that comprise our 

discussion are presented.  In particular, the effect of the DOS 𝑁(𝜀) on the mobility (blue line) is depicted.  

When a system becomes localized, the energy-dependent mobility, 𝜇(𝜀), is dramatically reduced due to the 

effects of the DOS in this gap. This is precisely why we see the blue line nearly vanish at the edge of the 

shallow and intermediate disordered states. Localized states within the band gap are now separated from 

extended states by a mobility edge—at an energy 𝜀𝑀𝐸 —instead of a band edge; the region where there is 

negligible mobility is, therefore, called the mobility gap.  The diagram also shows that varying degrees of 

localization and impurities can exist within the mobility gap and will alter the mobility.  Since, on average, 
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the DOS often decreases away from the mobility edges towards the center of the gap, the energy regions of 

localized states in the vicinity of the mobility edges are called band tails (Baranovskii and Rubel, 2006).  

The dispersion or band tailing of states into the band gap is caused by Anderson localization. These tales 

are also referred to as Lifshitz or Urbach tails (Böer, 2002).   

Halperin and Lax (1966) developed a quantum-mechanical theory for deeper tail states, based on 

the statistical fluctuation of the potential, ∆V, by lattice defects that incorporate a more realistic DOS than 

used in our description of localization, Eq. (2.4.8).  The advantage of the Halperin approach is that it 

connects the Bohr radius, screening length, and correlation distance directly with an exponentially decaying 

DOS into the band gap (Böer, 2002).   

FIG 2.5. Composite density of states and mobility plot contrasted with conduction mechanisms. Figure 
identifies the regions within the DOS that participate in specific temperature-dependent phenomena; this is 
contrasted with the resulting mobility.  Thermally activated hopping TAH controls the high-temperature 
behavior and variable range hopping (VRH) controls the low-temperature behavior. Typical band 
conduction begins at the mobility edge and increases with increasing energy; below the mobility edge (in 
the mobility gap) conduction proceeds by hopping. 
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Experimentally, band tails, and DOS distributions have been verified by several methods.  Optical 

absorption is a popular experimental technique that yields information about the basic structure of the DOS 

in the gap.  Shklovskii et al. (1971) have experimentally studied the optical absorption spectrum for 

amorphous materials.  Their data suggest a strong dispersion of states into the BG.  Unfortunately, the 

absorption spectrum only gives a rough sense of the nature of the DOS, as there may be many factors 

determining the overall structure.  The effects of disorder, resulting DOS, and mobility can be 

experimentally tested in many way; these methods include optical absorption (Shklovskii et al., 1971), 

thermally stimulated current emission (Ieda, 1984; Sessler, 1987; Arkhipov and Adriaenssens, 1995; 

Baranovskii and Rubel, 2006), electron spin resonance (ESR), and observation of the current (Monroe, 

1985; Baranovskii and Rubel, 2006).  Shklovskii (1984) and Böer (2002) give reviews of these ideas; 

Shklovskii provides the more detailed approach.   Using the experimental techniques above and numerous 

theoretical endeavors, a set of DOS models has been determined, which allow for a physical understanding 

of the mobility edge, changes in the mobility, and transport phenomenal in general.   This is the subject of 

the next section. 

2.4.5. Density of States Models 

We now return to a description of the energy distribution of the localized states found between the 

mobility edges, shown in Fig. 2.4 (b) and highlighted in Fig 2.5.  Both of these figures suggest that there is 

more than one type of distribution necessary to describe the DOS in the mobility gap.  One needs to 

consider at least two types of distributions, one that monotonically decreases from the band edge and one 

that shows a peak in the distribution within the BG.  It is shown below that an exponential and a Gaussian 

DOS are appropriate models for these two general types for localized DOS.  Many authors have used this 

fact in deriving expressions for the conductivity (Muller, 1963; Thouless, 1974; Davis, 1985).  Often in the 

calculation of relevant integrals, the use of an exponential distribution is easier than even a constant. Thus, 

we can imagine a situation in which a calculation is done with an exponential DOS seeking a solution to a 

constant DOS; this method was used by (Muller, 1963) and has also been used by Monroe (1983, 1985, and 

1986) and Davis (1985) to obtain expressions for the conductivity.   
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For the sake of completeness and to make ties to older literature, we consider six specific DOS 

modes as shown in Table 2.1 and Fig. 2.6.  These are classified by three monotonically decreasing models 

[Linear, Fig. 2.6 (c); Power law, Fig. 2.6 (d) and Exponential, Fig. 2.6 (e)] and three peaked models [delta 

function, Fig. 2.6 (a); constant, Fig. 2.6 (b) and Gaussian, Fig. 2.6 (f)].  It should be noted that in this 

dissertation, all the DOS are functions of energy measured from CB edge toward the VB.  This is often a 

source of confusion in the literature, as many authors will measure energy from the center of a distribution; 

the Gaussian DOS is a good example of this type of notation confusion (Baranovskii and Rubel, 2006).   

Note that the total DOS over a specific energy region in the BG, Nt, can be obtained by integrating the DOS 

distribution, 𝑁(𝜀), over the effective energy region (not the entire BG, as this may include additional DOS 

or provide erroneous values when the distribution is integrated over regions where the DOS does not exist).  

Each DOS model is characterized by an energy scaling or width factor, 𝜀0𝑖  (where i is the type of DOS), and 

𝜀0𝑡  (the first moment, based on the centroid of the distribution, given by  ∫
𝜀𝑁(𝜀)𝑑𝜀∞

0
∫ 𝑁(𝜀)𝑑𝜀∞
0

).  For example, 𝜀0
𝑝 is the 

scaling energy for the power law DOS.   

The interested reader may be concerned that the use of un-normalized DOS models will lead to 

erroneous values when performing calculations, which is correct, and unfortunately has occurred many 

times in the literature as many authors are concerned only with general behavior and not the magnitudes 

involved.  The process of normalizing a given DOS is the same as for any such process; calculate the 

integral of the DOS distribution over the energetic interval that it spans, divide by the total DOS, and make 

sure you get one, i.e., ∫ �𝑁(𝜀)
𝑁𝑡
� 𝑑𝜀 = 1𝜀ℎ𝑖𝑔ℎ

𝜀𝑙𝑜𝑤
.  This normalization is specific to the type of DOS and the 

region of energy that it spans; therefore, it should be calculated in each specific case!  We, therefore, do not 

compute the normalization here, but only provide the DOS models in Table 2.1 along with a few 

representative centroid calculations; these are NOT complete centroid calculations and should be calculated 

for each DOS over each regions that a specific DOS spans in the BG.  The reader is referred to Gillespie 

(2013) for calculations of normalization and moments of the distributions in Table 2.1.  Unfortunately, in 

the literature, there are many cases where the DOS is used in an un-normalized form as only general 

characteristics were of interest to those authors.  A considerable amount of work is required to re-derive 

each result (as we will see in Chapter 3), and that task is, therefore, left as future work.  Further, there are a 
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number of results in Chapter 3 that are discussed, but not derived.  Thus, the form of the DOS models 

presented here are such that a connection to the normalization, and older literature from which the results 

are taken, and future work can be made.  They will not be modified for this reason.   

Taken together these six models represent nearly all the expressions used in the literature to 

describe transport.  They are: 

(a) Delta function DOS: Perhaps the oldest DOS model is the delta function, with a single well-

defined trap energy, 𝜀0𝑡.  It is useful in many applications, monotonically doped crystalline semiconductors 

as an example.  In addition, in complex dynamic trapping models where analytical solutions are difficult, 

the use of this DOS allows for a first order expression of the model.  It is shown below that this model is a 

limiting case of a Gaussian DOS, with a negligible width. 

(b) Constant DOS: The constant DOS is perhaps the most well known model, as it was first used 

(in a slightly different form) to describe VRH (Mott, 1961).  In the derivation of the VRH models by 

Apsley and Hughes (1975), this model takes center stage.  Baranovskii and Rubel (2006) have shown that 

this model and VRH can be described in the context of the Gaussian DOS in the limit of infinite width, 

TABLE 2.1. Density of states models. 
Type of DOS 
Function DOS Expression  Scale Factor 

(Width) 
Centroid 
(Examples Only) 

a) Delta 𝑁(𝜀)  =  𝑁𝑡𝛿(𝜀0𝑡 − 𝜀) 
 𝜀0𝐺 → 0 𝜀0𝑡   All intervals 

b) Constant 𝑁(𝜀)  = ( 𝑁𝑡/ 𝜀0𝑐  ) 
 𝜀0𝑐 𝜀0𝑡  ~

 𝜀0
𝑐

2
   Finite interval 

c) Linear 
𝑁(𝜀) =  

𝑁𝑡
𝜀0𝑙

2 ε 

 
𝜀0𝑙  𝜀0𝑡  ~ �2

3
� 𝜀0𝑙    Finite interval 

d) Power 𝑁(𝜀) =
𝑁𝑡
𝜀0
𝑝 (𝜀/𝜀0

𝑝)𝑃 

 
𝜀0
𝑝 𝜀0𝑡  ~ �𝑃+1

𝑃+2
� 𝜀0

𝑝    
Finite interval 

e) Exponential 

𝑁(𝜀)  = (𝑁𝑡/𝜀0𝑒  )𝑒𝑥𝑝(−𝜀/𝜀0𝑒) 

𝜀0𝑒 ≡  𝑘𝑏𝑇0𝑒 
 

 

𝜀0𝑒 
(1/e width) 

𝜀0𝑡  ~𝜀0𝑒 
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑛𝑙𝑦 

f) Gaussian 
𝑁(𝜀) =

  𝑁𝑡
𝜀0𝐺√2𝜋

𝑒𝑥𝑝 �−(𝜀 − 𝜀0𝑡)2

/2𝜀0𝐺
2� 

 

𝜀0𝐺  
(Standard 
Deviation) in�inite 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑛𝑙𝑦 

𝜀0𝑡  
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𝜀0𝐺 → 0 on the interval 0 < 𝜀 < 𝜀0𝑡. Further, Muller (1963) and Davis (1985) have shown that the constant 

DOS is the small energy limit of an exponential DOS (see below). 

(c) Linear DOS: Used in the early analytical and computational descriptions of energy- dependent 

DOS models, it can be expressed in terms of an exponential; this can be seen by expanding the exponential 

DOS for small energies and keeping the first term.  The linear model is, therefore, obsolete, except perhaps 

in special cases where a linear approximation can simplify the mathematics (This author is aware of no 

such cases).  The linear model has a range on the interval 0 < 𝜀 < 𝜀0𝑙 . 

FIG 2.6. Profiles for the density of states models.  This figure shows the energy profile of the density of 
states for six types of distributions.  (a) Delta function DOS centered at energy,   𝜀𝑡𝑟𝑎𝑝. (b) Constant DOS. 
(c) Linear DOS. (d) Power law DOS. (e) Exponential DOS. (f) Gaussian DOS centered at energy, 𝜀𝑔.  
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(d) Power Law DOS: Used in the early descriptions of energy-dependent DOS models.  This 

follows reasonably from the power law-like behavior of conduction band states in crystalline materials, 

such as Eq. (2.4.8) for which the power, p →1/2.   In practice, this DOS has been replaced by the 

exponential and Gaussian models and is no longer being used.  Baranovski suggests that this type of DOS 

does not describe any known behavior in HDIM (Baranovskii and Rubel, 2006).  The power law model has 

a range limited to 0 < 𝜀 < 𝜀0
𝑝.  The constant and linear DOS models are special cases of the power DOS 

model with p = 0 and p = 1, respectively.  

(e) Exponential DOS: The exponential DOS is one of two prevalent models for HDIM.  In fact, 

this DOS model is one of two that comprise the most powerful tools in understanding disordered transport 

(Scher and Montroll, 1975; Monroe, 1985; Zallen, 1983; Baranovskii and Rubel, 2006).  The other model is 

the Gaussian DOS; it is discussed below.  In Section 2.6, it is shown that the exponential DOS is 

responsible for a type of transport called dispersion, and in Chapter 3 it is shown that the exponential DOS 

leads naturally to a description of low-temperature transport, which cannot be predicted by systems without 

a DOS in the gap.  Recall that in the introduction to this section, it was mentioned that the exponential and 

Gaussian DOS models were sufficient to predict behaviors resulting from the other four DOS model listed 

in Table 2.1.  To make that point clear, a discussion of the scope of the exponential distribution is given in 

terms of other DOS. 

The exponential DOS can be expanded as a power series in small energies, 𝜀 ≪  𝑘𝑏𝑇0𝑒—where T0 

is called a characteristic temperature that determines the strength and shape of the DOS—leading to 

constant, linear, or parabolic terms in the DOS and  𝜀0𝑒 ≡  𝑘𝑏𝑇0𝑒 so that 

𝑁(𝜀) = 𝑁𝑡
𝑘𝑏𝑇0

𝑒 exp �−
𝜀

𝑘𝑏𝑇0
𝑒� = 𝑁𝑡

𝑘𝑏𝑇0
𝑒 �1 − 𝜀

𝑘𝑏𝑇0
𝑒 + 1

2
� 𝜀
𝑘𝑏𝑇0

𝑒�
2

+ ⋯�. (2.4.11) 

The relative strength of each term is determined by the magnitude of the energy, ε, with more 

terms needed for larger energies.  For small energies or very large dispersion, we obtain a constant DOS; 

for large energies and modest dispersion, the full exponential distribution character is required.  In the 

materials considered in this work, and HDIM in general, the exponential DOS and subsequent constant 

DOS are more than satisfactory for describing material behavior.   
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(f) Gaussian DOS: This DOS distribution is the second prevalent model used to describe HDIM. 

The prevalent use of amorphous materials in copier elements and display materials has brought about 

intense study of random organic solids [see Baranovskii and Rubel (2006) and references therein on p. 

240]. Study of these materials has led to the use of a DOS that describes pi- or sigma-bonded main chain 

polymers, polyvinalcarbozal, as an example.  The width of the energetic distribution is given by 𝜀𝐺 and the 

center of the distribution is 𝜀0𝑡.  

The Gaussian DOS can be expanded as a power series in small energies, (𝜀 − 𝜀0𝑡) ≪  𝜀𝐺, 

𝑁(𝜀)   𝑁𝑡
𝜀0
𝐺√2𝜋

𝑒𝑥𝑝 �−(𝜀 − 𝜀0𝑡)2/2𝜀0𝐺
2� =   𝑁𝑡

𝜀𝐺√2𝜋
�1 − 2 �(𝜀−𝜀0

𝑡 )
2𝜀0

𝐺 �
2

+ 1
2
�(𝜀−𝜀0

𝑡)
2𝜀0

𝐺 �
4

+ ⋯�. (2.4.12) 

For (𝜀 − 𝜀0𝑡)/𝜀0𝐺, it can be seen that if 𝜀0𝐺  is large or the energy (as measured from the center, 𝜀0𝑡) is very 

small, this system should act like a constant (energy-independent DOS).  Conversely, if the width of the 

distribution 𝜀0𝐺 → 0, then the Gaussian DOS will act like a delta function (Jackson, 1998).  The former has 

been shown to produce VRH behavior (Mott and Twose, 1961; Baranovskii and Rubel, 2006).  To this 

author’s knowledge, using the Gaussian DOS as a delta function approximation in HDIM for the  

calculation of transport characteristics has never been considered.  (It may be obvious.)   

This section outlined six types of DOS distributions and reduced this set to two distributions, the 

exponential and Gaussian DOS models.  A good description of the nature of the DOS is clearly important 

in understanding the nature of transport.  However, the machinery to use this information has not been 

presented.  One more set of ideas is needed before developing this needed mathematical machinery.  How 

do the carriers interact with the DOS?   This is the subject of the next section and it will be shown that the 

energy dependence of a given localized state is critical to understanding how long a carrier will remain 

trapped, thus determining the carrier lifetime and mobility. 

2.5. Interacting with Disorder 

At this point, it is clear that the picture of conduction in HDIM’s is complex, requiring a deep 

understanding of the nature of the DOS and the way in which carriers in extended states interact with 

localized states in the gap.  This subject is, in and of itself, very extensive, and is greatly simplified here to 

present only the basic notions required to understand the dynamic nature of transport in HDIM.  The 

understanding of carrier capture and release, in addition to inter-band and intra-band interactions, is built on 
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the semiconductor and amorphous semiconductor fields (Rose, 1951, 1963; Mott and Twose, 1961; 

Ambegaokar et al., 1971; Rudenko and Arkhipov, 1979, 1982a, 1982b, 1982c; Arkhipov and Rudenko, 

1979; Arkhipov et al., 1979, 1985a, 2006; Blythe and Bloor, 2005).   

Fundamentally, the interactions of localized states with carriers, both within the mobility gap and 

between localized and extended regions, are based on thermal statistics.    When a carrier is injected into an 

extended state above the mobility edge, that carrier will begin to lose energy through interactions with the 

material’s local atomic structure.  This process is generally called thermalization.  Thermalization continues 

until that carrier no longer has enough energy to escape from some localized potential well.  At this point, 

that carrier is considered captured or trapped.  Once trapped, the release of the carrier is dependent on the 

phonon spectrum that imparts energy to the trapped carrier.  Thus, the question becomes how long will the 

carrier remain trapped before receiving the necessary energy to escape.  That is, what is the lifetime of the 

carrier in the trapped state?  The answer depends on the material’s temperature, and the energy needed for 

the carrier to be released (the well depth of the state in the gap).   

The conductivity is a function of both the number of carriers in the extended states, the applied 

field, and the mobility of those carriers [see Fig. (2.2.1)].  The mobility is connected to the lifetime of a 

carrier both in a trapped state and in the CB:   

𝜇𝑡𝑟𝑎𝑝 =  𝜏𝐶𝐵
𝜏𝐶𝐵+𝜏𝑡𝑟𝑎𝑝

𝜇𝑒. (2.5.1) 

Here  𝜇𝑡𝑟𝑎𝑝 is the reduced trap mobility, 𝜏𝑡𝑟𝑎𝑝 is the lifetime of a carrier in a trapped state, μe is the trap-free 

mobility (the mobility in the CB extended states), and  𝜏𝐶𝐵  is the lifetime in the CB.   

In order to give a clear description of the interaction of carriers with disorder, a simple band model 

is introduced.  Figure 2.7 shows this model with a delta function DOS and a single trapping process.  This 

model is the discreet counterpart of Fig. 2.4 (b), and is commonly used to describe extrinsic doped 

semiconductor behavior.  The power of this model will become clear below and in Section 2.8, as will the 

ease with which we can include a full description of the effects of disorder.  

How can we quantify the interaction of carriers in extended states using the picture in Fig. 2.7?   It 

turns out that a simple rule used in many transition rate problems can be applied to develop our 

understanding of carrier interactions with disorder.  The transition rate between two sites A and B, 𝑑𝐴𝐵
𝑑𝑡

 is 
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given by the product of an interaction coefficient, 𝛼𝐴𝐵 , some number of participating particles,  𝑁𝐴, at site 

A, some number of B sites,  𝑁𝐵, to which those particles can go, and the probability that the transition will 

occur, 𝑓𝐴𝐵.   

𝑑𝐴𝐵
𝑑𝑡

=  𝛼𝐴𝐵  𝑁𝐴𝑁𝐵  𝑓𝐴𝐵. (2.5.2) 

The transition rate 𝑑𝐴𝐵
𝑑𝑡

 might be the rate at which electrons leave the conduction band and fill a trap state, 

then 𝑑𝐴𝐵
𝑑𝑡

→ 𝑑𝑛𝑒𝑡
𝑑𝑡

 ; in that case  𝛼𝐴𝐵 → 𝛼𝑒𝑡, 𝑁𝐴 → 𝑛𝑒, 𝑁𝐵 → 𝑁𝑡, and 𝑓𝐴𝐵 → 𝑓𝐹𝐷, where 𝑓𝐹𝐷 is defined as the 

Fermi-Dirac distribution function.  This is exactly the process described in Fig. 2.7.  An extended 

discussion of the application of Eq. (2.5.2) will be given in the following sections.  Equation (2.5.2) 

essentially describes all the interactions with disorder that we will encounter in this dissertation.  It provides 

the connection between microscopic and macroscopic physical processes in the HDIM. An example of how 

this concept is used is given below and expanded upon in Section 2.6 to define the trapping equations.  

First, a discussion of each of the terms in Eq. (2.5.2) is needed.   

𝑁𝑡 
𝜀𝐹 

𝑛𝑒 
𝜀𝐶𝐵 

𝜀𝑉𝐵 

𝑛𝑡 

𝑁𝑐 

𝑁𝑣 

𝜀𝑡𝑟𝑎𝑝  
Phonon 
Photon 

𝜀   

       𝜀𝑓   

FIG 2.7.  A simple DOS model.  This figure shows a simple delta function DOS model centered at 𝜀𝑡𝑟𝑎𝑝, 
dark Fermi-energy, 𝜀𝐹 (heavy dashed line), Fermi-level, 𝜀𝑓 (light dashed line), number of carriers in the CB 
(extended states),  𝑛𝑒 , density of traps,  𝑁𝑡 , in BG, density of conduction states,  𝑁𝑐 (blue region), and 
density of valence states, 𝑁𝑣 (tan region). Here a single transition from the CB to a trapped state,  𝑛𝑡 , is 
shown with the release of phonons or photons.  Free electrons are denoted by an empty circle, empty traps 
by a dash, and filled traps by a black circle.  
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This discussion begins with the interaction coefficient and its constituent parts and concludes with 

a discussion of carrier release (ionization) and the distribution function  𝑓𝐴𝐵 (in this case, the Fermi-Dirac 

distribution function).  Along the way, several of the ideas surrounding Eq. (2.5.2) will be considered 

including capture cross sections, carrier lifetimes, carrier release, and the Poole-Frenkle effect.  This 

section will conclude with a discussion of Eq. (2.5.2) as an example to explain carrier capture into a trapped 

state from the conduction band.   

The interaction coefficient describes the strength of the interaction between some group of 

participating particles (carriers or trapped electrons, in this case) and the place to which those particles will 

go (traps, the CB or recombination with holes in the VB).  It is the product of a capture cross section for 

say, a trap, and the velocity of the transitioning particle (in this case, the thermal velocity), which gives  

𝛼𝐴𝐵 = sc𝑣𝐴  (2.5.3) 

with dimensions  𝐿
3

𝑡
.  For electrons,  𝑣𝐴  is generally the thermal velocity,  𝑣𝑇, which is strongly dependent 

on the phonon spectrum and, therefore, the material temperature.  For details on the electron thermal 

velocity, see Ashcroft and Mermin (1976b), Böer (2002), or Kao (2004).  The capture cross section, 𝑠𝑐  is an 

area that is representative of the atomic center (trap) closest to the particle.  In fact, this process is exactly 

electron capture by an atomic center and is discussed below.     

2.5.1. Capture Cross Sections 

The simplest model of carrier capture follows from the Coulomb interaction between a positively 

charged center and a free electron.  The Coulomb attractive center is a specific example that is well 

documented for semiconductors (Rose, 1963; Sessler, 1987).  Commonly, the Columbic capture center is 

referred to as Langevin recombination (Tyutnev, 1996; Tyutnev et al., 1996; Arkhipov, 1993b; Pivrikas, 

2005).  What is the radius, 𝑅𝑐 , beyond which a passing carrier will not be captured?    We can estimate  𝑅𝑐  

by asking what the minimum probability distribution of an electron is around a Coulomb center; i.e. where 

is the probability the lowest?  The probability of finding an electron at some radius, r, must be proportional 

to the product of some spherical area (imagine a cross section of a funnel created by a potential well) and a 

Boltzmann factor that is scaled to reflect the Coulomb potential, 

𝑃(𝑟) = 4𝜋𝑟2𝑒𝑥𝑝 �− 𝑞𝑒𝑉(𝑟)
𝑘𝑇

�.  (2.5.4) 
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Setting the potential to 𝑉(𝑟) =  − 𝑞𝑒

𝜖𝑟𝑟2
 and minimizing the resulting function results in   

𝑅𝑐 = 𝑞𝑒2

8𝜋𝜖𝑟𝜖0𝑘𝑏𝑇
.   (2.5.5) 

If we assume the cross section is related to the capture radius by the area formula, we obtain 

𝑠𝑐 =   𝜋𝑅𝑐2 =  𝑞𝑒4

64𝜋 (𝜖𝑟𝜖0𝑘𝑏𝑇)2
,  (2.5.6) 

which has the dimension L2. 

For a material like LDPE, with a relative dielectric constant of ~ 2.4 at room temperature, we 

estimate a cross section of ~ 4 ∗ 10−12𝑐𝑚2.   Reassuringly, this is in good agreement with published values 

and capture cross sections obtained in the analysis of LDPE in this dissertation (see Chapters 4 and 5).   

At first glance Eq. (2.5.6) has one immediately interesting result.  Since the cross section scales 

as 𝑇−2, at zero temperature the capture cross section should be infinite.  At very low temperatures, there is 

no thermal energy to keep an electron (even one passing a very large distance away) from falling into a 

center or to excite it once captured.  This temperature behavior and calculated magnitude is in good 

agreement with the literature.  However, in Section 2.4 the DOS was found to have strong energy 

dependence.  Since this energy dependence follows from deviations in the lattice potential, it is expected 

the capture cross section will also have some energetic dependence.  In addition, there are a number of 

types of centers that can act as traps in addition to Coulomb centers; for example, regions of strong 

polarization and collective atomic behavior can lead to local potentials, which are not Columbic in 

character.  In general, it is a good approximation to use the Columbic model, particularly in HDIM, as the 

centers do not generally interact and their potentials are, therefore, largely undisturbed.  This is not true 

when high fields are present, and this question will be address when ionization is discussed below. For a 

more complete review of capture centers and cross sections see Rose (1951, 1955, 1963), Ashcroft and 

Mermin (1976), Sessler (1987), Sah (1991), and Böer (2002). 

2.5.2. Lifetimes 

A brief description of what a lifetime means and how it is used is presented here.  In the simplest 

form, the rate of release or capture of a carrier determines its lifetime in a given state, for example, lifetime 

in the CB.  From the discussion of the transition rate of carriers, an estimate of the lifetime 𝜏 of a carrier 
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can be found as  𝜏 = 1/[(# 𝑜𝑓 𝑝𝑙𝑎𝑐𝑒𝑠 𝑡𝑜 𝑔𝑜)(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟)(𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)]. This 

relation can be used to express the lifetime of a carrier in the conduction band in the presence of trapping, 

where the probability of trapping is much greater than that of recombination. 

𝜏𝑒𝑡 = 1
𝑛𝑡𝜈𝑇𝑠𝑐

 .  (2.5.7) 

This is usually the case when the fraction of filled traps is small, for example, in the limit of low trapped 

carrier density or higher temperatures. 

However, if recombination or other processes are involved (which is almost always the case), then 

the lifetime equation must be modified.  The derivation of extended, trapped, and recombination lifetimes 

requires the development of equations describing the energy, dose, field, and time-dependent number of 

carriers in both the extended and trapped states before complete carrier lifetime equations can be obtained.  

For excellent discussions regarding the derivation of carrier, trapped carrier, and recombination lifetimes 

with physical interpretations see Rose (1951) and Sessler and Yang (1999). I suggest that the reader begin 

with Rose and then follow with Sessler.  Further discussions can be found in Fowler (1956), Elliott (1990), 

Sah (1991), Kao (2004), and Baranovskii and Rubel (2006).    

2.5.3. Ionization  

Thermally induced ionization occurs for both extrinsic and intrinsic disorder in nearly every 

transport mechanism considered in this dissertation.  Thermal ionization is a statistical process, since it 

usually needs the presence of several phonons simultaneously (multi-phonon process) to deliver an energy 

significant enough to ionize an atom and contribute to conduction. In highly disordered and semiconducting 

materials, a typical starting point for describing the phonon spectrum is the Kubo-Greenwood treatment and 

its subsequent extension to DC conductivity (Mott and Davis, 1979).  The simultaneous phonon excitations 

can be interpreted as a process involving a transient giant oscillation of a lattice atom (Sah, 1991).  This 

results in the total energy of the ionized carrier exceeding that of the bottom of the CB.  Further excitations 

of carriers from the trapped states occur by multi-phonon processes, as well as by exciting carriers from 

defects in the gap.   
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The simplest model of thermal ionization is a crystalline semiconductor, where the fraction of 

electrons excited across the band gap (without disorder) is given by the Fermi-Dirac (FD) distribution 

function (Ashcroft and Mermin, 1976),   

𝑓𝐹𝐷(𝜀) =  1

1+𝑒𝑥𝑝�𝜀−𝜀𝐹𝑘𝑏𝑇
�

= �1 + 𝑒𝑥𝑝 �𝜀−𝜀𝐹
𝑘𝑏𝑇

��
−1

, (2.5.8) 

where 𝜀𝐹 is the Fermi level.  The probability of promotion to the CB of an electron from either a trapped 

state or a valence state is given by Eq. (2.5.8).  However, the de-population or thermalization of carriers 

from the CB edge into trapped states or recombination centers is given by one minus the FD distribution, 

1 − 𝑓𝐹𝐷(𝜀) 
𝑒𝑥𝑝�𝜀−𝜀𝐹𝑘𝑏𝑇

�

1+𝑒𝑥𝑝�𝜀−𝜀𝐹𝑘𝑏𝑇
�

=  �1 + 𝑒𝑥𝑝 �−(𝜀−𝜀𝐹)
𝑘𝑏𝑇

��
−1

. (2.5.9) 

Consider Fig. 2.7 and its distribution of carriers.  In this case, the assumption is that 𝜀𝑡𝑟𝑎𝑝 ≫ 𝜀𝐹.  

This assumption is valid as long the ratio of energy to temperature in the exponential term is large.  This 

means that the temperature is not too high and the states are not too close to the Fermi level.  For low 

temperatures, shallow states, and modest carrier concentrations, the Boltzmann approximation is adequate.  

Unless otherwise stated, the Boltzmann distribution function will be used for simplicity in this dissertation.  

Using this approximation yields: 

  
𝑓𝐹𝐷(𝜀) →              𝑓𝑀𝐵(𝜀) = 𝑒𝑥𝑝 �−(𝜀−𝜀𝐹)

𝑘𝑏𝑇
�           {Excitation}     .

1 − 𝑓𝐹𝐷(𝜀) →      𝑓𝑀𝐵(𝜀) =  1                               {Capture}         .
      (2.5.10) 

Very often the probability of escape (or capture) from a site is written as a frequency or frequency 

factor 𝑣𝑡𝑒, where the subscript te refers to the transition from a trapped state to the CB.  Thus, we can write 

a general escape (capture) probability as 𝑣𝐴𝐵, where the transition occurs from state A to state B.  It is, in 

fact, the product of the interaction coefficient, the number of available places the trapped carrier can 

transition to, and the probability that the transition will occur (where we now use the Boltzmann 

approximation).  

𝑣𝑡𝑒(𝜀) = 𝑣𝑡𝑒exp �− 𝜀𝑡𝑟𝑎𝑝
𝑘𝑏𝑇

�, (2.5.11) 

and 

 𝑣𝑡𝑒 =  𝛼𝑡𝑒𝑁𝑒. (2.5.12) 
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Equation (2.5.12) describes what is termed the frequency factor. Since 𝛼𝑡𝑒𝑁𝑒  is a function of the 

phonon spectrum the attempt-to-escape frequency is also the direct result of phonon processes (Mott and 

Davis, 1979). It should be noted, Schmidlin (1980) provides an excellent intuitive argument for the AC 

conductivity and a physical connection with the phonon frequency, iω , 

 𝑣0 =  𝜔𝑖
2𝜋

. (2.5.13) 

It is useful to have information about the AC conductivity of a material, as it provides an alternative 

determination of the frequency factor.   

As a simple example, consider the effects for Coulomb attractive centers that are close to the CB.  

The attempt-to-escape frequency can be estimated from the ionization radius, Rc, for a specific frequency 

and the rms (thermal) velocity of the electron (Ashcroft and Mermin, 1976; Böer, 2002),   

𝑣0 =  𝜈𝑟𝑚𝑠
2𝜋𝑅𝑐

 . (2.5.14) 

Using our relation for the capture cross section, Eq. (2.5.6) we can then write, 

𝜈0 =  𝜈𝑟𝑚𝑠
2𝜋�𝜋𝑠𝑛

 .  (2.5.15) 

We can estimate the value of v0 using this result and assuming a room temperature rms (thermal) velocity of 

~ 107 cm/s and a capture cross section consistent with HDIM of ~ 10-12 cm2.  From this one obtains a value 

for the attempt to escape frequency of ~ 1012 attempts per second.  In the literature, values for the attempt to 

escape frequency are consistently quoted in the range 1012 Hz to 1013Hz for shallow centers (energetically 

close to the CB) (Blythe and Bloor, 2005).  Boer notes here that this approximation is only useful for 

Coulomb attractive centers, which are common in many doped semiconductors and HDIMs.  The literature 

suggests that 𝜈0 lowers considerably for deep states; for low temperatures in LDPE this number can 

decrease to 104 Hz (Teyssedre et al., 2003, 2005, 2009).  This is not surprising as the rms (thermal) velocity 

is a temperature-dependent function.  Further with increasing disorder and decreasing number of interacting 

sites (wave function interaction), we expect both the cross section and thermal velocity to be affected.   

The remaining ionization mechanisms are largely due to impact processes.   In these systems, an 

electron either enters the system with or gains enough energy (between scattering events) to exceed the 

ionization energy (binding energy) of a center or state in the VB.  This process excites or frees an 

additional carrier or carriers (usually a distribution of carriers).  This process of impact ionization happens 
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in shallow states, across the band gap, and at band edges (Auger processes, as an example).  These concepts 

are pertinent to radiation induced conductivity (Rose, 1951) and breakdown (Fothergill, 1998) and will, 

therefore, not be discussed in this dissertation.   For a very comprehensive review of ionization processes 

and energy exchange mechanisms involved in semiconductors and HDIM see Sah (1991).  All of the 

ionization processes can be enhanced by external fields, both electric and magnetic.  In particular, for very-

high electric fields one should consider the Poole-Frenkle effect.  External and internal electric fields are 

well known for their strong effects on ionization processes; the simplest example of this is the acceleration 

of free charges by a strong electric field within a material whose subsequent energy can cause many types 

of ionization processes to occur.  This phenomenon and its results have been discussed in (Poole, 1916, 

1917; Sessler, 1987; Fothergill, 1998; Blythe and Bloor, 2005; Brunson, 2009; Sim et al., 2012).  A short 

discussion of the basic Poole-Frenkle field effect is given below, with attention paid specifically to its 

effect on the carrier excitation rate 𝑣(𝜀).  

2.5.4. Poole-Frenkle Field Effect 

The Poole-Frenkle (PF) effect is a high field enhancement of the measured current that typically 

scales as √𝐹  (Wintle, 1983; Fothergill, 1998; Kao, 2004; Brunson and Dennison, 2006, 2007; Dennison et 

al., 2009a; Brunson, 2009).  Since the PF effect is covered widely in the literature, we give only a very 

brief focused introduction.  Such field-dependent behavior can be ascribed to many processes (Schottky 

injection, as an example).  Here the physical explanation of the PF effect is used to provide an 

understanding of the effects of very high fields on HDIM.   

Consider a Coulomb attractive center and an applied field of sufficient strength to tilt the band 

(i.e., to distort the local atomic potential).  The thermal ionization energy is lowered, thus enhancing the 

release rate of carriers; see Böer (2002) following Frenkel (1938) and Poole (1916).  Consider the action of 

an internal electric field over a distance, z, acting on a simple Columbic potential,  

𝑉(𝑧) =  𝑞𝑒
4𝜋𝜖𝑟𝜖0𝑧

− 𝐹𝑧.   (2.5.16) 

Figure 2.8 shows the lowering (also called bending) of the electron binding energy by a factor  𝛿𝜀𝑃𝐹 as a 

result of the applied field.  The location where the barrier is lowered by  𝛿𝜀𝑃𝐹 is 𝑞𝑒𝑉𝑚𝑎𝑥 , and can be found 

by setting  𝑑𝑉
𝑑𝑧

= 0 from Eq. (2.5.16); this yields an estimate for the change in binding energy, 
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𝛿𝜀𝑃𝐹 = 𝑞𝑒�
𝑞𝑒𝐹
𝜋𝜖𝑟𝜖0

 .  (2.5.17) 

Using our simple Boltzmann approximation, Eq. (2.5.10), for release of a carrier from a trap 

center, we have the frequency at this lowered energy barrier of 

𝜈𝑃𝐹 =  𝜈0𝑒𝑥𝑝 �
𝜀𝑐𝑏− (𝜀𝑐𝑒𝑛𝑡𝑒𝑟− 𝛿𝜀𝑃𝐹)

𝑘𝑏𝑇
�,  (2.5.18) 

where 𝜀𝑐𝑒𝑛𝑡𝑒𝑟  is the energy of the trap center in the BG.  Since the phonon spectrum is responsible for 

release of a carrier from a potential well, one can estimate the field, 𝐹𝑃𝐹, at which the Poole-Frenkle 

mechanism becomes important by setting the change in energy, 𝛿𝜀𝑃𝐹, equal to the thermal energy, 𝑘𝑏𝑇 y:   

𝐹𝑃𝐹 =  𝜋𝜖𝑟𝜖0
𝑞𝑒3

(𝑘𝑏𝑇)2.  (2.5.19) 

FIG 2.8.  The Poole-Frenkel effect on a Coulombic center.  Depicts the change in a Coulombic center due 
to an applied field, F, strong enough to deform the local potential.  Dark lines show the unperturbed bound 
potential and free-state energy. Lighter lines show the corresponding energy levels for a charge in the 
presence of a strong field. 𝛿𝜀𝑃𝐹 is the reduction in the potential barrier die to the field. 
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It is common in the literature to define the Poole-Frenkle factor, 𝛽𝑃𝐹 = �𝜋𝜖𝑟𝜖0

𝑞𝑒3
�
−1/2

, which gives the 

familiar form,  𝛿𝜀𝑃𝐹 = 𝛽𝑃𝐹𝐹1/2.  Note, that this simple derivation does not account for atomic number; see  

Böer (2002) for an extension of this argument.   

We can now use Eq. (2.5.18) with 𝛿𝜀𝑃𝐹 = 𝛽𝑃𝐹𝐹1/2.  This yields an estimate for the change in the 

carrier release rate due to the PF effect.  The classical Poole-Frenkel model generally yields an ionization 

energy that is too high when compared with experiment.  In addition, the threshold field,  𝐹𝑃𝐹, is generally 

not observed.  What is useful is that in experimental data, the onset of this ionization process is marked by 

the change in field dependence from F to √𝐹.  Very often this onset corresponds with the onset of space 

charge injection discussed in Section 2.6 (Montanari et al., 1998, 2001, 2005; Teyssedre et al., 2001, 2005, 

2009; Montanari and Morshuis, 2005).  

2.5.5. Interacting with Disorder 

We now return to a discussion of the transition rate, expressed by Eq. (2.5.2), and the description 

of a carrier’s (electron’s) interaction with disorder.  This is now feasible, as we have defined the interaction 

coefficient, 𝛼𝐴𝐵, (see Eq. (2.5.3)), and the probability distribution function,  𝑓𝐴𝐵 (see Eqs. (2.5.8) and (2.5.9) 

or Eq. (2.5.10)), in addition to some of the ways in which these values might be modified.  Recall that the 

transition rate between two states is given by (Eq. 2.5.2), 

 𝑑𝐴𝐵
𝑑𝑡

=  𝛼𝐴𝐵  𝑁𝐴𝑁𝐵  𝑓𝐴𝐵.  (2.5.20) 

Again consider Fig. 2.7 and the interaction shown.  In this case, the figure represents the decrease in the 

number of carriers in the conduction band, 𝑛𝑒, by trapping.  (Assume some carrier distribution has been 

injected into the CB.)  The number of candidates that can participate in the interaction is 𝑁𝐴 = 𝑛𝑒, and the 

number of avalible places that a carrier can be trapped is the difference between the total number of traps 

and the number of electrons in the traps at a given time (i.e., the number of filled traps), 𝑁𝐵 =  (𝑁𝑡 − 𝑛𝑡). 

Using the Boltzmann expression, Eq. (2.5.10) for the downward or trapping probability, ↓ 𝑓�𝜀𝑡𝑟𝑎𝑝� ≈  1, 

and replacing these quantities in Eq. (2.5.20) yields 

  𝑑𝑛𝑒𝑡
𝑑𝑡

≈  𝛼𝑒𝑡𝑛𝑒(𝑁𝑡 − 𝑛𝑡)1.  (2.5.21) 
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Equation (2.5.21) is the rate at which the number of electrons in the CB will decrease. Here the interaction 

coefficient subscript takes on the nomenclature used to describe a given process,  𝛼𝑒𝑡 ,as an example.  It will 

be shown that  𝑛𝑒𝑡  is, in fact, a function of time.  Equation (2.5.21) with the time dependence describes (to 

first order) the short, time-dependent trap-filling process in HDIM.  As we will see, it is used to describe 

electron beam deposition of charge into LDPE and KaptonTM discussed in Chapter 4. 

We can extend this discussion to include several types of processes by considering the number of 

electrons available to participate in process, the number of places those electrons can go, and the 

probability that the transition will occur along with the respective interaction coefficient.  Consider a 

complete cycle of processes in which electrons are first excited by some external source from the VB to the 

CB. Those electrons then become trapped and after some time are re-excited into the CB to finally 

recombine with holes in the VB. This is a common process found in HDIM when either light or high-

energy electrons are incident on the material.  Consider Fig. 2.9 in which these processes are represented, 

two excitation processes, (a) and (c), and two de-excitation processes, (b) and (d), (one trapping and one 

recombination).  For the moment, we will ignore processes (e) and (f). Each of these processes is described 

by the probabilistic model given by Eq. (2.5.20), where the interaction coefficient  𝛼𝐴𝐵 is defined so that it 

denotes the process considered: 𝛼𝑒𝑡 is CB to trapped state, 𝛼𝑡𝑒 is trapped state to CB, and  𝛼𝑒𝑟  is CB to 

recombination center (usually holes left by electron-hole pair generation). Process (a) demonstrates an 

excitation (generation) term, Gex, which gives the rate at which electron-hole pairs are generated in the 

material—from the VB—and the rate at which electrons are excited to the CB. Figure 2.9 (a) has the form 

given by Eq. (2.5.20), but is written in a condensed notation where �̇� is called the dose rate and 𝜌𝑚 is the 

charge density.  The dose rate term acts as an interaction coefficient, or probability term, and includes the 

number of available sites for excited electrons, while 𝜌 provides the number of available participants.  All 

terms in Fig. 2.9 have an excitation and de-excitation term, number of available carriers to participate 

(electrons), and number of places that the participants can go. For processes (b) and (d) the de-excitation 

term 1 − 𝑓𝐹𝐷(𝜀)  ≅ 1, where 𝑓𝐹𝐷(𝜀) ≪ 1.  What should be clear is the need to understand which processes 

are important in the conduction of electrons and trapping of charge in a given HDIM.  We now have all the 

basic building blocks to construct the transport equations for a simple delta function DOS.  Section 2.6 uses  
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FIG 2.9. The six easy pieces of transport in HDIM.  Free electrons are denoted by an empty circle, empty 
traps by a dash, and filled traps by a black circle. The vertical line of dark and open circles represent the 
distribution of filled and empty trap states. (a) Thermal processes or external irradiation that delivers 
energy sufficient to excite carriers across the band gap, creating holes in the valence band. (b) Carriers in 
the conduction band become trapped by localized states via thermalization (c) Carriers are re-excited into 
the conduction band from trapped states.  (d)  Carriers in the conduction band recombine with a hole in the 
valence band.  (e) Low temperature transport; the CB is replaced by the effective transport energy (TE). (f)  
Low-temperature recombination that limits the flow of carriers in the transport band.   
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the methods described in this section to extend the delta function DOS model to include the complete 

energy dependence of more general DOS models and to develop the associated, more complete transport 

equations. 

2.6. The Transport Equations with Trapping 

The goal of this chapter is the development of a set of transport equations that can describe charge 

transport in HDIM, using a one-dimensional approach and the simple models for the DOS outlined in 

Section 2.4.5.  Section 2.3 concluded with an explanation of the transport equations, which lacked any 

detailed description involving disordered states.  In addition, no physical basis had been developed to 

describe how charge could interact with disorder beyond a delta function DOS.  Sections 2.4 and 2.5 

addressed the problems associated with the introduction of a simple energy-dependent disordered DOS for 

disordered systems with trap states and for interactions with that disorder.  Using the tools developed in 

those sections, a complete set of transport equations is now developed, beginning with the trapping 

equation. Stated another way, we extend the four processes illustrated in Figure 2.9 by including two 

additional diagrams that depend on the energy distribution of the trap states. 

Again consider Fig. 2.9, in which six transition processes are depicted, both as diagrams and 

mathematical models.  The basic picture of the band model used in Section 2.5 and Fig 2.5 is retained in 

Fig. 2.9 with the exception that our delta function DOS—used in Fig 2.7—can now be any of the DOS 

models considered in Section 2.4.5 (see Fig. 2.6). The primary difference is the integration of the resulting 

trapping equations over the energy spectrum of the DOS used; thus, the mathematical models in Fig. 2.9 

have been written as functions of energy.  For convenience, it will be assumed that the spatial dependence 

of the trapped carriers is negligible (i.e., the trap distribution is homogeneous and isotropic); as the 

transport equations are developed, it will become clear how to include additional dependencies, such as 

charge position within the material.  This is done to avoid confusion in the development of the trapping and 

transport equations.  For examples of the application of these equations with spatial dependence see for 

penetrating radiation or RIC Fig. 1.4 (c) (Weaver et al., 1977; Arkhipov and Rudenko, 1982c; Arkhipov, 

1986, 1993a; Arkhipov et al., 1987a, 1987b, 1997c; Arkhipov and Nikitenko, 1999); for nonpenetrating 

radiation (Sessler, 1987); for RIC and nonpenetrating radiation, see Figs. 1.4 (a) and (b) (Tyutnev et al., 
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1982, 1983a, 1983b, 1984a, 1984b, 1984c, 1984d, 1985a, 1985b, 1985c, 1990; Dunaev et al., 1992; 

Arkhipov et al., 1997b, 1997c); and for parallel plate configurations [see Figs. 1.4 (c) and (d)] (Dissado and 

Fothergill, 1992; Dissado et al., 2006).  

The transition rate processes depicted in Fig. 2.9 are: (a) excitation by thermal or external sources 

across the band gap, (b) trapping of carriers in extended states, (c) excitation (detrapping) of trapped 

carriers, (d) recombination of carriers in extended states with immobile holes in the VB, (e) interstate 

transitions, and (f) recombination of carriers in deep trapped states with holes in the VB.  In process (a), 

thermal excitation across the large band gap in HDIMs is negligible and therefore, only external sources 

(excitation) are considered here.   

The generation of carriers—specifically electrons—in the material, Gex(z), due to an incident 

electron beam (or any external source), is a function of distance into the material.  Beyond a penetration 

depth, zp, in the material excited electrons, carriers are no longer generated; but, charge carriers are 

deposited from the beam.  To distinguish these two processes, the number of electrons deposited per unit 

time is given by K(zp); (see Fitting, 1975; Fitting et al., 1979; Davies and Dennison, 1997; Thomson et al., 

2002; Clerc et al., 2006; Dennison et al., 2006b; Kite, 2007; Cornet et al., 2008; Wilson and Dennison, 

2010).  We will return to a discussion of the deposition term at the end of this section and the generation 

term is discussed further in Chapters 4 and 5.   

Thermal excitations (phonons) are considered only in process (c), whereas the release of phonons 

and photons are considered in processes (b), (d), and (f).  A discussion of the process (f) and the probability 

of this transition occurrence, 𝑃𝑡𝑟(𝜀) (which is very small), and the mathematical description of (e) are left 

until Chapter 3, as they apply only to low-temperature conductivity and represent a wholly new type of 

transport process.  The key piece of information to take away from processes (e) and (f) is that, whatever 

these processes may be, they are governed by transition rates to and from trapped states and some type of 

states in which transport can occur; thus, these processes must be governed by a set of transport equations 

that include trapping as a fundamental rate limiting process.   

The processes in Fig. 2.9 represent all the interactions with disorder necessary for describing the 

transport of electrons in HDIM.  Thus, the sum of processes (transition rates) involved in a given 

application will yield the appropriate transport equations.  In addition to the changes in the relative 
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concentration of electrons in the extended and localized states, a set of conservation equations that connect 

the total number of electron carriers in the material at any time, t, is needed: 

𝑛𝑡𝑜𝑡(𝑡) = 𝑛𝑒(𝑡) + 𝑛𝑡(𝑡),        (2.6.1) 

and the total number of electrons trapped in all the localized states at all possible trap depths and at some 

position, zp, is given by 

𝑛𝑡(t;  𝑧𝑝) = ∫ 𝑛𝑡�𝜀, 𝑡;  𝑧𝑝� 𝑑𝜀𝜀ℎ𝑖𝑔ℎ
𝜀𝑙𝑜𝑤

. (2.6.2)   

𝜀𝑙𝑜𝑤 and 𝜀ℎ𝑖𝑔ℎ refer to the top and bottom of the DOS that contains the trapped electrons. 

At this point we can look at a specific application to develop an expression for the transport 

equations.  Assume that electrons are excited from the VB to the CB, leaving holes in their absence [as in 

Fig. 2.9 (a)], but that no deposition occurs.   Such behavior can be expected for penetrating radiation, such 

as in Fig. 1.4 (a) (iii).  Developing the trapping equations is now a simple matter of summing over the 

processes in Fig. 2.9 that relate the change in the number of electrons in extended and localized states 

(Weaver et al., 1977).   To obtain the time rate of change in the number of electrons in the CB due to 

interactions with disorder (trapping and release of electrons), we integrate the energy-dependent processes  

(b), (c), and (d), then sum (a) - (d) - (b) + (c) to obtain,  

𝑑𝑛𝑒(𝑡)
𝑑𝑡

= 𝐺𝑒𝑥�𝑡, 𝑧𝑝� − 𝛼𝑒𝑟𝑛𝑒(𝑡)[𝑛𝑒(𝑡) + 𝑛𝑡(𝑡)] − 𝛼𝑒𝑡  𝑛𝑒(𝑡)[𝑁𝑡 − 𝑛𝑡(𝑡)] + ∫ 𝛼𝑡𝑒(𝜀)𝑓(𝜀)𝑁𝑒𝑛𝑡(𝜀, 𝑡)𝑑𝜀𝜀𝐶𝐵
𝜀𝑓
0     

  (2.6.3) 

Here, for the first time, it has been explicitly suggested that the generating term 𝐺𝑒𝑥�𝑡, 𝑧𝑝� depends on time.  

The distribution function,  𝑓(𝜀), is left in a general form and is not yet assumed to have a certain type of 

statistical nature, such as Fermi-Dirac or Maxwell-Boltzmann.  For the time rate of change in the number of 

trapped electrons, 𝑛𝑡(𝑡), we again perform integration over energy and do the sum over processes (b) - (c) 

to obtain 

𝑑𝑛𝑡(𝑡)
𝑑𝑡

=  𝛼𝑒𝑡  𝑛𝑒(𝑡)[𝑁𝑡 − 𝑛𝑡(𝑡)]  −  ∫ 𝛼𝑡𝑒(𝜀)𝑓(𝜀)𝑁𝑒𝑛𝑡(𝜀, 𝑡)𝑑𝜀𝜀𝐶𝐵
𝜀𝑓
0 .  (2.6.4) 

Without the explicit integration of the energy-dependent terms, the equations cannot be reduced 

further.  We have addressed the energy dependence of the interaction coefficient, which is the product of 

the electron thermal velocity with the trapped states capture cross section (see Section 2.5.1).  The energy 
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dependence of the interaction coefficient is not well understood in HDIM and mention of it is sparse in the 

literature; it is, therefore, assumed that the interaction coefficient is a constant.  The excitation from a trap 

state is governed by the distribution function, 𝑓(𝜀), which, for the electron system, is most generally the 

Fermi-Dirac (FD) distribution.  As in Section 2.5.3 the FD distribution will be approximated by the 

Boltzmann distribution (MB), i.e., 𝛼𝑡𝑒𝑁𝑒𝑓𝑀𝐵(𝜀) =  𝜈0𝑓𝑀𝐵(𝜀) ≈ 𝜈0𝑒𝑥𝑝 �−
𝜀
𝑘𝑇
�, where the relation between 

 𝛼𝑡𝑒 and 𝜈𝑡𝑒 are given in Section 2.5.3.   

Equations (2.6.3) and (2.6.4) can be greatly simplified by assuming that 𝛼𝑒𝑟  is equal to 𝛼𝑒𝑡 .  These 

two terms deal with (i) recombination of electrons in the CB to the VB holes created during generation and 

(ii) the trapping of electrons in the DOS, respectively.  There is no clear justification for this assumption 

other than its ability to simplify the transport equations.  Many authors have used this assumption, but with 

little or no justification; see, for example, Weaver et al. (1977).  It is possible, that since the electrons 

involved in these two processes always start in the CB, that the coefficients are determined predominantly 

by the properties of the CB, in which case the assumption is valid.   

Additional assumptions are that the process (e) in Fig. 2.9 is only important at very low 

temperatures and that process (f) is negligible in the study of RIC.  These assumptions are certainly not 

always true; however, many of the transport equations were developed for large fluence near room 

temperature and in semiconductor applications where (e) and (f) do not typically make large contributions 

to the observed macroscopic current.  These assumptions have been noted here so that the reader will 

understand how the complete transport equations are related to the more common reduced set found in the 

literature.  Keeping these assumptions in mind, we can write Eq. (2.6.3) and Eq. (2.6.4) as follows: 

𝑑𝑛𝑒(𝑡)
𝑑𝑡

= 𝐺𝑒𝑥 −  𝛼𝑒𝑟  𝑛𝑒(𝑡)( 𝑛𝑒(𝑡) + 𝑛𝑡(𝑡)) + ∫ 𝜈0𝑒𝑥𝑝[−𝜀/𝑘𝑏𝑇]𝑛𝑡(𝜀, 𝑡)𝑑𝜀𝜀𝐶𝐵
𝜀𝑓
0 , (2.6.5) 

and 

𝑑𝑛𝑡(𝑡)
𝑑𝑡

= 𝛼𝑒𝑡  𝑛𝑒(𝑡)[𝑁𝑡 − 𝑛𝑡(𝑡)] − ∫ 𝜈0𝑒𝑥𝑝[−𝜀/𝑘𝑏𝑇]𝑛𝑡(𝜀, 𝑡)𝑑𝜀𝜀𝐶𝐵
𝜀𝑓
0 .  (2.6.6) 

These two equations, together with the definition 𝑛𝑡𝑜𝑡(𝑡) = 𝑛𝑒(𝑡) + 𝑛𝑡(𝑡) (see Section 2.3), are equivalent 

to the continuity equation, Eq. (2.3.30) introduced in Section 2.3, with an explicit dependence on trapping.  

Note that spatial and time dependence have been neglected in the generating term 𝐺𝑒𝑥, and that the 
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recombination term is given by  𝑅 =   𝛼𝑒𝑟  𝑛𝑒(𝑡) 𝑛𝑡𝑜𝑡(𝑡). For clarity, we repeat Eq. (2.3.30) and highlight 

the recombination term: 

𝜕𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜕𝑡

− 𝜇𝑒
𝜕
𝜕𝑧

[𝑛𝑒(𝑧, 𝑡)𝐹(𝑧, 𝑡)] − 𝑞𝑒𝐷
𝜕2𝑛𝑒(𝑧,𝑡)

𝜕𝑧2
=  𝐺(𝑧, 𝑡) − 𝑅(𝑧, 𝑡),  

where eliminating the spatial dependence and inserting the generation and recombination terms assumed in 

Section 2.3 gives 

𝜕𝑛𝑡𝑜𝑡(𝑡)
𝜕𝑡

=  𝐺(𝑡) − 𝑅(𝑡) =  𝐺𝑒𝑥(𝑡) −  𝛼𝑒𝑟  𝑛𝑒(𝑡) 𝑛𝑡𝑜𝑡(𝑡). (2.6.6B) 

We can illustrate the connection between Eqs. (2.6.5) and (2.6.6) and Eq. (2.3.30) by adding Eq. (2.6.5) and 

Eq. (2.6.6) together—and recalling that when a trap distribution is present, we have  𝑛𝑡𝑜𝑡(𝑡) =  𝑛𝑒(𝑡) +

 𝑛𝑡(𝑡)—to obtain 

𝑑𝑛𝑒(𝑡)
𝑑𝑡

+ 𝑑𝑛𝑡(𝑡)
𝑑𝑡

=  𝑑𝑛𝑡𝑜𝑡(𝑡)
𝑑𝑡

= 𝐺(𝑡, 𝑧)𝑒𝑥 −  𝛼𝑒𝑟  𝑛𝑒(𝑡)[ 𝑛𝑒(𝑡) + 𝑛𝑡(𝑡)] + 𝛼𝑒𝑡  𝑛𝑒(𝑡)[𝑁𝑡 − 𝑛𝑡(𝑡)]. (2.6.6C) 

Note that the integrals in Eqs. (2.6.5) and (2.6.6) cancel upon addition.  Looking closely at this 

result, the similarity between the last two equations is clear.  There is an extra term in Eq. (2.6.21) that did 

not appear in the original continuity equation; the explanation for this is simple.  When considering the 

generation term, G(t,z), and recombination term R(t,z), for Eq. (2.6.6B), we did not include the effects of 

the disordered DOS; i.e., initially we did not actually have continuity and the addition of the trapping 

equations have given us the missing term, the final term in Eq. (2.6.6C).  

Equations (2.6.5) and (2.6.6) are the continuity equations with trapping, for the specific example 

introduced in Section 2.3.  Thus, to describe the transport equations, we only need to add Eq. (2.6.6) to Eq. 

(2.3.29) through (2.3.32).  The form of Eq. (2.6.6) is not the most general form.  Assuming some functional 

dependence of the DOS (and, therefore, the trapped states) on the spatial position (of the material), one can 

write expressions for the filled trap state distributions 𝑛𝑡(z, 𝑡) =  ∫ 𝑛𝑡(𝑧, 𝜀, 𝑡)𝑑𝜀∞
0  and 𝑁𝑡(𝑧) =

  ∫ 𝑁𝑡(𝑧, 𝜀)𝑑𝜀∞
0  , respectively.   Taking the derivative of Eq. (2.6.6) with respect to energy, including spatial 

dependence, and using the definitions for interaction coefficients and attempt to escape frequency discussed 

in Section 2.4, Eq. (2.6.7) can be written as: 

𝑑𝑛𝑡(z,𝜀,𝑡)
𝑑𝑡

=   𝛼𝑒𝑡𝑛𝑒(𝑧, 𝑡)[𝑁𝑡(z, 𝜀) − 𝑛𝑡(z, 𝜀, 𝑡)] −  𝛼𝑡𝑒𝑁𝑒𝑒𝑥𝑝 �−
𝜀
𝑘𝑇
� 𝑛𝑡(z, 𝜀, 𝑡).  (2.6.7) 
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Equation (2.6.7) is finally the complete, one-dimensional, energy- and time-dependent trapping 

equation.  Many of the prolific authors in the field of charge transport have used some form of this equation 

to describe carrier interactions with the DOS in HDIM for radiation induced conductivity, charge dynamics 

in electron irradiated materials and electrets. Excellent representations of the application of Eq. (2.6.7) in 

one form or another is given by the following list: nonpenetrating radiation (Arkhipov, 1993a); RIC, 

nonpenetrating radiation and parallel plate configurations (Sessler, 1987); nonpenetrating radiation (Gross, 

1964, 1978, 1980; Gross and Nablo, 1967; Gross and Nunes de Oliveira, 1974; Gross et al., 1981a, 1981b, 

2003a, 2003b; Giacometti et al., 1985; Gross and de Oliveira, 2003) photo-excited RIC systems (Monroe, 

1983); and multiple configurations (Baranovskii and Rubel, 2006).   

We now return to the transport equations developed in Section 2.3 used to describe drift and 

diffusion in simple crystalline systems. Using Poisson’s equation,  ∇ ∙ 𝑫 =  𝜌𝑐, the continuity equation, 

  ∇ ∙ �JC + Jinj� =  −∂ρtot
∂t

 , and a simple description of charge transport, a set of one-dimensional transport 

equations were developed in Section 2.3.1.2.  We included the polarization and displacement currents 

explicitly, as they will be needed in Chapters 4 and 5.  The generation and recombination terms defined 

above now take the place of their generic counterparts, G(t,z) and R(t,z), used in Section 2.3.1.2.  Collecting 

Eqs. (2.3.29), (2.3.30), (2.3.31), (2.3.32), and (2.6.7), we can write the complete transport equations in a 

compact form.    

𝐽𝑡𝑜𝑡(𝑧, 𝑡) =  𝑞𝑒𝑛𝑒(𝑧, 𝑡)𝜇𝑒𝐹(𝑧, 𝑡) + 𝑞𝑒𝐷
𝑑𝑛𝑡𝑜𝑡(𝑧,𝑡)

𝑑𝑧
+ 𝜖0𝜖𝑟

𝜕𝐹(𝑧,𝑡)
𝜕𝑡

+ 𝐽𝑝(𝑡)  

                 {Sum of electron drift, diffusion displacement, and polarization current densities}, (2.6.8) 

∂
∂z
𝐹(𝑧, 𝑡) =  𝑞𝑒𝑛𝑡𝑜𝑡/𝜖0𝜖𝑟                                                                                  {1D Gauss’s Law}, (2.6.9) 

𝜕𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜕𝑡

− 𝜇𝑒
𝜕
𝜕𝑧

[𝑛𝑒(𝑧, 𝑡)𝐹(𝑧, 𝑡)] − 𝑞𝑒𝐷
𝜕2𝑛𝑒(𝑧,𝑡)

𝜕𝑧2
=

 𝐺(𝑧, 𝑡)𝑒𝑥 −  𝛼𝑒𝑟  𝑛𝑒(𝑧, 𝑡)𝑛ℎ(𝑧, 𝑡) + 𝛼𝑒𝑡  𝑛𝑒(𝑧, 𝑡)[𝑁𝑡(𝑧) − 𝑛𝑡(𝑧, 𝑡)]                                       

                                                  {1D Continuity equation with drift, diffusion and source terms}, (2.6.10) 

𝑑𝑛ℎ(𝑧.𝑡)
𝑑𝑡

= 𝐺(𝑧, 𝑡)𝑒𝑥 −  𝛼𝑒𝑟  𝑛𝑒(𝑧, 𝑡)𝑛ℎ(𝑧, 𝑡)                                 

                                    {1D hole continuity equation with generation and recombination terms}, (2.6.11) 

and 
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𝑎𝑛𝑑 𝑑𝑛𝑡(z,𝜀,𝑡)

𝑑𝑡
=   𝛼𝑒𝑡𝑛𝑒(𝑧, 𝑡)[𝑁𝑡(z, 𝜀) − 𝑛𝑡(z, 𝜀, 𝑡)] −  𝛼𝑡𝑒𝑁𝑒𝑒𝑥𝑝 �−

𝜀
𝑘𝑇
� 𝑛𝑡(z, 𝜀, 𝑡)   

                                                                           {1D trapping continuity equation for electrons}.  (2.6.12) 

This set of equations covers a large class of carrier transport models in disordered materials whose 

application ranges from Xerox copier element design and radiation effects in materials to descriptions of 

electron transport in power cable design (Rose, 1951; Fowler, 1956; Mott, 1977; Tiedje et al., 1980; 

Arkhipov et al., 1984; Arkhipov, 1986; Sessler, 1987; Pai and Springett, 1993).  The complexity of these 

equations, even in one dimension, is quickly becoming apparent.  Manipulation of these equations for a 

specific application MUST be done with care.  As an example of such modification, theories are explicitly 

developed in Chapters 4 and 5; subsets of these equations will be used to derive analytical models for all of 

the experimental configurations shown in Fig. 1.4, as used by the USU MPG.  As we will find in each case, 

the complexity of the transport equations will decrease as a result of relevant assumptions based on each 

specific application. 

There are two more phenomena, space charge limited current (SCLC) and dispersion, which can 

now be described using this new description of transport.  These are critical to more fully understand 

transport phenomena in HDIM.  These two phenomena, SCLC and dispersion, have been delayed in their 

introduction because both require the DOS interaction picture, transport equations as described above, and 

further mathematical detail to describe their behavior.   

2.7. Space Charge Limited Current 

In the early days of electronics technology, vacuum tubes were often used as components in 

electronic devices. The components are composed essentially of an anode and cathode placed in a sealed 

vacuum tube.  The study of their operation, however, was often complicated by a simple phenomenon 

whose nomenclature has propagated in the literature to this day and greatly convolutes the definitions of 

“trapped charge” and “spacecharge.”   The phenomenon, called space charge limited current (SCLC) or 

electrode limited current, is often referred to as space charge (meaning trapped charge) however, these two 

ideas (spacecharge and spacecharge limited current) could not be more different (Sessler, 1987; Blythe and 

Bloor, 2005).  Spacecharge limited current is caused by an excess of charge at the contact supplying charge 

carriers (a cloud of charge, which inhibits further charge injection).  The charge cannot move away from 
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the contact fast enough (the material relaxation rate is slower than the injection rate), and the incoming 

charges experience the field from this “spacecharge” and their transport is retarded (Sessler, 1987).  Child 

and Langmuir were the first to study this phenomenon in vacuum tubes and the resulting theory, called 

Child’s law, is the subject of this section (Rose, 1951).   

In the literature relevant to this dissertation, the trapped charge due to disorder is often called 

“space charge,” but this is not what is generally meant by “spacecharge” in SCLC.  With the advent of 

transistors and semiconductor doping, the application of SCLC theory found utility in determining current 

versus applied voltage (IV) curves.  However, the use of doping in materials meant that charges were 

trapped or excited in ways that were not consistent with simple SCLC theory. As an example, when high 

potentials are applied to HDIM using metallic contacts, the trap barrier energies are lowered leading to a 

Poole-Frenkle-type behavior (Sessler, 1987) or modified Schottky emission (Fraser, 1983), depending on 

the type of material, contacting electrode, and distribution of trapped states near the interface (Sessler, 

1987; Crine, 2004a, 2005a).   

This nomenclature confused the study of current versus voltage in HDIM and made it difficult to 

differentiate between bulk and interface effects using purely an electrode contact method of study (Sessler, 

1987).  The use of electron beams as injecting sources allows for a nearly “pure” injection, free of interface 

effects.  Thus, by comparison of the data between electrode studies and electron beam studies, the presence 

of electrode effects can be determined and quantified.  Further, it will be shown in Chapter 4 the charging 

of an insulating material by an electron beam of modest energy is due largely to trapping effects in the bulk 

(thus, largely bypassing interface effects).  

In order to address the effects of disorder at the interface or the bulk when SCLC is present, a set 

of modified SCLC equations is required.  This allows for the characterization of the disorder in terms of 

one of four DOS types; delta function, constant, exponential, or Gaussian functions. A complete description 

for the use of the SCLC theory from the basic equation first derived by Child and Langmuir cannot be 

covered here.  The complete derivation of the trap modified SCLC theory can be found in Kao (2004).  

Tables containing the trap modified expression for SCLC theory (written in the USU MPG nomenclature) 

can be found in the Appendix.  In order to develop a working knowledge of the relevance of SCLC in the 
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study of HDIM, a short introduction is given to Child’s law followed by a discussion of the effects of 

disorder. 

At high voltages, currents in insulating and semiconducting materials are no longer Ohmic.  In this 

case, we expect a change in the slope of the IV curves due to the buildup of an additional field.  This 

process can be modeled using Poisson’s equation (see Eq. 2.6.9), 

𝑑𝐹(𝑧,𝑡)
𝑑𝑧

= 𝑞𝑒
𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜖𝑟𝜖0

=  𝑞𝑒
𝜖𝑟𝜖0

[𝑛𝑒(𝑧, 𝑡) + 𝑛𝑡(𝑧, 𝑡)],      (2.7.1) 

and an expression for the Ohmic current.  In this context, we have written Poisson’s equation with the 

separation of the free and trapped carrier concentrations as a function of distance into the sample and of 

time.  In practical applications, we measure the SCLC in the equilibrium state, and thus, for now, we ignore 

the spatial and time dependence.   Consider the current density [see Eq. (2.6.8)] written in the abbreviated 

form 

𝐽𝑡𝑜𝑡(z) = 𝑞𝑒𝜇𝑒𝑛𝑒𝐹.   (2.7.2) 

The first expression for the space charge current was given by Langmuir and Child (Mott and 

Gurney, 1964).  Although it was Child and Langmuir (Rose, 1963) that first derived the limiting of charge 

flow due to a charge excess at the contacts, it was Mott and Gurney (1964) that applied these ideas to 

semiconductors and insulators.  The process by which Mott and Gurney (1964) determined the SCLC is 

used in the derivation of all the SCLC equations presented in this dissertation (Batra and Seki, 1970).  The 

basic Mott and Gurney (1964) equation was derived for a trap free semiconducting crystalline material.   

The definition of a trap-free material requires that the density of trapped carriers is zero and Eq. (2.7.1) 

reduces to 

𝑑𝐹(𝑧)
𝑑𝑧

= 𝑞𝑒
𝑛𝑒(𝑧)
𝜖0𝜖𝑟

 .  (2.7.3) 

Using Eq. (2.7.2) and multiplying both sides of Eq. (2.7.3) by the field gives 

𝐹(𝑧) 𝑑𝐹(𝑧)
𝑑𝑧

= 𝐽𝑠𝑑𝑧
𝜖0𝜖𝑟𝜇𝑒

 ,  (2.7.4) 

where 𝐽𝑠𝑑  is the steady state current, assumed to be constant in the material.  Integration of Eq. (2.7.4) from 

the anode at z=0 to depth z gives 𝐹(𝑧)2 = 2𝐽𝑠𝑑𝑧
𝜖0𝜖𝑟𝜇𝑒

; integrating the square root of this result, again using 



68 

𝑉0 =  ∫ 𝐹(𝑧)𝑑𝑧 𝑑
0 (where V0 is the applied potential), we obtain 𝑉0 = 2

3
�2𝐽𝑠𝑑𝑧3/2

�𝜖0𝜖𝑟𝜇𝑒
. Using the resulting 

equation and taking the square of both sides of this and solving for Jsd gives the result  

𝐽𝑠𝑑 =  9
8
𝜖0𝜖𝑟𝜇𝑒

𝑉0
2

𝑑3
,  (2.7.5) 

found by Child and Langmuir and is referred to a Child’s law (Rose and Lampert, 1959; Treadgold, 1966; 

Batra et al., 1970; Kao, 2004; Brunson, 2009). 

The variation in measured current as a function of applied voltage is shown in Fig. 2.10.  The 

voltage at which SCLC behavior based on Eq. (2.7.5) is first observed is called the onset voltage, VΩ.  An 

estimate of the onset voltage is obtained by setting Eq. (2.7.2) equal to Eq. (2.7.5); that is, by setting the 

Ohmic and SCLC contributions equal and solving for the transition voltage, 

FIG 2.10.  Space charge limited current. Depicts the character of current versus applied field behavior with 
a transition at the onset voltage, 𝑉Ω: (a) Ohmic behavior (red curve), and (b) onset of SCLC due to 
electrode limited injection (blue curve). 
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VΩ =  8

9
𝑞𝑒𝑛𝑒𝑑2

𝜖0𝜖𝑟
.  (2.7.6) 

Consider the electrode limited case in which the onset field of the SCLC regime is exactly 

determined by the ability of the charge to “relax” before more charge is injected.  Simply stated, there is an 

amount of charge that can build up near the injecting electrode, resulting in a potential that fully inhibits the 

injection of additional charge, as long as the external experimental conditions remain unchanged.  This is 

very different from a transit time, which is defined as the amount of time required for charge to traverse a 

region of the sample or the whole of the sample.  Rearrangement of Eq. (2.7.6) allows us to identify the 

transit time and the relaxation time. 

𝑑2

𝜇𝑒𝑉𝛺
=  9

8
𝜖0𝜖𝑟

𝑞𝑛𝑒(𝑧)𝜇𝑒
 .  (2.7.7) 

Pope (1982) showed that the transit time is defined as  𝑡𝑇 = 𝑑2

𝜇𝑒𝑉𝛺
  and the relaxation time is 𝜏𝑑 =

9
8

𝜖0𝜖𝑟
𝑞𝑛𝑒(𝑧)𝜇𝑒

  (Blythe and Bloor, 2005).  Thus, Eq. (2.7.7) says exactly what we surmised (in the beginning of 

this section) for electrode limited currents; the relaxation time is equal to the transit time,   𝑡𝑇 =   𝜏𝑑, at the 

onset of SCLC.   

Equation (2.7.5) and the resulting expressions for transit and relaxation time do not include any 

description of the DOS or their effects on the current versus voltage curve.  It is not a simple matter to 

include the full character of a given DOS.  This problem has been studied in detail by many authors; Kao  

has collected a set of expressions for each type of DOS discussed in Section 2.4.5, as given in Appendix A 

(Kao, 2004).  The major difference between Kao’s presentation and the one in this dissertation is 

nomenclature.  The derivation of these equations is not given here; see Kao (2004) for a very complete 

development.  In large part, we can characterize the extent of including an energetic description of the DOS 

with a simple modification to Eq. (2.7.5) by including a single factor, 𝜃(𝜀), such that 

𝐽𝑠𝑑 =  9
8
𝜖0𝜖𝑟𝜇𝑒𝜃(𝜀) 𝑉0

2

𝑑3
.  (2.7.8) 

This factor is a complicated function of the DOS, temperature, and (though not explicitly included) applied 

field.  Further, 𝜃(𝜀) ranges between zero and one, where 𝜃(𝜀) → 1 for no DOS interaction (Mott type 

SCLC behavior) and 𝜃(𝜀) → 0 for complete trapping.  A value of zero –corresponding to T = 0 K— is not 
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physically realistic and is included only to illustrate that 𝜃(𝜀) serves to reduce the slope of J versus V to 

zero. 

Equation (2.7.8) describes an entirely new set of current regimes specific to a disordered material 

and subsequent trapping.  It indicates that the slope of the SCLC region must be modified by the DOS and 

that we must consider the effects of completely filling up the trap distribution with carriers.  Figure 2.11 

shows the four distinct regions in the current versus voltage curve that result from disorder and trapping.  In 

region (a) the current is Ohmic (i.e., proportional to the voltage). In region (b), the current versus voltage 

curve changes to a form consistent with Eq. (2.7.8).  This change can be due either to a current-limited 

electrode (often called electrode limited) or to the build-up of deposited charge (often called space charge). 

In region (c), in the presence of traps, (if the carrier injection increases significantly such that the traps 

become filled or nearly filled) the current will jump radically due to the inability of the DOS to accept 

further charge.  This process is unlikely to be observed as such a trapped charge density causes an internal 

electric field that is near the breakdown potential.  In region (d), if the trapped charge does not lead to 

breakdown, the observed current should return to Eq. (2.7.5), offset by a finite current at a trap filled limit 

voltage, 𝑉𝑇𝐹𝐿 .  The behavior exhibited in Fig. 2.11 is quite similar to standard theories for extrinsic 

semiconductors, using a delta function DOS (Ashcroft and Mermin, 1976). 

The effects of the DOS are not limited to the slope, but include modifications of the SCLC onset 

voltage and the effective sample depth.  Measurements using pulsed electro-acoustic (PEA) techniques  

clearly show the position of injected charge (Sessler, 1987; Liu, 1993; Maeno, 2004; Griseri et al., 2004, 

2005, 2006; Perrin, 2005; Arnaout, 2010;).  Such measurement indicates that for a capacitive-type 

experimental configuration [Fig. 1.4.b (i)], the charge stays near the contacting electrode (where it is 

injected), and leaks across the sample.  Thus, the sample depth, d, is replaced by the effective depth,  𝑑𝑒𝑓𝑓 , 

which is that distance into the sample that the charge penetrates.  The effective depth,  𝑉Ω ,   𝑉TFL , and the 

relaxation times are all complicated functions of the DOS and injection properties of the material and its 

contacting electrode.  Excellent reviews of the application and modification of these equations are given in 

Pope (1982), Abkowitz (1986), and Kao (2004).  SCLC behavior has been experimentally verified in LDPE 

(Montanari et al., 2001) and in KaptonTM (Many and Rakavy, 1962; Sessler, 1987; Alagiriswamy and 

Narayan, 2002; Gaur, 2008, 2010). 
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Measurement of the current versus applied voltage will provide a great deal of useful information 

about the material.  In particular, from Eq. (2.7.8), the mobility can be estimated using  

𝜇𝑒 =  
8� 𝑑𝐽𝑠

𝑑𝑉0
2�𝑑𝑒𝑓𝑓

2

9𝜖𝑟𝜖0
 .  (2.7.9) 

The calculation of trap depth distribution (Montanari et al., 2001) can be found by considering the behavior 

of the mobility using 

Δ1𝜀𝑡𝑟𝑎𝑝 = 𝑘𝑏𝑇𝑙𝑛 �𝜇𝑒
𝑘𝑏𝑇

𝜈0𝑞𝑒𝑎2
�.  (2.7.10) 

FIG 2.11.  Space charge limited current density for disordered materials. Depicts the character of current 
versus applied field behavior in four distinct regions:  (a) Ohmic behavior (red curve), (b) onset of SCLC 
due to electrode limitation or trapped charge build up with a transition at the onset voltage, VΩ (blue curve), 
(c) trap filled limit voltage, VTFL, at which the trap distribution is filled or nearly filled (orange curve), and 
(d) return to SCLC current flow (purple curve). 
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Here 𝑎 is the mean distance between localization sites (see Sec. 2.4.3), which is essentially the same as 𝑅� 

used elsewhere in this work (see Section 2.5.1 and Section 3).  The trap depth used here, Δ1𝜀𝑡𝑟𝑎𝑝, is then 

corrected for the high field Columbic interaction using 

∆𝜀𝑡𝑟𝑎𝑝 = Δ1𝜀𝑡𝑟𝑎𝑝 −
𝑞𝑒3/2𝐹1/2

(4𝜋𝜖𝑟𝜖0)1/2 = Δ1𝜀𝑡𝑟𝑎𝑝 − 1
2𝛿𝜀𝑡𝑟𝑎𝑝.  (2.7.11) 

The reader may notice that the second term in Eq. (2.7.11) is different from 𝛿𝜀𝑡𝑟𝑎𝑝 found in Eq. (2.5.17), 

where the Poole-Frenkle effect was discussed.  It is not clear to this author why this factor of ½ appears, but 

its presence is noted here and should be considered as future work.   

SCLC theory is a powerful tool in the determination of the current versus applied voltage 

behavior.  When used in conjunction with other experimental systems, which can characterize the DOS, 

mobility, and conductivity, SCLC theory can be used to gain further insight into, or confirmation of, 

material parameters. 

2.8. Dispersion 

In order to provide a lucid introduction to dispersive transport, we begin with a discussion of the 

difference between it and classical diffusive transport.  Consider a photoconductivity experiment in which, 

at time zero, a sheet of charge is injected into the sample using an Ohmic photo-reactive contact, which 

provides an initial current density, J0 (Orenstein et al., 1982).  This charge is allowed to traverse the 

material under the influence of a uniform applied electric field in a time, 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡.  In crystalline materials, 

this will lead to a current density versus time curve like that shown in Fig. 2.12 (a); this is classical 

diffusive transport.  For noncrystalline materials—in which disorder is present—the current versus time 

curve (shown in log-log format) is like that shown in Fig. 2.12 (b); this is an example of dispersive 

transport.   

The physical difference between the measured current density for a diffusive and dispersive 

system is described below by Eq. (2.8.1) and (2.8.2).  In diffusion, the charge travels as a packet of fixed 

width, z1/2, with a time dependence, t1/2, 

𝐽𝐷(𝑡) =  𝐽0 �
�𝑡/𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 ;     𝑡 < 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡

0                      ;      𝑡 > 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡
�.  (2.8.1) 
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Well beyond the transit time, all charge has arrived at the rear electrode and JD(t) goes to zero.  However, in 

dispersion, the peak of this charge packet is pinned at the interface or injection point and the charge 

centroid slowly disperses across the sample until the charge distribution makes electrical contact with the 

second electrode, at which time the rate of change in the observed current versus time plot changes.  The 

expected current density profile for dispersion is represented by the phenomenological equation below 

(Scher and Lax, 1973a, 1973b; Scher and Montroll, 1975; Scher, 1977) 

𝐽𝑑𝑖𝑠𝑝(𝑡) =  𝐽0 �
(𝑡/𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡)−(1−𝛼)       𝑡 < 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡
(𝑡/𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡)−(1+𝛼)      𝑡 > 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡

�.  (2.8.2) 

Here 𝛼 is the dispersion parameter determined by the type of DOS. For a discussion regarding the 

connection of 𝛼 to a specific type of DOS, see Chapter 4 or (Rose, 1951; Monroe, 1985; Baranovskii and 

Rubel, 2006).   

To explain the radically different measured current density shown in Fig. 2.1, Scher and Montroll 

(1975) suggested in their seminal paper that the observed behavior was due to a random walk model with a 

broad distribution of random walker event times.  To illustrate the difference between classical diffusive 

transport (also called Gaussian transport, not to be confused with the Gaussian DOS) and this new type of 

transport (dispersion), consider the two experiments shown in Fig. 2.13, but now recast in terms of the 

FIG 2.12.  Diffusive versus dispersive transport. This diagram shows current versus time plots for two 
distinct types of transport.  Specifically, it shows the basic difference between (a) classical diffusion 
transport, and (b) the dispersive transport mode.  𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 is the transit time for the charge carriers to 
traverse the sample. 
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motion of the deposited charge body.  For experiment (a), we see a group of carriers that are injected into 

the sample at t=0.  This group of carriers makes its way through the sample under the influence of some 

sufficiently low applied field (field effects are negligible) according to simple drift and diffusion described 

in Section 2.3. This produces the well-known current behavior depicted in Fig. 2.12 (a).   

Now consider Fig. 2.13 (b), in which the main body of the carrier distribution is somehow held at 

the interface and only a few privileged carriers can traverse the sample.  Here is where the Scher and 

Montroll interpretation gives us some insight as to the saintly nature of our speedy friends.  The distribution 

of event times (random walkers) suggested means that there is a “dispersion” of walking times that make 

each successive step more difficult than the last (you may be reminded of a gambit in which you are asked 

to step half of the last distance to get to a point in space).  For a modest number of carriers, the statistics of 

random walkers suggests that a few will get to the other side well ahead of the majority of carriers.  This 

explains the time evolved distribution in Fig. 2.13 (b), as we step in time from 𝑡0 = 0 to a time 𝑡 >>  𝑡0.  

The Scher and Montroll approach does explain the observed behavior, but lacks any real physical 

interpretation.  Pollak (1972) showed that the “dispersive transport” follows directly from a broad 

distribution of localized state energies in the gap (the disordered DOS).  Deeper traps retain charge carriers 

for longer times on average, so that as time goes on, more and more carriers are trapped in deeper states, 

thus slowing the progression of the charge front.  Specifically, it was shown that dispersive transport can be 

derived from the transport equations and the exponential DOS!  Dispersive behavior can arise in many 

situations due to energetic and spatial disorder of nearly any type.   In studies of polarization, it has been 

found that if there are many polarization centers with different depolarization times, then we expect that the 

Fourier transform of the time data over a range of test frequencies will become broadened (Enis, 2002; 

Kao, 2004). The solution of the transport equations in the context of a dispersive system requires 

conceptual and mathematical tools not yet described in this dissertation.  The original theoretical 

formulation for dispersive transport was for a system in which successive jumps between localized states 

governed the observed transport.  This process, called hopping, is the dominant mode of transport at low 

temperatures.  Our current set of transport equations does not explicitly include a description of low-

temperature transport and requires the understanding and application of a distributed DOS.  What happens 

when the temperature is so low that thermal excitation to the extended states (even from trapped states) no 
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longer occurs?  How is it that we can still observe a current and hence, transport?  And what is hopping?  

These questions combine with at least two red flags in our development of transport theory that suggest 

important ideas have been overlooked.  The first flag was the usefulness of the mobility edge and band tail 

states in our model (which has been largely ignored). Secondly, Fig. 2.9 and Fig 2.5 hint at deeper effects 

that result from the energetic description of the DOS, but no mention of where these ideas should lead has 

been discussed—at least not in detail.  Further, Fig. 2.7 shows only a delta function DOS and does not in 

any way suggest that a distribution exits.  Figure 2.9 shows only equilibrium processes.  It is suggested that 

there is an extended DOS, but all of the carriers that actively participate in transport are at the Fermi level; 

and therefore, these processes also appear to act as if a delta function DOS was used.  These diagrams are 

FIG 2.13. Dispersion versus drift and diffusion. The basic differences between (a) the classical model and 
(b) the random walk model.  One side of the sample is exposed to a flash of light (shown as the jagged 
arrow) at time,  𝑡 = 0.  This creates a charge distribution at the interface given by the empty circles (note 
both (a) and (b) show the same initial charge distribution). At some time,  𝑡 > 𝑡0, the charge distribution 
has propagated into the sample (given by the dark circles).  In (a) the positions of the moving charges 
(for 𝑡 > 0) relative to each other are representative of the spreading of the carrier packet as it traverses the 
sample under the influence of the applied field. In (b) the positions are representative of a random walk in 
which the majority of carriers are pinned near the interface. In (a) the transit time is proportional to the 
thickness of the sample.  In (b) the transit time is much more complex. After (Kao, 2004). 
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misleading in the sense that they give very little information about the nature of the DOS.  As it turns out, 

our understanding of dispersive transport and the nature of low-temperature transport are the red flags for 

both a new mode of transport (hopping), the extension of the transport equations to the low-temperature 

regime, and a more comprehensive description of the role of the DOS in transport at both low and high 

temperatures.  This is the subject of Chapter 3. 
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CHAPTER 3 

3. AVERAGE MICROSCOPIC PROCESSES 

In Chapter 2, we developed the transport equations assuming that conduction occurred through 

extended states in the CB and that trapped carriers could be excited back into the CB by thermal activation 

(or through the effects of radiation).  However, once the temperature is lowered sufficiently, trapped 

carriers can no longer gain enough energy through thermal excitation to be excited to the CB.  At low 

temperatures, the ideas developed in Chapter 2 for electron transport appear to fail.  However, 

measurements of semiconductors and HDIM clearly demonstrate charge transport at low temperatures 

(Zallen and Scher, 1971; Scher and Lax, 1973a, 1973b; Scher and Montroll, 1975; Böttger and Bryksin, 

1985; Baranovskii and Rubel, 2006).  In this chapter, a discussion of how low-temperature transport occurs, 

the machinery to understand the physical picture, and a complete set of low-temperature conductivity 

equations are developed.  

How does low-temperature transport occur? This was the problem faced by the semiconductor 

industry in the mid-to-late 1950s and answered in 1961 by Mott and Twose, who published a seminal paper 

entitled, “The Theory of Impurity Conduction” (Mott and Twose, 1961).  This paper presented the first 

complete description of low-temperature processes for doped semiconductors called hopping.  Mott and 

Twose essentially used the ideas originally developed for ionic conductivity of atomic states in a crystal 

lattice and extended this to low-temperature conduction in semiconductors (Mott, 1973).  Mott and Twose 

offer an excellent mathematical and conceptual development, often arriving at expressions for the wave 

function overlap and resulting conduction from first principles.   

A simple explanation and a conceptual connection to our simple DOS models from Chapter 2 

follow from Fig. 3.1 (a) and (b).  Consider Fig. 3.1 (a), which shows an ideal donor delta function DOS, 

with an applied field and resulting motion of a single positive charge (a hole or electron vacancy).  As time 

goes on, the hole is filled by a nearby donor electron and, therefore, the hole moves from one donor atom to 

the next. (It is assumed that they are sufficiently close together to conduct, but that the mobility is still 

reduced from extended state conduction (Mott and Twose, 1961).   In this case, enough energy is available 
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to drive the process of hopping for the hole (liberation of nearby electrons), but not enough that any of the 

electrons (not holes) can be excited from donor states into the CB.   

Now consider Fig. 3.1 (b), which shows what can be thought of as a mirrored arrangement.  In this 

case, the DOS is composed of acceptor states (traps) and a single electron is injected into the trap 

distribution from the conduction band; this is exactly our delta function DOS model from Chapter 2. Since 

the temperature is very low, the electron cannot be re-excited into the CB and, therefore, can only move by 

hopping from one trap state to the next in the same way as the hole in Fig. 3.1 (a).  The two processes 

shown in Fig. 3.1 (a) and (b) are common themes in modern-day, low-temperature semiconductor design.  

These models, however, are only for a single level DOS and do not reflect the full character of the DOS in 

a disordered semiconducting or insulating material.  How does a trap DOS with an energetic distribution 

(like those suggested in Table 2.1) affect the observed transport at low temperatures, and how can the 

transport equations be extended to model low-temperature conductivity?   

  

FIG 3.1. Low-temperature impurity hopping and thermally activated hopping. (a) The case where electrons 
hop between donor impurity states; an impurity electron moves from position (1) to position (2) under an 
applied electric field. (b) The case where an electron is injected into a delta function DOS from the CB (1) 
and hops from trap state to trap state (2) until the carrier reaches the rear contact  or recombines with a hole 
emitted from the rear contact (3).  In both (a) and (b), transport occurs via the defect DOS in the gap at 
energy, 𝜀𝑡 , which is a transport energy. 
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The answer to the first question is the subject of this chapter, and a complete explanation requires 

additional ideas not yet covered.  Consider Fig. 3.2 in which two different processes, (a) and (b), are 

depicted.  The first process (a) —described in Chapter 2— is characterized by the transport equations [Eqs. 

(2.6.8) through (2.6.12)] and is often referred to as thermally activated hopping (TAH) or multiple trapping 

(MT).  Note that only the latter of these two terms is truly accurate.  A hop is necessarily a jump between 

two localized states, but in this scenario the electron may travel a great distance —much larger than the 

order of the spacing between localized states— before being recaptured.  In actuality, the name TAH comes 

from ionic conductivity, which actually involves a hop between atomic sites; therefore, the name TAH is 

appropriate (Mott and Twose, 1961).  Henceforth, TAH is used exclusively to refer to a thermally activated 

jump between localized states and MT refers to process (a).  Multiple trapping is the process described by 

the transport equations derived in Chapter 2 and depicted in Fig. 3.2 (a).  Note that the carrier that is 

hopping from one state to the next can arrive in the localized states by a number of means, the conduction 

band by losing energy, the valence band by gaining energy, and from impurities within the material. It is 

important to separate the ideas of Chapter 2, as they deal with MT and—at least at this point—not hopping.  

It will be shown how the macroscopic formalism of Chapter 2 can be extended to include hopping 

behavior. 

The second process, shown in Fig. 3.2 (b), is the extension of the simple delta function DOS for 

low-temperature hopping, as described in Fig. 3.1 (b), to an energetically disordered DOS in an HDIM.  

There is clearly a drastic difference in this new depiction of low-temperature transport.  In the Mott and 

Twose model, electrons come from the extended state region and are captured in a trapped state, where they 

undergo TAH conduction.   In Fig. 3.2 (b), the electrons are excited from a deep distribution of trapped 

carriers.  Further, jumps from the deep trapped carrier distribution are not excited in the same way.  Rather, 

carriers can jump spatially and energetically; the mean spatial range, R, over which a carrier can jump 

varies with energy, Wj.  Conduction occurs in a narrow energy range that is approximately a delta function 

(much like the Mott and Twose picture), but with the electrons coming to these states by an entirely 

different mechanism.  This narrow band at which transport occurs is called the transport band (TB) and lies 

at the transport energy (TE), 𝜀𝑡, below the mobility edge and above the charge distribution.   
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A key to understanding the TB is found in the study of percolation paths (Ambegaokar et al., 

1971; Zallen, 1983). The nature of a percolation path is simple. Consider a network of connections, whose 

numbers are slowly reduced by removing links, until only the minimum number of links (of the right type) 

required to form a single connecting path is left.  This remaining path is called the percolation path, and the 

minimum number of links (this may be thought of as a density of connections as well) necessary to form it 

is called the percolation threshold.  For a TB to form, localized states must have just enough wave function 

overlap to allow for conduction through a percolation network.   

A special characteristic of the TB is the type of carrier transport (governed by TAH) from one 

localized state to the next.  Since there is not enough thermal energy for a carrier to be excited any higher in 

the DOS, a hopping carrier has but two choices: (a) stay in the transport band and move to the next 

available site at approximately the same energy, or (b) lose energy and become trapped again in the deep 

distribution (the carrier reservoir).  The carrier reservoir’s upper energy bound is defined by the top of the 

trapped carrier distribution and is called the effective Fermi level,  𝜀𝑓0; all trapped carriers below 𝜀𝑓 are part 

of the reservoir.  Deep states in the reservoir from which carriers are excited use quantum tunneling in 

combination with the thermal energy given to the carrier by the phonon spectrum to make a jump to the 

TB.  (Note, this is not TAH.)  It is understood that the ratio of trap separation energy, Wij, to the the trap 

separation distance or range, Rij, [more correctly, the field energy (𝑞𝑒𝑅𝑖𝑗𝐹)], determines to which site in the 

TB a carrier will jump.  This type of hopping is called variable range hopping (VRH).  VRH is often 

referred to as phonon-assisted-quantum-mechanical-tunneling and was largely put forward by Mott 

(Anderson, 1958; Mott, 1961; Dennison and Brunson, 2008; Brunson, 2009).  Anderson put forward 

models with fixed range and a distribution for Wij (see Sec. 2.3.4).  Mott VRH is a specific case, where the 

trap DOS is constant in energy, but not in space.  We will revisit this model in Section 3.2, where 

applications of the theory developed in this chapter are applied to USU MPG models and extended to 

include the exponential and Gaussian DOS distributions.  

We now return to the connection between the transport equations and low-temperature transport.  

Consider Fig 3.2 (a), in which a single carrier descends toward the deeper states via thermalization. 

Because thermalization requires a discussion of how states move into deep states just after injection, we 

leave the discussion of thermalization until Section 3.1.8.  For the moment, assume that a deep trap 
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distribution is formed and serves as a reservoir for VRH.  Figure 3.3 (b) depicts the transport of carriers 

using VRH; this is an extension of the process depicted in Fig 3.1 (b) to highlight the dynamic nature of 

VRH.  There are five steps required to describe VRH transport:   

(1) the combination of quantum mechanical tunneling and thermal energy allow the deep trapped 

carrier to jump from below the 𝜀𝑓 to the TB;  

(2) the carrier undergoes simple TAH between transport states at or near 𝜀𝑡;  

(3) the carrier losses energy to another intermediate level state, still considered part of the TB 

(This highlights that the TB has an energetic width.);  

(4) the carrier makes a set of local, thermally-driven upward hops, which combine with TAH to 

allow for translation; and in the final step,  

(5) the carrier loses its excess energy and is trapped in a new, spatially distant deep state.  

FIG 3.2. Hopping types in HDIM for an energetically depended trap DOS. (a) Simple trapping between 
extended CB and localized trap states, referred to as thermally activated hopping. (b) Variable range 
hopping where a combination between energy barrier and distance to the localized stated determines the 
hop between localized trap states. Here R is the separation and Wj is the change in energy between the two 
trap states. Note that the line to which the hop occurs is at the transport energy, εt. 
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 Like the extended states, the TB has some finite width in which carriers move.  Unlike the extended state 

CB transport, in the TB the carrier, mobility is greatly reduced and transitions are TAH in nature.   

Figure 3.3 (b) looks a great deal like MT transport, with the extended states replaced by the 

transport band and the trap distribution now deeper in the DOS.  If fact, we used the same set of steps for 

MT transport in Section 2.6: excitation from a trapped state, transport in the extended states, and recapture, 

where here, equivalence is made between the extended states and the TB.  The extension of the transport 

equations from the MT regime to low-temperature transport has been carried out by several authors 

(Schmidlin, 1977; Mott, 1984; Baranovskii and Rubel, 2006).  One particularly lucid description of the 

connection between hopping transport and the transport equations was given by Schmidlin (1977).  

Schmidlin’s paper clearly develops the relationship between a master hopping equation—called the Pauli 

master equation (PME)—and the transport equations. His work was a critical step in understanding the 

connections between continuous-time random walk (CTRW) models, general master hopping equations 

(GME) (Böttger and Bryksin, 1985), and a new expression of the transport equations.  Schmidlin’s insight 

FIG 3.3. Thermalization and transport mechanisms for VRH. (a) Hopping directly to deep states without 
excitation. (b) The hopping transport process: (1) Excitation to shallow states (transport states at energy 𝜀𝑡) 
due to thermal energy; (2) transport at  𝜀𝑡 ; after (3) carriers can become trapped again in intermediate states 
(3) or proceed to step five; (4) Re-excitation from an intermediate state (3) to a state at the transport level 
(4); (5) Capture by a deep state (after Baranovskii and Rubel, 2006) 
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followed from attempts to explain dispersive transport in disordered materials and the need to classify 

localized states into transport and trapping centers (Schmidlin, 1977).  In fact, the language to describe 

VRH and MT in fundamental terms did not exist until the classification of states was made; prior work 

treated all localized states on equal footing.  Section 3.1 develops the resulting language, mathematical 

detail, and physical insight needed to describe low-temperature and dispersive transport in a consistent 

nomenclature.  There are many applications of this new formalism connecting the transport equations and 

PME, with low- and high-temperature expressions for the conductivity (Sessler and West, 1976; Schmidlin, 

1977; Arkhipov and Rudenko, 1979; Arkhipov et al., 1979, 1983, 1984, 1985b, 1987c, 1996a, 1996b, 

1997a, 2003b, 2005b; Tiedje and Rose, 1981; Monroe et al., 1981; Tyutnev et al., 1983a; Monroe, 1983, 

1985, 1986; Sessler, 1987; Abramov et al., 1987; Arkhipov and Nikitenko, 1993; Arkhipov and Bässler, 

1994a, 1994b; Arkhipov and Adriaenssens, 1996; Sessler and Yang, 1999; Gross et al., 2003b; Baranovskii 

and Rubel, 2006).  

3.1. Average Microscopic Tools 

3.1.1. Introduction 

In the introduction to this chapter, a description of the anatomy of carrier transport in HDIM at 

low temperatures was presented and, subsequently, the connection between the PME and the transport 

equations was discussed.  Included in our discussion of Fig 3.2 was the introduction of the effective 

transport energy, transport band, and the concept of thermalization as originally introduced in Chapter 2.  

Another concept not yet introduced is needed, called the Quasi-Fermi level (QFL). A detailed 

understanding of how carriers thermalize in the DOS is required before a complete understanding of the 

QFL can be given; this concept is, therefore, left until section 3.1.7. The purpose of Section 3.1 is to 

introduce the mathematical detail to describe thermalization, the transport band, the transport energy, Fermi 

level at the energy, 𝜀𝑓, and the QFL; together, these concepts lead to a physical understanding of 

microscopic transport involving the strap states in HDIM.  

The introduction of ideas begins with a modification of the simple probability picture for 

thermalization and re-excitation of carriers to transport (extended) states given in Chapter 2 and depicted in 

Figs. 2.7.1 (b) and (c).  In this new picture, the quantum mechanical interaction between states must be 
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considered to adequately describe VRH and transport at the effective transport energy.  This concept is 

referred to as the Miller and Abrahams hopping rate (MAR) (Miller and Abrahams, 1960).  Next, we 

describe the energy (called the demarcation energy) used to separate the trap states into occupied or empty 

states using the MAR.  The demarcation energy (DE) allows—for the first time—a description of the 

centroid of the trapped charge distribution as it moves to lower energies in the DOS during thermalization; 

in fact, the DE characterizes the thermalization, process. The DE is essential to understanding both how the 

carriers will redistribute in the DOS during thermalization and also their relative energy with respect to the 

TE.  Having understood the thermalization process, we move to a development of the transport energy and 

define the time required for a thermalizing centroid of the distribution of trapped carriers to drop below the 

TE and begin hopping transport.  The end of the thermalization process occurs when the DE coincides with 

the QFL.  In many cases, the DE never reaches the QFL, and such systems will present a dispersive current 

versus time response.  This section concludes with an investigation of the thermalization time.   Having 

described all the mathematics and physical concepts, we present some applications (Section 3.2) and show 

a direct reformulation of the USU MPG VRH model in term of these new tools.  This reformulation allows 

the USU VRH model to be written as a two parameter fit and includes temperature and field dependence. 

3.1.2. Hopping Transition Rate 

The rate at which hops are executed by carriers for states in different energetic and spatial regions 

governs the character of the distribution of carriers as they thermalize into the DOS, for transport at low 

temperatures in HDIM.  The determination of the hopping rate for a disordered system is far from simple 

and, in general, requires a detailed knowledge of the phonon spectrum (Mott, 1961, 1973, 1977).  In 1960, 

Miller and Abrahams published a theory that provided a simple approach to the complex system of 

disordered materials (Miller and Abrahams, 1960).  It has been shown by many authors that this 

approximation will generally give a good first order estimation of the hopping rate (Ambegaokar et al., 

1971; Mott and Davis, 1971; Monroe, 1985).  However, there are many exceptions to this formulation 

(Mott and Davis, 1971; Vukmirovic and Wang, 2010).  An excellent review of the MAR approach and 

connection to percolation models is presented in Ambegaokar et al. (1971).  In this dissertation, the MAR 

will be used exclusively to describe hopping transition behavior in HDIM. As it turns out, the MAR 
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contains all the essential physical information necessary to describe nearly any hopping system in which 

trapped electron-electron correlation (correlation between trapped carriers, not the traps themselves) is not 

a major influence on the transport; to this author’s knowledge, this is always the case in HDIM, due largely 

to the significant spatial separation of localized states and the relative small number of carriers involved. 

The simplest expression of hopping that allows for a concrete description of the MAR was derived 

by Ambrogekar using a percolation model and is given by the following equation (Ambegaokar et al., 

1971): 

𝜈𝑖𝑗 =  𝜈0𝑒𝑥𝑝 �−
2𝑅𝑖𝑗
𝜂
� × �𝑒𝑥𝑝 �−

𝜀𝑖𝑗
𝑘𝑏𝑇

�

1
     
𝜀𝑖𝑗 > 0
𝜀𝑖𝑗 < 0�.  (3.1.1) 

Here, 𝜈𝑖𝑗  is the hopping rate between occupied site, i, and unoccupied site, j, separated in energy by 𝜀𝑖𝑗  and 

in distance by 𝑅𝑖𝑗  .  The decay length or localization radius of the trap state wavefunctions associated with 

each trapped site is 𝜂 and the attempt-to-escape frequency is  𝜈0 (see Section 2.4.3).   The hopping rate is 

driven by two terms in Eq. (3.1.1); the first is range-dependent and the second results from the phonon 

spectrum. The mean transition rate given by Eq. (3.1.1) was shown in Section 2.4.2 to scale as the transfer 

integral between localized wavefunctions, as given by Eq. (2.4.4), evaluated at the mean separation 

distance between localized sites,  𝑎 = 𝑅� ≡ 〈𝑅𝑖𝑗〉.  There, for localized Coulombic centers, the transition 

rate transfer integral was shown to scale approximately as exp(-2a/ro), where   𝑟0 is a characteristic fall off 

radius for the wavefunction (not quite a localization radius) [see Eqs. (2.4.5) and (2.4.7)].  For a more 

general localized wavefunction, the wavefunction falls off approximately exponentially at large distances 

from a trap site proportional to the decay length or localization radius of the trap state wavefunctions, 

𝜂 (see Fig. 2.3 and Section 2.4.3).  Thus, the mean transition rate proportional to the square of the 

wavefunction is  

�̅� ∝  𝑒𝑥𝑝 �− 2𝑅�

𝜂
� ≈  𝑒𝑥𝑝 �− 2a

𝑟0
�   ;        𝜀𝑖𝑗 > 0.  (3.1.2) 

𝑅, 𝜂, and 𝑎 play an important role in understanding what kind of transport we observe.  For large spatial 

disorder, little or no energetic disorder dependence is observed, which is often the case with simple ionic 

models like the TAH model (Dennison et al., 2009b).  In such a case, the average hopping distance is 

𝑎 = 𝑅� ≡ 〈𝑅𝑖𝑗〉, see Eq. (3.2.41) for an example.  However, when significant disorder is present, both 
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spatially and energetically, the average hopping distance 〈𝑅𝑖𝑗〉  ≠ 𝑎 because it is a function of both spatial 

disorder and energy leading to hopping distances greater than the average distance between localized states, 

𝜂 is a function of energetic disorder (i.e., the exponential fall off of a wavefunction for tunneling through a 

barrier depends on the energetic height of the barrier), since on average localized states are much too far 

apart to interact.  Thus, the type of disorder determines the relationship between the nearest neighbors, 

localization length, and hopping distance.   Equation 3.1.2 allows any two these parameters to be expressed 

in terms of the other two. 

The interdependence of the range and energy is not, at first glance, obvious.  Consider the 

exponential DOS discussed in Section 2.4.5.  In this model, the DOS decreases into the gap in an 

exponential way.  Thus, for shallow traps close to the mobility edge, the overlap between states is greater 

than for deep traps.  That is,  𝜂 is larger and the hopping range is smaller near the TE than for deeper states.  

Recall the wave function envelope for localized states typically falls off exponentially at large distances 

from the trap site.  It is the ratio (𝑅𝑖𝑗/𝜂) that determines the strength of the VRH.  For shallow traps 

(𝑅𝑖𝑗/𝜂) ≪ 1, and the leading exponential term in Eq. (3.1.1) is approximately one.   In the shallow trap 

case, Eq. (3.1.1) becomes the probability distribution discussed in Section 2.3 used to develop the transport 

equations.  The DOS in most HDIM is a function of energy, and therefore the range is a function of energy, 

as well.  (Here energy is measured as increasing from the mobility edge downward to the state of interest.  

The reader is cautioned not to confuse the usual convention for measurement of energy in the CB with 

respect to the VB, where energy is increasing as we move upward from the VB.)  In our description of 

processes in the DOS, we speak of the energy as being deeper as we move downward away from the 

mobility edge (CB edge).  This arrangement of the hopping range as a function of the decreasing DOS and 

with increasing energetic depth into the DOS is precisely why VRH occurs from deep states to shallower 

states, but not the other way around.  It also explains why transport at the TB is governed almost entirely by 

TAH, as the TB is largely composed of much shallower states whose overlap is larger.   

In order to classify trapped states during thermalization and transport, we need some new 

language.  Consider the first few moments of thermalization.  Carriers enter into the DOS and undergo 

nearly instantaneous capture by a shallow state; but, at energies close to the mobility edge, the carrier is 
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released almost as quickly as it is captured.  However, at low temperatures, the carrier will not have enough 

energy to be excited upward; thus, its only choice is to find a state of nearly equal energy or to drop further 

into the DOS (loosing energy).  We observe, as time goes on, that the centroid of the carrier distribution (or 

mean carrier energy) will decrease (or descend) on average into the DOS toward some equilibrium value.   

This process continues until the ratio (𝑅𝑖𝑗/𝜂) is large enough that VRH begins to dominate the process, 

causing an upward hopping to counteract the thermalization and descent of the mean carrier energy.  The 

energy centroid of the carrier distribution is time dependent, since each successive trapping and release 

event takes longer, the lower into the DOS the center of the distribution progresses.   The energy that 

separates states that have released at least one carrier from those that have not is called the demarcation 

energy (DE) and is the subject of the next section. Further, it turns out to be advantageous to understand the 

thermalization process and DE when seeking solutions to the multiple trapping equations.  The separation 

of states allows simplification of the solutions and interpretation of the resulting expressions for both low-

temperature and high-temperature behavior. These ideas, in fact, lead to deep understanding of dispersive 

behavior (Rudenko and Arkhipov, 1978, 1979; Arkhipov et al., 1979; Arkhipov and Rudenko, 1979, 1982a, 

1982b; Tiedje and Rose, 1981; Monroe, 1986). 

3.1.3. Demarcation Energies 

Consider an electron relaxing from some excited state; say it was injected at or above the mobility 

edge. We know that progressive thermalization occurs with release and re-trapping of localized electrons.  

How can we write down a temperature- and time-dependent description of the central energy centroid?  

Consider again Eq. (3.1.1), but for the situation (𝑅𝑖𝑗/𝜂) ≪ 1 and some general energy 𝜀<0; then   

𝜈(𝑇) = 𝜈0exp �
−𝜀
𝑘𝑏𝑇

�.                                                 (3.1.3) 

The time dependence is predominantly controlled only by the release events and, thus, the centroid 

of the thermalizing charge distribution must occur when the probability of release reaches unity.  By 

definition, states above the DE have released their charges and those below have not.  The DE is therefore 

defined as the energy where the probability of release from Eq. (3.1.2) is equal to one, such that 1 ≅

 �̅�(𝜀𝑑(𝑡))𝑡, i.e., the rate of release multiplied by the retention time is the dwell probability.  Measuring 

energy from the mobility edge downward, 𝜀 = (𝜀𝑑(𝑡) − 𝜀𝑀𝐸), (Note, some authors measure energies from 
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the Fermi-energy upward and others from the CB edge downward, all of which can occur in energetically 

different places within the DOS), we can write the condition for the time evolution of the centroid 

demarcation energy as,  

1 ≅  𝜈�(𝜀𝑑(𝑡) − 𝜀𝑀𝐸)𝑡.                                                 (3.1.4) 

Using Eqs. (3.1.2) and (3.1.3), the expression for the downward demarcation energy during thermalization 

for the high temperature case is 

𝜀𝑑 ↓ (𝑡) =  𝜀𝑀𝐸 − 𝑘𝑏𝑇𝑙𝑛(𝜈0𝑡)                                                     {Downward Demarcation}. (3.1.5) 

The DE is usually presented with the TE energy set to zero, and we will follow this convention 

unless otherwise stated.  This expression works for all the DOS of interest, as long as the ratio of hopping 

range to wavefunction overlap is small.   

At some point, the decent of the DE will stop, as the downward hopping becomes balanced by the 

upward VRH mechanism.  In the literature, one often encounters a discussion of two demarcation energies: 

one is due to simple thermal release from trapping states that is thermal in nature and a second DE that is 

driven by VRH.  The separation of DE into two types is done only to highlight the different physical 

mechanism, but both follow from the MAR.  Thus, the second DE is often called the upward hopping 

demarcation energy, 𝜀𝑑↑(𝑡), driven only by VRH.   

In the upward hopping regime, the hopping range dominates the MAR and the low T limit 

suggests 𝜈0exp �
−𝜀
𝑘𝑏𝑇

�~1.  To find an expression for the upward DE, one sets the (mean) probability of an 

escape to one; i.e., 𝜈↑�𝜀 ↑𝑑 (𝑡)�𝑡 = 1, just as before, but with the energy-dependent hopping range 

explicitly expressed as 𝑅 → 𝑅(𝜀 ↑𝑑 (𝑡) − 𝜀𝑡) (Karkin et al., 1979; Rudenko and Arkhipov, 1979; Orenstein 

et al., 1980, 1982; Orenstein and Kastner, 1981; Monroe, 1985).  This equation is solved for the value 

𝜀 ↑𝑑 (𝑡) in terms of the TE to which subsequent hops will occur.  Using the expression for the upward 

hopping rate when VRH is active, Eq. 3.1.1, and replacing the energy by 𝜀 ↑𝑑 (𝑡), we have 

1 = 𝑡𝜈0𝑒𝑥𝑝 �
−2𝑅(𝜀↑𝑑(𝑡)−𝜀𝑡)

𝜂
�.  (3.1.6) 

Expressed in terms of an energy-dependent mean hopping range, 〈𝑅(𝜀 ↑𝑑 (𝑡) − 𝜀𝑡)〉 = 𝑅�(𝜀 ↑𝑑 (𝑡) − 𝜀𝑡) =

𝑎(𝜀 ↑𝑑 (𝑡) − 𝜀𝑡) and mean transition probability <𝜈≥= 𝜈�=1, 
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1 =  𝜈� = 𝑡𝜈0𝑒𝑥𝑝 �

−2𝑅�(𝜀↑𝑑(𝑡)−𝜀𝑡)
𝜂

�.   (3.1.7B) 

Eq. (3.1.5B) allows the energy-dependent mean separation distance to be expressed in terms of the mean 

transition rate and the localized wavelength decay length. 

We now assume that the mean hopping range for a 3D material can be found by using the DOS to 

estimate a sphere of radius 𝑅� and volume per state of  4
3
𝜋𝑅�3  around which hops may occur (Monroe, 

1985).  The density of states per unit volume is  �4
3
𝜋𝑅�3�

−1
= 𝑛𝑡(𝑡) = ∫𝑛𝑡(𝜀, 𝑡)𝑑𝜀.  Here, the constant 

DOS is to be used (see Section 2.4.5), as it is mathematically simpler; however, the procedure to obtain the 

range is identical for all other DOS expressions.  Using the constant DOS, 𝑛𝑡(𝜀) = �𝑁𝑡 𝜀𝑜𝑐� � , and the fact 

that an upward hop will most likely occur from the DE to the TE, we can obtain an estimate for the mean 

range 𝑅� of a hop 

𝑅��𝜀 ↑𝑑 (𝑡)� =  �4𝜋
3
𝑁𝑡
𝜀𝑜𝑐
�𝜀𝑡 − 𝜀𝑑𝑐

↑(𝑡)��
−1/3

.  (3.1.8) 

This expression highlights the connection between the hopping range and the energy-dependence 

of the DOS.  Using Eq. (3.1.5B) to express 𝑅� in terms of the localization decay length and mean transition 

rate, and substituting Eq. (3.1.6) with the condition that 𝜈↑�𝜀 ↑𝑑 (𝑡)�𝑡 = 1, we obtain an expression for 

𝜀𝑑𝑐
↑(𝑡) in a constant DOS 

𝜀𝑑𝑐
↑(𝑡) =  𝜀𝑡 − �6𝜀𝑜

𝑐

𝜋𝑁𝑡

1
𝜂3
� (𝑙𝑛[𝜈0𝑡])−3              {Upward demarcation energy for a constant DOS}. (3.1.9) 

We can simplify this expression by defining an effective temperature equation, 

𝑇0𝑐 = 24𝜀𝑜𝑐

𝜂3𝜋𝑁𝑡𝑘𝑏
 . (3.1.10) 

Then Eq. (3.1.7) can be written as 

𝜀𝑑𝑐
↑(𝑡) = 𝜀𝑡 −  𝑘𝑏𝑇0

𝑐

4
(𝑙𝑛[𝜈0𝑡])−3.          (3.1.11) 

Many authors use a slightly different convention for the effective temperature in which the number 24 is 

replaced by 18 (Fritzsche, 1990); still others use a numerical constant, 𝛽, whose value ranges from 10.0 to 

37.8 (Baranovskii and Rubel, 2006).  This ambiguity results from different expressions of the MAR, 

application of the DOS, and spatial dimensionality of the system.  See Baranovskii and Rubel (2006) for a 
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detailed treatment.  Stated another way, the discrepancy in the constant results from different assumptions 

about the packing density of the density of states assumed in the MAR; for example in 3D for close packing 

of cubes, [𝑅�3]−1 = 1, for packing of spheres on a cubic lattice, �4
3
𝜋𝑅�3�

−1
= 1 as used in Eq. (3.1.6), and 

for close packing of spheres on an HCP or FCC lattice, [1.10𝑅�3]−1 ≈ 1.  Another modification often 

found, is that the effective temperature is expressed as an energy by multiplying by the Boltzmann 

constant; such a convention yields a demarcation energy of the form 

𝜀𝑑𝑐
↑(𝑡) =  𝜀𝑡 −  𝑇0

𝑐

4
(𝑙𝑛[𝜈0𝑡])−3.                   (3.1.12) 

Quite often in the literature, the DE is presented without reference to the TE (Monroe, 1983, 1985, 

1987); we leave a discussion of the TE until Section 3.1.5.  These differences in notation, energy reference, 

and definition of the MAR cause confusion, but in the end, the energetic point at which the downward 

demarcation energy passes the transport energy is the point at which upward hopping (VRH) will begin to 

dominate. Generally, the time at which this occurs is referred to as the segregation time, 𝜏𝑠𝑒𝑔.  A discussion 

of segregation time is also differed until Sections 3.1.5.  Since the downward demarcation energy is 

assumed to be given Eq. (3.1.4) for all the DOS considered in this dissertation, we next summarize the 

upward demarcation energies for the exponential and Gaussian DOS.  

To obtain expressions for the exponential and Gaussian DOS upward demarcation energies, the 

same procedure used to obtain Eq. (3.1.9) is followed.  For the exponential DOS upward demarcation 

energy we obtain 

 𝜀𝑑𝑒
↑(𝑡) =  εTE − 𝑘𝑏𝑇0𝑒𝑙𝑛 �

6
𝑘𝑏𝑇0

𝑒𝜂3𝜋𝑁𝑡
� − 3𝑘𝑏𝑇0𝑒ln [ln(𝜈0𝑡)]                          {Exponential DOS}.   (3.1.13) 

Here,  𝑘𝑏𝑇0𝑒  is the energy scale term for the exponential DOS (see Table 2.1), and 𝑇0𝑒  is the effective 

temperature.  Fortunately, this form of the exponential DOS is very common in the literature and we, 

therefore, offer no alternative derivations (Orenstein et al., 1982; Monroe, 1985, 1986; Shklovskii et al., 

1989; Arkhipov et al., 2002b, 2005a, 2006; Baranovskii and Rubel, 2006; Fishchuk et al., 2007).  The 

derivation of the Gaussian equivalent leads to the following equation for the upward hopping rate: 

𝑙𝑛(𝜈0𝑡)3 �
2
𝜂
� � 3

2𝜋𝜀𝐺𝑁𝑡
� + 1 = 𝑒𝑟𝑓 �𝜀𝑑

𝐺↑(𝑡)

√2𝜀𝐺
�                                                     {Gaussian DOS}. (3.1.14) 
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A solution for the low-energy approximation can be obtained for early times in the thermalization 

process by using the small expansions for the erf(x) function (Abramowitz, 1965).  For the cases of 

medium- to high-energy scales, there is no good approximation that allows for a simple determination 

of 𝜀𝑑𝐺
↑(𝑡) .  The problem, of course, can be solved numerically.   

Now that we have a reasonable description for the time evolution of the centroid of the carrier 

distribution, 𝜀𝑑↑(𝑡), as it goes through the process of thermalization, a description of the complete charge 

body and thermalization process as a whole can be presented.   

3.1.4. Thermalization 

Consider a body of electrons injected into the extended conduction states of an HDIM at time, 

t=0.  The electrons will make their way in time into the localized states via thermalization.  In general, the 

carriers will be rapidly trapped in the localized states.  If the capture cross section for all the states is the 

same (this is always assumed, but is likely not generally true for all temperatures), the electrons will 

populate the states uniformly beginning with the states highest in energy above or at the ME (Orenstein et 

al., 1982).  The carriers in shallow traps will be released much more quickly than those in the deeper traps.  

In the first moments of thermalization, not enough time has passed for excitation processes to have 

occurred, and therefore, only trap filling will take place.  The mean time for an electron trapped in a 

particular state at a particular energy to be released is found when the product of the release rate and the 

elapsed time is unity: 

�̅�(𝜀𝑑)𝑡 = 1.  (3.1.15) 

Using the MAR, one observes that the deeper a carrier is into the DOS the longer it takes for 

release.  It is clear then that the energy-dependence of the DOS and the carrier occupation distribution 

determine release time, and therefore, the observed current.  Equation (3.1.13) only tells us how the 

centroid of the charge distribution will move downward in the DOS with time and temperature.   

To understand the evolution of the trapped charge distribution during thermalization, we turn our 

attention to the mean occupation number,  𝑓(𝜀, 𝑡), for trapped states (not to be confused with the Fermi-

Dirac distribution function).  In a classical Fermi-Dirac distribution, the point at which the occupation 

number goes from unity to zero is centered about the chemical potential.  In such systems, there are no 
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states in the gap to trap carriers that would normally be in the CB and the system is in thermal equilibrium 

with the CB.  In an HDIM, there is a distribution of trapped states in the gap (the DOS) and the chemical 

potential changes with time as the process of thermalization progresses.  Thus, it is not surprising to find 

that the mean occupation number is a function of time and energy.  For early times, electrons are trapped in 

the DOS across a wide range of energies (some of which are in thermal equilibrium with the CB, but most 

of which are not); deep states have a probability of release of approximately zero for early times.  Clearly 

for trapping states within the BG, the mean occupation number cannot be unity for early times (it must be 

less than unity), since thermal equilibrium has not been achieved for the majority of trapped states.  Schiff 

(1981) has shown that the mean occupation number goes as 𝑓(𝜀, 𝑡) = 𝐹(𝑡) �1 + exp ��𝜀 − 𝜀𝑑↓(𝑡)� /

𝑘𝑏𝑇��
−1

, where F(t) describes the time-dependent evolution of carriers in the DOS.  This difficulty 

highlights one of the complexities of carrier dynamics in HDIM.  Excellent discussions of the mean 

occupation number and dispersion can be found in (Schmidlin, 1977; Noolandi, 1977a, 1977b, 1977d;  

Tiedje and Rose, 1981; Schiff, 1981) and (Orenstein et al., 1982).   Orenstein put forth a method for finding 

the mean occupation number in disordered systems (of any given DOS) by considering the product of the 

DOS,  𝑁(𝜀), with the mean occupation number,   

𝑛𝑡(𝜀, 𝑡)𝑑𝜀 =  𝑓(𝜀, 𝑡)𝑁(𝜀)𝑑𝜀,  (3.1.16) 

which must define the number of trapped carriers, and subsequently, describe the process of thermalization 

(Orenstein et al., 1982).   

Figure 3.3 shows the process of thermalization for an exponential DOS as a function of the time-

dependent demarcation energy at successive times after excitation of carriers into the conduction band and 

subsequent re-trapping (Orenstein et al., 1982).  Figure 3.4 (a) shows the associated DOS, Fig. 3.4 (b) 

shows the mean occupation number, and Fig. 3.4 (c) shows Eq. (3.1.14), which is the continuum of trapped 

carriers and their evolving thermalization (Note, the area under the curve remains the same for all times).  

The process of capture and release causes the continuum of bound states to move deeper into the DOS 

toward the Fermi energy (equilibrium value of the QFL) as a function of time and temperature, until some 

equilibrium is established.  This is the simplest picture that we can put forth, and does not include 

recombination or the effects of upward hopping.  In fact, this model is strictly correct only for an 
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energetically and spatially infinite slab with some externally excited electron distribution (i.e., no electron-

hole pairs are created).  For a detailed treatment of thermalization see (Orenstein et al., 1982).   

What other processes can we consider?  In fact, we have already looked at one such process when 

deriving the upward demarcation energy.  In this process at some energetically deep point in the DOS, say 

𝜀↓𝑑(1000𝑡0)~ 𝜀↑𝑑(1000𝑡0), we can imagine that the evolving carrier distribution uncovers an additional, 

—but very small— distribution of trapped states whose special feature is that it can support VRH, perhaps 

through more closely spaced trap states.  This new distribution will be the transport energy, 𝜀𝑡.  

FIG 3.4. Thermalization of injected carriers and the change in trapped carrier distribution characterized by 
an energetic center, 𝜀𝑑(𝑡). (a) The DOS, assumed here to be an exponential. (b)  Mean occupation of states 
as a function of time and energy. (c)  Product of the DOS and the mean occupation number, which leads to 
a description of the distribution of occupied trapped states near the demarcation energy. This process can 
involve luminescence through the emission of photons from shallow states in emitting low-energy (red) 
photons and shifting toward the high-energy (blue) photons as the charge body thermalizes into the DOS. 
(Orenstein et al., 1982).  Red, yellow, green, and blue curves are shown at successively later times to, 10to, 
100to, and 1000to, respectively. 
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As 𝜀↑𝑑  continues its descent toward the equilibrium value, the population of the TE by electrons will grow 

larger as more carriers jump to the TE from energies at or below the DE located at 𝜀𝑡.   

We may also consider the effects of recombination, which will alter Figure 3.3 (c) in a 

fundamental way.  Recall that above we have replaced the CB edge with the mobility edge or TE.  We can 

now consider what disorder has done near the VB edge.  The answer is that there is a valence mobility edge 

that is the mirror of the CB mobility edge.  Thus, the process of carrier loss from the conducting [Fig. 2.9 

(b)] or trapped [Fig. 2.9 (f)] states into the empty holes near the valence mobility edge (called 

recombination centers) will draw off carriers from the trap state distribution, thus decreasing its magnitude.  

This effect, called recombination limited transport, generally only occurs for low temperatures where the 

TE merges with the QFL (Fritzsche, 1990). For wide band gap materials, we generally only consider 

recombination with valence holes from the extended transport states (i.e., no intra-band recombination is 

considered).  As the carrier distribution descends into the DOS, it losses energy to the local lattice via 

phonon or photon emission.   

We now explicitly evoke the assumption used throughout this dissertation —that electrons are the 

primary carriers and the holes are immobile— and ask the question, how does the mean occupation evolve 

with time in the presence of recombination?  We assume an Ohmic injection of photo-excited carriers that 

are uniform in space and energy, Ninj.  This does not necessarily mean that the carriers are generated by a 

RIC-type process; in fact, the carriers can be injected by any means.  The process of thermalization is 

independent of the injection mechanism, as long as there is no electric field large enough to distort the trap 

state distribution or initiate significant recombination from carriers that move directly from the trapped 

distribution to holes in the VB.  We, therefore, use 𝑁𝑖𝑛𝑗  in place of a generating term,  𝐺(𝑧, 𝑡), to make this 

process distinct.  This gives an instantaneous number of photo-excited free carriers, ∆𝑛𝑒, injected at time 

tinj.  We then can write down an expression for the change in the mean occupation number as a function of 

time, temperature, and energy as a differential equation (Orenstein et al., 1982), 

𝑑𝑓(𝜀,𝑡)
𝑑𝑡

=  𝜈0
𝑁𝑒
�𝑛𝑒 + ∆𝑛𝑒θ(t − tinj)�[1 − 𝑓(𝜀, 𝑡)] − 𝜈0𝑓(𝜀, 𝑡).  (3.1.17) 

Here the detrapping coefficient is given by  𝛼𝑡𝑒 = 𝜈0/ 𝑁𝑒.  We have also included an initial distribution of 

carriers, 𝑛𝑒, in the sample resulting from thermal excitation across the gap, from a set of donors, or other 
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injection mechanisms.   However, for wide band gap materials, there is little such excitation and, therefore, 

this equation reduces to 

𝑑𝑓(𝜀,𝑡)
𝑑𝑡

=  𝜈0
𝑁𝑒
�∆𝑛𝑒θ(t − tinj)�[1 − 𝑓(𝜀, 𝑡)] − 𝜈0𝑓(𝜀, 𝑡).  (3.1.18) 

This is a rate equation for the mean occupation number as a function of trapping and release in the absence 

of recombination.   

The calculation of the mean occupation number is involved and well described in Orenstein et al. 

(1982) and Schiff (1981); we will not reproduce the derivation(s) here.  Orenstein has shown that the 

change in the observed unitless mean occupation number for an exponential DOS is 

𝑓(𝜀, 𝑡) =  
𝑁inj
𝑁𝑡
𝑒
sin�𝑇𝜋/𝑇0

𝑒�
𝑇𝜋/𝑇0

𝑒 � 1
 𝛼𝑡𝑒𝑁𝑒𝑡

�
1−𝑇/𝑇0

𝑒

 𝑒𝑥𝑝 �− 𝜀
𝑘𝑏𝑇

�               for           𝜀 ≫  𝜀𝑑,  (3.1.19) 

and 

𝑓(𝜀, 𝑡) =  
𝑁inj
𝑁𝑡
𝑒
sin�𝜋𝑇/𝑇0

𝑒�
𝜋𝑇/𝑇0

𝑒 ( 𝛼𝑡𝑒𝑁𝑒𝑡)𝑇/𝑇0
𝑒
                                       for           𝜀 ≪  𝜀𝑑. (3.1.20) 

Equation (3.1.17) describes the evolution of the carrier distribution upward in energy for carriers in trapped 

states below the DE, and Eq. (3.1.18) describes the downward evolution of occupation for excitations 

above the TE.  These two equations, taken together, suggest that as time goes on, carriers below the DE 

become more likely to be released and the occupation of states above the DE decreases.  Both equations are 

distributions, and thus, together they suggest that the DE is the centroid of the occupied trap state 

distribution.  Put another way, Eq. (3.1.17) is one side of the distribution and Eq. (3.1.18) is the other.  

Further, inclusion of the demarcation energy suggests a power law-type decay governed by the ratio of the 

system temperature T and 𝑇0𝑒. This result is actually the hallmark for dispersive behavior (Orenstein et al., 

1982).  

The product of the DOS and the mean occupation number evaluated at the DE, 

 𝑁𝑡�𝜀𝑑(𝑡)�𝑓�𝜀𝑑(𝑡)�, provides a determination of the shape and centroid of the charge distribution as it 

moves deeper into the DOS, just as shown in Fig. 3.4. Now, however, the effects of additional interactions 

can be studied using the differential equation for the mean occupation number, given by Eq. (3.1.15) or Eq. 

(3.1.16).  While a full investigation of the evolution of the charge body requires numerical calculations, the 

analytic expression allows some detail to be extracted.  First, the equilibrium level, which is the effective 
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Fermi level, 𝜀𝑓0, is generally below the transport energy and above the dark Fermi energy 𝜀𝐹.  The 

demarcation energy will continue to move toward the dark Fermi energy until all of the trapped states have 

undergone at least one carrier release.  In particular, for a system that displays dispersive behavior, this 

arrangement tells us that there is a dispersion of trapping energies below the transport edge; this means that 

the distribution spreads out as thermalization progresses, and we can study the evolution of that spreading.  

Further, we can study the movement of the charge distribution as it comes to equilibrium, and hence, the 

change from dispersive to diffusive behavior.  Thermalization holds for both extended state and hopping 

conduction regimes, and can be explored via the multiple trapping formalism using the transport equations 

in conjunction with Eq. (3.1.16) and a description of the mean occupation number.  Having discussed the 

way in which injected electrons thermalize into the DOS, we can now ask an important question: what is 

the energy, in a low-temperature system, at which transport of electrons occurs, i.e., what is the TE?   

3.1.5. Transport Energies 

The term transport energy (TE) was first coined by Monroe (Monroe, 1985, 1987), but was 

previously conceptually defined by Schmidlin (1977).  The TE, 𝜀𝑡(𝑇), is the optimal energy to which 

electrons in deep trapped states will hop in order to undergo transport. The TE is the energy at which 

equilibrium and nonequilibrium transport phenomena occur, for temperatures such that thermal excitation 

to CB extended states above the mobility edge is negligible; this assumes that there is no recombination 

from the trapped distribution to either holes or vacancies in the valance band (Fritzsche, 1990).  Consider 

the path of a trapped electron at some energy, εi , deeper in the DOS than the mobility edge, such that it 

undergoes a quantum tunneling event (or VRH).  Arkhipov et al. (2006), Schmidlin (1977), and Monroe 

(1985, 1987) have shown, based on the work of Miller and Abrahams (1960), that there should be a 

preferred energy for carriers to jump to.  At this preferred TE, the mobility of the carriers is nonzero (but 

much lower than at the mobility edge), and thus, conduction may occur.   

Arkhipov has shown that the typical expression for trap-controlled carrier transport is recovered 

with the band edge replaced by the transport energy in the MAR formalism (Arkhipov et al., 2006): 

𝜈(𝜀,𝑇) =  𝜈0𝑒𝑥𝑝 �−
𝜀𝑡(𝑇)−𝜀𝑖
𝑘𝑏𝑇

�.                 (3.1.21) 
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Here, 𝜀𝑖 is the energy from which a carrier jumps or is excited to in the TE. Since there is a distribution of 

trapped carriers with a distribution of energies, we represent a specific transitioning carrier with the sub-

script i. This is a very important result, as it shows directly that the MT formalism can be applied in the 

context of hopping systems.  In fact, it has been shown by many authors under numerous conditions that 

the use of the MT formalism in the hopping regime can correctly predict the measured current that results 

from charge transport (Schmidlin, 1977; Noolandi, 1977b, 1977c, 1977d, 1979; Tiedje and Rose, 1981; 

Arkhipov and Rudenko, 1982b, 1982c; Rudenko and Arkhipov, 1982b, 1982c; Raikh et al., 1990; 

Arkhipov et al., 2006).  The temperature determines whether TAH- or VRH-type behavior will be 

dominant. 

At low temperatures, the transport energy is deep in the band tail; the TE descends with 

temperature deeper into the gap (away from the ME) until it meets the Fermi level, at which temperature 

the transport will change its character completely. This has never been measured for HDIM, but is expected 

to be a constant conductivity independent of temperature (see Section 3.2.8).  The behavior of such an 

intersection has been discussed at length (Fritzsche, 1990; Baranovskii and Rubel, 2006; Arkhipov et al., 

2006).  The behavior of very low temperature transport (T<10K) is not the focus of this dissertation, and it 

is therefore left to the interested reader to investigate.   

If we raise the temperature to some critical temperature, Tc , the transport energy will merge with 

the mobility edge and Eq. (3.1.19) recovers the typical expression for the thermally activated attempt-to-

escape frequency,  𝜈(𝜀), Eq. (2.5.11), found in the high-temperature expression for the transport models of 

Chapter 2.  Tc is the temperature at which the hopping exchange of electrons between localized states 

becomes negligible and the dynamic behavior of carriers is accounted for by transport at or above the 

mobility edge.  The addition of the TE to our transport models expands their application to all but very low 

temperatures. 

The following development is an application of a general method to determine the TE, applied to 

the specific case of a constant DOS.  The reader should note that the activation energy used here is the 

difference between the initial site energy, 𝜀𝑖, and the TE, (𝜀𝑡 − 𝜀𝑖).   We can find the TE by minimizing the 

attempt-to-escape frequency about some energy, ς ; this is true because the process of upward hopping to 
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the TE is an energy minimization that balances the quantum tunneling potential with thermal energy. Then, 

Eq. (3.1.1) becomes 

𝜈↑(𝜀(𝑡), 𝛿) =  𝜈0𝑒𝑥𝑝 �−
2𝑅(𝜀𝑖−𝜍)

𝜂
− 𝜍

𝑘𝑏𝑇
�, (3.1.22) 

where 

𝑅�(𝜀) =  �4𝜋
3 ∫ 𝑁(𝜀)𝑑𝜀0

𝜀 �
−1/3

.  (3.1.23) 

The limits of integration are chosen based on the DOS; in this case we integrate from some general 

energy, 𝜀, to the ME (usually assigned as the zero energy point).  For a constant DOS [see Table 2.1 (c)], a 

specific expression for the mean hopping range (see Eq. 3.1.6) is 

𝑅(𝜀) =  �4𝜋
3
𝑁𝑡
𝑐

𝜀𝑜𝑐
𝜀�
−1 3⁄

. (3.1.24) 

Given Eq. (3.1.20) for the frequency of upward transition and this specific expression for the mean 

hopping range, Eq. (3.1.22), we can ask: what is the optimal hopping rate for some energy, 𝜍, i.e., what is 

the maximum hopping rate, 

𝑑𝜈↑(𝜀𝑖,𝜍)
𝑑𝜍

= 0  . (3.1.25) 

In Mott’s evaluation of VRH, he used a constant DOS in which the value of the initial site energy 

is the QFL, thus 𝜀𝑖 → 𝜀𝑓𝑐 (Baranovskii and Rubel, 2006); this assumes that thermalization is complete and 

that the system is in equilibrium with the TE.  Inserting Eq. (3.1.22) into Eq. (3.1.20) and applying Eq. 

(3.1.23), we obtain the following equation for the value, 𝜍, 

𝜍(𝑇) =  𝜀𝑓𝑐(T) − �𝑘𝑏𝑇
3
� 3𝜀𝑜𝑐

𝜋𝑁t
𝑐𝜂3
�
1/3
�

3
4
.  (3.1.26) 

This equation represents the difference between the initial site energy—where 𝜀𝑖 → 𝜀𝑓𝑐 is the 

equilibrium condition—and the final site energy to which the carrier will hop, (i.e., the change in energy).   

The transport energy as measured from the mobility edge is, 

𝜀𝑓𝑐(𝑇) =  �𝑘𝑏𝑇
3
� 3𝜀𝑜𝑐

𝜋𝑁t
c𝜂3
�
1/3
�

3
4
                                                                         {TE constant DOS}.  (3.1.27) 

Equation (3.1.25) can be written in terms of the effective temperature Eq. (3.1.8) as, 

𝜀𝑓𝑐(𝑇) = (4/3)3/4  𝑘𝑏𝑇0
𝑐

4
(𝑇/𝑇0𝑐)3/4                                                         {TE for constant DOS}.  (3.1.28) 
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Here, we have used a superscript on the characteristic dispersion temperature, To, to denote the 

type of DOS used.  Note that in the zero temperature limit, Eq. (3.1.26) goes to zero, but that the change in 

energy—Eq. (3.1.24)—goes to the Fermi energy, 𝜀𝑓𝑐(𝑇 = 0) → 𝜀Fc.  Equation (3.1.24) bears a strong 

resemblance to the standard expression for the Fermi level (chemical potential) as a function of temperature 

for extrinsic semiconductors (Ashcroft and Mermin, 1976), and we should not be surprised to find that 

excitation of carriers from deep states to the TE changes the QFL.  These two results are exactly what you 

would expect.  In Section 3.1.7, we will use Eq. (3.1.26) to define the QFL for the constant DOS.   

The same procedure can be carried out for the exponential and Gaussian DOS to obtain equivalent 

expressions for the TE relative to the mobility edge. For the exponential DOS, we find 

𝜀te(𝑇) =  3𝑘𝑏𝑇0𝑒𝑙𝑛 �
3𝜂𝑇0

𝑒

2𝑇
�4𝜋
3
𝑁t𝑒�

1/3
� = 3𝑘𝑏𝑇

α
𝑙𝑛 �3𝜂

2𝛼
�4𝜋
3
𝑁t𝑒�

1/3
�     {TE for exponential DOS}.  (3.1.29) 

Here, 𝛼 = 𝑇/𝑇0𝑒 is the dispersion parameter (see Table 2.1) and 𝑘𝑏𝑇0𝑒 defines the width of the exponential 

distribution and is, in a sense, an effective temperature (see Chapter 2).   

For the Gaussian DOS, the situation is more complex due to the mathematics required to obtain 

the expression for the transport energy.  The derivation of the Gaussian TE follows an identical 

development to that of the constant and exponential DOS, but yields a complicated function,  

𝜀tG(𝑇) =  𝜀oG ∗ Υ �𝑁𝑡𝐺𝜂3 , 𝑘𝑏𝑇
𝜀oG
�                                                             {TE for Gaussian DOS}, (3.1.30) 

where Υ �𝑁𝑡𝐺𝜂3 , 𝑘𝑏𝑇
𝜀oG
� is the unitless function defined through the transcendental equation  

𝑒𝑥𝑝 �Υ
2

2
� �∫ 𝑒𝑥𝑝(−𝑥2)𝑑𝑥Υ/√2

−∞ �
−1/3

=  �9𝑁𝑡𝐺𝜂3(2𝜋)1/2� 𝑘𝑏𝑇
𝜀oG

.       (3.1.31) 

Here, 𝑥 is a dummy integration variable, the function, Υ, is a function of the reduced dimensionless 

quantities 𝑁𝑡𝐺𝜂3 and 𝑘𝑏𝑇
𝜀oG

, and the solution for Υ  is a complicated expression that can only be solved 

numerically.  For the Gaussian DOS, the TE only makes sense for  𝑘𝑏𝑇 << 𝜀oG [𝜀oG is the energy width 

(standard deviation) of the Gaussian distribution], where the VRH regime is dominant (Baranovskii and 

Rubel, 2006).  A complete discussion of the Gaussian TE is given by Baranovskii and Rubel (2006), 

Vissenberg (1998), and Arkhipov et al. (2006).  For very low temperatures, Baranovskii provides a new 

theoretical framework whose complexity necessitates that it be left as future work.  However, the 
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calculation of the low-temperature mobility and conductivity follow from the same assumptions as were 

made to obtain the TE for the other DOS, as discussed in Section 3.2.7 (Arkhipov  et al., 1987c; Arkhipov 

et al., 2003c; Baranovskii and Rubel, 2006).   

3.1.6. Segregation Time 

While understanding the physical roots of the TE is important to understanding the energy at 

which transport occurs, the energy difference between the initial site and TE is the quantity more often used 

in calculations and extracted from experimental results.  A qualitative understanding of the TE is very 

useful in determining when the downward hopping and upward hopping dominate.  If fact, we should 

expect that beyond some characteristic time, the upward hopping or VRH regime begins to dictate the 

nature of the observed current.  The time at which this happens is called the segregation time.   

The time dependence of upward and downward hopping regimes makes it clear that at some time, 

the hopping probabilities will become equal.  This is the termination of the filling or downward hopping 

regime, and is the time where the upward hopping to the TE becomes the dominant process in the 

conductivity.  Recall that for low-temperature systems, the TE lies below the electron mobility edge.  Thus, 

it takes a time called the segregation time (ST),  𝜏𝑠𝑒𝑔, for the centroid of the carrier distribution to descend 

to the TE.  In order to determine the ST, we set the derivatives of the upward and downward demarcation 

energies equal (That is, we minimize the difference between the upward demarcation energy and downward 

demarcation energy, given by Eq. (3.1.4) and (3.1.9), respectively.) and evaluate them at  𝜏𝑠𝑒𝑔 .  For a 

constant DOS, we obtain 

𝜏𝑠𝑒𝑔𝑐 =  1
ν0
𝑐 𝑒𝑥𝑝 �

−3𝑇0
𝑐

4𝑇
�
1/4

                                             {Segregation time for constant DOS}.  (3.1.32) 

Recall from Eq. (3.1.8) that we have defined the value, 𝑇0𝑐, as an effective temperature for a 

constant DOS, so that 

𝑇0𝑐 =  24𝜀𝑜𝑐

𝑘𝑏𝜂3𝜋𝑁𝑡
𝑐.  (3.1.33) 

First, we note that the application of Eq. (3.1.31) for the constant DOS gives the correct T1/4 temperature 

dependence expected for the VRH conductivity (in accordance with Mott’s law of variable range hopping 

(Mott and Davis, 1971), as derived by Apsley and Hughes (1974, 1975).  In the USU MPG theory, 
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(Dennison et al., 2009a), the segregation time is embedded in the expression for the conductivity, and we 

will revisit this result in Section 3.2.1.  The segregation time is the time required for the energetic centroid 

of the charge body to drop below the TE and the time after which application of our theories are valid.  The 

segregation time is not the time required for the carriers to come to thermal equilibrium, which is rather 

called the thermalization time. Further, 𝜏𝑠𝑒𝑔  is not the time required for the maximum conductivity to 

occur.  In general, the segregation time is a very short time ~ 10-9 s or faster; we must keep in mind this 

estimated value is for semiconductors and is very likely to be much longer in HDIM due to the large 

energetic distribution of trapped states.  

We now present the results of similar calculations for the remaining DOS models (Monroe, 1985; 

Fritzsche, 1990; Baranovskii and Rubel, 2006).  For an exponential DOS, by minimizing the difference 

between the upward and downward demarcation energies using Equations (3.1.12) and (3.1.4), 

respectively, we find 

𝜏𝑠𝑒𝑔𝑒 =  1
ν0
𝑒 𝑒𝑥𝑝 �

3𝑇0
𝑒

𝑇
�
1/4

                                     {Segregation time for exponential DOS}.            (3.1.34) 

In a Gaussian DOS, no analytical expression for the segregation time is found; this is obvious since the 

upward demarcation energy is a numerical quantity and it follows that any approximation of the Gaussian 

segregation time will also be numerical.  This difficulty is explored in Section 3.1.8.   

3.1.7. Fermi Levels 

Often, in the literature, one encounters the use of terms like “effective Fermi level,” “quasi Fermi 

level,” or even “new Fermi level,” as distinguished from the Fermi energy or Fermi level.  The use of these 

terms originated from semiconductor physics to describe the situation where the population of each type of 

charge carrier (electrons or holes) is displaced from thermal equilibrium.  In an extrinsic semiconductor, the 

Fermi level (chemical potential), ɛf , is the temperature-dependent energy at which occupation, f(ɛ,T)=½, 

characterizing the equilibrium distribution of carriers in the material at some temperature, T (Ashcroft and 

Mermin, 1976).  In wide band gap materials, such as HDIM, there is little or no thermal generation of 

carriers—at room temperature or even at the glass transition, melting, or decomposition temperatures—and 

the temperature-dependent Fermi level, 𝜀𝑓, does not deviate appreciably from the Fermi energy 𝜀𝐹.  

Deviations from this chemical potential that depend on other variables lead to monikers of “effective“ or 
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“quasi” Fermi level (QFL).  In HDIM, the deviations can be caused by external injection of carriers 

(dependent on deposited charge or charge deposition rate), RIC (dependent on deposited energy or power), 

or similar processes that add to or modify the carrier distribution of the material. 

The equilibrium Fermi level of HDIM is changed by the injection of a charge carrier into the 

material (through Ninj) and  𝜀𝑓(𝑇) →  𝜀𝑓𝑜�𝑇,𝑄, �̇��.  That is to say, in HDIM the equilibrium Fermi level or 

chemical potential is a function of the amount of space charge, which acts to fill additional trap states and 

raise the energy at which the occupation of trap states is equal to ½.  If the material has a DOS in the gap 

(as do HDIM), the type of carrier distribution will determine the direction the equilibrium Fermi level will 

move (toward the CB for electrons and toward the VB for holes).  If the injection of carriers (electrons in 

this case) is constant and the flux is small, then a small fraction of the DOS will fill—to a new equilibrium 

value—as the process of thermalization completes; it will fill up to the equilibrium Fermi level, 𝜀𝑓𝑜(𝑇,𝑄), 

for constant charge injection.  (The value of the equilibrium Fermi level depends on the experimental 

details and the material DOS.) The equilibrium Fermi level of HDIM is also changed by the injection of 

energy, which can create conduction electrons (Gex through RIC) or generate new trap states (�̇�𝑇(𝜀) ≡

𝑑𝑁𝑇(𝜀) 𝑑𝑡⁄ ) in the material; then, 𝜀𝑓(𝑇) → 𝜀𝑓𝑜�𝑇,𝐷, �̇��.  For RIC, this is the effective Fermi level used to 

describe the steady-state irradiation of the material.   

To understand the quasi-Fermi level, consider the nonequilibrium case, which occurs before 

thermalization completes; the centroid of the distribution thermalizing in the DOS really is the QFL, 

𝜀𝑓
𝑄𝐹𝐿�𝑡,𝑇,𝐷,𝐷,̇ 𝑄, �̇��—by definition—as it is displaced from the equilibrium Fermi level.   In Section 

3.1.4, it was shown that during thermalization, the centroid of the charge distribution is given by the DE; 

we have called the DE the Fermi level in Sections 3.1.3 and 3.1.4 to avoid confusion. This was done for 

two reasons: first, the QFL becomes the equilibrium Fermi level after the completion of thermalization; and 

second, an introduction of the TE, thermalization, and the DE is required to make the difference between 

the Fermi level and QFL clear.  An excellent description of the QFL, the DE, and the derivation of the 

occupancy is given by Schiff (1981) and Rose (1951, 1963) gives an equally excellent description of the 

steady-state Fermi level and QFL in photo-excited semiconductors.   
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Consider a simple representative example, based on the Mott and Twose model, for the calculation 

of the QFL.  This example is useful in developing a basic notion of the QFL, when thermally activated and 

RIC excited electron distributions are present.  This is followed by a very short discussion of estimated 

QFL values in hopping systems for the constant, exponential, and Gaussian DOS models.  The depth of 

theoretical detail is kept to a minimum, as descriptions of the QFL under all of the conditions we might 

encounter in the study of HDIM cannot be presented here.   

In a semiconductor, the population of states in a band (CB or VB here) due to thermal processes is 

given by the Fermi-Dirac distribution function (or Maxwell-Boltzmann distribution, if the temperature is 

high enough) (Ashcroft and Mermin, 1976). Using the Law of mass action, the Fermi level (chemical 

potential) of an intrinsic semiconductor is determined from the ratio of the number of accessible valence 

states, Nv, to the number of accessible conducting states, Nc, and their relative energy difference, as 

(Ashcroft and Mermin, 1976) 

𝑁𝑣
𝑁𝑐

= 𝑒𝑥𝑝 �
𝜀𝑓−

1
2(𝜀𝑉𝐵+𝜀𝐶𝐵)
1
2𝑘𝑏𝑇

�.  (3.1.35) 

This yields the well-known expression for the temperature dependence of the Fermi level for the intrinsic 

semi-conductor 

𝜀𝑓(𝑇) = 1
2

(𝜀𝑉𝐵 + 𝜀𝐶𝐵) + 𝑘𝑏𝑇
2
𝑙𝑛 �𝑁𝑣

𝑁𝑐
�.  (3.1.36) 

At low temperature, 𝜀𝑓(𝑇~0) approaches 1
2

(𝜀𝑉𝐵 + 𝜀𝐶𝐵), which is the Fermi energy, 𝜀𝐹, midway 

between the conduction and valence band edges. Note that the Fermi energy is at the center of the band gap 

for T =0 for intrinsic semiconductors, even though there are no states in the gap.  Equation (3.1.34) is only 

useful in modeling HDIM for radiation induced or thermally excited carrier distributions or extrinsic 

semiconductors where there are no localized states in the gap.   

However, this simple model can be extended to include a delta function DOS of localized states in 

the gap by considering doping in extrinsic semiconductors.  The standard model has ND dopant states in a 

delta function distribution at a single energy,  𝜀𝑑, below the conduction band edge at 𝜀𝐶𝐵.  The calculation 

of the extrinsic Fermi level again follows from the law of mass action, with the replacement of the number 
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of accessible valence states, NV, at energy, 𝜀𝑉𝐵, by the number of available dopant states, ND ,  in the delta 

function DOS at 𝜀𝐷   

𝜀𝑓(𝑇) =  1
2

(𝜀𝐷 + 𝜀𝐶𝐵) + 𝑘𝑏𝑇
2
𝑙𝑛 �𝑁𝐷

𝑁𝑐
�.   (3.1.37) 

A connection with the delta function DOS model (see Section 2.4.5) can be made with these 

standard results for the equilibrium Fermi level for the case of delta function DOS for impurity dopants in 

extrinsic semiconductors.  We assume that there are no acceptor states in the BG.  By simple analogy, with 

Nt trap states in a delta function DOS centered at 𝜀0𝑡, we find  

𝑛𝑒
𝑁𝑡

= 𝑒𝑥𝑝 �
−2�𝜀𝑓

0(T)−𝜀0
t �

𝑘𝑏𝑇
�, (3.1.35A) 

and 

𝜀𝑓0(T) =  𝜀0𝑡 −
𝑘𝑏𝑇
2
𝑙𝑛 �𝑛𝑒

𝑁𝑡
�.   (3.1.38) 

Here,  𝑛𝑒  is the number of excited carrier electrons from the trap states, 𝜀𝑓0 is the equilibrium Fermi level, 

and 𝜀0𝑡 = 𝜀𝑡𝑟𝑎𝑝 is the position of the trap state delta DOS in the gap.  This is a first-order approximation to 

the equilibrium Fermi level in a simple material with a delta function DOS and without carriers excited 

from the VB or other distributions.  

We can correct Eq. (3.1.36) for thermal excitation or RIC by including a term for holes in the 

valence band in a way similar to Eq. (3.1.34).  An important application is found when we consider the 

time dependence of releasing electrons from the trap states; the number of excited carriers, 𝑛𝑒(𝑡), is a 

function of time before equilibrium is established.  Recall from Section (3.1.3) that there is a time required 

for the release of trapped electrons associated with thermal excitation given by Eq. (3.1.2).  This means that 

the QFL (nonequilibrium Fermi level) will be above its steady-state value (equilibrium Fermi level) until 

the release of carriers is compete, the material reaches equilibrium, and the QFL drops to the equilibrium 

Fermi level.  This is the process of thermalization and the energy level associated with the QFL is the time-

dependent demarcation energy discussed in Section (3.1.3); there is nothing else it can be.  By considering 

the nonequilibrium position of the Fermi level, we arrive at an approximation for the QFL, in a single DOS 

model in which RIC is the driving excitation mechanism of the free carriers.  
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  Determination of the Fermi level for each of our models for the energy-dependent DOS (see 

Section 2.4.5) is necessary to determine at what temperature we should expect to see changes in the 

observed conduction behavior.  In the end, each experimental configuration and DOS must be considered 

on an individual basis to obtain a reasonable estimate for the QFL and resulting equilibrium Fermi level. 

(Here we only provide examples for specific methods!)  A full understanding of the QFL must be obtained 

through a study of the thermalization process (i.e., the demarcation energies) under specific experimental 

conditions. 

The condition by which the QFL is found in a complex DOS has two forms.  The first form has 

already been used with the derivation of the demarcation energies (see Section 3.1.3).   We can consider the 

derivation of the Fermi level by evaluating the demarcation energies for upward and downward hopping, at 

the thermalization time, 𝜏𝑇.  Since the demarcation energies (QFL) are representative of the centroid of the 

charge distribution, we evaluate it at the thermalization time.   

 𝜀𝑓
𝑄𝐹𝐿�𝑡,𝑇,𝐷, �̇�� = 𝜀𝑑↑(𝜏𝑇). (3.1.39) 

This expression will give us an estimate of the equilibrium Fermi level after the system has just come to 

equilibrium (or thermalization has just terminated).  The application of (3.1.37) does not yield a useful 

expression for the equilibrium Fermi level, since we have no estimate for the thermalization time.   

The second form is to consider the number of elections released from trapped states, by use of Eq. 

(3.1.38) given below.  One must be very careful with this integration and the limits.  In an exponential or 

Gaussian system, the integration can be done over the entire DOS including carriers in Eq. (3.1.37) in the 

TB.  This works for two reasons: (i) the number of carriers in the TB is negligible in comparison to the 

trapped distribution, and (ii) the DOS goes to zero in the limit of infinite energies.  The second condition 

does not hold for a constant DOS, where the integration must be carried out over a finite range of energies 

from the equilibrium Fermi energy to the TB (usually the TB or CB energies are assigned the zero energy 

reference) for a system in which we consider only electrons (no holes or hole trapping).  This can be taken 

into account by the use of a Heaviside step function in the definitions of the appropriate DOS models [for 

an example of the use of the Heaviside step function in the DOS, see Kao (2004)].  However, in the 

literature, the DOS models are not generally written in this way; thus to keep contact with the literature, the 
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common form will be used for the DOS models shown in Table 2.1.  Thus, the generalized form of Eq. 

(3.1.35A) for an arbitrary energy-dependent trap state DOS is 

𝑛𝑒(𝑡,𝑇) =  ∫ 𝑁(𝜀) �1 + 𝑒𝑥𝑝 �
𝜀−𝜀𝑓

0(𝑡)

𝑘𝑏𝑇
��
−1

𝑑𝜀𝜀𝐵
𝜀𝐴

.  (3.1.40) 

Here the DOS, N(ε), can be any of the models listed in Table 2.1.  The integration effectively is performed 

over the extent of the DOS distribution (a finite region for the constant, linear, and power law DOS, -∞ < ε 

< TE, for the exponential DOS, and all energies for the Gaussian DOS).  Equation (3.1.38) can be solved to 

obtain an expression for  𝜀𝑓0(𝑡,𝑇).    

Since we can experimentally determine the effective transport energy, a semi-empirical Fermi 

level can be determined for the constant DOS by rearranging Eq. (3.1.27) to obtain 

𝜀𝑓𝑐(𝑇) = ς(𝑇) + �4
3
�
3/4 𝑘𝑏𝑇0

𝑐

4
� 𝑇
𝑇0
𝑐�
3/4

                      {Equilibrium Fermi level for constant DOS}.  (3.1.41) 

In Eq. (3.1.40), ς(𝑇) is the measured value and the RHS of the expression is the TE.  

An expression for the exponential DOS has been evaluated by several authors (Fritzsche, 1990; 

Anta, 2002).  Anta used Eq. (3.1.38) to obtain an approximation to the equilibrium Fermi level and QFL 

(Anta, 2002), 

𝜀𝑓𝑒(𝑡,𝑇) =  −𝑘𝑏𝑇0𝑒𝑙𝑛

⎣
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                                                                              {Equilibrium Fermi level for exponential DOS}.  (3.1.42) 

This expression is only good for low carrier concentrations.  Baranovskii showed that as the temperature 

goes to zero, Eq. (3.1.41) becomes a constant (Baranovski and Rubel, 2006); in fact, Baranovski showed 

that there is a critical temperature, 𝑇𝑐𝑒, below which the Fermi level becomes temperature-independent.  

The details of the Fermi level, QFL and transport energies—for the constant and exponential DOS—can be 

more complex expressions than those presented in this dissertation; other expressions for the Fermi level 

and the QFL, for more complex experimental arrangements, can be found in (Fritzsche, 1990).  
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For the Gaussian DOS, the estimation of the Fermi level and QFL are complicated by the 

numerical nature of the demarcation energy.  However, in the infinite time limit, the demarcation energy 

relaxes to an equilibrium energy, 〈𝜀∞〉, given by the energetic average of the DOS, which is the equilibrium 

Fermi level for the Gaussian DOS (Baranovskii and Rubel, 2006), 

〈𝜀∞〉 = ∫ 𝜀𝑁(𝜀)𝑑𝜀∞
−∞
∫ 𝑁(𝜀)𝑑𝜀∞
−∞

=  𝑙𝑖𝑚𝑡→∞ 𝜀𝑑𝐺↑ (𝑡) = −𝜀𝐺
𝑜2

𝑘𝑏𝑇
 ~ 𝜀𝑓𝐺 {Equilibrium Fermi level for Gaussian DOS}.  (3.1.43) 

Notice that the Fermi level is measured from the center of the Gaussians DOS distribution, 𝜀𝑜𝑡 .  

The equilibrium Fermi level, 𝜀𝑓0�𝑇,𝐷,𝐷,̇ 𝑄, �̇��, and QFL, 𝜀𝑓
𝑄𝐹𝐿�𝑡,𝑇,𝐷,𝐷,̇ 𝑄, �̇��, are key factors in 

determining the transport characteristics of an HDIM.  It is the energetic position of the QFL relative to 

other energies (e.g., the electron and hole mobility edges, the Fermi energy, and variable energy levels, 

such as the TE) that determines whether high or low temperature, dispersive, or diffusive transport is 

observed.  For example, if thermalization is not complete and the carriers are spread out energetically in the 

DOS with a large distribution of wait times, dispersive transport will be observed; this can occur in high-

and low-temperature applications.  For low-temperature transport, the QFL or equilibrium Fermi level must 

be below the TE, but close enough to it, for VRH to occur.  If the system is in equilibrium and Fermi level 

is well below the TE, recombination with holes can occur directly from the Fermi level; transport will still 

occur primarily at the TE, but is deemed recombination limited (Fritzsche, 1990; Baranovskii and Rubel, 

2006).  If the QFL is above the TE, transport is by extended state conduction at or above the electron 

mobility edge.   

The specific equilibrium Fermi level and QFL are determined by the type of DOS and particular 

application we are interested in.  However, there are some basic rules of thumb that we can understand, 

based on the type of DOS considered.  For the constant, delta function, and Gaussian DOS (recall from 

Section 2.4.5 that the constant and delta function DOS are limiting cases of the Gaussian DOS), 

thermalization generally occurs very quickly in contrast to the exponential DOS, which typically presents 

with a large range of trapping energies; i.e. in the constant DOS, the demarcation energy (QFL) descends to 

the equilibrium Fermi level very quickly.  This explains why dispersion is not generally observed in 

materials with constant DOS like LDPE.  Dispersion is very commonly found in materials with exponential 
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DOS.  In materials with the Gaussian DOS, a spectrum of transport behaviors is observed suggesting that it 

may be the most general model (Baranovskii and Rubel, 2006).   

The question, “How fast will thermalization be completed in a given DOS?” determines what 

behavior will be observed for a given application.  We have not yet determined the time required for the 

QFL to come to equilibrium at the Fermi level.  This time is the thermalization time and is the subject of 

the final part of Section 3.1.  

3.1.8. Thermalization Time 

The calculation of the thermalization time is fundamentally based on the energy of the Fermi level.  

It is a measure of how fast the centroid of the charge body comes to thermal equilibrium (i.e., a measure of 

how fast the demarcation energies or QFL reach the equilibrium Fermi level).  Since dispersive phenomena 

are caused by a range of event times, dispersive behavior occurs before thermalization can compete.  After 

thermalization, the carrier transport will be diffusive in nature, assuming deep state recombination is not a 

factor.  Estimation of the thermalization time must be done differently for each type of DOS and is, in 

general, a complicated calculation.  In Section 3.1.7 we presented a basic notion that allows for the 

definition of the thermalization time, 𝜏𝑇.  However, the determination of  𝜏𝑇 depends on where the Fermi 

level lies with respect to the TE (or CB for extended state transport).  If the Fermi level is situated above 

the TE, then only the downward demarcation energy (QFL) determines the thermalization time.  If the 

Fermi level is situated below the TE, then the upward demarcation energy (QFL) determines  𝜏𝑇.  Thus, we 

can write down the following two rules as a guide for determining the thermalization time: 

(i) If the equilibrium Fermi level is above the TE, then downward hopping terminates at the Fermi 

level; thus, 𝜀 ↓𝑑 (𝜏𝑇) = 𝜀𝑓0     gives the thermalization time and (ii) if the equilibrium Fermi level is below 

the TE, then downward hopping terminates at the Fermi level; thus, 𝜀 ↑𝑑 (𝜏𝑇) = 𝜀𝑓0     gives the 

thermalization time.   

We present expressions for three types of DOS (constant, exponential, and Gaussian) for 

completeness.  These expressions were not obtained using the rules stated above, and each requires 

significant calculation; thus, the details of the derivations must be found in their original references. 

Zvyagin has calculated the QFL for a constant DOS and obtained the following estimate (Fritzsche, 1990): 
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[αC(T)]−1/4�     {Thermalization time for a constant DOS}. (3.1.44) 

Zvyagin claims without proof, that the equilibrium value of the QFL was used to obtain this approximation; 

I was unable to confirm this.  However, Eq. (3.1.42) has the feature expected from VRH in a constant DOS, 

that is that 𝜏𝑇𝑐  goes as T-1/4. 

For the exponential DOS, the theory is well developed by Monroe and the thermalization time for 

high-temperature transport (Kastner and Monroe, 1982) was found to be 
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                                                                  {Thermalization time for a exponential DOS at high T}.  (3.1.45) 

An expression for the low-temperature thermalization time requires extensive calculation and will not be 

presented here; the interested reader should see Tiedje et al. (1981) and Fritzsche (1990).  

For the Gaussian DOS, the derivation of 𝜏𝑇𝐺 is nontrivial, again due to the numerical nature of the 

problem.  However, the basic process by which we can derive the thermalization time is considerably easier 

to set up, as we have a value for the Fermi level, 𝜀𝑇𝐺, from Eq. (3.1.42).  Despite the difficulty in 

understanding how equilibration of the thermalization charge distribution occurs, we have already 

developed the machinery to define the thermalization time.  Using our definition for the hopping rate, Eq. 

(3.1.5), the TE from Eq. (3.1.28), and Eq. (3.1.42), we can write down an expression for the time required 

for the charge distribution to relax to the Fermi level, 

𝜏𝑇𝐺 =  𝜈0−1𝑒𝑥𝑝 �
2𝑅�𝜀ot �

𝜂
+ 𝜀ot − 〈𝜀∞〉

𝑘𝑏𝑇
�                                 {Thermalization time for a Gaussian DOS}.  (3.1.46) 

Equation (3.1.44) cannot be solved in closed form because the transport energy is numerical in 

nature.  However, once a value for the TE is obtained, Eq. (3.1.44) is very simple to calculate.  We can also 

use Eq. (3.1.12)—the transcendental expression for the upward demarcation energy—to obtain an estimate 

of the thermalization time by setting 𝜀𝑑𝐺↑ = 𝜀𝑓𝐺 = 〈𝜀∞〉 and solving the resulting transcendental equation 

for 𝑡 = 𝜏𝑇𝐺.  In either case, these calculations, the verification of their accuracy, and further investigation 

must be left for future work. 
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In Section 3.1 a great deal has been said about study of charge distributions in materials with a 

highly disordered DOS. From the MAR, we have shown that a charge body entering a disordered DOS in 

the gap undergoes a thermalization process and carrier transport that is defined by the demarcation 

energies, transport energy, and segregation time.  In addition, a summary discussion of the QFL and 

thermalization time was given for each of the DOS.  We now understand that these theoretical tools 

describe not only low-temperature hopping transport, but can be used to understand the high-temperature 

MT behavior, as well (see, for example, Schmidlin, 1977, 1980; Monroe, 1983, 1985, 1986; Baranovskii 

and Rubel, 2006).  While the majority of this theory is widely used in disordered semiconductor physics, it 

has not been extensively tested for HDIM.  In Section 3.2 an investigation of the USU MPG VRH models is 

presented and connected to the ideas of this section.  The resulting equations clearly show the power of the 

tools developed in Section 3.1 and gives new insight into the nature of the USU MPG multiple trapping 

models.  The theoretical ideas presented here are a summary of a considerably more detailed theory for 

low-temperature transport; the interested reader is encouraged to see Mott and Twose (1961), Baranovskii 

and Rubel (2006), Arkhipov et al. (2006), Fritzsche  (1990), and Vissenberg (1998).   

3.2. Applications 

This section discusses the application of the average microscopic tools presented in Section 3.1 to 

low-temperature, steady-state conductivity as a function of applied field and temperature.  Further, we 

present expressions for equilibrium VRH in materials with a constant, exponential, and Gaussian DOS (see 

Table 2.1).  As a specific example—and a concrete application—we extend the USU MPG VRH model in 

the context of the theoretical tools developed in Section 3.1.  This section begins with a review of the USU 

MPG multiple trapping VRH model; this model is then rewritten in the context of the segregation time.  We 

then extend the segregation time to include field dependence and again reformulate the USU MPG VRH.  

The USU MPG model (written in terms of a field-dependent segregation time) highlights a 

phenomenological form of the segregation time commonly found in the literature, which is then used to 

make a clear connection to a new field- and temperature-dependent description for equilibrium VRH in a 

material with a constant DOS that follows directly from the theory developed in Section 3.1.  This new 

expression allows for a simple and intuitive description of VRH for a constant DOS, connects the tools 
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developed in Section 3.1, and links the results of recent theoretical work in low-temperature physics 

(Baranovskii and Rubel, 2006) with the concrete and experimentally verified USU MPG model (Dennison 

and Brunson, 2008).  The USU MPG model was originally developed by Apsley and Hughes (1974, 1975) 

and used a three-dimensional averaging technique, which is based on a complex three-dimensional 

averaging of the hopping behavior; the Apsley model did not include the concepts introduced in Section 3.1 

(transport energy, segregation times, etc.) as these ideas had not yet been developed.  In recent 

semiconductor and HDIM work, the use of a general segregation time has been shown to describe a wide 

class of temperature-and field-dependent phenomena, but this model is not theoretically grounded.  We 

show that this form of the segregation time appears in the USU MPG model, and therefore, is theoretically 

grounded through the fundamental work of Apsley and Hughes (1974, 1975) and Mott (1961, 1973, 1977).   

The discussion of the USU MPH model is followed by a presentation of VRH expressions for the 

exponential and Gaussian DOS to provide a complete set of low-temperature conductivity equations for the 

three major DOS models (constant, exponential, and Gaussian).  A full discussion of the VRH conductivity 

models—for the exponential and Gaussian DOS—cannot be given here, as each application requires a great 

deal of additional development.  However, we show that the TAH model used by the USU MPG —which 

is derived from the transport equations in the high-temperature, high-field limit—results from the Gaussian 

VRH model.  This chapter concludes with comments on the connections between the transport equations 

and VRH behavior, in addition to very low temperature behavior, where the VRH expressions presented in 

this section are no longer valid. 

The USU MPG has developed a set of engineering tools for the estimation and mitigation of 

spacecraft charging (Brunson and Dennison, 2008; Dennison et al., 2009a).  Dennison et al. (2009b) 

summarizes the theoretical understanding of the USU MPG prior to this dissertation and includes a 

discussion of thermally activated hopping, radiation induced conductivity, variable range hopping, and 

electrostatic breakdown.  In Sections 3.2.1 to 3.2.5, we focus only on the VRH model discussed in 

Dennison and Brunson (2008) and the applications of the new tools to that work.  Note that the application 

of Section 3.1 to the USU VRH models and new models described in Sections 3.2.6 through 3.2.8 are all 

new additions to the USU MPG theoretical knowledge base.  The USU MPG VRH model can be written as  
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Here  ZV1(𝛽𝑉) and ZV2(𝛽𝑉) are complicated functions of the parameter 𝛽𝑉 ≡ 4𝐹𝑇𝑉/3𝐹𝑉𝑇, which is itself 

dependent on the ratio of electric field energy to thermal energy (Dennison  et al., 2009a).  A discussion of 

the derivation of Eq. (3.2.1) and the complex functions ZV2(𝛽𝑉) and ZV2(𝛽𝑉) can be found in Apsley and 

Hughes (1974, 1975) and Dennison et al. (2009a).  The parameter,  𝑇𝑉 ≡ 24𝜀0𝑐/𝑁𝑡𝜂3𝑘𝑏𝜋; Dennison uses 

the parameter α as the inverse localization radius and, in this dissertation,𝛼 ≡ 1/𝜂. Further,  ∫ 𝑁(𝜀)𝑑𝜀 ≡𝜀𝐹
0

𝑁𝑡/𝜀0𝑐 = 𝑁𝐸𝐹 is the total number of states in the DOS near the Fermi level.  The field parameter is 𝐹𝑉 =

64𝜀0𝑐/𝑞𝑒𝑁𝑡𝜂4𝑘𝑏𝜋.  The expansions of Eq. (3.2.1) for low and high electric fields are easily obtained by 

expanding the complex functions  ZV2(𝛽𝑉) and ZV2(𝛽𝑉) for small and large beta (Dennison et al., 2009a) 

(see the USU MPG group archives for the MathcadTM sheet, Hopping Resistivity Plots, developed by 

Dennison, for the details of the low and high T, as well as low- and high-field expansions of the model).  

Since Eq. (3.2.1) is very cumbersome, we will work with the low- and high-field approximations, which 

will greatly simplify the connections with Section 3.1.  First the low-field expression is discussed, followed 

by the high-field expression. 

3.2.1. Low-Field Behavior 

We start our analysis of Eq. (3.2.1) in the low-field limit to build up the idea of an effective 

temperature and its contribution to the segregation time.  Consider the low-field USU MPG VRH model, as 

given by Dennison et al. (2009a), 

𝜎𝑉𝑅𝐻𝑐 (T, F) ≈  �𝑁𝑡𝜂
2𝑞𝑒2𝜈0

𝑐

2𝜀0
𝑐 � � 24𝜀0

𝑐

𝑘𝑏𝑇𝜋𝑁𝑡𝜂3
�
1/4

𝑒𝑥𝑝 �− � 24𝜀0
𝑐

𝑘𝑏𝑇𝜋𝑁𝑡𝜂3
�
1/4

�1 − 𝛽𝑉(𝑇,𝐹)2

4
��.  (3.2.2) 

The function, 𝛽𝑉(𝑇,𝐹), is defined in terms of fundamental quantities as the unitless ratio of electric field 

energy, 𝑞𝑒𝐹𝜂, to thermal energy, 𝑘𝑏𝑇, 

𝛽𝑉(𝑇,𝐹) ≡ 𝑞𝑒𝐹𝜂
2𝑘𝑏𝑇

 . (3.2.3) 

Recall from Section 3.1.6 and Eq. (3.1.30) that the segregation time for a constant DOS can be 

written as a ratio of effective temperature to measured temperature as 
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𝜏𝑠𝑒𝑞𝑐 (T) =  1

𝜈0
𝑐 𝑒𝑥𝑝 �

−18𝜀0
𝑐

𝑘𝑏𝑇𝜂3𝑁𝑡𝜋
�
1/4

=  1
𝜈0
𝑒𝑥𝑝 �−3𝑇0

𝑐

4𝑇
�
1/4

 . (3.2.4) 

Now, comparing Eq. (3.1.31) with the definition of TV found in Dennison et al. (2009a) we can set 𝑇0𝑐 =

𝑇𝑉, and in the very-low-field limit, we can rewrite Eq. (3.2.2) in a suggestive way 

𝜎𝑉𝑅𝐻𝑐 (T, F) ≈  𝜎0𝐶 �
𝑇0
𝑐

𝑇
�
1/4

𝑒𝑥𝑝 �− �𝑇0
𝑐

𝑇
�
1/4

�1 − 𝛽𝑉(𝑇,𝐹)2

4
��.  (3.2.5) 

For very low fields, we assume the  𝛽𝑉(𝑇,𝐹) term is negligible and define the leading term as the 

maximum conductivity 𝜎0𝐶 ≡ 𝑁𝑡𝜂2𝑞𝑒2𝜈0𝑐/2𝜀𝑐.   We can then write Eq. (3.2.5) as 

𝜎𝑉𝑅𝐻𝑐 (T, F) ≈  𝜎0𝐶 �
𝑇0
𝑐

𝑇
�
1/4

𝑒𝑥𝑝 �− �𝑇0
𝑐

𝑇
�
1/4
� = 𝜎0𝐶[αc(T)]−1/4𝑒𝑥𝑝�−[αc(T)]−1/4�.  (3.2.6) 

This is the expression derived by Mott and Davis in their seminal work on VRH (Mott and Davis, 1971).  

We now write Eq. (3.2.6) in terms of the segregation time Eq. (3.2.4) or Eq. (3.1.32) to make contact with 

Section 3.1 and the charge distribution thermalization process 

𝜎𝑉𝑅𝐻𝑐 (T, F) ≈  𝜎0𝐶  ln��𝜈0𝑐𝜏𝑠𝑒𝑞𝑐 (T)�−p�  �𝜈0𝑐𝜏𝑠𝑒𝑞𝑐 (T)�p.  (3.2.7) 

Here we have solved Eq. (3.2.4) for −�𝑇0
𝑐

𝑇
�
1/4

and inserted this into Eq. (3.2.6).  The power 𝑝 =

(4/3)1/4 ~ 1.075.  Therefore, if the values of 𝜎0𝑐 and 𝜈0𝑐  are known (measured), the conductivity can easily 

be predicted from the segregation time (or time to come to equilibrium); and conversely, if the conductivity 

of the equilibrium state is known, so is the segregation time.  This is a simple form of the VRH law that 

connects the time required for the carrier distribution to come into equilibrium to the transport band with 

the observed conductivity.  It is well known that the application of a high electric field will distort the DOS 

and change the release rate of trapped carriers (Pollak, 1972).  The work of Pollack and Eq. (3.2.7) suggests 

that, by exploring the segregation time as a function of field, a prediction for the effects of high fields on 

the VRH rate should follow; i.e., we can use the simple tools of Section 3.1 to estimate and understand the 

VRH conductivity as a function of temperature and field. 

3.2.2. Field-Dependent Demarcation Energies 

How can we modify the segregation time to reflect the effects of high fields? There are two ways 

we can modify the treatment from Section 3.2.1 to include field dependence. The first is a simple 

modification of the MAR with an effective field term. This modification is due to the lowering of the 
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energy barrier for the escape of trapped carriers. (This is exactly like raising the energetic position of the 

trapped states or using a higher temperature (Wintle, 1983).)  Following the work of Fritzsche (1990) and 

Cleve et al. (1995), we add a term to Eq. (3.1.1) for the energy difference between hopping sites.  The 

additional term is a field modification term equal to the ratio of the mean carrier energy, 1
2

(𝜀𝑑 − 𝜀0
𝑡 ), to the 

energy acquired by a carrier moving between adjacent trap sites in a field, F, 𝜂𝑞𝑒𝐹 = 𝑘𝑏𝑇𝐹 . We thus find 

an estimate of the change in our hopping rate due to the applied field,  

∆𝜈↓(𝜀𝑑, 𝜀0
𝑡 ) =  𝜈0𝑒𝑥𝑝 �−

(𝜀𝑑−𝜀0
𝑡 )

𝑘𝑏𝑇𝐹
− 𝜀𝑖

𝑘𝑏𝑇
�.   (3.2.8) 

Notice that for very high fields, Eq. (3.2.8) suggests that the hopping behavior will be dominated by the  

temperature, as expected. (We assume that terms for the low-field behavior have been dropped and ignore 

the low-field limit.)   

The second effect of a high applied field is on the DOS.  How does applying a torque—or some 

other modification—due to the applied field affect the DOS available for trapping?  Several authors have 

suggested a first order approximation of the DOS equation to estimate the effects of high applied fields: 

𝑁(𝜀,𝐹) = 𝑁(𝜀) �1 + 𝜂𝑞𝑒𝐹
𝑘𝑏𝑇𝑏𝑒𝑛𝑑

�, (3.2.9) 

which is the first order approximation of 

𝑁(𝜀,𝐹 = 0) = 𝑁(𝜀) exp(𝑘𝑏𝑇𝐹/𝑘𝑏𝑇𝑏𝑒𝑛𝑑). (3.2.9a) 

Here,  𝑇𝑏𝑒𝑛𝑑  characterizes the difficulty with which changes (or bending of the band structure) in the DOS 

can be made by the applied field, F.  For example, if we chose an exponential DOS, 𝑇𝑏𝑒𝑛𝑑  represents the 

difficulty with which the band tail—that determines the shape of the DOS—can be distorted (Baranovskii 

and Rubel, 2006).  For a constant DOS—in which VRH occurs deep in the gap— 𝑇𝑏𝑒𝑛𝑑  is likely to be very 

large; the energy required to change the energetic configuration of deep states is much higher than for 

shallow states near the mobility edge.  Alternately, 𝑘𝑏𝑇𝑏𝑒𝑛𝑑  can be thought of as the energy to create an 

HDIM defect state (such as a kink in a polymer chain) through the application of a field-induced stress.  

Then, the exponential term in Eq. (3.2.9a) is a Boltzmann factor with a ratio of field-induced energy to 

defect energy that governs the equilibrium number of field-induced defects created. 
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Given the modifications by Eq. (3.2.8) and Eq. (3.2.9), we can derive a new segregation time by 

repeating the process used in Section 3.1.6—resulting in Eq. (3.1.30)—and find the expected change in the 

segregation time due to a very high field.  

The segregation time is defined by the equality of the time derivative of the upward to downward 

demarcation energies.  Thus, we first develop expressions for the upward and downward demarcation 

energies and then find the new segregation time.  First, we derive the upward demarcation energy, for a 

constant DOS; this follows from 𝜈↑(∆𝜀𝑑(𝑡,𝐹))𝑡 = 1 and yields the expression 

(𝜈0𝑡) =  𝑒𝑥𝑝 �2𝑅(∆𝜀𝑑,𝐹)
𝜂

�.  (3.2.10) 

The hopping range, 𝑅(𝜀𝑑,𝐹), is calculated using the modified DOS, Eq. (3.2.9), as 

𝑅(𝜀𝑑,𝐹) =  ��4𝜋
3
� 𝑁𝑡
𝜀0
𝑐 (𝜀𝑑 − 𝜀fo) �1 + 𝑇𝐹

𝑇𝑏𝑒𝑛𝑑
��
−1/3

,  (3.2.11) 

where again,  𝑇𝐹 ≡
𝑞𝑒𝐹𝜂
𝑘𝐵

.   Using Eqs. (3.2.10) and (3.2.11), the upward demarcation energy is   

∆𝜀↑𝑑(𝑡,𝐹) =  6𝜀0
𝑐

𝜋�1+ 𝑇𝐹
𝑇𝑏𝑒𝑛𝑑

�𝑁𝑡𝜂3
𝑙𝑛−3(𝜈0𝑐𝑡) + 𝜀fo.    (3.2.12) 

Notice that this expression goes to the effective Fermi level in the limit of very long times or very high 

fields.  This result is consistent with the depopulation of trapped electrons for very long times and the effect 

of reducing the escape potential for the trapped electrons due to very high fields.   

For the downward hopping demarcation energy, we require 𝜈 ↓ �𝜀↓𝑑 , 𝜀𝑡�𝑡 = 1, which leads to 

𝑙𝑛(𝜈0𝑡) =  𝜀0
𝑡

𝑘𝑏𝑇
+ (∆𝜀↓𝑑−𝜀0

𝑡 )
𝑘𝑏𝑇𝐹

.  (3.2.13) 

Solving for the downward hopping demarcation energy, we find 

∆𝜀↓𝑑(𝑡,𝐹) =  −𝑘𝑏𝑇𝐹𝑙𝑛[𝜈0𝑐𝑡] + 𝜀0
𝑡 �1 + 𝑇𝐹

𝑇
�;  (3.2.14) 

note that this new demarcation energy goes to 𝜀0𝑡 for 𝑇𝐹 → 0. The demarcation energy for the downward 

hopping regime, Eq. (3.2.14), has two terms. The right-hand side is the time-dependent term, which is 

accelerated by the increasing the field. The second term changes the transport energy as a function of the 

field and temperature. The change in demarcation energy at the segregation time (i.e., to get the total 

segregation time) is as expected; one must add the low-field term, 𝑘𝑏𝑇𝑙𝑛[𝜈0𝑐𝑡].  
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As before, the segregation time is found by setting the derivatives of 𝜀↑𝑑(𝑡,𝐹) and 𝜀↓𝑑(𝑡,𝐹) equal 

and evaluating the resulting expression at  𝜏𝑠𝑒𝑔 .  Here the notation  𝜏𝑠𝑒𝑔
𝑐,𝐹   denotes that this is the segregation 

time for a constant DOS with field enhancement.  Setting Eqs. (3.2.12) and (3.2.14) equal gives 

6𝜀0
𝑐

𝜋�1+ 𝑇𝐹
𝑇𝑏𝑒𝑛𝑑

�𝑁𝑡𝜂3
𝑙𝑛−4�𝜈0𝑐  𝜏𝑠𝑒𝑔

𝑐,𝐹 � = 𝑘𝑏𝑇𝐹 .  (3.2.15) 

Solving Eq. (3.2.15) for 𝜏𝑠𝑒𝑔
𝑐,𝐹   , 

𝜏𝑠𝑒𝑔
𝑐,𝐹 (T, F) = 1

𝜈0
𝑐  𝑒𝑥𝑝 ��

𝑘𝑏𝜋𝑇𝐹�1+
𝑇𝐹

𝑇𝑏𝑒𝑛𝑑
�𝑁𝑡𝜂3

6𝜀0
𝑐 �

−1/4

� = 1
𝜈0
𝑐 exp ��

4𝑇𝐹
𝑇0
𝑐 �1 + 𝑇𝐹

𝑇𝑏𝑒𝑛𝑑
��
−14�.  (3.2.16) 

We can make contact with the field-dependent terms in the Apsley and Hughes model (Dennison 

et al., 2009a) in the high-field limit.  Inserting,  𝑇𝐹 ≡
𝑞𝑒𝐹𝜂
𝑘𝑏

  into Eq. (3.2.16) and assuming that for a zero 

temperature system, 𝑇𝑏𝑒𝑛𝑑  → ∞ (it is assumed that the polymer chains are frozen in place), with a high 

field that is not large enough to distort the material, we can find an expression for the zero temperature 

high-field segregation time 

𝜏𝑠𝑒𝑔
𝑐,𝐹 (T, F) = 1

𝜈0
𝑐  𝑒𝑥𝑝 �− �1

4
�
1/4

� 64𝜀0
𝑐

𝜋(𝜂𝑞𝑒𝐹)𝑁𝑡𝜂3
�
1/4
�.  (3.2.17) 

The high-field expansion of the USU MPG VRH model is 

𝜎𝑉𝑅𝐻𝑐 (T, F) =  �𝑁𝑡𝑞𝑒
2𝜂2𝜈0

𝑐

4𝜀0
𝑐 � � 64𝜀0

𝑐

𝜋(𝜂𝑞𝑒𝐹)𝑁𝑡𝜂3
�
1/4

𝑒𝑥𝑝 �− � 64𝜀0
𝑐

𝜋(𝜂𝑞𝑒𝐹)𝑁𝑡𝜂3
�
1/4
�.  (3.2.18) 

Comparing Eq. (3.2.17) and Eq. (3.2.18), it is clear that we have arrived at the correct segregation time for 

the high-field limit with the slight exception of the numerical factor (1/4)1/4; this factor turns out to be very 

suggestive and is discussed below.  First, we can improve the comparison by defining an effective 

temperature, 𝑇0
ℎ𝑖𝑔ℎ ≡ (64𝜀0𝑐/𝜂3𝑁𝑡𝑘𝑏𝜋) [similar to the effective temperature used in Eq. (3.2.14)], and 

conductivity, 𝜎0
𝐶−ℎ𝑖𝑔ℎ ≡ (𝑁𝑡𝑞𝑒2𝜂2𝜈0𝑐/4𝜀0𝑐), so that Eq. (3.2.18) becomes 

𝜎𝑉𝑅𝐻
𝐶−ℎ𝑖𝑔ℎ(T, F) =  𝜎0

𝐶−ℎ𝑖𝑔ℎ�𝑇0
ℎ𝑖𝑔ℎ/TF�

1/4
𝑒𝑥𝑝 �−�𝑇0

ℎ𝑖𝑔ℎ/TF�
1/4
�.  (3.2.19) 

This is a very suggestive form that is clearly related to the high-field segregation time and has a familiar 

ratio of effective temperature to field energy.  Using Eq. (3.1.8) and again, solving for 𝑇0𝑐/𝑇𝐹  and inserting 

this into Eq. (3.2.17), Eq. (3.1.18) can be written as a function of the segregation time 
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𝜎𝑉𝑅𝐻
𝐶−ℎ𝑖𝑔ℎ(T, F) =  𝜎0

𝐶−ℎ𝑖𝑔ℎln[�𝜈0𝑐𝜏𝑠𝑒𝑔
𝑐,𝐹 �

−𝑝
]�𝜈0𝑐𝜏𝑠𝑒𝑔

𝑐,𝐹 �
𝑝
.  (3.2.20) 

This high-field result has exactly the same form as the low-field result Eq. (3.2.7).  Here  𝑝 =

 (1/4)1/4 ~ √2
2

= 0.707, which is a different constant than we found for the low-field case (~1.075), 

suggesting that the power is field- and temperature-dependent; this is an important point and we will revisit 

this idea in the next section.   It is clear that the effective temperature is strongly field-dependent; it affects 

the hopping rates and energy distribution of the DOS.  How can we develop a more complete description of 

the low- and high-field behavior?  The answer lies in the nature of the effective temperature.  Recall that 

we modified the hopping rates in Eq. (3.2.12) and the DOS in Eq. (3.2.14) to estimate the effects of the 

applied field.  All of these modifications lead to the definition of an effective temperature, but in the low-

field case, the effective temperature is not the same as in the high-field case. The answer to our question is 

also complicated by the effects of material degradation at high fields.  For example, in the derivation of Eq. 

(3.2.17) we assumed a zero temperature limit; this is not a realistic assumption for most polymer systems 

and, in fact, in a nonzero temperature system, Eq. (3.2.16) can be expressed as 

𝜏𝑠𝑒𝑔
𝑐,𝐹 (T, F) = 1

𝜈0
𝑐  exp ��𝑇𝑏𝑒𝑛𝑑 𝑇0

𝑐

4 𝑇𝐹
2 �

1
4
�.  (3.2.17a) 

Equation (3.2.17a) suggests that it is unlikely that one would see a constant conductivity at very 

high fields; this is due to the increase in the number of new localized states resulting from degradation 

processes, which is far less likely at very low temperature.  In fact, it can be shown that the exponent in Eq. 

(3.2.20) will be a function of 𝑇𝑏𝑒𝑛𝑑/𝑇𝐹 .  Further, due to electric field-induced stress, the energy gained by 

carriers in between scattering events could heat the local lattice causing the conductivity to rise further than 

predicted with increasing field.  The point at which high-field processes become destructive is not well 

understood and is certainly an upper limit for our discussion of VRH. For a discussion of breakdown 

processes and high-field phenomena, refer to Kao (2004), Montanari et al. (2001, 2005), Teyssedre et al. 

(2005), and Fothergill (1998).   For this reason, it is prudent to focus on the low-field expansion and its 

extension to a more complete effective temperature.  
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3.2.3. Generalized Effective Temperature 

So far, we have described the field dependence in the very low and very high regimes, but not at 

any intermediate scales. Further, our simple models using the segregation time do not provide a complete 

description of both the field and temperature behavior for all temperature and field ranges of interest.  How 

can we describe transport in the presence of both temperature and field?  In the literature there are a number 

of theories that predict the field dependence (Gill, 1972; Pollak, 1972) for VRH conductivities in several 

DOS types, and a few that predict both the electric field- and temperature-dependence in the low-

temperature regime (Fritzsche, 1990; Cleve et al., 1995; Vissenberg, 1998).  Several studies have looked at 

the effects of temperature and field on the steady state energy distribution of electrons (distribution after 

thermalization) using numerical simulations (Marianer, 1992; Cleve et al., 1995; Baranovskii and Rubel, 

2006).  Many of these authors sought an analytical expression to describe temperature- and electric field-

dependence using a single effective temperature and the theoretical methods described in Sections 3.2.1 

and 3.2.2 (with considerable more detail).  These analytical expressions are compared with the more 

complete numerical results to attempt to develop a phenomenological based effective temperature 

expression.  While the numerical simulations have met with some success in describing the measured 

behavior, analytical methods have met with only marginal success.  However, a phenomenological 

expression for the effective temperature has been developed (Cleve et al., 1995; Baranovskii and Rubel, 

2006): 

𝑇𝑒𝑓𝑓(𝐹,𝑇) =  �𝑇𝑝 + �𝐶 𝑞𝑒𝐹𝜂
2𝑘𝑏

�
𝑝
�
1/𝑝

=  [𝑇𝑝 + (𝐶1𝑇𝐹)𝑝]1/𝑝.  (3.2.21) 

Here C, C1, and p are unitless numerical constants determined by simulation.  The additional formulation in 

Eq. (3.2.21) has been added to highlight the role of the effective field temperature.  The value of p is 

typically two and C ranges from 0.05 to 0.09 (Baranovskii and Rubel, 2006).  In all the literature this author 

reviewed, only the exponential and Gaussian DOS are explored with respect to Eq. (3.2.21).  There is no 

context this author found that discusses this equation and a constant DOS!  Although it was shown that the 

exponential DOS gives the constant DOS in the limit as the energy scale goes to infinity, few calculations 

have been done in this limit (Grant and Davis, 1974).  To this author’s knowledge and that of Baranovski, 

no currently complete analytical theory exists that can predict an effective temperature of this type.  
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However, we have shown in Sections 3.2.1 and 3.2.2 that there appears to be some function that describes 

the effective temperature behavior.  It was, in fact, the process of deriving expressions for the VRH 

conductivity in terms of the segregation time that this author noticed the connections mentioned.  In Section 

3.2.4, we show that Eq. (3.2.21) can be included in a very natural way into the USU MPH VRH model. 

3.2.4. VRH for a Constant DOS 

Consider the effective temperature portion of Eq. (3.2.14) for the field-dependent segregation time 

that resulted from both modification of the DOS and the hopping rate, 

𝑇𝑒𝑓𝑓 ≈  𝑇𝐹 �1 + 𝑇𝐹
𝑇bend

�.  (3.2.22) 

This equation is, itself, an effective temperature and bears a strong resemblance to the phenomenological 

equation developed in Eq. (3.2.21).  Also, we have in several instances shown that the inclusion of the 

segregation time in our expressions for the VRH conductivity requires the use of a power, p, which changes 

with field.  This suggests two things: (i) that we should try to incorporate Eq. (3.2.22) into our expression 

for the low-temperature conductivity, and (ii) that this phenomenological approach can almost certainly be 

linked to changes in the MAR, demarcation energies, effective transport level, and resulting segregation 

times.  We do not have time to explore how Eq. (3.2.22) might have come about analytically [we suggest 

expanding Eq. (3.2.9) as a starting point]; however, inclusion of the Eq. (3.2.21) into the Apsley and 

Hughes model is quite simple.  Consider Eq. (3.2.21) written as the inverse fourth root of the effective 

temperature 

1
𝑇𝑒𝑓𝑓(𝐹,𝑇)1/4 =  �𝑇𝑝 + �𝐶 𝑞𝑒𝐹𝜂

2𝑘𝑏
�
𝑝
�
−1/4𝑝

= [𝑇𝑝 + (𝐶1𝑇𝐹)𝑝]−1/4𝑝.  (3.2.23) 

Separating out the temperature dependence, we obtain a function, which contains the ratio of field to 

thermal energy. 

1
𝑇𝑒𝑓𝑓(𝐹,𝑇)1/4 =  𝑇−1/4 �1 + �𝐶 𝑞𝑒𝐹𝜂

2𝑇𝑘𝑏
�
𝑝
�
−1/4

=  𝑇−1/4 �1 + 𝐶2 �
TF
T
�
𝑝
�
−1/4

.  (3.2.24) 

Using the USU MPG VRH model, Eq. (3.2.2), as a guide (specifically, we look at the power of 𝛽𝜈 and the 

leading constant for the argument of the exponential term), we guess that p = 2, C =1 or C2 = (C1)p.  

Applying these values to Eq. (3.2.24) gives 
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1

𝑇𝑒𝑓𝑓(𝐹,𝑇)1/4 =  𝑇−1/4 �1 + �𝑞𝑒𝐹𝜂
2𝑇𝑘𝑏

�
2
�
−1/8

.  (3.2.25) 

If we now define 𝛽𝜈 (𝐹,𝑇) ≡ 𝑞𝑒𝐹𝜂
𝑇𝑘𝑏

 and expand Eq. (3.2.25) for small 𝛽𝜈, keeping only the first two terms 

while multiplying both sides by the fourth root of the sample temperature, we arrive at a very familiar 

expression, 

� 𝑇
𝑇𝑒𝑓𝑓(𝐹,𝑇)

�
1/4

= �1 − 𝛽(𝐹,𝑇)2

4
�.  (3.2.26) 

This is exactly the term found in the USU MPG VRH model for low fields, which we present here for ease 

of comparison, 

𝜎𝑉𝑅𝐻𝑐 (T, F) =  �𝑁𝑡𝑞𝑒
2𝜂2𝜈0

𝑐

2𝜀0
𝑐 � � 24𝜀0

𝑐

(𝑘𝑏𝑇)𝜂3𝜋𝑁𝑡
�
1/4

𝑒𝑥𝑝 �− � 24𝜀0
𝑐

(𝑘𝑏𝑇)𝜂3𝜋𝑁𝑡
�
1/4

�1 − 𝛽(𝜀,𝑇,𝜂)2

4
��.  (3.2.27) 

Using the definitions  𝜎0𝐶−𝑙𝑜𝑤 ≡ (𝑁𝑡𝜂2𝑞𝑒2𝜈0𝑐/2𝜀𝑐) and 𝑇0𝑐 ≡  (24𝜀𝑐/𝑘𝑏𝜋𝜂3𝑁𝑡), comparing Eq. 

(3.2.5) with (3.2.7) and incorporating Eq. (3.2.26), we can write the following version of the USU MPG 

VRH equation for low fields as 

𝜎𝑉𝑅𝐻𝑐 (T, F) ≈  𝜎0𝐶−𝑙𝑜𝑤 �
𝑇0
𝑇
�
1/4

𝑒𝑥𝑝 �− � 𝑇0
𝑇𝑒𝑓𝑓(𝐹,𝑇)

�
1/4
�.   (3.2.28) 

The phenomenological equation for the effective temperature: (i) reduces the model parameter dependence 

to three values with no additional numerical factors; (ii) connects our expressions for the segregation time 

in the low-field limit to the conductivity; (iii) shows that the phenomenological expression can be derived 

from an analytical model (that of Apsley and Hughes); and (iv) describes both the temperature and field 

dependence! Further, by making a comparison with the form of the segregation equation given by Eq. 

(3.2.15), we can make an educated guess as to the true form of the segregation time: 

𝜏𝑠𝑒𝑔
𝑐,𝐹 (T, F) = 1

𝜈0
𝑐 𝑒𝑥𝑝 �− �

𝑇0
𝑇𝑒𝑓𝑓(𝐹,𝑇)

�
1/4
� . (3.2.29) 

Here there are two so-called effective temperature expressions; one is the zero field limit given 

by 𝑇0𝑐, and the other is a field driven effective temperature.  In hind sight, it seems better to have 

called 𝑇0𝑐  the temperature scaling constant as it is a non-field-dependent material, parameter-based term.  

This convention for T0 has been used so that the reader can easily connect with the literature and allows one 

to see the difference between the real effective temperature and this scaling term.  The effective 
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temperature will likely describe higher order field dependence and hopping charge transport; this, however, 

must be left for future work.  One might criticize the order in which we have arrived at these results; it 

would be far more satisfying to have started from first principles and derived Eq. (3.2.22).  However, those 

connections are clearly possible; the machinery developed in Section 3.1 gives us both a deep 

understanding of the processes occurring in HDIM as carriers undergo transport, but also provides tools 

with which we can estimate the results of much more complex approaches. That is the fundamental point of 

this chapter.  

One connection that has not been discussed is the application of the transport equations given in 

Chapter 2 to the low-temperature regime.  In part, this resulted from the fact that one needs the tools of 

Section 3.1 to understand how to manipulate the transport equations in the low temperature and/or high-

field limit.  For an excellent explanation of the connection between the transport equations and hopping 

conductivity, see Schmidlin (1977).  In addition, the work of Esipov shows how to modify the MT 

equations to incorporate high-field effects (Esipov, 1991).  In fact, Esipov shows that inclusion of the field-

dependent effective temperature, Eq. (3.2.8), and field-dependent DOS, Eq. (3.2.9), leads to an expression 

for the VRH conductivity that bears a strong resemblance to the expressions found by Apsley and Hughes 

(1974, 1975).  Simply put, all of the low-temperature conductivity expressions are essentially limiting cases 

of the transport equations in the equilibrium state.  It should be possible to developed a complete numerical 

code based on the transport equations using the theory of Section 3.1 

Hopping is a vast subject, covering nearly all aspects of solid state and quantum physics.  As such, 

there are many methods by which to calculate the hopping conductivity under both AC and DC fields.  A 

successful, physically simple, and intuitive approach has been developed by many authors and is 

commonly used to understand dark current hopping conductivity in amorphous semiconductors (Schmidlin, 

1977; Monroe, 1983; Monroe et al., 1993; Arkhipov and Bässler, 1994a; Vissenberg, 1998; Baranovskii 

and Rubel, 2006).  This method uses the low-temperature transport theory described in this chapter and 

percolation theory (Zallen and Scher, 1971) to provide expressions that can be used to understand the 

conductivity of HDIMs.  The theory developed in this chapter has also been extensively employed to 

understand hopping conductivity resulting from exponential and Gaussian DOS models.  
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In the following two sections, we review the VRH results for the exponential and Gaussian DOS 

models.  I will not present a detailed discussion of these models, as they require considerable additional 

development of ideas in percolation theory and mean field theory.  However, in each instance, there is a 

rich literature to guide the interested reader.  Thus, what follows is a short summary of the results of such 

investigations and relevant parameters. 

3.2.5. VRH in an Exponential DOS 

A similar expression to Eq. (3.2.27) for a material with an exponential DOS was developed by 

Vissenberg (1998) for the VRH conductivity using the theory developed in Section 3.1 and percolation 

theory: 

𝜎𝑉𝑅𝐻𝑒 (𝑁𝑡 ,𝑇) =  𝜎0 �
𝜋𝜂3𝑁𝑡(𝑇0

𝑒/𝑇)3

8𝐵𝑐Γ�1−
𝑇
𝑇0
𝑒�Γ�1+

𝑇
𝑇0
𝑒�
�

𝑇0
e/𝑇

.  (3.2.30) 

Here, Bc is the percolation parameter approximately 2.6 to 2.8 for most materials (Vissenberg, 1998; Li, 

2007; Arkhipov et al., 2006), Γ(x) is the gamma function, and Nt is the total number of trapped carriers per 

unit volume.  Note, the value of Nt is the equilibrium steady state concentration of trapped carriers and is 

not time dependent.  The temperature-dependent density of trapped carriers is given by 

𝑁𝑡(𝜀fo,𝑇) = 𝑁𝑡  𝑒𝑥𝑝 �
𝜀f
o

𝑘𝑏𝑇0
𝑒�  Γ �1 − 𝑇

𝑇0
𝑒�  Γ �1 + 𝑇

𝑇0
𝑒�,  (3.2.31) 

where 𝜀fo is the equilibrium Fermi level.  The percolation parameter, Bc, is defined as the density of active 

current transmitting bonds (those that allow hops at the TE) divided by the density of transport sites in the 

percolating system.  The percolation parameter is the critical number of bonds for conductivity to begin and 

is given by Nbond; the number of sites to which those bonds connects is Nsite, thus Bc =   Nbond/ Nsite.  The 

calculation of a random resistor network using percolation theory is covered in detail in (Pollak, 1972; 

Bässler, 1984, 1993; Böttger and Bryksin, 1985; Hertel et al., 1999; Arkhipov et al., 2006); an excellent 

general review of percolation theory can be found in Zallen and Scher (1971).   

Equations (3.2.30) with Eq. (3.2.31) can be written in a suggestive form using the relation between 

the gamma function and the sin(x) function (Abramowitz, 1965): 
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𝑁𝑡(𝜀fo,𝑇) = 𝑁𝑡  𝑒𝑥𝑝 �
𝜀f
o

𝑘𝑏𝑇0
� �

π� 𝑇
𝑇0
𝑒�

sin�π 𝑇
𝑇0
𝑒�
�.  (3.2.32) 

This expression for the number of trapped carriers appears often when evaluating MT models using an 

exponential DOS (Arkhipov et al., 2006; Orenstein and Kastner, 1979, 1982; Orenstein et al., 1980; 

Monroe et al., 1981; Monroe, 1985, 1986).  Equation (3.2.32) can also be solved for the equilibrium Fermi 

level; if the number of trapped carriers is known, this is a useful approach.  Equation (3.2.32) and the VRH 

equation, Eq. (3.2.30), then yield a simple form for the conductivity 

𝜎𝑉𝑅𝐻𝑒 (𝑁𝑡(𝜀fo,𝑇),𝑇) =  𝜎0 �
𝜂3𝑁𝑡�𝜀f

o,𝑇�𝑒𝑥𝑝�
𝜀f
o

𝑘𝑏 𝑇0
𝑒 
�

� 𝑇
𝑇0
𝑒�

3
8𝐵𝑐

�

1/� 𝑇
𝑇0
𝑒�

.  (3.2.33) 

Equation (3.2.33) bears a strong resemblance to the time- and temperature-dependent equations when 

evaluating the transport equations with an exponential DOS; the interested reader can compare Eq. (3.2.33) 

with results in Rose and Lampert (1959).  Further, a comparison with other work  for RIC and TOF systems 

involving dispersive transport and exponential DOS (Schmidlin, 1977; Orenstein et al., 1980; Tiedje et al., 

1981; Tyutnev, 1996; Tyutnev et al., 2002a, 2003, 2006a, 2007)  yields similar expressions, suggesting a 

very close connection.  The Eq. (3.2.30) does not explicitly show the segregation time or transport energy; 

good discussions of these parameters can be found in (Esipov, 1991; Cleve et al., 1995; Li, 2007).  There 

are a number of ways that Eq. (3.2.33) can be manipulated to reflect different physical properties, such as 

trapped carrier density, total carrier density, and number of carriers in the transport band all as a function of 

time, temperature, and field.  For an introduction to how such calculation are made see Vissenberg (1998), 

Baranovskii and Rubel (2006), and Fritzsche (1990). 

Equation (3.2.33) does not include field dependence.  Li (2007) expanded the work of Vissenberg 

and Matters to include electric field dependence and derived the following expression for the temperature- 

and field-dependent conductivity in an exponential DOS, 

𝜎𝑉𝑅𝐻𝑒 (𝐹,𝑇) = 𝜎0 �
𝜋�𝑁𝑡�𝜀f

o,𝑇�𝜂3�(𝑘𝑏𝑇)
2𝐵𝑐(𝑞𝑒𝐹𝜂)

�1
α
�
3
𝑒𝑥𝑝 � πα

sin(πα)
� ((2 − 𝜂𝑞𝑒𝐹/𝑘𝑏𝑇)−2 − (2 + 𝜂𝑞𝑒𝐹/𝑘𝑏𝑇)−2)�

1/𝛼
, (3.2.34) 

where we have defined α(T) ≡  T/ 𝑇0𝑐  .  The calculation to obtain Eq. (3.2.34) is essentially the same as 

that used to obtain Eq. (3.2.30), with the exception that the MAR hopping rate was modified with a field 
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term,  𝑞𝑒𝐹𝑐𝑜𝑠(𝜃)𝑅𝑖𝑗, as was done in the derivation for the USU MPG VRH model (Apsley and Hughes, 

1974, 1975; Dennison et al., 2009a).  This approach is used in many field-dependent approximations.  The 

authors have made the following assumptions, which are included for completeness: (i) the site positions 

are random, (ii) the energy barrier for the critical hop is large, and (iii) the charge carrier concentration is 

very low. 

For high fields >107 V/m (approximately 274 volts for a 27.4um sample), the  Li equation, Eq. 

(3.2.34), predicts an activated behavior (Li, 2007). This result should be tested against KaptonTM whose 

threshold for breakdown is thought to be high enough to withstand such a field, and also is expected to 

have an exponential DOS.    The work of Li (2007) has only been tested against Monte-Carlo simulation, 

whereas the work of Vissenberg (1998) has been shown to provide good fits to real data from 

polythienylene and pentacene (Vissenberg, 1998; Baranovskii and Rubel, 2006).  To this authors 

knowledge, neither of these formalisms have been tested for HDIMs.   

3.2.6. VRH for a Gaussian DOS 

In order to discuss the VRH equilibrium conductivity in a Gaussian DOS, we must first address 

the mobility.  In the literature, the description of transport in a Gaussian DOS is nearly always 

characterized by the mobility.  This is likely because inorganic materials, which typically display a 

Gaussian DOS (Hertel, 2008), are studied by time of flight methods, which lend themselves to the 

characterization of the mobility.  The mobility and resulting conductivity is generally experimentally 

characterized by Bässler (1993), 

𝜇 = 𝑒𝑥𝑝 �− � 𝜀0
𝐺

𝑘𝑏𝑇
�
2
�. (3.2.35) 

Note that the mobility goes as T-2.  This temperature dependence is a well-known signature for a Gaussian 

DOS.   

While detailed percolation and random resistor network models have accounted for the behavior 

given by Eq. (3.2.35), simple analytical formulas have been elusive.  In the literature (Arkhipov and 

Bässler, 1994a; Arkhipov et al., 2002c, 2005a; Baranovskii and Rubel, 2006; Fishchuk et al., 2007; Hertel 

and Bässler, 2008), there is a disparity in the approach to the calculation of the transport properties 

resulting from the Gaussian DOS.  In the 1980’s, Arkhipov (Arkhipov and Rudenko, 1982c; Rudenko and 
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Arkhipov, 1982b, 1982c; Arkhipov  et al., 1983) and Bässler (1993) addressed the very complex nature of 

hopping in a spatially and energetically disordered DOS.  In particular, they tried to find a more transparent 

approach to the complex models of the time (Böttger and Bryksin, 1985), leading to the intuitive physical 

interpretations developed in Section 3.1 (Baranovskii and Rubel, 2006).  The work of Arkhipov et al. 

(2006), Bässler (1993), and Baranovskii and Rubel (2006) are all based on averaging procedures, similar to 

those found in other theoretical calculations (Apsley and Hughes, 1974, 1975).  For example, Arkhipov 

(Arkhipov, 1999; Arkhipov et al., 2001a, 2001b, 2002c, 2003a, 2005a, 2005b; Reynaert et al., 2005) 

obtained the following expression for the mobility in VRH regime with a Gaussian DOS: 

𝜇 =  𝑞𝑒𝜈0
𝐺√𝜋𝑁𝑡𝜂5

2𝜀0
𝐺 𝑒𝑥𝑝 �− 1

4
� 𝜀0

𝐺

𝑘𝑏𝑇
�
2
�.  (3.2.36) 

This expression does not characterize the electron mobility properly when compared with experimental 

results (Baranovskii and Rubel, 2006).  Percolation theory showed that one must consider all hops (not just 

the average) to the transport energy and it was found that the averaging procedure used by Arkhipov and 

others to obtain Eq. (3.2.36) will predict a trapped carrier concentration and thermal dependence that is 

slightly lower than the measured values (Baranovskii and Rubel, 2006).  Since there are disparities between 

the different authors, we largely follow (Baranovskii and Rubel, 2006).   

This presentation has the merit of being simple and allows for first order characterization material 

parameters for low fields. Baranovskii and Rubel (2006) and references therein have shown that the 

averaging procedure does, in fact, deviate from Monte-Carlo calculations (which seem to be more accurate) 

and further, they have presented a slightly more complex framework that requires some modest numerical 

calculation in the form of transcendental equations.  In Section 3.1, we encountered these numerical 

expressions when describing the TE, DE, and thermalization time in the context of the Gaussian DOS.  The 

calculations can be done in MathcadTM—or a similar mathematical calculation package—with reasonable 

ease.  In order to calculate the mobility using the methods prescribed by Baranovski, the following set of 

equations must be solved numerically. 

ln ��𝑞𝑒𝜈0
𝐺𝑅(𝜀)2

𝑘𝑏𝑇
�
−1
𝜇� =  −2 �4√𝜋

3𝐵𝑐
𝑁𝑡𝜂3 ∫ exp[−𝑡2]Υ/√𝜋

−∞ 𝑑𝑡�
−13 − Υ � 𝜀0

𝐺

𝑘𝑏𝑇
� − 1

2
� 𝜀0

𝐺

𝑘𝑏𝑇
�
2
 ,  (3.2.37) 

where Υ �𝑁𝑡𝜂3 , 𝑘𝑏𝑇
𝜀𝐺
� is the function defined Eq. (3.1.29) as satisfying the transcendental equation 
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In order to obtain the conductivity, we must estimate the number of carriers in the TB.  The 

calculation of the number of carriers in the transport band follows from the product of the DOS and the 

Fermi-Dirac distribution function evaluated from the transport energy to the QFL, 𝜀𝑓
𝑄𝐹𝐿:  

𝑛𝑒 =  ∫ 𝑁𝑒(𝜀)

1+𝑒𝑥𝑝�
�𝜀−𝜀𝑓

G�

𝑘𝑏𝑇
�

𝜀𝑓
𝑄𝐹𝐿

𝜀𝑡
 d𝜀. (3.2.39) 

Since the value of the TE is estimated numerically, the conductivity given by Eq. (3.2.40) must be 

evaluated for each TE as the temperature and field change.  The motion of carriers in the transport band at 

the TE is essentially a reduced-drift mobility; thus, we can model the transport using an Ohmic 

approximation,   

𝜎𝑉𝑅𝐻𝐺 = 𝑞𝑒𝜇𝑛𝑒.  (3.2.40) 

Here, it is assumed that the injected carrier concentration is known and that the concentration is largely 

near the FL; that is, 〈𝜀∞〉 ~𝜀𝑓G .   Expressions for the QFL are developed in Section 3.1.7 and will not be 

repeated here.  Equations (3.2.37) though (3.2.39) constitute the theoretical construction needed to describe 

the mobility and resulting conductivity accurately in a Gaussian DOS, without the presence of a strong 

applied field.  

The Gaussian DOS produces both dispersion and drift behavior (Bässler, 1993; Baranovskii and 

Rubel, 2006).  Time of flight data have shown that the dispersive behavior occurs when the energy scale of 

the DOS is comparable to or larger than the thermal energy, 𝜀𝑜t  
𝑘𝑏𝑇

≳ 1 .  In such a case, the observation 

experimental time is less than the thermalization time (Bässler, 1993).  This means that the carrier charge 

distribution does not have sufficient time to reach the equilibrium level before the carriers recombine or 

reach the rear electrode; therefore, we see a range of release times causing dispersion.  For thermalization 

times faster than the experimental time (i.e., 𝜀𝑜
t  

𝑘𝑏𝑇
≪ 1), one will measure either a short dispersive period 

followed by diffusive transport or purely diffusive transport.  The Gaussian DOS behavior is unlike that of 

the exponential DOS in its dispersive response.  In an exponential DOS, the charge distribution will dive 

deeper into the tail for very long times; in HDIM it can be months.  KaptonTM is believed to have an 
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exponential-type DOS and our measurements (Hodges et al., 2013) have observed decay times greater than 

20 days (see Chapter 6).  An exponential DOS is nearly always dispersive at low temperatures and only 

shows nondispersive behavior at temperatures or concentrations high enough to initiate activated CB 

transport or to saturate the DOS.  In the Gaussian system, the time to equilibrium (end of thermalization) is 

strongly controlled by 𝜀𝑜
t

𝑘𝑇
, and small changes in this value cause large changes in the thermalization time; 

hence, the termination of the dispersive regime occurs on a much shorter time scale (fractions of seconds to 

longer time scales).   

 Bässler (1993) and later Mozer (2005) have applied expressions for the VRH mobility in a 

Gaussian DOS (both spatial and energetically Gaussian distributions) with temperature- and field- 

dependence.  The most common expression for the mobility as a function of both temperature and applied 

field was developed by Bässler (1993), 

𝜇(𝑇,𝐹) =  𝜇0𝑒𝑥𝑝 �−
2
3
� 𝜀𝑜
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𝑘𝑏𝑇
�
2
� 𝑒𝑥𝑝 �𝐶 �� 𝜀𝑜

t

𝑘𝑏𝑇
�
2
− Σ2� 𝐹𝑒𝑓𝑓1/2�.  (3.2.41) 

Here, Σ is a unitless, spatial disorder parameter whose value is zero for no disorder, and one for high 

disorder; C is a constant defined in Bässler’s original paper as a parameter that takes into account the 

concentration dependence of the material (Bässler, 1993).  The effective field term, 𝐹𝑒𝑓𝑓 =
𝑞𝑒𝐹∆𝑥𝑖𝑗
2𝑘𝑏𝑇

, 

connects the spatial hopping distance, ∆𝑥𝑖𝑗, to the ratio of the applied field energy, 𝑞𝑒𝐹𝜂, to thermal 

energy, 𝑘𝑏𝑇.   

To obtain an expression for the effective field, one must sum all of the possible hops (sum over all 

i and j); this process again requires knowledge of percolation theory and will, therefore, not be discussed 

here [see Bässler (1993)].  This effective field term and its application play an important role in 

understanding what kind of transport we observe.  We can investigate a simple model that will allow us to 

understand how application of Eq. (3.2.41) proceeds.  Imagine that the spatial disorder parameter, Σ = 1  

(that is, we have large spatial disorder), and the energetic disorder parameter, 𝜀0𝐺 = 0 (little or no energetic 

disorder), which is often the case with simple ionic models like the TAH model (Dennison et al., 2009b).  

Consider the case where a carrier is allowed to jump forward and back a distance +a and - a (let a be the 
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lattice spacing), respectively, and consider the mobility between two sites at +a and -a.  Under these 

circumstances, Eq. (3.2.41) becomes 

𝜇(𝑇,𝐹) =  𝜇0 �𝑒𝑥𝑝 �𝐶 �
𝑞𝑒𝐹𝑎
2𝑘𝑏𝑇

�
1/2
� − 𝑒𝑥𝑝 �𝐶 �−𝑞𝑒𝐹𝑎

2𝑘𝑏𝑇
�
1/2
��.  (3.2.42) 

This is the MAR of the thermally activated hopping model that we expect for ionic conductivity, a TAH 

model.  In fact, Bässler (1993) states that in simulations—which consider the zero energetic disorder 

limit—the Arrhenius behavior (common to TAH) is expected from a Gaussian DOS.  If we now imagine 

including a material in which there are many different site separations (not just a), then the sum must be 

done for each i and j.  The complexity of the model can be extended to include complete energetic and 

spatial disorder [see Bässler (1993) for details]. 

While the calculation of the Gaussian model may seem cumbersome, its numerical 

implementation is simple (often employing a Monte-Carlo algorithm).  For an excellent discussion of this 

model, its applications, connections to the theory in Section 3.1, and additional details on the derivation of 

relevant parameters, see Baranovskii and Rubel (2006), Hertel (2008), and Arkhipov et al. (2006). 

3.2.7. Very Low Temperature  

There exists a temperature below which even the VRH process fails to describe the electron 

transport.  This temperature, 𝑇𝑙𝑜𝑤, marks the lower bound for our theoretical description.  Below  𝑇𝑙𝑜𝑤  the 

transport energy is equal to the QFL or below it deep in the tail of the charge distribution.  This situation 

leads to a mixture of nondegenerate and degenerate trapped electron population (Fritzsche, 1990).  In this 

temperature regime, our picture of transport with excitations from the charge distribution to the transport 

energy and subsequent hopping is invalid.  In order to describe the transport picture, we must resort to an 

energy loss model in which recombination with holes directly from the QFL is the dominant process and 

the conductivity is expected to become temperature independent, as it is dependent only on the capture 

cross section between the trapped carrier and a hole.  For an exponential DOS, the effective temperature 

can be estimated as (Fritzsche, 1990; Baranovskii and Rubel, 2006; Arkhipov et al., 2006). 

𝑇𝑙𝑜𝑤 =  𝑇0𝑒 �
9𝜋
2
𝑛𝑡𝜂3�

1/3
                                    {Exponential DOS only}.  (3.2.43) 
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In amorphous semiconducting materials like a-Si:H, this temperature is ~ 50 K or less (Fritzsche, 

1990).  If we assume that Eq. (3.2.43) reflects the character of Tlow for most materials, use the fact that the 

DOS in HDIM—like LDPE and KaptonTM—are large, and assume the number of trapped electrons, 𝑛𝑡, is 

small when compared with the DOS (true for most applications), then it is clear that the temperature at 

which we would expect this phenomenon to become relevant is very low indeed.  If we estimate these 

parameters for highly insulating materials; 𝑇0𝑐 = 1000 𝐾 , 𝜂 = (1.05 ∙ 10−7) 𝑐𝑚 and the number of trapped 

carriers is ~ 1018 cm-3 (this is a gross overestimation) under constant irradiation (specifically, photo-

excitation), we obtain a value of 𝑇𝑙𝑜𝑤  ~ 11 𝐾.  This is, in fact, an extreme upper limit, where an unusually 

high number of carriers is assumed; this is not likely in most of the materials considered in this work.  

Thus, in HDIM, we generally do not expect to encounter this low-temperature limit at practical 

temperatures.   

If a low-temperature regime is observed, it is expected to be a diffusive type transport at practical 

temperatures, in the absence of recombination.  In a diffusive system for higher temperatures, the 

relationship between mobility and the diffusion coefficient is given by the Einstein relation (Fritzsche, 

1990).  However, for temperatures at or below Tlow in inorganic noncrystalline materials, the conductivity 

does not depend on temperature (Fritzsche, 1990; Baranovskii and Rubel, 2006).  In this temperature 

region, the diffusion coefficient changes form.  For an exponential DOS, the relationship between the 

diffusion coefficient and the mobility can be written as  

𝜇𝑙𝑜𝑤 ≈  𝑞𝑒
𝑘𝑏𝑇0

𝐷.  (3.2.44) 

There are no expressions this author is aware of for the other DOS models in this limit. Low-

temperature transport is a large area of study and is mentioned largely for completeness; see for example 

Böttger and Bryksin (1985) or Baranovskii and Rubel (2006).  However, since spacecraft often operate at 

temperatures below ~50 K, where this effect is possible in semiconducting materials with spatial and 

energetic disorder, it is an important set of ideas to mention.   

3.3. Summary 

In Chapter 3, a dynamic description of the way in which charge moves within the DOS has been 

developed.  In short, the process of thermalization dominates the dynamic description of charge motion in 
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the DOS; this process is characterized by the demarcation energies, transport energy, Fermi level, 

thermalization time, and segregation time.  These ideas—coupled with knowledge of hopping transport for 

a large span of temperatures and fields— provide a nearly complete intuitive description of charge transport 

in HDIM.  The application of the theory developed in Section 3.1 covers a huge class of transport 

phenomena.   In Section 3.2, we applied the average microscopic tools to VRH transport for HDIM with a 

constant DOS and showed that it is fully consistent the USU VRH multiple trapping models used previous 

to the writing of this dissertation. 

We now return to a discussion from the introduction of the possible experimental configurations 

and how the results of Chapters 2 and 3 enhance our understanding of those methods.  Recall that a set of 

experimental configurations were identified in Chapter 1. Three of these configurations modeled incident 

radiation charging and the other three contact injection charging (see Fig. 1.4).  The key to understanding 

what behavior will be measured in any one of these arrangements is the material response.  In Chapter 2, a 

complete discussion of the transport equations (at high temperatures) was given that provides a starting 

point to describe any one of these experimental arrangements.  What was missing was a description of the 

internal dynamics of the injected electron charge distribution and its subsequent transport (i.e., hopping 

transport, demarcation energies, thermalization, transport energies, and the segregation time); these ideas 

were the subject of Chapter 3.  By combining the theory developed in Chapter 3 with the transport 

equations from Chapter 2, nearly all transport phenomena [RIC, drift, dispersion, SCLC, TAH, VRH, and 

secondary electron emission (SEE)] in both semiconducting and HDIM can be understood as the 

interaction of electrons with energetically and spatially disordered trap states and transport states.   

An excellent example of the application of the transport equations and thermalization is given by 

Monroe in the high temperature transport regime (Tiedje, 1980; Monroe, 1983, 1986).  Monroe considers 

two types of DOS profiles in a single doped amorphous material.  The dopant is modeled by a delta 

function DOS (exactly like our simple model in Chapter 2) and the amorphous part is modeled by an 

exponential DOS.  Monroe then employs the demarcation energy to derive expressions during different 

times of the thermalization process to understand the observed photoconductivity.  The resulting equations 

predict dispersive behavior for intermediate times (during which there is a high photoconductivity) and 

then—after thermalization completes—a diffusive behavior that results from the doping states is observed 
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at a lower TAH conductivity.  In fact, Monroe is able to describe the times at which trapping and release 

events between the respective DOS profiles change dominance in the observed current.  One critical final 

point must be made, this is simply that the transport equations (as described in Chapter 2) can now be used 

to describe macroscopic transport at low temperatures by including the microscopic description described 

in this chapter. Specifically, the CB will be replaced by the TE (which now acts as a conduction band 

within the BG with a much lower mobility than its high-temperature counterpart) and the trapped states—at 

or below the Fermi level—will serve as the trapped distribution that drives transport through a dispersion of 

trapped carrier release times.  This is a very useful result that allows a description of low-temperature 

transport (above the critical temperature) using the macroscopic transport equations.  Note, in such an 

application of the transport equations, great care should be taken to include the microscopic description of 

transport to physically interpret parameters and the DOS in the transport equations. Specifically, it is 

expected that the trapping rates, detrapping rates, measured mobility of charge at the TE, and effective 

DOS will appear differently at low temperature than at high temperature.  For a very detailed discussion 

regarding the connection between the transport equations, hopping (or stochastic) transport, and 

macroscopic phenomena like dispersion see Schmidlin (1977).   

There are many such examples at various temperatures, applied fields, and experimental 

configurations for the application of what is often called stochastic transport. One should not come away 

from Chapters 2 and 3 with the idea that stochastic transport is limited to low temperatures.  On the 

contrary, dispersion (which is driven by exponential or Gaussian disorder in the DOS) can occur at low or 

high temperature and be described in both cases by the macroscopic transport equations. However, a 

detailed physical description of dispersion must be made at the microscopic level and thus requires the 

theory presented in this chapter. In the literature, the term stochastic transport has been used to describe 

both macroscopic and microscopic phenomena [see, for example, Scher and Montroll (1975) and Bässler 

(1993), respectively].  Here are a few very useful papers and books that highlight the use of the tools 

developed in this chapter: (Grant and Pollak, 1972; Davis, 1974; Schmidlin, 1977; Orenstein and Kastner, 

1982; Orenstein et al., 1982; Kastner and Monroe, 1982; Monroe, 1983, 1986; Berlepsch, 1985a, 1985b; 

Sessler, 1987;  Fritzsche, 1990; Arkhipov, 1999; Arkhipov et al., 2000, 2001a, 2001b, 2001c, 2002a, 

2002b, 2003a, 2003c, 2006; 2004, 2005a, 2005b; Nikolaenkov et al., 2003; Molinie, 2005; Tyutnev et al., 



132 
2005, 2006a, 2006b, 2006c, 2007, 2008a, 2008b, 2008d; Baranovskii and Rubel, 2006; Fishchuk et al., 

2007).   

It cannot be stressed enough that there is need for careful evaluation of the experimental 

configuration and nature of the resulting data when applying these theories.  In order to get a truly complete 

understanding the HDIM, these materials must be studied under multiple experiential configurations and 

the measurements compared with both analytical and numerical expressions.  It is clear that the problem of 

studying charge transport in HDIM requires numerical modeling of a more complex set of equations than 

have been presented in this dissertation.  However, one of the advantages of multiple experimental 

platforms (available at the USU MPG) is the ability to clearly define specific charge injection profiles, 

make good approximations in applying the theory, which can be tested, and then check the results for 

consistency between each of the methods.  To that end, the next two chapters investigate simple application 

of the ideas from Chapter 2 and 3 to two of the experimental systems described in Fig. 1.4.   
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       CHAPTER 4 

4. CONSTANT VOLTAGE CONDUCTIVITY CHAMBER ANALYSIS 

4.1. Introduction 

  This chapter discusses the application of the theory developed in Chapter 2 and Chapter 3 to 

constant voltage conductivity (CVC) chamber measurements of HDIM. Specifically, we study the charging 

and discharging of the HDIM LDPE under the application of a step voltage, and the resulting current 

density as a function of temperature, electric field, and time.  The CVC chamber is a parallel plate capacitor 

system in which a large range of voltages and temperatures can be applied to a sample.  Experimental 

details of the CVC chamber and results to date will not be reviewed here but are well documented in 

(Dennison and Brunson, 2008; Brunson, 2009; Dennison et al., 2009a; Dekany et al., 2013).  The CVC 

chamber is a metal-insulator-metal sandwich in which there are two metal-insulator interfaces (electrodes).  

We will assume—for simplicity—that electrons are injected at one of the electrodes and that the remaining 

electrode –usually the ground plane–does not inject electrons or holes.  This is not the only type of CVC 

experimental system.  Sessler has proposed a noncontact method that removes problems associated with the 

metal-insulator interface and solves the resulting transport equations (Sessler, 1987).  This method explores 

transport of free and displaced charges in addition to polarization of the bulk material.   

One may ask why these types of experiments are interesting.  In spacecraft applications, materials 

are isolated objects; they are connected to other materials and are affected by potentials from the spacecraft, 

as a whole, or nearby materials whose electric field is significant.  These fields operate from very short to 

extremely long time scales, over a wide range of temperatures, and simultaneously interact with the 

spacecraft environment.  We, therefore need information about the response of an HDIM under as large an 

experimental range as possible, i.e., dependence on how the charge is injected or created within the sample 

due to stimuli such as temperature, applied field, pressure, and sample history.  In this chapter, we focus on 

capacitive-type measurements that can quantify the effects of metal-insulator interfaces, bulk-insulator 

electron transport, and resulting electric fields.  

The USU MPG CVC chamber allows materials to be tested over very long times (seconds to 

months), very low to very high temperatures (~100 K to 400 K), and across a wide range of applied fields 
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(up to electrostatic breakdown fields > 5 × 107 𝑉𝑚−1), while accurately measuring the extremely low 

current densities that result, down to the order of 10-16 A.  The low-current, long-duration measurement 

capability is critical to characterizing electron transport in HDIM.  Together these capabilities allow tests of 

conductivities < 20−22(Ω 𝑐𝑚)−1 with decay time constants of years (Dekany et al., 2012).  Long-term 

testing provides information on dark current conductivity and true equilibrium transport properties of the 

HDIM when charge is injected through a metal-insulator interface.   

The CVC system allows for several important areas of study to be addressed, in addition to time-

dependent behavior; variable range hopping (VRH), thermally activated hopping (TAH), space charge 

limited current (SCLC), thermally stimulated current emission (TSCE), electrostatic discharge (ESD), and, 

with some minor modifications, the study of photo-induced effects.  Three of these fields of study are 

covered in this dissertation: TAH, VRH, and SCLC.  TAH is a natural consequence of the transport 

equations and will not be discussed here. Low temperature VRH behavior is discussed in Chapter 3.  Low 

temperature measurements can be used to understand hopping transport dynamics in dark or deep space 

conditions where very low temperatures are likely to make CB transport impossible, which lead to much 

longer charge dissipation times and a higher likelihood of material breakdown.  For information on the 

application of the USU MPG VRH model to CVC data (on LDPE, which has a constant DOS), see 

Dennison et al. (2009a) and Dekany et al. (2012).   In addition, the CVC system allows for the study of 

current density versus voltage dynamics (SCLC) discussed in Section 2.7.1. This can elucidate both the 

charge injection from contacts, and the nature of the DOS for both the bulk material and surface states.  The 

physical models for current density versus voltage (SCLC) studies were discussed in Section 2.7.1.  There 

is insufficient space or time to discuss the application of VRH theory or SCLC theory in this dissertation; 

they are, therefore, left as future work.  The TAH, VRH, and SCLC models together represent an extremely 

powerful set of tools for the study of HDIM. Each of these bodies of theory overlaps the other, providing 

information about the type of DOS, temperature dependence, applied field dependence, capture cross 

section, charge injection (penetration) depth , and electron capture and release rates.   

The remainder of Chapter 4 develops and applies theoretical expressions, which describe the 

current density measured at the rear contact electrode as a function of time, applied field, temperature, and 

material parameters.  This model is not meant to be the final word in HDIM charging under CVC type 
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conditions.  What it does is show that simple approximations to the transport equations can yield a 

physically insightful and accurate determination of the bulk material parameters and resulting decay of the 

observed current density.  These results can then be checked against literature values and other USU MPG 

experimental results. 

The structure of this chapter is broken into nine sections: (1) introduction, (2) discussion of the 

physical picture, (3) introduction to and reduction of the transport equations, (4) a discussion of the 

problems associated with charge injection and the solution, (5) polarization effects, (6) development of the 

USU CVC charging model, (7) application of the new model to USU MPG data, (8) introduction to decays 

models, and (9) concluding comments.  The discussion of the physical picture will outline the necessary 

physical intuition to understand what happens in an HDIM under the conditions of a CVC-type experiment.  

This then sets the stage to discuss the transport equations and why certain assumptions are made to reduce 

them to a simpler form.  This physical picture highlights the difficulties in determining the rate at which 

charge is injected into the sample due to interface and bulk processes.  We present a model that decouples 

the injection problem from the bulk transport and allows for a simple charging expression to be developed, 

which can accurately describe the observed current density as a function of time.   

The charging of an HDIM is only half the picture.  Once the applied voltage is removed, the 

charges must decay to ground (at the rear electrode). The final theoretical discussion in Section 4.7 is, 

therefore, focused on decay models in CVC type systems.  We do not develop a complete model for the 

decay of trapped charge after the cessation of the applied field; instead an outline and modification of a 

current theory is given.  We close the chapter with some comments on the weaknesses and strengths of the 

approaches used, important observations, and comments.   

4.2. Physical Picture 

Charge motion in any material can be understood as three processes acting together to move 

charge from a higher potential to a lower one.  First, in order for there to be free charge in HDIM it must 

either be injected into the material or be excited within the material (RIC is an example of excitation).  The 

excitation of charges due to RIC does not occur in a CVC system (see Chapter 5).  Second, charge must 

move through the material via the CB (or TB for very low temperatures).  In HDIM, the process of 
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transport is interrupted by the trapping and release of electrons as they traverse the sample under an applied 

field or a self-induced field due to the interaction between the charge itself and a ground plane.  Finally, the 

excess charge is absorbed or neutralized at a ground plane or oppositely charged electrode. 

 In this dissertation, it is the second process (bulk transport) that we are most interested in and not 

the nature of the injection profile or absorption of electrons (at the rear or grounded electrode) after they 

traverse the sample.  Bulk processes are characterized by specific material parameters, such as the trapping 

rate, 𝑣𝑒𝑡 , detrapping rate, 𝑣𝑡𝑒, mobility,  μ𝑒 , DOS,𝑁𝑡, and resulting conductivity, 𝜎.  As it turns out, each of 

the experimental systems discussed in Chapter 1 have very different ways of injecting the charge, which are 

more difficult to understand than bulk processes; their effects are specific to the experiment and not to the 

material under test.  Bulk processes are largely the same regardless of the injection methods, assuming the 

applied field is not too high and the makeup of the material is not altered by water content or changes in 

manufacturing process.   By studying the decay of current under many experimental conditions, we can 

understand the common action of bulk transport processes.  Electrostatic discharge (ESD) is an exception 

to this, as it represents dramatic changes in the internal structure and defect density of the material and will 

not be discussed here. For more information on ESD refer to Crine et al. (1989a), Crine (2007), Kao 

(2004), and Sessler (1987).   

Since the observed current is strongly affected by the injection processes, there are some difficult 

issues to overcome in determining the bulk material parameters in a CVC experiment.  The charge injection 

and absorption processes are extremely important and cannot be ignored, as they strongly affect the 

observed current.  How, then, can we describe the observed current and separate out the injection from the 

bulk processes?  In order to approach this problem, we must consider how electrons come to equilibrium 

after a step voltage is applied.   

Consider Fig. 4.1, in which the process of injection is depicted in three stages: uncharged, initial 

injection at time, 𝑡 ≳  0, and injection long after injection, 𝑡 ≫ 0.  Figure 4.1 represents a simple parallel 

plate capacitor, in which the HDIM is sandwiched between two conducting electrodes.  The depth of the 

sample, d, is measured in the z direction; this is also the direction of the applied electric field, F.  In Fig 

4.1(a), there is no injected charge or applied field and the sample is uncharged (often called the virgin 

state); the traps in the material are unfilled and are represented by straight lines.   Figure 4.1(b) depicts the 



137 

injection of electrons due to an initial current, J0, at nearly the instant the field is applied and the injection 

process that occurs; electrons in filled trap states are shown as solid circles.  The injection of electrons is at 

its highest rate at very early times and all the injected electrons are either trapped at the interface by surface 

traps or go into the CB resulting in a high observed current.  Surface traps are generally of a different 

FIG 4.1. Physical picture for the CVC apparatus. (a) The initial uncharged configuration before the 
application of an electric field. Traps are depicted as empty lines. (b)  After the application of a voltage, 
charges enter the material and become immediately trapped in surface or bulk states.  (c) After some time, 
the number of electrons trapped in the material reaches semi-equilibrium, resulting in an electric field, 
which acts to counter the applied field and slow the injection of further electrons. 
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nature than bulk traps and are further modified by the electronic interaction at the metal-insulator interface 

and the applied field (Walden, 1971; Wilcox, 1971; Wintle, 1974a; Toomer and Lewis, 1980).   

A number of physical phenomena can affect the injection of charge at the interface: (i) 

polarization (dipolar, hopping, and space charge), (ii) ionic drift, (iii) Poole-Frenkle behavior, (iv) Fowler-

Nordheim behavior, and other physical processes, such as barrier tunneling (Walden, 1971). Clearly, the 

interface region is very difficult to characterize (Tahira, 1985).  To avoid this problem, many investigators 

use low applied fields and Ohmic contacts to limit interface affects; however, the injection rate is still 

affected by the trap filling process and is not constant.  Consider the difference between Fig. 4.1(b) and Fig. 

4.1(c).  In Fig. 4.1(b) the injection current density is J0; but as time progresses, a field due to the trapped 

charge distribution builds up.  This space charge builds up and produces an internal field, thus decreases the 

injection of electrons from  𝐽0 to some value determined by a function  𝐽𝑠(𝑡), which represent the current 

density at the surface that enters the sample. Thus, even if the action at the interface region on the injection 

current density were ignored, the injection current density must be a function of the time-dependent trapped 

charge distribution; this problem cannot be avoided (Walden, 1971; Wilcox, 1971; Wintle, 1974a, 2003; 

Toomer and Lewis, 1980; Tahira, 1985; Iwamoto, 1995; Ferreira and de Almeida, 1997; Liufu, 1998).  In 

Section 4.4, we discuss the charge injection model used in this dissertation to account for the metal-

insulator interface and charge trapping effects. 

In order to see how the charge injection model can be included in the transport equations (to 

obtain an estimate for the measured current density and bulk material parameters), we must first develop a 

set of reduced transport equations specific to the experimental system that describes the bulk transport 

process.  A discussion of the transport equations, bulk material parameters, physical processes that describe 

the thermalization of electrons, and connection to the DOS has already been given in Chapter 2 and 

Chapter 3, and will not be covered here.  

4.3. Transport Equations 

We begin with the full transport equations developed in Chapter 2 [Eqs. (2.6.8) through (2.6.12)] 

and use the fact that there is no external excitation due to RIC (RIC will be addressed in Chapter 5).  This 

means that no electron-hole pairs are created; thus, terms involving  𝛼𝑒𝑟  can be eliminated and  𝑁𝑒𝑥   
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represents only the injection of electrons at the interface.  This assumption eliminates Eq. (2.6.11) and 

modifies Eq. (2.6.10). Further, displacement and polarization currents are added, so that we start with the 

following set of transport equations; 

𝐽𝑡𝑜𝑡(𝑧, 𝑡) =  𝑞𝑒𝑛𝑒(𝑧, 𝑡)𝜇𝑒𝐹(𝑧, 𝑡) + 𝑞𝑒𝐷
𝑑𝑛𝑡𝑜𝑡(𝑧,𝑡)

𝑑𝑧
+ 𝜖0𝜖𝑟

𝜕𝐹(𝑧,𝑡)
𝜕𝑡

+ 𝐽𝑝(𝑡)  

                  {Sum of electron drift, diffusion, displacement, and polarization current densities}, (4.3.1) 

∂
∂z
𝐹(𝑧, 𝑡) =  𝑞𝑒𝑛𝑡𝑜𝑡(𝑧)/𝜖0𝜖𝑟                                                                          {1D Gauss’s Law},          (4.3.2) 

𝜕𝑛𝑡𝑜𝑡(𝑧,𝑡)
𝜕𝑡

− 𝜇𝑒
𝜕
𝜕𝑧

[𝑛𝑒(𝑧, 𝑡)𝐹(𝑧, 𝑡)] − 𝑞𝑒𝐷
𝜕2𝑛𝑒(𝑧,𝑡)

𝜕𝑧2
= 𝐺(𝑧, 𝑡)𝑒𝑥 + 𝛼𝑒𝑡𝑛𝑒(𝑧, 𝑡)[𝑁𝑡 − 𝑛𝑡(𝑧, 𝑡)]          

                                                                        {1D Continuity equation with drift, and diffusion}, (4.3.3) 

and 

𝑑𝑛𝑡(z,𝜀,𝑡)
𝑑𝑡

=   𝛼𝑒𝑡𝑛𝑒(𝑧, 𝑡)[𝑁𝑡(z, 𝜀) − 𝑛𝑡(z, 𝜀, 𝑡)] −  𝛼𝑡𝑒𝑁𝑒𝑒𝑥𝑝 �−
𝜀

𝑘𝑏𝑇
� 𝑛𝑡(z, 𝜀, 𝑡)  

                                                                            {1D trapping continuity equation for electrons}.  (4.3.4) 

This set of equations describes the trapping and transport of charge throughout the bulk of the 

sample.  Using the physical picture developed in Section 4.2, we can make a few assumptions that will 

allow us to quickly develop a simple model.  First, assume that the majority of injected charge stays near 

the interface due to trapping, and second that the charge moves very slowly into the material with time.  

These two assumptions are shown to be reasonable by analyzing PEA measurements of HDIM under 

constant poling fields (Auge et al., 2000; Montanari et al., 2001; Tzimas et al., 2010).  The essential effect 

of these assumptions is to remove the spatial dependence. This is not true; the charge does move and will 

spread through the sample given enough time.  The approximations of the problem work because the 

spreading of trapped charge through the material is considerably slower than the decay of the current 

density to a semi-equilibrium value (Note, both the injection current density at the surface of the material 

and at the rear collecting electrode decay in a similar way.).   This model assumes that there is no diffusion, 

because the majority of the carriers are in trapped states.  The trapped charges are spatially fixed near the 

interfaces until their release, due to thermal processes; the trapped charge distribution represents the 

majority of the charge in the material.  The observed current density is largely due to the free charge in the 

CB; there is no specific displacement current considered.  This free charge must come from either direct 
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injection (from the contacting electrode) or is excited into the CB from the trapped charge distribution by 

thermal processes described by Eq. (4.3.3).  Having made these assumptions, the transport equations are 

reduced to the following form, 

𝐽𝑡𝑜𝑡(𝑡) =  𝑞𝑒𝑛𝑒(𝑡)𝜇𝑒𝐹(𝑡) + 𝜖0𝜖𝑟
𝜕𝐹(𝑡)
𝜕𝑡

+ 𝐽𝑝(𝑡)  

                                       {Sum of electron drift, displacement, and polarization current densities}, (4.3.5) 

𝜕𝑛𝑡𝑜𝑡(𝑡)
𝜕𝑡

= 𝛼𝑒𝑡  𝑛𝑒(𝑡)[𝑁𝑡 − 𝑛𝑡(𝑡)] + 𝐺(𝑡)𝑒𝑥                

                                                     {1D Continuity equation with drift, diffusion and source terms}, (4.3.6) 

and 

𝑑𝑛𝑡(𝜀,𝑡)
𝑑𝑡

=   𝛼𝑒𝑡𝑛𝑒(𝑡)[𝑁𝑡(𝜀) − 𝑛𝑡(𝜀, 𝑡)] −  𝛼𝑡𝑒𝑁𝑒𝑒𝑥𝑝 �−
𝜀

𝑘𝑏𝑇
� 𝑛𝑡(𝜀, 𝑡)   

                                                                            {1D trapping continuity equation for electrons}.  (4.3.7) 

Equations (4.3.5) through (4.37) form the basis for the CVC charging model.  Only one of the three 

equations includes an injection term, Eq. (4.3.6). Our goal is to show that this is the injection function 

considered by Walden and to arrange Eqs. (4.3.5) through (4.3.7) to give an expression for the measured 

current density.    

By recalling that   𝑛𝑡𝑜𝑡 =  𝑛𝑒 +  𝑛𝑡 , integrating Eq. (4.3.7) over all possible energies where a 

distribution of trapped electrons,  𝑛𝑡(𝜀, 𝑡), is assumed, and using the result to rearrange Eq. (4.3.6), we 

obtain  

𝜕𝑛𝑒(𝑡)
𝜕𝑡

−  𝛼𝑡𝑒𝑁𝑒 ∫ 𝑒𝑥𝑝 �−
𝜀
𝑘𝑇
� 𝑛𝑡(𝜀, 𝑡)𝑑𝜀 = 𝐺(𝑡)𝑒𝑥. (4.3.8) 

Equation (4.3.8) has been written in a suggestive form. It implies that the change in the number of electrons 

in the CB, �̇�𝑒(𝑡) (which is responsible for the resulting current density) is a function of the injected 

electrons governed by 𝐺𝑒𝑥  and thermal excitation of carriers from trapped states (first term on RHS).  The 

dimensions of  𝐺𝑒𝑥  are number of electrons per unit volume per unit time.  It is very important to realize 

that  𝑁𝑒𝑥  is not a constant, but must be a function of the electric field, temperature, and time, resulting from 

the buildup of trapped charge as described in our physical picture, given by  𝐺𝑒𝑥[𝐹𝑠(𝑡),𝑇, 𝑡] (see Section 

4.2); the temperature dependence is implied by the form of Eq. (4.3.8).  Further, these electrons are injected 

from an external source and are not due to RIC. This injection function must contain all the information 
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about the change in the field due to the building trapped electron distribution and active metal-insulator 

interface effects, such as Fowler-Nordheim behavior, which is exactly what we would expect for an HDIM.   

For early times, electrons are injected into the material with relative ease, and the second term on the LHS 

of Eq. (4.3.8) is nearly zero.  As the number of trapped electrons builds up,  𝐺𝑒𝑥[𝐹𝑠(𝑡)] is reduced due to the 

electric field resulting from the trapped electrons, 𝑛𝑡(𝜀, 𝑡).  Once thermal equilibrium is established 

(thermalization is completed and the trapped electrons distribution is in thermal equilibrium with the CB; 

see Section 3.1.8), the total number of injected carriers reaches an equilibrium value or saturation current 

density.    

The electric field, due to trapped charges, is never large enough to completely stop the injection of 

new electrons, but it will settle at a steady state value.  If all the charge was perfectly trapped, the 

equilibrium electric field, due to the trapped charge, would equal the applied field causing injection.  In 

such a case, one would have a condition where charges could only be injected after some were released 

from trapped states and Eq. (4.3.8) would be 

  𝛼𝑡𝑒𝑁𝑒 ∫ 𝑒𝑥𝑝 �−
𝜀

𝑘𝑏𝑇
� 𝑛𝑡(𝜀, 𝑡)𝑑𝜀 = −𝐺𝑒𝑥(𝑡). (4.3.9) 

While Eq. (4.3.9) is unphysical (since the field created by the trapped charge distribution cannot stop 

carrier injection into the CB band), it does makes it clear that the injection current must depend on the 

trapped charge distribution; it cannot be a constant in an HDIM.  

We can derive an expression for the number of electrons in the CB by integrating Eq. (4.3.8) to 

determine the number of electrons excited per unit volume as a function of time, 

𝑛𝑒(𝑡) =  𝛼𝑡𝑒𝑁𝑒 ∫ 𝑒𝑥𝑝 �−
𝜀
𝑘𝑇
� �∫ 𝑛𝑡(𝜀, 𝑡)𝑑𝑡𝑡

0 � 𝑑𝜀 + 𝑁𝑒𝑥(𝑡), (4.3.10)  

The dimensions of 𝑛𝑒(𝑡) are number of carriers per unit volume, where we use the definition 

𝑁𝑒𝑥(𝑡) ≡ ∫ 𝐺𝑒𝑥(�́�)𝑑�́�𝑡
0 . (4.3.11)   

Equation (4.3.10) makes a clear connection between the trapped electron distribution, 𝑛𝑡(𝜀, 𝑡), and 

injection of electrons, 𝑁𝑒𝑥(𝑡). 

The use of Eq. (4.3.10) is problematic, due to its dependence on the trapped electron distribution, 

i.e., the trapped charge distribution depends on the injection rate and the injection rate depends on the 

trapped charge distribution. Thus, another approximation must be made that will allow us to see how to—at 
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least in part—separate this relationship.   During early times in the charging of the HDIM, the number of 

trapped electrons is on the order of or smaller than the number of injected electrons.  It follows that the 

number of excited electrons from the trapped distribution to the CB is smaller than the number of 

conduction electrons.  For early times before thermalization completes (see Section 3.1.8), the excitation of 

carriers from the trapped states is nearly zero.  Even for long times—where the charge distribution is near 

equilibrium—the additional carriers due to thermal excitation from the trapped distribution must be much 

less than the CB density; we therefore drop the first term on the RHS of Eq. (4.3.10) to obtain 

 𝑛𝑒(𝑡) ≅ 𝑁𝑒𝑥(𝑡). (4.3.12)  

Equation (4.3.12) is physically justified and highlights the relationship—in a rather obvious way—between 

the electron injection density and the CB electron density.  Remember that the injection term is a function 

of the trapped charge distribution, from Eq. (4.3.9).   

In an HDIM, it is the effects of trap filling that have the largest impact on the observed current 

density decay.  Thus, an expression for the number of trapped electrons per unit volume per unit time is 

needed; Eq. (4.3.7) describes this process.  Integrating Eq. (4.3.7) over energy, an expression for the total 

number of trapped electrons per unit volume per unit time is   

𝑑𝑛𝑡(𝑡)
𝑑𝑡

=   𝛼𝑒𝑡𝑛𝑒(𝑡)[𝑁𝑡 − 𝑛𝑡(𝑡)] −   𝛼𝑡𝑒𝑁𝑒 ∫ 𝑒𝑥𝑝 �−
𝜀

𝑘𝑏𝑇
� 𝑛𝑡(𝜀, 𝑡)𝑑𝜀.    (4.3.13) 

Note, that 𝛼𝑒𝑡𝑛𝑒(𝑡) is, by definition, the ability of the material to capture the available electrons entering 

the CB; i.e.,  𝛼𝑒𝑡𝑛𝑒(𝑡)  is proportional to the charging current density at the metal-insulator interface,  𝐽𝑠(𝑡). 

From Section 2.5 we know that the dimensions of  𝛼𝑒𝑡 = 𝑠𝑐𝑣𝑇  are volume per unit time and the dimensions 

of 𝑛𝑒(𝑡) are number of electrons per unit volume so that the product of the interaction coefficient and the 

number of electrons in the CB has dimensions of inverse time; this is the number of electrons captured per 

unit time or simply the trapping frequency,  𝑣𝑒𝑡.  Note that this trapping frequency appears to be a function 

of time, but that this only occurs because the number of injected electrons is a function of time; i.e., the 

relationship between the bulk trapping frequency and the time dependence of the number of electrons in the 

CB has been coupled.  If thermal excitation of carriers from the trapped states is neglected, we can use Eq. 

(4.3.12) to see the equivalence, 𝛼𝑒𝑡𝑛𝑒(𝑡) ≅  𝛼𝑒𝑡�́�𝑒𝑥(𝑡), and  𝛼𝑒𝑡𝑛𝑒(𝑡) is easily shown to be  𝑠𝑐𝐽𝑠(𝑡)/𝑞𝑒.  

The solution to the coupling problem is now evident; we need an expression for Js(t), from which the bulk 
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trapping frequency,  𝑣𝑒𝑡, can be obtained.  Applying the condition that the release rate of trapped charges 

given by the last term on the RHS of Eq. (4.3.13) is negligible, Eq. (4.3.13) becomes 

𝑑𝑛𝑡(𝑡)
𝑑𝑡

= 𝑠𝑐𝐽𝑠(𝑡)
𝑞𝑒

(𝑁𝑡 − 𝑛𝑡(𝑡)).  (4.3.14) 

Equation (4.3.14) is a fundamental result of this chapter and has been used by many authors to 

describe material charging due to injection of charge carriers. Equation (4.3.14), when solved, describes the 

time-dependent trapped charge distribution using a variety of charge injection schemes including: multiple 

applications (Sessler, 1987), contact injection (Kao, 2004), contact injection and breakdown (Liufu et al., 

1998), secondary electron emission (Cornet et al., 2008), and corona charging and material breakdown 

(Nissan-Cohen, 1986; Fitting, 2010).  We will use Eq. (4.3.14) in Chapter 5 to describe secondary electron 

emission charging and the resulting surface potential created by trapped charge. 

The solution of the differential equation Eq. (4.3.14) is common and can be found in nearly any 

text on differential equations (Spiegel, 1971).  We solve Eq. (4.3.14) for the time-dependent number of 

trapped electrons using the form 𝑦(𝑥) + 𝑝𝑦(𝑥) − 𝑞(𝑥)𝑦𝑛(𝑥) = 0 with 𝑛 = 0, 

𝑛𝑡(𝑡) = 𝑁𝑡𝑒𝑥𝑝 �
−𝑠𝑐 ∫ 𝐽𝑠(�́�)𝑑�́�𝑡

0
𝑞𝑒

� ∫ 𝑒𝑥𝑝 �
−𝑠𝑐 ∫ 𝐽𝑠(𝑡)𝑑𝑡�́�

0
𝑞𝑒

� 𝑠𝑐
𝑞𝑒
𝐽𝑠(�́�)𝑑�́�𝑡

0 .  (4.3.15) 

The current density in Eq. (4.3.15) has dimensions of charge per unit area per unit time, the ratio 

of the capture cross section, sc, to charge, qe, has dimensions of area per unit charge, their product has 

dimensions of inverse time, and the integral has dimensions of inverse volume.  Equation (4.3.15) can be 

used to calculate the number of trapped electrons for any injection function,  𝐽𝑠(𝑡), such that the incoming 

electrons are strongly trapped. If—as in a semiconductor—the electrons are only weakly trapped, then the 

last term on the RHS of Eq. (4.3.13) must be included; inclusion of this term results in a differential 

equation that cannot be solved in closed form.  Equation (4.3.15) can also be used to numerically calculate 

the number of trapped electrons when the surface injection current density is known; i.e., we can use 

experimental data to determine the value of 𝑛𝑡(𝑡).  Since the injection term clearly drives the number of 

electrons in trapped states, it affects the measured current density at the rear electrode.  Thus, a model for 

the injection current density,  𝐽𝑠(𝑡), in Eq. (4.3.15) and its physical basis is required. This is the subject of 

Section 4.4. 
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4.4. Charge Injection 

The injection problem discussed in Section 4.2 has been addressed by many investigators (Wilcox, 

1971; Walden, 1971; Wintle, 1974a;  Kao, 1976, 2004; Toomer and Lewis, 1980; Liufu et al., 1998).  The 

work of Wilcox (1971) and Walden (1971) provide excellent descriptions of the problems involved.  A 

very comprehensive, physically insightful, and easily applied theory was developed by Walden (1971) and 

later modified by Wintle (1974b).  This semi-phenomenological theory characterizes the injection current 

density, 𝐽𝑠(𝑡), at the metal-insulator interface as a function of time.  Walden shows that the behavior of 

 𝐽𝑠(𝑡) depends on the type of injection mechanism at work [e.g., Fowler-Nordheim, Schottky injection, 

space charge limited injection (Fothergill, 1998), various tunneling mechanisms (Wintle, 1974a), and 

electron beam injection (Hodges, 2013)], in addition to the trapped charge distribution.  The model we use 

in this dissertation is based on Walden’s model as modified by Wintle, (1974b) who provided a simple 

(nearly universal) form of the injection current density.  In what follows, we give a brief outline of the 

derivation for the injection current density function. 

Consider the electric field, 𝐹𝑠(𝑡), at the surface of the HDIM must change as the trapped charge 

distribution builds up.  Remember we are assuming that only electrons are injected into the material 

through the metal-insulator interface to a uniform depth, R; this is quite different from a simple capacitor 

model where we assume positive charges are at one side where the potential is high (from which the 

electric field extends) and negative charges at the other side (where the field lines terminate) where the 

potential is low.   While this simple capacitor model is still useful, we now have an injected electron 

distribution at or near the interface of the material.  Consider Fig. 4.2 in which the applied field, F0, the 

surface field, 𝐹𝑠(𝑡), the field due to trapped charge, and the superposition of internal fields, 𝐹(𝑡), are 

shown. Note, that 𝐹(𝑡) is different from the surface field, but the spatial dependence has been omitted for 

simplicity.  At time, t = 0, 𝐹𝑠(𝑡) must be equal to the applied field, F0, but as time goes on 𝐹𝑠(𝑡) must be 

reduced by the electric field due to the trapped charge distribution, 𝐹𝑡(𝑡).  In a general way, we can write 

the following equation for the electric field at the surface 

𝐹𝑠(𝑡) =  𝐹0 − 𝐹𝑡(𝑡). (4.4.1) 

Since, in practice, we know the applied field, only 𝐹𝑡(𝑡) is required to estimate this relation.  From 

Gauss’s law, Eq. (4.3.2), we can write 
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∂
∂z
𝐹𝑡(𝑧, 𝑡) =  𝑞𝑒𝑛𝑡(𝑧, 𝑡)/𝜖0𝜖𝑟.                                                                                             (4.4.2) 

If we assume that the uniform areal charge distribution at depth R is the product of a time-dependent 

function and a time-independent 1D spatial function, which is uniform from 𝑧 =  0  (the collecting 

electrode at ground) to 𝑧 =  (𝑑 − 𝑅), then the spatial dependence of the trapped charge distribution can be 

approximated by a step function, 𝑛𝑡(𝑧, 𝑡) =  𝑛𝑡(𝑡)𝜃�𝑧 − (𝑑 − 𝑅)�. Note, that PEA measurements reveal 

that the spatial dependence in the z direction of the charge distribution is Gaussian or exponential; 

extension of our uniform charge distribution approximation is left for future work.  Under these conditions, 

we can integrate Eq. (4.4.2) with respect to z from 𝑧 =  0 to 𝑧 =  𝑑 − 𝑅 to obtain an expression for the 

field due to the trapped charge distribution 

𝐹𝑡(𝑡) =  𝑞𝑒𝑛𝑡(𝑡)(𝑑 − 𝑅)/𝜖0𝜖𝑟.                                                                                     (4.4.3) 

Using Eqs. (4.4.1) and (4.4.3), a new equation for the electric field at the surface of the sample can be 

obtained 

𝐹𝑠(𝑡) =  𝐹0 − 𝑞𝑒𝑛𝑡(𝑡)(𝑑 − 𝑅)/𝜖0𝜖𝑟. (4.4.4) 

FIG 4.2. Basic electronic and field configuration of the CVC measurement system.  All of the electric fields 
in the system are shown, except the polarization field: applied field, 𝐹0, field due the trapped charge 
distribution, 𝐹𝑡(𝑡); surface field, 𝐹𝑠(𝑡)  =  𝐹0 − 𝐹𝑡 (𝑡), field at the ground plane, 𝐹0; and the superposition 
of fields at intermediate points, 𝐹(𝑡). The battery and ground are shown for reference.  The range, R, that 
the electrons penetrate into the sample, the distance between the trapped charge distribution and the rear, 
electrode, 𝑑 − 𝑅, and the sample depth, d, are also shown. 
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Equation (4.4.4) gives us both the electric field at the surface of the sample and the potential at the 

surface of the sample, since  𝐹(𝑡) =  −∇ ∙ 𝑉(𝑡).  Eq. (4.4.4) suggests that if all the charge were exactly on 

the surface of the sample (e.g., R = 0) then there would be a trapped charge field.  This result is consistent 

with a DOS at (or near) the surface of the material acting to trap charge and create a counter field, 𝐹𝑡(𝑡); it 

is also consistent with the requirement that all the trapping occurs at or near the surface of the material (a 

result consistent with PEA measurements).  Note also, that when 𝑅 ≥ 𝑑 for penetrating radiation, the field 

goes to 𝐹0, suggesting that the charge distribution is outside of the material; this is the expected result.  The 

field between the trapped charge distribution and the rear electrode is the applied field plus the field due to 

the trapped charge distribution and is the field that drives the current measured at the rear electrode.   

Equation (4.4.4) gives a first-order approximation for the electric field at the surface of the 

material, which must be directly tied to the currents flowing in the sample.  For the CVC model, we seek an 

expression for the current density measured at the rear electrode.  Walden addresses the problem of finding 

an expression for the surface potential based on the injection behavior of charge at the surface and 

subsequent trapping of that charge.  We will use the theory of Walden and Wintle to develop an expression 

for the injection current density using Eq. (4.4.4). We outline the derivation of Walden below.   

Essentially, we need a relationship between the injection profile caused by the application of an 

electric field and the effects caused by the electronic nature of the metal-insulator interface combined with 

the electric field generated by the trapped charge given by Eq. (4.4.4).  First, consider how the electric field 

changes at the surface of the material, 

𝑑𝐹𝑠(𝑡)
𝑑𝑡

=  − 𝑞𝑒(𝑑−𝑅)
 𝜖0𝜖𝑟

� 𝑑
𝑑𝑡
𝑛𝑡(𝑡)�. (4.4.5) 

The total charge that will pass through the surface to the rear electrode must be 𝑞𝑒𝑑𝑛(𝑡)/𝑑𝑡, 

where 𝑛(𝑡) is the total number of electrons that passes through the surface as a function of time.  Recall 

that 𝑛(𝑡) is the volume density of electrons and that the current density is defined as charge per unit area 

per unit time; with this in mind, we can write the current density that passes through the surface of the 

insulator as 𝐽𝑠(𝑡) =  −𝑞𝑒𝑑
𝑑𝑛(𝑡)
𝑑𝑡

 ; d is the depth of the sample as the current passing through the surface 

must be the current that will eventually traverse the sample. Equation (4.4.5) does not explicitly contain the 

total current, but it is quite clear that some fraction of the total current must be trapped in the insulator.  
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Consider the action of the chain rule on Eq. (4.4.5) i.e., 𝑑𝑛(𝑡)

𝑑𝑡
→ �𝑑𝑛(𝑡)∙𝑑𝑛𝑡(𝑡)

𝑑𝑛𝑡(𝑡)∙𝑑𝑡
�; using Eq. (4.4.5) and the 

relation for the current density at the interface, the change in the trapped charge distribution, Eq. (4.4.5) 

becomes 

𝑑𝐹𝑠(𝑡)
𝑑𝑡

=  − 𝑞𝑒𝑑1
 𝑑𝜖0𝜖𝑟

𝐽𝑠(𝑡) 𝑑𝑛𝑡(𝑡)
𝑑𝑛(𝑡)

. (4.4.6) 

An expression for the change in the trapped charge distribution to the total charge, 𝑑𝑛𝑡(𝑡)
𝑑𝑛(𝑡)

, is 

needed.  This is a very useful relation in and of itself.  For example, in their secondary electron emission 

chamber, the USU MPG can measure the total charge, surface injection current density, and the resulting 

surface potential to determine the behavior of the injection current and ratio of trapped to total charge; an 

extended discussion of the relationship between Eq. (4.4.6), surface potential, and secondary electron 

emission will be given in Chapter 5.  

Walden makes an experimentally based phenomenological assumption to extend Eq. (4.4.6); the 

form of the ratio of total electrons to trapped electrons is assumed to be a power law of the injection current 

density, 𝐽𝑠(𝑡), to the initial current density, J0, of the uncharged sample.  Using this assumption, one gets 

𝑑𝑛𝑡(𝑡)
𝑑𝑛(𝑡)

=  �𝐽𝑠(𝑡)
𝐽0
�
𝑛−1

. (4.4.7) 

Equation (4.4.7) is a simple power law relationship in which total trapping is given when 𝑛 =

1 and partial trapping for 𝑛 > 1; increasing n implies stronger trapping.  A detailed analysis of the physical 

roots of Eq. (4.4.7) and its validity have been given in Wintle (1974b).  Using Eqs. (4.4.5) and (4.4.7) an 

expression that describes the relationship between the trapped-electron, distribution-dependent electric 

field, the injection current at the surface, and time is found to be 

𝑡 = − 𝜖0𝜖𝑟𝑑
(𝑑−𝑅)𝐽0

∫ �𝐽𝑠(�́�𝑠)
𝐽0

�
−𝑛
𝑑�́�𝑠

𝐹𝑠(𝑡)
𝐹𝑠(0) .  (4.4.8) 

Equation (4.4.8) is Walden’s central result; it allows the time dependence of any surface field-dependent 

function to be found.  Walden explores four major types of injection: (i) Pooler-Frenkle, (ii )Fowler-

Nordheim, (iii) pure exponential, and (iv) power law.  Wintle (1974a) has explored these injection types 

and found essentially that all yield a similar form for  𝐽𝑠(𝑡).  As an example, the simplest derivation for the 

current density at the surface is found by using the power law form of  𝐽𝑠��́�𝑠�/𝐽0  = (𝐹𝑠(𝑡)/𝐹0)𝑝 with p as 
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constant greater than one.  Using this power law form and Eq. (4.4.8), the following form for the injection 

current density is easily found to be 

𝐽𝑠(𝑡) = 𝐽0(1 + 𝑡/𝜏𝑜𝑛𝑠𝑒𝑡)
− 𝑝
𝑛𝑝−1.  (4.4.9) 

Remember that this is the surface current density, not the measured current density at the rear 

electrode.  The product of  𝑛𝑝 ≥ 1 is always greater than or equal to one since—by definition—both are 

independently greater than or equal to one.  The variable, 𝜏𝑜𝑛𝑠𝑒𝑡 , is a characteristic onset time for the 

injection current density, not to be confused with a decay time or 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 .  In practice, the onset time 

describes the time at which the current density at the metal-HDIM interface will begin to diminish due to 

trapping processes and field effects.  A note to the reader: Eq. (4.4.8) does follow directly from Walden’s 

work, though Eq. (4.4.8) has a different form in Walden’s paper.  However, Wintle (1974b) makes this 

relationship very clear, and the interested reader should explore both papers to understand how Eq. (4.4.8) 

came about and how it should be used; i.e., use Eq. (4.4.8) with caution. 

Wintle (1974a) generalizes the resulting injection current density at the interface, providing a 

simple model, which can be used to overcome the coupling between bulk trapping and the resulting 

injection current density without a detailed consideration of the metal insulator interface effects.   It turns 

out, for most injection phenomena—when moderate to strong trapping is considered—the injection current 

density can be well characterized by  

𝐽𝑠(𝑡) = 𝐽0(1 + 𝑡/𝜏𝑜𝑛𝑠𝑒𝑡)−𝑚 + 𝐽𝑠𝑎𝑡. (4.4.10) 

Here, J0 is the initial injection current density at time t = 0,  𝐽𝑠𝑎𝑡  is the equilibrium injection current density 

as some time, t >> 𝜏𝑜𝑛𝑠𝑒𝑡 , and m is a generalized power that is dependent on the strength of the trapping of 

injected electrons [see Eq. (4.4.7)] and the strength of the field-dependent injection rate [see Eq. (4.4.8)]; 

for HDIM, 𝐽𝑠𝑎𝑡  will not be observed until the equilibrium current is measured.  Since the saturation current, 

 𝐽𝑠𝑎𝑡 , is so small in HDIM, it is omitted from Eq. (4.4.5) and included again in the total current density 

equation (see Section 4.6).  Equation (4.4.5) is a fundamental result and is used in the derivation of the 

USU MPG CVC and SVP charging models as the primary electron injection term (see Chapter 5).   

The interested reader should consult Wintle (1974b), Wilcox (1971), and Walden (1971) for a 

complete development of all the ideas discussed in this section; there is a great deal to be learned from 
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these papers.  In this dissertation, we will use the form given by Eq. (4.4.10) as the surface current density 

injection term.  CAUTION:  This result must be worked out in more detail for each type of metal-insulator 

interface, applied field, temperature dependence, and type of injection mechanism.  It is critical that a study 

of Eq. (4.4.7) be undertaken, in addition to application of the theory presented in Chapter 2 on SCLC, to 

develop a complete picture of the injection current density dependence on the applied field, electric field 

due to the trapped charge distribution, and time.   With that said, Eq. (4.4.10) has been applied successfully 

in a number of experimental trials (Walden, 1971; Wilcox, 1971; Wintle, 1974b; Liufu et al., 1998; Kao, 

2004); note, however, that Kao uses a physically unjustified form of the equation.  Using Eq. (4.4.10), a 

model for the number of trapped charges as a function of time will be derived in Section 4.6.  All that 

remains is the development of the finial charging model—based on Eq. (4.3.15)—which describes the long-

term time dependence of the charge transport in HIDM for CVC type experiments. Before approaching the 

solution for the observed current density at the collecting electron, the short-term time dependence due to 

polarization at the interface will be discussed in order that a complete picture of the charging in the CVC 

system can be presented in Section 4.6. 

4.5. Polarization 

In spacecraft systems sudden changes in the local potential can occur, leading to significant 

changes in the charge stored within or on the surface of an HDIM.  Such a short timescale change in the 

charge configuration or local electric field can lead to breakdown as the time to relax the excess field or 

change in charge concentration is greater than the breakdown time of the material.  In order to determine 

how spacecraft materials will respond to such short timescale behavior, the subject of polarization must be 

discussed.  The nature of polarization in HDIMs yields information about critical breakdown phenomena, 

energies of dissociation for molecular segments, and short timescale material response (Crine, 2007).  It is 

prudent to include a short-term polarization component in the CVC charging model.   Polarization, as a 

subject, has been covered in great detail in the literature, and we will not present an extensive discussion of 

the subject here.  For an excellent review of different types of polarization in HDIM: for multiple types see 

Sessler (1987), Kao (1976, 2004), for simple types see Blyth and Bloor (2005), and for ESD types see 

Crine et al. (1989a), Crine (2004a, 2004b, 2005b), and Dang et al. (1996). 
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Polarization in HDIM occurs often, and the effects of such behavior operate on very short time 

scales or are so weak as to be washed out by more dominant charge transport process (e.g., charge trapping 

or injection effects).  It has been suggested that LDPE does not have a polarization component (Brunson, 

2009).  This is simply not true; indeed the relaxation map of LDPE has been developed in great detail by 

Frubing et al. (2001) and Crine (2007) and references therein.  In many applications (where the HDIM is in 

contact with a metal or even a semiconductor), particulates will diffuse into the material (Crine, 2007) 

leading to an enhanced polarization component in the observed current density.  

  There are a number of types of polarization that can occur (Kao, 2004).  However, in HDIM only 

three types are generally attributed to observed effects: dipolar, space charge, and hopping polarization 

(Kao, 2004).  While the hopping dynamics are important to an understanding of transport, in general the 

effect is quite small and we, therefore, focus on space charge and dipolar polarization.  The space charge 

we refer to here is interfacial and occurs at the metal-insulator interface (Zhang et al., 2002).  A buildup of 

interfacial space charge can occur for many reasons, but is most often attributed to surface trapping or 

SCLC.  This body of charge can polarize and has a characteristic decay time associated with that 

polarization.  The dipolar response of an HDIM is typically quite small, as HDIM are usually nonpolar 

materials (Kao, 2004); if charged ions or molecular segments from the contact diffuse into the HDIM the 

dipolar response will be enhanced (Frubing et al., 2001; Crine, 2004b).  In addition, if the temperature of 

the sample is near the glass transition, a type of molecular polarization can occur, which may be significant 

(Crine, 2007).  The study of the relaxation peak near the glass transition (Crine, 2007) yields information 

needed to understand the change in energy required to reorganize the material and understand the 

polarization characteristics.  Since both the dipolar and hopping polarization terms typically do not make a 

significant contribution to the polarization current, we consider only excess charge due to SCLC at the 

interface as a source.  A detailed description of the connection between HDIM and space charge 

polarization can be found in Kao (2004) and Sessler (1987).  In this dissertation, a very simple model for 

the polarization response is presented, but a more detailed analysis is left for future work. 

In this dissertation, we assume a form for the polarization conductivity decay originally developed 

for the USU MPG (Dennison and Brunson, 2008), 
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  𝐽𝑝(𝑡) =  ��𝜖𝑟

∞−𝜖𝑟0�𝜖0
𝜏𝑝

𝑒𝑥𝑝�−𝑡/𝜏𝑝�� 𝐹𝑠, (4.5.1) 

where  𝜖𝑟∞ is the asymptotic dielectric constant after extended application of the electric field (generally the 

atomic or electronic contributions),  𝜖𝑟0 is the initial dielectric constant just as the field is applied,  𝐹𝑠 is the 

electric field at the surface, 𝜏𝑝 is the polarization decay time, and �(𝜖𝑟∞ − 𝜖𝑟0)𝜖0/𝜏𝑝�  𝑒𝑥𝑝�−𝑡/𝜏𝑝� is change 

in the time-dependent polarizibility (Dennison and Brunson, 2008a; Hodges, 2013).  This is a common 

expression for the decay of a signal due to polarization.  In the original work by Dennison, the expression is 

derived for free and bound charges at the interface.  By combining the work of Kao (2004) with that of 

Dennison (2008c) and experimentally measuring the relaxation map [A relaxation map is created by 

experimentally testing HDIM materials’ response time as a function of applied field onset time] or—for AC 

systems—frequency [see Frubing et al. (2001)] of the HDIM of interest, a very accurate picture of the short 

timescale response of the HDIM can be made; this, however, must too, be left to future work.  Eq. (4.5.1) is 

a simple approach that offers a good approximation to short timescale behavior, but additional physical 

insight is needed to extract useful material parameters beyond the decay time.  

In order to create a complete model of the injection current for all timescales, we must include the 

polarization term in the current density.  In this construction, we ignore the time dependence of the electric 

field at the surface, Fs, as the time scales are so short, i.e., 𝐹𝑠 → 𝐹0.  The polarization current density is 

  𝐽𝑝(𝑡) = 𝐹0𝜖0 �
𝜖𝑟∞−𝜖𝑟0

𝜏𝑝
� 𝑒𝑥𝑝�−𝑡/𝜏𝑝�. (4.5.2) 

Equation (4.5.2) can be written in a simple form as 

  𝐽𝑝↓(𝑡) = 𝐽𝑝0𝑒𝑥𝑝�−𝑡/𝜏𝑝�. (4.5.3) 

Here, the down arrow implies that we are talking about the decay of a polarized sample.  For charge up, a 

similar expression can be written as 

  𝐽𝑝↑(𝑡) = 𝐽𝑝0�1 − 𝑒𝑥𝑝�−𝑡/𝜏𝑝��. (4.5.4) 

In most cases, it is expected that the sample will charge up under the application of a step voltage from zero 

current density to a maximum value, 𝐽𝑝0, (Dennison and Brunson, 2008).  In the case of a space charge 

polarization, the charge must relax after the application of the step voltage.   
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Thus, we propose that the total polarization observed should be the product of some charge up and 

subsequent decay.  The following phenomenological expression is used without proof [refer to Hodges 

(2013) for a discussion of this] to describe the expected polarization current, 

  𝐽𝑝(𝑡) = 𝐽𝑝0�1 − 𝑒𝑥𝑝�−𝑡/𝜏𝑝�� 𝑒𝑥𝑝�−𝑡/𝜏𝑝�. (4.5.5) 

At time,  𝑡 =  0, Eq. (4.5.5) will be zero and for very long times, it will again be zero; the 

maximum is given by 𝐽.𝑝0𝜏𝑝𝑙𝑛(1/2).  This vanishing behavior is a useful property, since the long-term 

decay of the measured current density must be controlled by the trapping dynamics in the HDIM, not the 

polarization, which is a very short term effect.  USU MPG data taken on LDPE in the CVC system for 

polarization suggests that the polarization decay time is on the order of 0.5 s or less and that nearly all 

polarization current density is gone after a few seconds; this is consistent with space charge polarization 

decay times (and, unfortunately, the experimental response time) (Brunson and Dennison, 2008).  The 

application of Eq. (4.5.5) must be done carefully, as it would be quite easy to end up characterizing the 

response time of the equipment and not the material.  For this reason, it is strongly recommended that 

polarization studies be done in addition to the CVC type experiment to obtain good measurements on the 

real polarization response of the material.  For additional formulations of this expression and others, 

connection to the capacitance, and resistivity, and an expression for the decay time see Brunson and 

Dennison (2005, 2008), Kao (2004), and Sessler (1987).  Note, Kao (2004) gives a more accurate 

estimation for the decay time due to interfacial polarization (space charge).   

The sum of current densities gives a total observed current density at the rear electrode, which can 

be written as 

𝐽(𝑡) = 𝐽𝑝 (𝑡) + 𝐽𝐿𝑒𝑎𝑘(𝑡). (4.5.6) 

The leakage current,  𝐽𝐿𝑒𝑎𝑘(𝑡), is the current due to charge transport in the HDIM.  Thus, in order 

to finish out model of the observed current density in HDIM, we must complete our derivation of the 

charging model.   

4.6. Charging Model 

In order to derive an expression for the charge transport in an HDIM, we must first derive an 

expression for the time-dependent trap filling (in terms of the charge injection model of Section 4.4), 
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extend that model to the observed current density, and then include the result in Eq. (4.5.2), which gives the 

sum of currents.  We begin with Eq. (4.3.15), which gives the number of trapped electrons as a function of 

time and the charge injection function, 𝐽𝑠(𝑡).  Equation (4.3.15) was left in a general form in Section 4.3, so 

that we could develop an expression for the charge injection function; it is represented here for reference   

𝑛𝑡(𝑡) = 𝑁𝑡𝑒𝑥𝑝 �
−𝑠𝑐 ∫ 𝐽𝑠(�́�)𝑑�́�𝑡

0
𝑞𝑒

� ∫ 𝑒𝑥𝑝 �
−𝑠𝑐 ∫ 𝐽𝑠(𝑡)𝑑𝑡�́�

0
𝑞𝑒

� 𝑠𝑐
𝑞𝑒
𝐽𝑠(�́�)𝑑�́�𝑡

0 .  (4.6.1) 

By inserting Eq. (4.4.5) in Eq. (4.6.1) and completing the integration, an expression for the time-

dependent density of trapped electrons is found 

𝑛𝑡(𝑡) = 𝑁𝑡 �1 − 𝑒𝑥𝑝 �𝑠𝑐𝐽0𝜏𝑜𝑛𝑠𝑒𝑡
𝑞𝑒(1−𝑚)

�1 − �1 + 𝑡
𝜏𝑜𝑛𝑠𝑒𝑡

�
1−𝑚

���.  (4.6.2)  

Equation (4.6.2) has the expected behavior for the density of trapped electrons as a function of 

time, 𝜏𝑚=0 = (𝑠𝑐𝐽0/𝑞𝑒)−1.  At t = 0, Eq. (4.6.2) is zero and at t ~∞, it approaches 𝑁𝑡. The power is 

constrained such that 0 ≤ 𝑚 ≤ 1.   A simple exponential is obtained when 𝑚 =  0, consistent with case 

where the trap filling and release are on the same order; thus, the equilibrium injection rate is reached in a 

short time.  For the case where 𝑚 ~ 1, the time to decay to equilibrium is nearly infinite; this is consistent 

with a long thermalization time of the charge distribution common in most HDIM (see Chapter 3).   Once 

the trapped charge distribution—given by Eq. (4.6.2)—is known, a number of calculations can be 

completed: time-dependent surface potential, time-dependent electric field in all parts of the sample, and 

conduction electron density.  In Chapter 5, the dependence of the surface potential due to the trapped 

charge distribution will be explored.  We are interested in the observed current at the rear electrode, which 

will require further use of the transport equations.   

Given Eq. (4.6.2) and the transport equations from Section 4.3, a simple model that describes the 

bulk transport of the injected electron distribution can be developed. Consider the simplified version of Eq. 

(4.3.5), 

𝐽𝑡𝑜𝑡(𝑡) = 𝐽𝑑(𝑡) + 𝐽𝑝(𝑡) + 𝐽𝑐(𝑡), (4.6.3) 

which is the sum of current densities introduced in the beginning of this chapter.  Here the total current is 

the sum of the displacement, polarization, and conduction currents (or just drift current).  The conduction 

current density is negligible (when compared to the effects of the change in the trapped charge distribution) 
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until equilibrium is established. Once the trapped states reach an equilibrium value and the current becomes 

nearly constant, one is observing the conduction current density; this is equivalent to saying that the DOS is 

saturated and is therefore called the saturation current,  𝐽𝑠𝑎𝑡.  The polarization current (discussed in Section 

4.5) is negligible after a few hundred seconds (or less) for most HDIM.  The majority of the time 

dependence in the observed current is due to the buildup of the trapped charge distribution.  The change in 

the trapped charge distribution is directly related to the change in the electric field due to the trapped charge 

distribution; it is, therefore, a displacement current.  Using Eq. (4.3.5), the displacement current is found to 

be 

𝐽𝑑(𝑡) = −𝜖0𝜖𝑟
𝜕𝐹𝑠(𝑡)
𝜕𝑡

. (4.6.4) 

Using Eqs. (4.4.3) and (4.6.4), an expression for the displacement current can be found 

𝐽𝑑(𝑡) = −𝑞𝑒
𝜕𝑛𝑡(𝑡)
𝜕𝑡

(𝑑 − 𝑅). (4.6.5) 

Here it has been assumed that the applied field has no time dependence once turned on.  Using Eq. (4.6.2), 

an expression for the change in the trapped charge distribution can be found as 

𝜕𝑛𝑡(𝑡)
𝜕𝑡

= − 𝑠𝑐𝐽0𝑁𝑡
𝑞𝑒

(1 + 𝑡/𝜏𝑜𝑛𝑠𝑒𝑡)−𝑚𝑒𝑥𝑝 � 𝑠𝑐𝐽0𝜏
𝑞𝑒(1−𝑚)

�1 − �1 + 𝑡
𝜏𝑜𝑛𝑠𝑒𝑡

�
1−𝑚

��. (4.6.6) 

Equation (4.6.6) has the correct dimensions of inverse volume.  Equations (4.6.6) and (4.6.5) give an 

expression for the displacement current due to the trapped charge distribution 

𝐽𝑑(𝑡) = 𝐽0𝑁𝑡𝑠𝑐(𝑑 − 𝑅)(1 + 𝑡/𝜏𝑜𝑛𝑠𝑒𝑡)−𝑚𝑒𝑥𝑝 �𝑠𝑐𝐽0𝜏𝑜𝑛𝑠𝑒𝑡
𝑞𝑒(1−𝑚)

�1 − �1 + 𝑡
𝜏𝑜𝑛𝑠𝑒𝑡

�
1−𝑚

��. (4.6.7) 

Here the product of the total DOS, capture cross section, and charge depth,  𝑠𝑐(𝑑 − 𝑅)𝑁𝑡, is unitless so that 

the dimensions of Eq. (4.6.7) are just current per unit area.  Equation (4.6.7) describes only the 

displacement current due to the changing trapped charge distribution.  Using Eq. (4.5.5) for the polarization 

from Section 4.5 and Eq. (4.6.3)—for the sum of current densities—we can write down our result for the 

USU MPG charging model 

𝐽𝑡𝑜𝑡(𝑡) = 𝐽0𝑠𝑐𝑁𝑡𝑑 �1 −
𝑅
𝑑
� �1 +

𝑡
𝜏
�
−𝑚

𝑒𝑥𝑝 �
𝑠𝑐𝐽0𝜏

𝑞𝑒(1 −𝑚) �1 − �1 +
𝑡
𝜏
�
1−𝑚

�� 

                + 𝐽𝑝0�1 − 𝑒𝑥𝑝�−𝑡/𝜏𝑝�� 𝑒𝑥𝑝�−𝑡/𝜏𝑝� + 𝐽𝑠𝑎𝑡       {USU MPG CVC Charging Model}. (4.6.8) 
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Equation (4.6.8) is the central result of Chapter 4.  While this result may seem complex, it will be 

shown in Section 4.8 that this model fits data taken using the USU CVC system on LDPE very well.  There 

are a couple of important points to make about Eq. (4.6.8).  First, the LDPE data analyzed here do not 

contain any notable polarization component.  Second, the current decay due to trapping processes is 

distinctly different in character and timescale from the polarization component.   This model can usually be 

reduced to the following form without loss of generality by neglecting the time-dependent polarization: 

𝐽𝑡𝑜𝑡(𝑡) = 𝐽0𝑠𝑐𝑁𝑡𝑑(1 − 𝑅/𝑑) �1 + 𝑡
𝜏
�
−𝑚

𝑒𝑥𝑝 � 𝑠𝑐𝐽0𝜏
𝑞𝑒(1−𝑚)

�1 − �1 + 𝑡
𝜏
�
1−𝑚

��   + 𝐽𝑠𝑎𝑡     

                                                                            {Reduced USU MPG CVC Charging Model}. (4.6.9) 

Equation (4.6.9) has only five free parameters, as the initial injection current density and the 

saturation current density are generally measurable.  The DOS is well known for some HDIM, can be 

studied by a multitude of methods, and is, therefore, bounded.  The charge depth R has been established in 

PEA measurements and is, therefore, also bounded.  Wilson and Dennison have presented a simple, single 

parameter expression for R over a wide energy range and types of materials (Wilson and Dennison, 2010).  

The onset time, 𝜏𝑜𝑛𝑠𝑒𝑡 , is estimated in (Walden, 1971) for each of the injection mechanism mentioned in 

Section 4.4; it is a function of the initial electric field at the surface, F0, trapping power, m [see Eq. (4.4.7)], 

dielectric constant, 𝜖0𝜖𝑟, and initial injection current, J0.  For the power law injection term Walden, 1971) 

estimates that the onset time is 

𝜏𝑜𝑛𝑠𝑒𝑡 = 𝜖0𝜖𝑟𝐹0
𝑚𝐽0

 .      (4.6.10) 

The onset time is then only a function of two unknown parameters m and J0. Using Walden’s expression for 

the onset time will further reduce the number of parameters down to four.  However, this reduction is at the 

cost of a complicated form of Eq. (4.6.9); Eq (4.6.9) is left in its current form as the inclusion of the onset 

time will complicate the form of the equation.   

We can explore Eq. (4.6.8) to see if its behavior is consistent with predictions by Walden (1971).  

In particular, Walden derives both exponential and power law expressions, using a single power law-type 

injection term by changing the value of the np product, which controls the power, m.  Notice that if m = 0, 

Eq. (4.6.8) becomes a pure exponential [refer to Eq. (4.6.11)] and if m ~1, Eq. (4.6.8) becomes a pure 

power law [refer to Eq. (4.6.12)]: 
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𝐽𝑡𝑜𝑡(𝑡) = 𝐽0𝑠𝑐𝑁𝑡𝑑(1 − 𝑅/𝑑)𝑒𝑥𝑝 � −𝑠𝑐𝐽0𝑡

𝑞𝑒(1−𝑚)
�  + 𝐽𝑠𝑎𝑡.      (4.6.11) 

𝐽𝑡𝑜𝑡(𝑡) = 𝐽0𝑠𝑐𝑁𝑡𝑑(1 − 𝑅/𝑑) �1 + 𝑡
𝜏
�
−𝑚

+ 𝐽𝑠𝑎𝑡 .      (4.6.12) 

The interested reader may be curious if there is a connection between the power, m, and other 

variables used in this dissertation such as 𝛼(𝑇) = 𝑇/𝑇0, found in equations that describe dispersive 

transport.  The answer is yes, m is a complex function of the injection profile and the DOS [see (Wintle, 

1974b)]; this information will not be covered in this dissertation and left to future work.  Equation (4.6.11) 

is exactly the form of the measured current found by both Walden (1971) and Wintle (1974b), but Eq. 

(4.6.12) is new.  The exponential behavior is a solution of the differential trapping equation, Eq. (4.3.14), 

when the surface injection current density is a constant, J0.  In CVC-type measurements—coupled with 

PEA testing —the range of electrons, R, is always found to be much less than the sample depth; this means 

the ratio of R/d is << 1 and can be ignored, further reducing the number of free parameters. 

  By using Walden’s injection function and the trapping equations, it has been shown that all the 

expected behavior can be accounted for by using a physical description of the behavior of the injected 

charge in an HDIM.  Further, the prediction of the measured current density is written in terms of 

fundamental material parameters and measurable values that can be cross checked with other experimental 

systems. In Section 4.8, Eq. (4.6.12) will be applied to data from the CVC chamber.  We will revisit the 

charge injection function and the solution to the trapping equations in Chapter 5 and show that consistent 

results for the physical material parameters can be obtained.  

4.7. Decay Model 

Consider Fig. 4.1 (c) in which the trapped charge distribution is in equilibrium; this means J(t) has 

been on for a very long time.   If J(t) is suddenly removed—i.e., the applied voltage is turned off—then the 

only electric field present will be due to the trapped charge.  This trapped charge distribution and the 

resulting field can be measured at the surface of the HDIM (Liufu et al., 1998; Hodges, 2013), but it also 

creates a field between the grounded rear electrode (at which we measure current) and the trapped charge 

distribution that creates a discharge force, (i.e., the charge will tend to move toward the grounded rear 

electrode (Sessler, 1987).  Charge is released by thermal excitation from trapped states to the CB and the 

trapped charge released is, therefore, dependent on the temperature of the HDIM.  Further, very high 
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internal fields tend to be present for even modest trapped charge distributions, leading to a lowering of the 

energy barrier heights of trapped states; i.e., it is easier for electrons to escape when higher internal fields 

are present (see Section 3.2).  Initially, the internal field is high, but will decrease (as a function of the 

trapped charge magnitude) with time slowing the release of electrons from trapped states.  Once an electron 

is released, it must still traverse the sample under the action of the internal electric field between the charge 

distribution and the rear electrode.  The path the electron takes is through the uncharged HDIM to the 

ground plane. Remember most of the charge is near the metal-insulator interface; this means that there is a 

very high probability that an electron will be re-trapped and released many times at different spatial points 

along its journey through the sample.  This creates a very difficult situation when we are attempting to 

estimate the measured current.  However, the majority of the decay—in the measured current density—

occurs because the trapped charge distribution is dispersing (i.e., we are largely going to measure a 

displacement current at the grounded rear electrode).   

In this section, we deal with intermediate times much longer than the polarization decay time, but 

much less than the transit time.  We assume that the observed current density is due entirely to decay of the 

trapped charge distribution; this assumption is supported by PEA measurements, which show that the 

trapped charge distribution remains almost entirely at one spatial location (with a narrow distribution) 

(Griseri et al., 2005; Montanari et al., 2005; Dissado et al., 2006).  Since we are assuming the conduction 

of the electron density is small across the sample, we can also neglect the re-trapping processes.  This is 

likely not a realistic approximation, but will provide an estimate of the measured current density; as it turns 

out, this approximation allows a great deal of information to be obtained from real data (Dissado et al., 

2006).   

Many authors have provided solutions to the transport equations under similar conditions 

(Treadgold, 1966; Arkhipov, 1993a; Liufu, 1998; Alagiriswamy and Narayan, 2002; Kao, 2004; Sessler et 

al., 2004; Dissado et al., 2006).  In this section, we seek a simple solution to the transport equations that 

allows for a reasonable estimate of the measured current density, physical insight into the nature of the 

problem, and a solid theoretical basis upon which better models can be built.  Dissado et al. provide the 

basis for a simple, but effective, model for the discharge of HDIM under CVC conditions (Dissado et al., 

2006).  Dissado’s model is the basis for the USU MPG CVC discharge model.    We outline the derivation 
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as follows; the transport equations are used to develop a simple, but general, expression for the decay of the 

trapped charge distribution.  The model for the trapped charge distribution is then used to estimate the 

electric field and the displacement current.    

Consider the time, energy, and temperature-dependent number of trapped electrons given by Eq. 

(4.3.4).  Since we are neglecting the re-trapping of electrons Eq. (4.3.4) becomes 

𝑑𝑛𝑡(𝜀,𝑡)
𝑑𝑡

= − 𝛼𝑡𝑒𝑁𝑒𝑒𝑥𝑝 �−
𝜀

𝑘𝑏𝑇
� 𝑛𝑡(𝜀, 𝑡).    (4.7.1) 

Note that at time, t = 0, all the electrons in the HDIM are in trapped states and there is no external 

source of excitation.  This means that the change in the CB electron concentration must be equal to the 

negative change in the trapped charge distribution 

𝑑𝑛𝑡𝑜𝑡(𝜀,𝑡)
𝑑𝑡

= d𝑛𝑒(𝜀,𝑡)
dt

+ d𝑛𝑡(𝜀,𝑡)
dt

= 0                                                  {Charge Conservation},  (4.7.2) 

or 

−𝑑𝑛𝑡(𝜀,𝑡)
𝑑𝑡

= 𝑑𝑛𝑒(𝜀,𝑡)
𝑑𝑡

.  (4.7.3) 

Here the density of conduction electrons has been written as a function of energy only because it 

depends on the trapped charge distribution.  Equation (4.7.1) can be solved for  𝑛𝑡(𝑡) using the same 

solution methods used to obtain our charging model (see Section 4.6); i.e., Eq. (4.7.1) is of the 

form  𝑦(𝑥) + 𝑝𝑦(𝑥) − 𝑞(𝑥)𝑦𝑛(𝑥) = 0 with n = 0 and q(x) = 0.  We obtain the following solution for Eq. 

(4.7.1): 

𝑛𝑡(𝜀, 𝑡) = N𝑡(𝜀) 𝑒𝑥𝑝 �−∫ 𝜈𝑡𝑒𝑒𝑥𝑝 �−
𝜀

𝑘𝑏𝑇
� 𝑑𝑡𝑡

0 � ,    (4.7.4) 

where  𝑁𝑡(𝜀) is the energy-dependent DOS and we have used Eq. (2.5.12) to convert the constant 𝜈𝑡𝑒 =

 𝛼𝑡𝑒𝑁𝑒 (see Section 2.4.5).  In general, the energy dependence of the thermal release of electrons from 

trapped states is a function of time, 𝜀 = 𝜀(𝑡); i.e., the time release of charges from trapped states is a time-

dependent process (see Section 3.1.3).  Since Eq. (4.7.4) is written as a function of energy, it can be 

evaluated at any single energy assuming that the trapped electrons at different energy levels are not affected 

by each other.  This is not true in general (see Section 3.1.8), but since many trapped charge distributions 

act as if they were at a single energy level or a very narrow range of energies, we can perform the time 

integration without taking into account the time dependence of the release rate.  This yields 
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𝑛𝑡(𝜀, 𝑡) = N𝑡(𝜀) 𝑒𝑥𝑝 �−𝑡𝜈𝑡𝑒𝑒𝑥𝑝 �−

𝜀
𝑘𝑏𝑇

�� .    (4.7.5) 

 Equation (4.7.5) can be integrated over a range of energies (we can view them as a set of discreet 

energy levels that do not interact with one another) to obtain an expression for the time evolution of the 

trapped charge distribution 

𝑛𝑡(𝑡) = ∫ N𝑡(𝜀) 𝑒𝑥𝑝 �−𝑡𝜈𝑡𝑒𝑒𝑥𝑝 �−
𝜀

𝑘𝑏𝑇
�� 𝑑𝜀𝜀𝑚𝑎𝑥

𝜀𝑚𝑖𝑛
 .    (4.7.6) 

In principle, Eq. (4.7.6) can be solved for any energy range and DOS function.  The DOS types are 

given in Section (2.4.5).  In this section, only a constant DOS will be used to obtain a solution; for solution 

of Eq. (4.7.6) using an exponential or delta function DOS see Monroe (1985); there is no closed form 

solution (that this author is aware of) for the Gaussian DOS.  We bound range over which the constant 

DOS is allowed to have trapped electrons to a narrow region between the limits of integration given in Eq. 

(4.7.6).  The exact solution of Eq. (4.7.6) is then 

𝑛𝑡(𝑡) =  −𝑁𝑡𝑘𝑏𝑇
𝜀𝑐

�𝐸𝑖 �𝑒
−𝜀𝑚𝑎𝑥

𝑘𝑏𝑇 𝜈𝑡𝑒𝑡� − 𝐸𝑖 �𝑒
−
𝜀𝑚𝑖𝑛
𝑘𝑏𝑇 𝜈𝑡𝑒𝑡��. (4.7.7) 

In Eq. (4.7.7), Ei(x) is the exponential integral (Spiegel, 1971).   

Equation (4.7.7) describes the time-dependent decay of electrons from trapped states as a function 

of temperature.  This expression is most useful when the minimum and maximum energies are not too far 

apart; said another way, this is when the number of trapped charges in the DOS is not so large as to incur 

corrections to Eq. (4.7.7) due to high internal electric fields.  For the case where the internal electric field 

modifies the trap depth energies, a correction for the field must be added.  In this chapter we do not discuss 

the solution of Eq. (4.7.7) with inclusion of the time-dependent electric field, as it requires additional 

theoretical development beyond the scope of this dissertation, namely a sophisticated numerical model. We 

do, however, show how to include the electric field dependence. 

It is simple to develop the expression from which a numerical model for the temperature-, time-, 

and field-dependent density of trapped electrons can be built.   From Section 2.5.4, we know that the 

energy barrier of a trapped state is modified by the electric field in the following way: 

𝜈𝑡𝑒[𝜀 − (𝑑 − 𝑅)𝑞𝑒𝐹(𝑡)] = 𝜈𝑡𝑒𝑒𝑥𝑝�−�𝜀 − (𝑑 − 𝑅)𝑞𝑒𝐹(𝑡)�/𝑘𝑏𝑇�. (4.7.8) 
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The electric field, F(t), is between the charge distribution and the rear electrode and d-R is the 

distance between the center of the trapped electron distribution; for most cases, the trapped charge 

distribution is so close to the injecting electrode that d-R~d.  Using Eqs. (4.7.7) and (4.7.8) with a constant 

DOS, we obtain an expression for the field-dependent number of trapped electrons 

𝑛𝑡(𝑡) =  −∫ 𝑁𝑡
𝜀𝑜c
𝑒𝑥𝑝 �−𝑡𝜈𝑡𝑒𝑒𝑥𝑝�−�𝜀 − 𝑑𝑞𝑒𝐹(𝑡)�/𝑘𝑏𝑇��

𝜀𝑚𝑎𝑥
𝜀𝑚𝑖𝑛

𝑑𝜀.  (4.7.9) 

Using Eq. (4.4.3) for the electric field and Eq. (4.7.9), an expression involving the electric field 

between the trapped charge distribution and the grounded rear electrode is obtained: 

𝐹(𝑡) =  − 𝑁𝑡𝑑𝑞𝑒
𝜖0𝜖𝑟𝜀𝑜c

∫ 𝑒𝑥𝑝 �−𝑡𝜈𝑡𝑒𝑒𝑥𝑝�−�𝜀 − 𝑑𝑞𝑒𝐹(𝑡)�/𝑘𝑏𝑇��
𝜀𝑚𝑎𝑥
𝜀𝑚𝑖𝑛

𝑑𝜀.  (4.7.10) 

Equation (4.7.10) can be solved for the electric field numerically, but there is no closed form solution that 

can be obtained without strong approximations.  Dissado et al. do provide an analytical solution to Eq. 

(4.7.10) for the decay of trapped charges in epoxy resin under CVC conditions (Dissado et al., 2006). 

How do we estimate the current density at the rear electrode?  First, we can suppose that the 

observed current at the rear electrode is due to a displacement current, given by Eq. (4.6.4).  Second, we 

can assume that the rear electrode ground connection is injecting counter charges to cancel the 

displacement current, thus keeping the rear electrode at ground.  Both the trapped charge distribution and 

the induced charge at the grounded collecting electrode determine the time dependence and magnitude of 

the electric field.  This is the basic physical model used in Dissado et al. (2006) to estimate the measured 

current density.   

It is very instructive to review Dissado’s paper and measurements using PEA methods therein, to 

obtain a complete picture of the charge density behavior discussed here. (For that matter, any PEA 

measurements on HDIM in a CVC-type experiment will provide the necessary picture.)  In particular, 

special attention should be paid to the position, type, and magnitude of charge distributions at both the front 

(assumed to float after the cessation of voltage) and rear (grounded measurement electrode) electrodes.  

Dissado suggests that the charge neutralization process at the rear electrode is due to Schottky injection 

(this is one of the injection models suggested in Section 4.4) is  

𝑑𝑄𝑖𝑛𝑗
𝑑𝑡

= 𝐽𝑖𝑛𝑗 = 𝐽0 exp(−𝜑/𝑘𝑏𝑇) exp �� 𝑞𝑒3

4𝜋𝜖0𝜖𝑟
�
1/2 [𝐹(𝑡)]3/2

𝑘𝑏𝑇
�. (4.7.11) 
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Here, Qinj is the injected charge per unit area (which must be equal to the displacement 

charge), 𝜑 is the energy barrier at the metal-insulator interface, F(t) is the electric field generated between 

the trapped charge distribution and the grounded rear electrode found by solving Eq. (4.7.10), 

and  𝐽0 exp(−𝜑/𝑘𝑏𝑇) is the initial current density.  Using an expression similar to Eq. (4.7.11), Dissado 

derives and expression for the current density as a function of the electric field (the Walden model).  Since 

the injection current must be equal to the displacement current, Eq. (4.7.11) can be written entirely in terms 

of the electric field using Eq. (4.6.5) as  

𝜖0𝜖𝑟
𝜕𝐹(𝑡)
𝜕𝑡

= 𝐽0 exp(−𝜑/𝑘𝑏𝑇) exp �� 𝑞𝑒3

4𝜋𝜖0𝜖𝑟
�
1/2 [𝐹(𝑡)]3/2

𝑘𝑏𝑇
�. (4.7.12)  

Equation (4.7.12) is the charge neutrality condition at the grounded rear electrode resulting from 

the electric field.  Equation (4.7.12) can be rearranged to give an expression for the current density 

𝜖0𝜖𝑟
𝜕𝐹(𝑡)
𝜕𝑡

exp �− � 𝑞𝑒3

4𝜋𝜖0𝜖𝑟
�
1/2 [𝐹(𝑡)]3/2

𝑘𝑏𝑇
� = 𝐽0 exp(−𝜑/𝑘𝑏𝑇). (4.7.13) 

Dissado claims that the expression on the RHS of Eq. (4.7.13) is the measured current density at the rear 

electrode,  𝐽𝑚𝑒𝑎𝑠(𝑡); he develops a very complex expression.  It seems true the energy barrier must be a 

function of time, and Dissado suggests Eq. (4.7.13) can be written as 

𝐽𝑚𝑒𝑎𝑠(𝑡) = 𝜖0𝜖𝑟
𝜕𝐹(𝑡)
𝜕𝑡

exp �− � 𝑞𝑒3

4𝜋𝜖0𝜖𝑟
�
1/2 [𝐹(𝑡)]3/2

𝑘𝑏𝑇
�. (4.7.14) 

A more realistic approach would seem to be gained by solving Eq. (4.7.12) for the resulting 

electric field and then using Eq. (4.7.11) to obtain the true injection current; however, this is not the 

approach Dissado takes and will be left for future work.   Equation (4.7.14) is complicated and only 

solvable by numerical methods unless—as Dissado did—many approximations are made.  The inclusion of 

the Schottky injection function does highlight the need for extended studies on the nature of the metal-

insulator interface; this was addressed in Section 4.4.   

Thus, we are left with the task of deriving a simple equation to estimate the current density at the 

rear electrode, which can yield estimates for the material parameters.  As is turn out, we have already 

developed all the necessary components to such build a model.   Using Eq. (4.6.5) for the displacement 

current—with d-R replaced by d, the sample depth—and Eq. (4.7.7); we write the following expression for 

the measured current density at the rear electrode 
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𝐽𝑚𝑒𝑎𝑠(𝑡) = −𝑞𝑒

𝑑𝑁𝑡𝑘𝑏𝑇
𝜀𝑜c

𝑑
𝑑𝑡
�𝐸𝑖 �𝑒

−𝜀𝑚𝑎𝑥
𝑘𝑏𝑇 𝜈𝑡𝑒𝑡� − 𝐸𝑖 �𝑒

−
𝜀𝑚𝑖𝑛
𝑘𝑏𝑇 𝜈𝑡𝑒𝑡��. (4.7.15) 

Equation (4.7.15) does not include changes in barrier energy due to field dependence, effects due 

to metal-insulator injection at the rear contact, or spatial dependencies; it is a simple approximation.  

However, for modest electric fields, temperatures near 300 K, and low energy barrier differences at the rear 

contact Eq. (4.7.15) should describe the observed behavior reasonably well.  Equation (4.7.15) is the 

primary result of this section and is the USU CVC discharge model.  While this expression could have been 

presented much earlier in the discussion, the lack of completeness would not have been apparent.  A 

number of detailed discussions of models similar to the one developed in this section, Dissado’s work, and 

previous work by the USU MPG (Dennison et al., 2009a) can be found in the literature (Many and Rakavy, 

1962; Mizutani et al., 1977; Berlepsch, 1985a; Sessler, 1987; Fromhold, 1990; Alagiriswamy and Narayan, 

2002).   

The USU MPG has not taken data on the decay of charged samples after the cessation of voltage.  

Therefore, only a limited analysis will be presented in the next section.  However, there is ample data on 

many types of insulators in the literature—Dissado et al. (2006) is an excellent place to start—that may be 

used to test the USU MPG model.  Such an analysis will not be presented in this dissertation and is left for 

future researchers.   

4.8. Analysis 

In this section, the charging (Section 4.6) and discharging (Section 4.7) models are explored.  

First, we apply the simplified USU MPG CVC charging model, Eq. (4.6.9), to data taken on LDPE.  The 

results are briefly discussed and some observations about the nature of the observed behavior are made.  

Second the results of the USU MPG CVC discharge model Eq. (4.7.14) using the parameters obtained from 

the investigation of the charging model is presented.  The discharge model is not compared with data; it is 

presented only to explore its use, behavior, and how it should be a better predictor of the intrinsic material 

conductivity than the charging model.  Keep in mind that this chapter is meant only to show that the 

theories presented in Chapters 2 and 3 can be used—even in a simple form—to understand and predict 

measured current densities, surface potentials, and resulting electric fields.  This chapter is not the final 

word on charge and discharge models under CVC conditions.  
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Details of the CVC experimental apparatus and sample preparation procedures are given in 

Brunson (2009) and Dekany et al. (2008, 2012) and will not be repeated here.  The specific LDPE sample 

tested has a depth (thickness) of 27.4 µm and the effective sample area is 1.0 × 10−4 cm2.  The applied 

voltage is 100 V resulting in a 3.65 MV/m applied field.   The sample was tested at room temperature under 

a vacuum of  ~ 1.0 × 10−4 Torr.  This particular test was done using a battery system to supply the applied 

voltage with a significantly reduced background noise (Dekany and Dennison, 2009).  The battery system 

has the advantage of a very low noise background and well-known current versus voltage characteristics.  

The test procedure applies a constant voltage for the duration of the experiment and monitors the resulting 

current at the grounded rear electrode. Figure 4.3 shows the resulting data plotted on a log-log scale and fit 

with Eq. (4.6.9).  The black points are the data and the thin yellow line is the fit, shown in the lower plot.  

The data extend over nearly three orders in magnitude in current density and nearly five orders in 

magnitude in time; with the exception of the first 100 s—where there are no data—the fit is excellent.  The 

upper plot shows the residual between the fit and the data.  The scale of the residual is 1.0 × 10−15 A/m2, 

two to three orders of magnitude lower than the scale of the current density measured in the lower plot.  

The fit agrees with the data to within <1% throughout.  The increase in the spread of the data points is due 

to limitations in the instrumentation of ~ 200 aA (Dekany and Dennison, 2009); note, aA is atto amps, 

stated here because it is a very unusual unit to encounter.  In fact, it seems likely that the region where the 

current density appears to reach equilibrium is really an instrumentation measurement limit; this conjecture 

will be ignored.   

Figure 4.4 again shows the data (black) and fit (green), but adds another fitting function, which is 

the solution of Eq. (4.3.14) with no injection function.  This solution, a simple exponential function, is a 

poor fit; this clearly highlights the need for the injection function described in Section 4.4.  The USU MPG 

CVC model is a combination of an exponential and a power law function [see Section 4.6 or Eq. (4.6.9)].  

For LDPE, the power law-type behavior clearly dominates, suggesting very strong trapping of the incoming 

charge.   

The USU MPG CVC model is a good fit to the data; but, does it accurately predict the material 

parameters?  The fit of Eq. (4.6.9) was done using IGOR 6.1 data analysis software and yields the 

parameter values shown in Table 4.1.  Here sc is the capture cross section and Nt is the DOS.  These two 
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values are consistent with the literature (Rose, 1963; Sessler, 1987) and additional measurement made by 

the USU MPG discussed in Chapters 5.  J0 is the initial injection current density, Jsat the saturation current 

density (likely an instrumentation limit), 𝑚 is a power, 𝜏𝑜𝑛𝑠𝑒𝑡  is the onset time, and d is the sample 

thickness.  The parameter values in Eq. (4.6.9) are grouped in products (with the exception of 𝑚 and 

𝜏𝑜𝑛𝑠𝑒𝑡); this allows for some ambiguity in their determination.  For example, sc and J0 form a product pair 

in the argument of the exponential and the magnitude of the function; in addition, Nt and d form a product 

pair in the magnitude.  The upper and lower bounds of each of these parameters must be established by 

comparison with other experiments within the USU MPG and literature results.  In this dissertation some 

cross comparison is done, but a great deal of work is needed to build confidence.  However, as we will see, 

the values obtained for all parameters are in the expected ranges.   

The least useful parameters are the two extrinsic parameters (the initial current, J0, and the 

saturation current, Jsat) as they depend more on the limits of the apparatus than on the intrinsic material 

FIG 4.3. Fit to LDPE data using the USU MPG model. Data for LDPE with an applied field of 3.65 MV/m 
at room temperature (black data points).  The USU CVC charging model, Eq. (4.6.9), is applied (green 
line).  This plot is on a log-log scale to highlight the power law-like behavior.   The residual (top red curve) 
suggests an excellent fit, limited by instrument resolution.  
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properties.  However, the initial and saturation current density can be used to estimate the maximum and 

minimum bounds, in addition to the change in conductivity.  The internal field due to trapped charges is 

usually much less than the applied field; we can, therefore, get a first order estimate of the upper and lower 

bounds on conductivity during the charging process by looking at the ratio of the initial and final current 

densities to the applied field. Thus, we can establish the upper bound for the conductivity as   𝐽0/𝐹0 =

 𝜎𝑢𝑝 =  9.15·10-17 [Ω-cm]-1 and the lower bound as  𝐽𝑠𝑎𝑡/𝐹0 =  𝜎𝑙𝑜𝑤𝑒𝑟 = 9.15·10-21 [Ω-cm]-1; these are only 

estimates and should not be confused with other conductivities.  The upper value is consistent with 

measured conductivities typical of LDPE ~ 10-17 to 10-20 [Ω cm]−1 (Montanari et al., 2001, 2005; Dennison 

and Brunson, 2008; Brunson, 2009).    

The lower bound is not a reasonable estimate of the conductivity, since the flow of electrons is 

impeded by the charge distribution; this behavior is consistent with an increasing trapped charge 

distribution and resulting electric field.  Why should we expect that the measured saturation current density 

is not a good predictor of material conductivity (assuming that it is a physical limit and not an 

instrumentation limit)?  Figure 4.5 shows the trapped electron density as a function of time.  The green 
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FIG 4.4. Fit with USU MPG CVC model and pure exponential. The data are shown in black, the USU 
MPG model of Eq. (4.6.9) in green, and the exponential solution of Eq. (4.6.9) for when no interface 
charging is considered (i.e., when m =1).  It is clear that the exponential solution is a poor estimation of the 
measured current density.  The maximum current density and minimum current density are shown as 
dotted lines for reference. 
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section is the portion of the function used to produce the observed charging of LDPE;  i.e., the green curve 

is all we need to predict the observed behavior.  The value of the DOS Nt obtained in the fit is consistent 

with previous work (Nath and Perlman, 1989; Wysocki, 1995; Tzimas et al., 2010), but it is clear from Fig. 

4.5 that only a small fraction of the DOS, only 0.05 ppm, is actually filled; this effect can lead to a 

significant underestimation of the DOS.  This partial filling of the DOS is expected.  If the DOS were to fill 

to a large fraction of its capacity—say 100 times the observed value—the internal electric field would 

exceed the electrostatic breakdown field strength and would cause material breakdown.  In fact, long before 

the break down, the DOS would begin to degrade as field stress produced additional defects (Liufu, 1998).   

We should expect that the way in which charge is injected into the material has a lot to do with 

how the DOS will fill and to what level it will fill. Consider a body of charge at a distance, R, from the 

surface of the sample, whose field is opposite to the applied field but equal in magnitude (as in Fig. 4.2). 

Using Eq. (4.4.3) to estimate the density of trapped states—creating the charge body opposite to the applied 

field F0—we find the density of this charge body can be no larger than 3.8x1015 cm-3, much smaller than 

the total DOS; i.e., in a perfect world, the applied electric field, F0—used in this LDPE test—still could not 

fill up the DOS. In the real world Columbic shielding, polarization, and other internal effects reduce the 

field due to the trapped charge distribution; thus, slightly more charge is needed to produce a counter field 

equal to F0.  We also know from Section 4.6 that the more charge that is trapped, the higher the internal 

electric field and the lower the activation energy required to release the charge (electrons) from their 

trapped states;  i.e., the way the trap distribution fills up changes with electric field, creating a situation in 

which electrons are released with greater frequency as the internal field is increased.  This effect is often 

expressed as a field-dependent conductivity. 

There is one very good reason that the internal field cannot ever be equal to the applied field.  

Consider what will happen if the electric field, F0, is increased to a value, Ffill, that ideally, will inject 

enough charge to fill the DOS.  In a perfect world, the field that is required to fill up the DOS, Nt, is ~100 

MV/m, which is a factor of 10 greater than the estimated long-endurance time breakdown field strength for 

LDPE of between 1 and 10 MV/m (Montanari et al., 2001; Crine, 2007).  The crossover between 

electrostatic breakdown and a nondestructive density of charge is explored in Liufu et al. (1998) and Kao 
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(2004).  The USU MPG CVC model can be extended to include the effects of high field degradation and 

material breakdown using the approach of Liufu.    

Our discussion of the USU MPG analysis has not yet included the effects of polarization.  Some 

polarization data for LDPE have been taken using the USU MPG CVC system (Dennison and Brunson, 

2008).  Adequate data are not available to discuss the polarization effects of LDPE; therefore, a short 

discussion of the expected effects of the complete USU MPG CVC charging model given by Eq. (4.6.8) is 

presented. Using the parameter values obtained by fitting the simple USU MPG CVC model, a fit to the 

LDPE data set using Eq. (4.6.8) shown in Fig. (4.6) is obtained.  The use of the polarization terms— shown 

FIG 4.5. Trapped electron density time evolution.  Electric field-dependent trapped electron density of the 
DOS by injected electrons at the metal-insulator interface.  The green line represents the region of the 
curve (or total DOS) needed to characterize the filling of trapped states in LDPE.  It is expected that the 
DOS is not completely filled during the charging of HDIM by contact injection at low fields; in this case, 
the applied field is  ~100 𝑀𝑉/𝑚.  
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TABLE 4.1. Fitting parameters for USU MPG CVC model. 
Parameter 𝐽0 𝑆𝑐  𝑁𝑡  𝑑 𝜏𝑜𝑛𝑠𝑒𝑡  𝑚 𝐽𝑠𝑎𝑡 
Value 2.34 × 10−12 1.47 × 10−14 9.14 × 10+16 27.4 25.1 0.724 2.25 × 10−18 
Units A/cm2 cm2 1/cm3 µm sec NA A/cm2 
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separately in Fig. 4.7—eliminates the small error for times less than 100 s seen in Fig 4.3; the polarization 

decay constant is 1.2 s, while the charging time constant is 𝜏𝑜𝑛𝑠𝑒𝑡  ~ 25 s.  This disparity in the polarization 

time and charging time constant seems to suggest that they are very different mechanism, as one would 

expect.  While this short timescale behavior may not be polarization, but rather an instrument response 

time, the model presented in Eq. (4.6.8) is clearly capable of describing polarization (or short timescale) 

behavior.  There are good arguments to suggest that LDPE does have a polarization component.  However, 

after 10 s, it is expected that any anomalous signal due to the instrument should have subsided.  Thus, while 

more study is needed, the inclusion of the polarization terms seems necessary to describe the short 

timescale response of the HDIM (LDPE in this case). 

The ratio of the measured current density to effective electric field changes with time as  𝐽(𝑡)/

𝐹(𝑡) =  𝜎(𝑡).  The conductivity is not a one-to-one ratio as is found for Ohmic behavior, but decreases as 

the current tends toward a constant saturation current.  Thus, the conductivity tends asymptotically toward 

the dark current conductivity at long t, leading to an unphysical result.  This result suggests that, for an 

ungrounded sample in the presence of an electric field, it is possible to trap the charges in the material for 

FIG 4.6.  USU MPG CVC charging current density model. The current density (black dots) is derived from 
USU MPG CVC data taken on LDPE at 1.0 MV/m using Eq. (4.6.8).  The fit (orange line) is the sum of 
the polarization and displacement current densities.  
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FIG 4.7. Composite polarization current density response. The total polarization current density (solid blue 
curve) and the initial polarization  (dashed yellow line), and the relaxation of the polarized charge (dashed 
blue curve) are shown. Note the use of 𝑙𝑛𝜃 function for the dashed black line representing the turning 
point; this is a special type of natural log function used in MathcadTM for data that goes through zero on the 
x axis. 
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times longer than expected when only the material conductivity is considered, i.e., spacecraft materials may 

be able to store charge for extremely long times (months) leading to a near breakdown situation or a 

situation where a much smaller change in local electric fields, incident charge, or material temperature can 

trigger a breakdown event.  These results suggest that the true material conductivity can only be obtained 

by study of the decay of charge distribution after the cessation of voltage. 

The USU MPG has not analyzed data acquired for the current density decay after the cessation of 

voltage, as of the writing of this dissertation.  However, the theory developed in Section 4.7 can be 

explored using the material parameters found for the charging of LDPE (see Table 4.1).  In order to keep 

the analysis as simple as possible, Eq. (4.7.15) has been used to calculate the estimate for the measured 

current density; Eq. (4.7.15) does not include the effects of the internal electric field on the detrapping 

dynamics or metal-insulator interface effects (see Section 4.7). Equation (4.7.15) must be calculated 

numerically as the exponential integral does not have a closed-form solution.  The result of the numerical 
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integration for the expected decay of the measured current density is shown in Fig. 4.8.  Figure 4.8 (b) 

shows the actual result of Eq. (4.7.15) and Fig. 4.8 (a) shows the absolute value of Eq. (4.7.15).  MathcadTM 

was used to perform the numerical calculations, and appears to perform better when the absolute value is 

used.  In addition to the current density, the time-dependent internal electric field is calculated.  Given the 

time-dependent internal electric field and current density, the time-dependent conductivity can be 

calculated as  𝐽(𝑡)/𝐹(𝑡) =  𝜎(𝑡); Fig. 4.9 shows the result (red curve).  Why does the conductivity appear 

to change so dramatically as a function of time?    

The explanation to our question is best understood in terms of the thermalization and excitation 

processes described in Chapter 3; the argument goes as follows.  Assume that the quasi-Fermi level is very 

high in the DOS due to partial filling of the DOS.  For early times—when the Fermi level is near the CB 

edge—charge is quickly released from energetically shallow states (near εmin) to the CB leading to an 

enhanced conductivity; enhancement of the conductivity is often seen in radiation measurements, as 

discussed in Chapter 5.  The reason for this fast release follows from the way in which the DOS is charged 

when an electric field is applied (see Section 4.6).  The applied field allows the HDIM to act like an 

enhanced charge storage system packing electrons into low-energy (near the CB) trap states and holding 

them there (a kind of nonlinear capacitive effect).  These low-energy states release trapped charges very 

quickly when the applied field is removed;  i.e., the QFL is time dependent and will drop quickly for early 

times.  This behavior is responsible for the fast power law decay of the conductivity to the left of the 

vertical dashed line shown in Fig. 4.9.  The vertical dashed line is the time at which the deep trapped charge 

distribution near εmax begins to release it charge; we can also think of the deep state charge distribution as 

beginning to dominate the transport after this time.  To the right of the vertical dashed line, we see that the 

conductivity levels off approaching its equilibrium (dark conductivity) value.  The density of trapped 

energetically deep charge is much lower than the (early time) shallow counterparts;  i.e., the QFL  

approaches the dark or equilibrium Fermi level.  This has an important effect, since the internal field is 

largely due to shallow charges, which are larger in number (for early times) than the number of electrons in 

deep states.  Thus, once the shallow charge distribution has dissipated, we are left with a low-charge 

concentration, low-field situation;  i.e., with time, we move closer to a single electron approximation and 

the true or equilibrium material conductivity.  Our estimation provides a value for the intrinsic material 

 



171 

conductivity (dark conductivity) of  𝜎0 = 9 × 10−17[Ω cm]−1 shown in Fig. 4.9 as a horizontal dashed line.  

This value is in reasonable agreement with previous studies on LDPE (Montanari et al., 2001, 2005; 

Dennison and Brunson, 2008; Brunson, 2009) which range from ~1 × 10−18[Ω cm]−1 to 1 ×

10−15 [Ω cm]−1.  Since the intrinsic material conductivity is obtained from the simplified model using 

material parameters from the fitted charging model (which are likely to be different due to field effects 

FIG 4.8. USU MPG CVC discharge model. Numerical estimations of the expected measured current 
density at the collecting (grounded) electrode.  (a) Absolute value of the current density for a discharging 
HDIM.  (b) Actual predicted current density for a discharging HDIM after the cessation of short timescale 
effects.  The errors in the curve are seen as isolated red x’s and missing points in the data curve; these 
result from the numerical calculation process. 
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caused by the much stronger applied field), we expect that our estimations will improve greatly with actual 

discharge data on LDPE and full numerical integration of the USU MPG  CVC model.   

4.9. Conclusion  

The CVC section has presented a theoretical development for charge injection under application of 

an applied electric field, developed a charging model that includes the charge injection behavior, developed 

a discharging model, both with and without metal-interface behavior, validated to first order of the CVC 

charging model, and shown that the CVC discharging model will almost certainly yield accurate 

information about important physical material parameters, such as the conductivity. A preliminary 

analysis—performed in Section 4.8—provides confidence in the USU MPG CVC model and the results are 

shown to agree well with both the USU MPG SVP results (Chapter 5), as well as literature. 

 A concise discussion of the range of possible measurements and response regimes has been given, 

verifying the basic physical behavior.  This was accomplished by extending the long timescale USU MPG 

CVC model with a simple phenomenological polarization model that can account for short timescale 

behavior (see Section 4.6).  While the physical roots of this polarization model must be investigated further, 

FIG 4.9. Time evolution of the material conductivity. The time-dependent conductivity can be estimated by 
taking the ratio of the time-dependent current density to the time-dependent internal electric field.  The 
horizontal dashed line is the dark current conductivity and the vertical dashed line is the time at which the 
deep states begin to dominate the conductivity, i.e., the onset of dark current conduction. Note that a 
smaller section of the data is shown in this figure to highlight the low-conductivity limit.  
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it does allow spacecraft designers the ability to predict short timescale behavior; thus the model can help 

mitigate breakdown events that occur when the material is near its degradation threshold.  Chapter 4 has, 

therefore, presented a physically based set of models for the predication of charge redistribution in HDIM 

and mitigation of harmful spacecraft breakdown events that cover all timescales of interest to spacecraft 

designers.  

The process of developing these models and applying them to USU MPG data has produced a new 

set of MathcadTM tools to describe the charging current density with field and time-dependent behavior; 

these are spacecraft engineering tools.  These models and the data collected by the USU MPG CVC 

apparatus can and should be used in conjunction with the SCLC and VRH models of Chapters 2 and 3, 

respectively (refer to the introduction of this chapter).  These models describe changes in the conductivity 

as a function of field and temperature for two physically different transport mechanisms, both of which are 

studied in the CVC system.  These physical models in conjunction to the time-dependent models presented 

in this chapter offer a diverse theoretical platform upon which to study HDIM and connect the results to 

other USU MPG experiments.   

Using the three major types of DOS (constant, exponential and Gaussian) together with the four 

bodies of theory (TAH, VRH, SCLC, and USU MPG CVC time-dependent charging and discharging 

models), a complete characterization of HDIM electron transport behavior, and a deep understanding of the 

physical make up, a complete set of engineering tools can be constructed.   

All of these bodies of theory (TAH, VRH, SCLC, and time-dependent transport models like the 

USU MPG CVC) share the same set of physical transport equations discussed in Section 4.3. Numerically, 

the complete transport equations with the inclusion of injection terms can completely describe the behavior 

of any material in three dimensions as a function of time, injection behavior, internal and external electric 

field, and temperature.  It is critical that full numerical models be developed and tested against data and 

analytical expressions.  However, this project is beyond the scope of this work and is left for future work.   

The goal of developing a simplified set of time-, electric field-, and temperature-dependent 

transport expressions for CVC has been accomplished.  We have shown that the approximations used are 

reasonable and supported by results external to the USU MPG, that the models describe data on LDPE with 

high accuracy, and that the resulting physical parameters are consistent with both the literature and 
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previous USU MPG results.  The remaining chapter is dedicated to the USU MPG Small Voltage Probe 

analysis, and shows similar agreement with both the CVC system and the literature. 
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CHAPTER 5 

5. SURFACE VOLTAGE PROBE ANALYSIS 

5.1. Introduction 

The central theme of spacecraft charging requires a description of the interactions with the plasma 

environment and high-energy events that cause charging.  Spacecraft materials accumulate negative or 

positive charge and potentials in response to interactions with the spacecraft environment.  We are 

specifically concerned with the parts of the spacecraft that contain HDIM; thus, from this point on, when 

we use the word spacecraft material we mean HDIM.  A material’s electron emission, or electron yield, 

determines how much net charge accumulates and is, therefore, directly related to deposited charge and 

surface potential, as is evidenced by the much higher yields of typical HDIM when compared with 

materials of higher conductivity.  Due to their higher mobility, incident electrons play a more significant 

role in the electron yield response than ion or photon fluxes and, therefore, in the resulting spacecraft 

charging.  We, therefore, continue to constrain our discussion to electron fluxes and electron transport, as 

we have done throughout this work.  This chapter develops the relationship between the surface potential 

and the charge distribution internal to or on the surface of an HDIM, and it also presents the connection to 

the electron yield of an HDIM 

Largely, the goals of this chapter are approached through the development of theoretical models 

for the charging and decay of an HDIM leading to a surface potential. Specifically, we discuss surface 

voltage dependence due to a normally incident electron beam—allowing simulation of spacecraft 

environment conditions—on an HDIM as it charges up (electron beam on) and decays (electron beam off).  

This theoretical body is then compared to data taken using a small surface voltage probe (SVP) in the SEE 

test chamber (Hodges, 2013).  These models will be referred to as the SVP charging and decay models.   In 

Chapter 1 a discussion of six experimental configurations was presented (see Fig. 1.4).  While all of the 

figures in Fig. 1.4 are relevant to the spacecraft charging problem, in this chapter we discuss only the 

physics associated with Fig. 1.4. (a) (ii).  This chapter applies the transport equations—presented in 

Chapter 2—to the charging problem given by Fig. 1.4 (a) (ii); Fig. 1.4 (a) (iii) describes RIC 
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measurements, and while we will present a short and necessary discussion of RIC, it is largely left for 

future work (Gillespie, 2013). 

We begin this chapter with an introduction to electron beam charging and the limitations and 

challenges that it presents. This discussion is used as a basis to argue that deposition of charge in the HDIM 

is—for high beam energies—the major factor in the resulting surface potentials.  This discussion will 

include a short summary of secondary electron emission (SEE), radiation induced conductivity (RIC), and 

surface transport of charge. While these three mechanisms greatly complicate the physics of charge 

migration, deposition and continuity of charge, the associated discussion will show that—in large part—we 

can ignore the spatial region in which the difficult physics is occurring and treat the whole system like a 

simple parallel plate capacitor (or, in some cases, two simple parallel plate capacitors).  This may seem an 

almost ridiculously simple assumption, but it will be seen that the surface potential predicted by SEE theory 

(Thomson, 2001; Hoffmann, 2010) is of the same form as that predicted by the charging equations; it will 

be shown that the surface potential equations of Hoffmann (2010) are nearly the linear first order 

approximations of the SVP charging theory.  The assumption that we can treat the system as simple planes 

or blocks of charge allows the use of theoretical machinery developed in Chapter 4 to describe the charging 

of an HDIM under electron beam irradiation with very little modification.    

Having introduced the problem and constraints, the development of the SVP charging model will 

be presented in Section 5.2.  We start with an the assumption for high-energy electron beam charging 

discussed in Section 5.1 and the modifications to the transport Eqs. (2.6.8) through (2.6.13) to show that the 

assumptions made for the SVP model are consistent with the CVC charging model of Chapter 4.  In Section 

5.3 the SVP charging model is completed and fit to data from SVP measurements of electron beam charged 

Kapton-HNTM and LDPE to extract relevant physical parameters.    

Having developed the charging model, the focus of this chapter will be turned to the decay of the 

deposited charge body in Section 5.4.  The development of the SVP decay model requires a great deal more 

development than that of the charging model, as we cannot rely on any information presented in Chapter 4.  

Section 5.4.1 develops the notion of a surface potential and Section 5.4.2 presents the detailed mathematics 

required to derive a closed form solution.  Since the decay of charge occurs on extremely long timescales,  
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one is forced to consider what happens when the charge distribution reaches the rear collecting electrode, at 

which point the decay of surface potential will increase due to a new current path between the centroid of 

the charge body and the collecting electrode.  This problem is addressed in Sections 5.4.3, 5.5.1, and 5.5.3, 

but is largely left for future work.  Having developed a model for the surface potential decay, we again fit 

data from the SEE chamber on LDPE and Kapton-HNTM. The agreement between experimental systems 

and the literature is found to be excellent.  A short discussion of the physical parameters, condition of the 

data, fit to the data, and behavior of the model is presented. 

5.2. Electron Beam Charging 

Consider Fig. 5.1 in which an electron beam (a) is normally incident on an HDIM, which is 

grounded at the opposite side (the collecting rear electrode).  Figure 5.1 is complex, and we will approach 

its discussion in a piecewise manor to make clear the important processes at work and the nature of the 

assumptions to be used in creating the SVP models. First, consider (a) and (b) and for the moment ignore 

the rest of the figure.  Part (a) of the figure is the incident electron beam. Part (b) of the figure represents 

electrons that are ejected from the material; these electrons are called emitted electrons and there are two 

types.  The first type of emitted electron is called a secondary electron (SE) and has an energy ≤ 50 eV by 

convention.  The second type is called a backscattered electron (BSE) and has and energy ≥ 50 eV by 

convention. The emission of electrons for any material with an electron beam or energetic distribution of 

electrons is called secondary electron emission (SEE); thus, the reason why the chamber where the SVP 

data were taken is called the SEE chamber is now clear.  We will not give a comprehensive discussion of 

SEE here as it has already been done very well by Thomson (2004) and Hoffmann (2010).  We offer a brief 

synopsis taken from Hoffmann et al. (2008). 

The electron-induced electron yield is characterized by the total yield,  𝜎𝑦𝑖𝑒𝑙𝑑(𝜀𝑏) = (𝑄𝐵𝑆𝐸 +

𝑄𝑆𝐸)/𝑄𝑇𝑂𝑇 , where 𝜀𝑏 is the electron beam energy.  The total yield is defined as the ratio of the emitted SE 

plus BSE electron flux to the incident electron flux.  By convention, the SE yield, 𝛿𝑦𝑖𝑒𝑙𝑑 (𝜀𝑏) = 𝑄𝑆𝐸
𝑄𝑇𝑂𝑇

, is the 

ratio for emitted electrons with energy less than or equal to 50 eV, and the BSE yield, 𝜂𝑦𝑖𝑒𝑙𝑑 (𝜀𝑏) = 𝑄𝐵𝑆𝐸
𝑄𝑇𝑂𝑇

, is 

the ratio for emitted electrons with energy greater than 50 eV to incident charge.  The total yield is 
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characterized by five parameters: the crossover energies 𝜀1 and 𝜀2  at which the total yield is one, the yield 

peak, 𝜎𝑦𝑒𝑖𝑙𝑑𝑚𝑎𝑥 (𝜀𝑏𝑚𝑎𝑥); the energy of the beam at the yield peak, 𝜀𝑏𝑚𝑎𝑥 (typically between 200 and 1000 eV for 

HDIM); and the rate at which the yield approaches the asymptotic limit or zero as the beam energy goes to 

infinity, 𝜀𝑏  → ∞.  Using the definitions for total, SE, and BSE one can write down a simple expression for 

the total yield,  𝜎𝑦𝑖𝑒𝑙𝑑(𝜀𝑏) =  𝛿𝑦𝑖𝑒𝑙𝑑 (𝜀𝑏) + 𝜂𝑦𝑖𝑒𝑙𝑑 (𝜀𝑏); very often in the literature this is simply written 

as 𝜎 =  𝜂 + 𝛿.  In this dissertation, to avoid confusion with other parameters, we will use the explicit form 

above.   The yield is characterized physically by three regions on a total yield versus beam energy plot.  

The first region is 0 < 𝜀𝑏 <  𝜀1 ; in this range, the yield is always less than one as fewer electrons are 

emitted than incident, since electrons collect in surface traps on the surface of the material; this leads to net 

FIG 5.1. Basic electronic configuration for the SVP. Depicts important features in secondary electron 
emission that lead to a negative surface potential when the beam energy is greater than the second 
crossover energy. (a) Incident electron beam with energy,  𝜀𝑏 , and area, A. (b) A secondary electron (SEE) 
or backscattered electron (BSE) leaving the sample. (c) Re-attraction of a secondary to the surface; only 
occurs when there is a positive surface charge layer. (d) The range—as a function of beam energy—into the 
sample that the incident electrons will penetrate; region where electrons will be deposited. (e) Negative top 
layer caused by re-attraction of secondary electrons; the layer is positive for energies such that the yield is 
positive. (f) Positive region caused by the incident beam, leading to a net loss of electrons. (g) Electrons are 
trapped in localized states. (h) No electrons are deposited in this region, but an electric field due to the 
deposited charge is formed. (i) In this region radiation induced conductivity is active. (j) Diffusion of 
surface charge away from the incident beam center. 
 

z=0 
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negative charging.  The second region occurs 𝜀1 < 𝜀𝑏 < 𝜀2 ; in this region, the yield is greater than one as 

more electrons are emitted than incident, yielding net positive charging.  In this case, there is a positive 

surface layer due to release of loosely bound electrons near the surface of the material.  In the final 

case, 𝜀𝑏 > 𝜀2, the yield is less than one and more complex picture develops in the HDIM, again with a net 

negative charging.  This is shown in Fig. 5.1 and is the primary energetic region of interest for this 

dissertation.  We will not consider the analysis for the first two cases where the beam energy is less than the 

second crossover energy.  However, for the first case, the experiment is identical to Fig. 1.4 (a) (i), a time 

of flight measurement. There are a large number of authors whom have applied the transport equations and 

conducted measurement for this configuration: Rose (1963), Ghosh and Spear (1968), Pfister and Scher, 

(1977), Schmidlin (1977), Tiedje and Rose (1981), Orenstein et al. (1982), Arkhipov et al. (1983, 1984),  

Monroe (1986), Sessler (1987), Tyutnev et al. (2000, 2002b, 2006b), and Kao (2004), to name but a few.  

A main reason for this large body of literature regarding TOF measurements is its application to 

xerography and photoconduction in semiconducting materials.  We will not consider the second case—

where the energy is between or at the crossover energies—because the surface potential is generally quite 

small and the amount of charge on the surface of the HDIM is also small; thus, there is little application to 

the spacecraft charging problem.  For details see Hoffmann (2010). 

Returning to Fig 5.1, we now consider the formation of different charge layers given by (e), (f), 

(g), and (h).   Consider the path of the incident primary electrons (PE) into the sample.  As a PE enters the 

sample, it has a great deal of energy that is released in the material which, among other things, can liberate 

loosely bound electrons or give energy to free electrons; this creates a layer of positive charge, (f).  Many 

of these electrons are emitted from the sample surface to be collected by the SEE measuring system, see 

Hoffmann (2010).  However, a fraction of the emitted electrons have too little energy to escape the electric 

field created by the positive region, (f), and are re-attracted to the surface, (c).  This action of re-attraction 

creates a negative charge layer on the surface of the material, (e).  This negative surface layer is generally 

quite narrow.  In order to give some idea of how small the negative surface layer might be, we first must 

consider how deep the PE can penetrate the sample. This is the range, 𝑅(𝜀𝑏), shown in Fig. 5.1 as (d).  The 

range is a function of the beam energy; the higher the energy, the deeper the PE will penetrate.  We will not 

discuss the physics of the range, as an excellent theoretical model has already been developed by the USU 
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MPG (Wilson and Dennison, 2010; Wilson et al., 2012).  The range of PE in the material for the energies 

considered in this dissertation (between 2 keV and 10 keV) is about 1 µm to a few µm. The sample 

thicknesses are typically 25 to 30 µm; therefore, the range is typically a fraction of the sample depth.  The 

negative surface layer depicted in Fig 5.1 (e) must be considerably smaller than this.  This negative layer is 

expected to be on the order of a few 10’s of nanometers, set by the range or inelastic mean free path of the 

lower energy SE.  At the range, 𝑅(𝜀𝑏), electrons are deposited into trapped states, creating a large negative 

charge distribution centered about 𝑅(𝜀𝑏).  This charge distribution is almost entirely responsible for the 

surface potential of the material; while the negative layer, (e), does contribute, it is very small when 

compared with the deposited charge distribution except near the crossover energies.  The positive charge 

distribution, (f), is also usually very small and in fact PEA measurements on several HDIM suggest this is 

the case (Perrin, 2005; Griseri et al., 2006; Le Roy et al., 2008; Cornet et al., 2008; Tzimas et al., 2010).  

Why would one expect this to be true?   

In order to answer this, a very complex set of physical phenomena must be described. These will 

not be discussed here at length; for more information, see Hoffmann (2010) and Thomson (2004).  

However, a simple discussion of Fig 5.1 can shed a great deal of light on why we should expect this to be 

true.  First, consider the point of view of a PE as it enters the sample. The PE will have a great deal of 

energy to liberate other electrons from loosely bound states and—as discussed above—some will be ejected 

from the sample and others will enter the CB of the material causing an enhanced conductivity called 

radiation induced conductivity.  RIC, impact ionization, scattering, local electric fields, and changes in the 

incoming PE distribution create a very dynamic region that will tend to minimize or relax the spatial extent 

of the positive charge distributions by allowing free electrons in the regions (e) and (f) to recombine with 

positive charge centers (Melchinger and Hofmann, 1995; Song et al., 1997).  RIC is an extremely well-

studied subject and is one of the major applications of the transport equations; for more information, see 

Rose (1951), Sessler (1987), Kao (2004), Arkhipov (1993a), Melchinger and Hofmann (1995), and Weaver 

et al. (1977). Work on RIC by the USU MPG includes Dennison et al. (2003), Gillespie (2013), and Wilson 

et al. (2013).   

Thus far, we have only discussed the top three charge layers in Fig. 5.1; little has been said about 

the region (h) or the action of radial diffusion in the sample.  The radial transport of charge can occur by 
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diffusion, drift, dispersion, or hopping depending on the conditions of the experiment.  On the surface of 

the material the electrons are expected to be in shallow trap states, and therefore, able to interact 

electrically.  This can lead to a diffusive gradient away from the center of the impinging PEs’; this process 

is depicted in Fig 5.1 (j).  Studies by Hodges (2013) have shown that this effect is minimal in Kapton-

HNTM.  In the positive charge region, (f), the positive charges are the atomic or molecular centers left 

behind by liberated electrons and are, therefore, assumed immobile.  The bulk charge distribution in region 

(g) is trapped in energetically deep states and, therefore, will only interact via conduction mechanisms 

whose mobility is on the order of the same transport processes moving charge toward the collecting 

electrode. Therefore, the spread of charge within the material in the radial direction is assumed to be 

negligible.  The dynamics of this process again requires a significant theoretical development, and will 

therefore be left as future work.  However, Baum et al. (1978) have approached this subject and presented a 

detailed analysis for the diffusion of surface charge.     

The region in Fig 5.1 comprised by (e), (f), and (g) is very complex; however the net result of 

these processes can be characterized as a charge injection mechanism (Hodges, 2013).  In Chapter 4 we 

brought together the theory of Wilcox (1971), Walden (1971), and Wintle (1974b), which develops a 

simple power law for the current density injected into the material as a function of time that characterized 

the complex processes operating at the material interface. This theory has been extended to include charge 

injection by particle beams in the formalism of Walden’s injection mechanisms in (Hodges, 2013).  

Consider Fig. 5.1 once again.  If we assume that the regions (e) and (f) comprise an effective electrode 

equivalent to a contacting front electrode, and that region (g) is just the injected trapped charge, then the 

SEE problem becomes a simple parallel plate capacitor with a rather complex injection mechanism.  We 

need only know how many electrons are injected into the material, the injected current density.  In fact, we 

have already developed the charge injection model, dependence of the trapped charge distribution, and a 

theoretical estimate for the observed current at the rear electrode in Chapter 4.  In this chapter, the goal is 

the development of surface potential equations and not the current density collected at the rear electrode, 

though we will present it as modified for the SEE-SVP system.  

Let us review the assumptions that were made in the last section: (1) there is little or no lateral 

displacement of the charge beyond the beam spot size; (2) the complex regions in Fig. 5.1 (e), (f), and (g) 
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can be modeled as a contacting electrode making the system act as a parallel plate capacitor; (3) the sheet 

of charge at R has a radial extent of ~ 10−2m to ~ 10−4m—given by the beam size—which is on the order 

of or larger than the sample depth ~ 10−6 m. This allows one to approximate the deposited charge 

distribution as a plane of charge and the transport as a 1D problem.   This approximation is useful in 

spacecraft charging as the distribution of incident PE in a space environment will be largely uniform over 

the sample, creating similar sheets of charge.  Further assume that (4) the incident PE does not penetrate 

more than half way through the sample; RIC is likely to become a strong component and could cause 

charge to move upward toward the surface in a nonuniform way.  This last condition should be tested 

against the models to establish limits on the use of the SVP model, as there is no literature or data known to 

the author that addresses these ideas. Assume that (5) the beam energy must be greater than the second 

crossover energy, above which there is no longer a significant spatial distribution of deposited charge.  

Finally, assume that (6) measurements do not exceed the transit time of charge across the sample to the rear 

electrode; this final condition was not mentioned above.  If the electron beam is on for a very long time, a 

new conduction path may occur when the electron distribution completes transport across the sample and 

connects with the rear collecting electrode (ground plane in Fig. 5.1). 

Having outlined the assumptions and physical picture, we now turn to the application of the 

necessary transport equations and the derivation of our charging and discharging models.  For the charging 

models, the basic concept was taken from a set of models created for impact ionization studies and electron 

beam charging of electrets (Gross, 1964; Livingstone, 1973; DiMaria, 1975; Wintle, 1983, 1991, 1999, 

2003; Nissan-Cohen, 1986; Sessler, 1987; Avini, 1987; Yang and Sessler, 1992; Song et al., 1997; Liufu et 

al., 1998; Sessler and Yang, 1999; Sessler et al., 2004; Kao, 2004; Touzin, 2006; Cornet et al., 2008; 

Wang, 2009; Fitting, 2010).  For the decay models (which are far more prevalent), we have used the ideas 

in Toomer and Lewis (1980), Sessler (1987), Aragoneses et al. (2008), Watanabe et al. (1987), Chen 

(2010), Perrin (2005), Dissado and Fothergill (1992), Griseri et al. (2006), and Berlepsch (1985b). 

5.3. Charging Models 

The final result of Section 5.2 was that we can treat the SEE-SVP system as essentially a parallel 

plate capacitor.  The theoretical framework to understand charge transport in HDIM when charge is 
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injected was developed in Chapter 4.  As we show, little modification to the results of Chapter 4 is needed 

to predict the charging of an HDIM under electron beam irradiation.  In Section 4.3, the transport equations 

are used to develop a simple model for the charging of an insulator due to injected electrons.  Sections 4.3-

4.6 present information essential before continuing with this chapter.  Specifically, the key result of Section 

4.3 is the charging equation, 

𝑑𝑛𝑡(𝑡)
𝑑𝑡

= 𝑠𝑐𝐽𝑠(𝑡)
𝑞𝑒

[𝑁𝑡 − 𝑛𝑡(𝑡)].  (5.3.1)  

Equation (5.3.1) is a differential equation that predicts the change in the trapped charge 

distribution, 𝑛𝑡(𝑡), as a function of time and total DOS, 𝑁𝑡, and a surface injection current density,  𝐽𝑠(𝑡).  

This equation has been used by many authors to investigate a wide array of charging and ESD phenomena. 

A few key authors are listed for the interested reader: electron emission (Sessler, 1987; Touzin, 2006; 

Cornet et al., 2008; Fitting, 2010), capacitive methods (Kao, 2004), capacitive methods and ESD (Liufu, 

1998), charging by radiation (Fowler, 1956), impact ionization and transport (Avini, 1987), capture and 

emission (DiMaria, 1975), ESD and charge trapping (Nissan-Cohen, 1986), trapping and detrapping 

dynamics (Nissan-Cohen, 1986), and photoconduction (Orenstein and Kastner, 1981).  In this chapter, we 

apply Eq. (5.3.1) to obtain an expression for the current density at the rear electrode and surface potential 

due to irradiation.  The solution of Eq. (5.3.1) is computed in Chapter 4; originally Eq. (4.3.15) 

𝑛𝑡(𝑡) = 𝑁𝑡𝑒𝑥𝑝 �
−𝑠𝑐 ∫ 𝐽𝑠(�́�)𝑑�́�𝑡

0
𝑞𝑒

� ∫ 𝑒𝑥𝑝 �
−𝑠𝑐 ∫ 𝐽𝑠(𝑡)𝑑𝑡�́�

0
𝑞𝑒

� 𝑠𝑐
𝑞𝑒
𝐽𝑠(�́�)𝑑�́�𝑡

0 .  (5.3.2) 

Equation (5.3.2) describes the number of trapped electrons as a function of time.  In order to solve 

this equation, one needs an expression for the injection current density,  𝐽𝑠(𝑧, 𝑡).  The injection current 

density for the SVP system is not the same as for the CVC system of Chapter 4.  This is suggested first by 

the depth dependence, z, which is not required in the CVC model, and results here from the fact that 

electrons penetrate into the sample with a range, R, which decreases as the trapped charge distribution 

grows. A comprehensive discussion of the dependence of 𝐽𝑠(𝑧) on the incident carrier penetration depth, R, 

is given in Touzin (2006).  This spatial dependence is ignored here in order to arrive at a simple analytical 

expression for the injection current as a function of time.  An investigation to connect the work of Walden 

(1971) (see Section 4.4) and Touzin (2006) is left as future work (see Hodges, 2013).  
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The derivation of Eq. (5.3.3), presented in Section 4.4, is the same, although the interpretation of 

the variables changes.  The discussion of Section 4.4 developed a current density injection function, Eq. 

(4.4.10): 

𝐽𝑠(𝑡) = 𝐽0 �1 + 𝑡
𝜏𝑜𝑛𝑠𝑒𝑡

�
−𝑚

+ 𝐽𝑠𝑎𝑡 . (5.3.3) 

The variable,  𝐽0, is defined there as the initial current density provided by the battery to the HDIM under 

test, m was a positive power, 𝜏𝑜𝑛𝑠𝑒𝑡  was the characteristic time for onset of the reduced injection current 

density, and 𝐽𝑠𝑎𝑡 was a saturation current density. The meaning of  𝐽0 (in the SVP system) is not the same as 

it was in the CVC system.  The initial current density must be scaled by the electron yield, since some of 

the PEs are emitted from the sample surface as SEs or BSEs. Therefore, as a first order approximation, we 

let  𝐽0 →  𝐽𝑏 �1 − 𝜎𝑦𝑒𝑖𝑙𝑑�, where 𝐽𝑏 is the current density of the incident electron beam.  The saturation 

current has a similar meaning in this context.  In Chapter 4,  𝐽𝑠𝑎𝑡 was that conduction current density that 

existed after the trap filling process completed; or, stated another way, the part of the current created by 

electrons that made their way into the conduction band.  The displacement current—due to the changing 

trapped charge generated electric field—will decrease with time, asymptotically approaching the saturation 

current.  The SVP system can take data on both the conduction current during irradiation and the surface 

potential.  Thus, this displacement current should be easy to characterize in the SEE-SVP system, unlike in 

the CVC system where control over the number of injection electrons does not exist.  Making the 

correction to the injection current density function, Eq. (5.3.3) becomes 

𝐽𝑠(𝑡) = 𝐽𝑏 �𝜎𝑦𝑒𝑖𝑙𝑑 − 1� �1 + 𝑡
𝜏
�
−𝑚

+ 𝐽𝑠𝑎𝑡 . (5.3.4) 

A similar result to Eq. (5.3.4) has been found for coronal electrons charging of HDIM; using a 

very different formalism and Laplace transform methods; Ferreira and de Almeida (1997) has shown for an 

exponential DOS with dispersion parameter, 𝛼(𝑇) = 𝑇0
𝑒

𝑇
, the total injected current density for long times 

should be given by 𝐽𝑠(𝑡) =  𝐶𝑉0
(𝛼(𝑇)−1)!

𝑡𝛼(𝑇)−1.  This equation bears a strong resemblance to Eq. (5.3.4).  In 

fact, it suggests that there is a connection between the power, m, in Eq. (5.3.4) and the dispersion 

parameter, 𝛼(𝑇).  This connection has also been partially investigated by Wintle (1974b) and Hodges 

(2013), though their results are difficult to apply in this case.  If a physically sound connection between m 
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and the DOS can be established, it will provide an excellent means by which to characterize a samples DOS 

type.  An investigation of the connection between these two exponents is left as future work.  Ferreira and 

de Almeida (1997) notes that for the full expression with dispersive character, there can be an increase in 

the current density when 𝛼 > 1/2 .  The effects of dispersion in the charging processes should be negligible 

as long as the dispersion is not too strong.  HytrelTM might be an exception (Hart et al., 2007).  In this work, 

the description of charging current density and surface potential, studied by the USU MPG, involves only a 

nondispersive model.  For a more detailed expression and inclusion of the dispersive regime (equivalent to 

including the energy dependence of the DOS) see Ferreira and de Almeida (1997), Sessler and Yang 

(1999), Gross (1974), Monroe (1983), Wintle (1999) and Montanari and Morshuis (2005). 

The first step in creating a complete description of the charge build up that includes dispersive 

behavior is to extend Eq. (5.3.4) to include energy dependence.  This is easily done using the transport 

equations Eqs. (4.3.6) and (4.3.7), as presented in Chapter 4 to obtain 

𝑑𝑛𝑡(𝑡)
𝑑𝑡

= 𝑠𝑐𝐽𝑠(𝑡)
𝑞𝑒

[𝑁𝑡 − 𝑛𝑡(𝑡)] −  𝜈𝑡𝑒 ∫ 𝑒𝑥𝑝 �−
𝜀

𝑘𝑏𝑇
� 𝑛𝑡(𝜀, 𝑡)𝑑𝜀.    (5.3.5) 

In Eq. (5.3.5), 𝑁𝑡 =  ∫𝑁𝑡(𝜀)𝑑𝜀 is the total DOS and  𝜈𝑡𝑒  is a attempt-to-escape factor.  The last term on the 

RHS determines the release rate of trapped electrons at a specific energy integrated over the width of the 

DOS distribution.  Inclusion of this term is equivalent to having a spread in the release times of the trapped 

electrons (i.e., there is a dispersion in the release times and, therefore, the electron transport). When 

dispersive transport is significant the inclusion of the last term is necessary.  In general, dispersive transport 

occurs on timescales much longer than are required to charge up the sample. We, therefore, omit Eq. (5.3.5) 

from this discussion.   

5.3.1. Charge Trapping 

We begin with Eq. (5.3.2)—which gives the number of trapped electrons as a function of time—

and the charge injection function,  𝐽𝑠(𝑡).  Equation (5.3.2) was left in a general form in Section 4.3, so that 

we could develop an expression for the charge injection function; it is presented again here for reference:   

𝑛𝑡(𝑡) = 𝑁𝑡𝑒𝑥𝑝 �
−𝑠𝑐 ∫ 𝐽𝑠(�́�)𝑑�́�𝑡

0
𝑞𝑒

� ∫ 𝑒𝑥𝑝 �
−𝑠𝑐 ∫ 𝐽𝑠(𝑡)𝑑𝑡�́�

0
𝑞𝑒

� 𝑠𝑐
𝑞𝑒
𝐽𝑠(�́�)𝑑�́�𝑡

0 .  
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Inserting Eq. (5.3.4) into Eq. (5.3.2) and completing the integration, an expression for the time-

dependent density of trapped electrons is found to be 

𝑛𝑡(𝑡) = 𝑁𝑡 �1 − 𝑒𝑥𝑝 �
𝑠𝑐𝐽𝑏 �1−𝜎𝑦𝑖𝑒𝑙𝑑�𝜏𝑜𝑛𝑠𝑒𝑡

𝑞𝑒(1−𝑚)
�1 − �1 + 𝑡

𝜏𝑜𝑛𝑠𝑒𝑡
�
1−𝑚

���.  (5.3.6) 

Equation (5.3.6) has the expected behavior for the density of trapped electrons as a function of time.  At t = 

0, Eq. (5.3.6) is zero and as 𝑡 → ∞ it gives 𝑁𝑡.  (Recall that 𝜎𝑦𝑒𝑖𝑙𝑑 is less than 1 for the energies considered 

and that the power, m, is constrained to be between zero and one.)   A simple time-dependent exponential is 

obtained when m = 0, consistent with case where the trap filling and release are on the same order (Wintle, 

1974b); thus the equilibrium injection rate is reached in a time, 𝜏𝑜𝑛𝑠𝑒𝑡(𝑚 = 0) = �𝑠𝑐𝐽𝑏 �1 − 𝜎𝑦𝑒𝑖𝑙𝑑�/𝑞𝑒�
−1

.  

Another possible explanation could be to consider the physics of the injection mechanism itself.  For 𝑚 =

 0, there is essentially no injection time dependence and carriers go directly to trap states so that the DOS 

fills very quickly.  For the case where  𝑚 ~ 1, the time to charge up to equilibrium is nearly infinite; this is 

consistent with a long thermalization time of the injected carrier distribution, common in most HDIM (see 

Chapter 3).   Applying the alternate explanation to the 𝑚 = 1 case, the injection function is found to be 

dominant and carriers do not fill trapped states quickly. If we assume that the slow injection is caused by 

the DOS, then it would seem that only shallow trap states fill in the early time of thermalization, suggesting 

that the demarcation energy takes a very long time to descend into the DOS, indeed.  These conjectures are 

left as future work.  Once the trapped charge distribution—given by Eq. (5.3.6)—is known, a number of 

calculations can be done; these include time-dependent surface potential, time-dependent electric field in 

all parts of the sample, and conduction electron density.     

Given Eq. (5.3.6) and the transport equations from Section 4.3, a simple model that describes the 

bulk transport of the injected electron distribution can be developed. Consider the simplified equation for 

the sum of the current densities (refer to Eq. (4.6.3) and the development that followed) 

𝐽𝑡𝑜𝑡(𝑡) = 𝐽𝑑(𝑡) + 𝐽𝑝(𝑡) + 𝐽𝑐(𝑡). (5.3.7) 

Here the total current is the sum of the displacement, polarization, and conduction currents (or just 

drift current).  As before, we do not consider polarization or diffusion as: (i) there is no strong polarizing 

electric field, and (ii) injected charges are strongly trapped, therefore, diffusion is negligible.  The 

conduction current density is negligible—when compared to the effects of the change trapped charge 
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distribution—until equilibrium is established. Once the trapped states reach an equilibrium value and the 

current becomes nearly constant, one is observing only the conduction current density; this is equivalent to 

saying that the DOS is saturated and is, therefore, called the saturation current density, Jsat.   

The majority of the time dependence in the observed current is due to the buildup of the trapped 

charge distribution.  The change in the trapped charge distribution is directly related to the change in the 

electric field due to the trapped charge distribution,  𝜕𝐹𝑡(𝑡)
𝜕𝑡

 , and is a displacement current.  Using Eq. (4.3.5) 

and eliminating the polarization and conduction current density components, the displacement current is 

given by 

𝐽𝑑(𝑡) = −𝜖0𝜖𝑟
𝜕𝐹𝑡(𝑡)
𝜕𝑡

. (5.3.8) 

Using Eq. (4.4.3), with the appropriate range equation and Eq. (5.3.8), an expression for the displacement 

current can be found: 

𝐽𝑑(𝑡) = −𝑞𝑒
𝜕𝑛𝑡(𝑡)
𝜕𝑡

�𝑑 − 𝑅(𝜀𝑏)�. (5.3.9) 

Using Eq. (5.3.6) an expression for the change in the trapped charge distribution can be found: 

𝜕𝑛𝑡(𝑡)
𝜕𝑡

=
𝑠𝑐𝐽𝑏 �1−𝜎𝑦𝑖𝑒𝑙𝑑�𝑁𝑡

𝑞𝑒
(1 + 𝑡/𝜏𝑜𝑛𝑠𝑒𝑡)−𝑚𝑒𝑥𝑝 �

𝑠𝑐𝐽𝑏 �1−𝜎𝑦𝑖𝑒𝑙𝑑�𝜏𝑜𝑛𝑠𝑒𝑡
𝑞𝑒(1−𝑚)

�1 − �1 + 𝑡
𝜏𝑜𝑛𝑠𝑒𝑡

�
1−𝑚

�� (5.3.10) 

Equation (5.3.10) has the correct dimensions of carriers per unit area per unit time.  Equation (5.3.10) and 

Eq. (5.3.9) give an expression for the displacement current due to the trapped charge distribution: 

𝐽𝑑(𝑡) = 𝐽𝑏 �1 − 𝜎𝑦𝑖𝑒𝑙𝑑�𝑁𝑡𝑠𝑐[𝑑 − 𝑅(𝜀𝑏)] �1 + 𝑡
𝜏𝑜𝑛𝑠𝑒𝑡

�
−𝑚

𝑒𝑥𝑝 �
𝑠𝑐𝐽𝑏 �1−𝜎𝑦𝑖𝑒𝑙𝑑�𝜏𝑜𝑛𝑠𝑒𝑡

𝑞𝑒(1−𝑚)
�1 − �1 + 𝑡

𝜏𝑜𝑛𝑠𝑒𝑡
�
1−𝑚

��. 

 (5.3.11) 

Here the product of the total DOS, capture cross section and length, 𝑁𝑡𝑠𝑐�𝑑 − 𝑅(𝜀𝑏)�, is unitless, so that 

the dimensions of Eq. (5.3.11) are just current density, or charge per unit area. Equation (5.3.11) describes 

only the displacement current due to the changing trapped charge distribution. Using Eq. (5.3.7) for the 

sum of current densities and adding the saturation current density,  𝐽𝑠𝑎𝑡, we arrive at the USU MPG 

charging model: 

𝐽𝑡𝑜𝑡(𝑡) = 𝐽𝑏 �1 − 𝜎𝑦𝑒𝑖𝑙𝑑�𝑠𝑐𝑁𝑡𝑑 �1 −
𝑅(𝜀𝑏)
𝑑

� �1 +
𝑡

𝜏𝑜𝑛𝑠𝑒𝑡
�
−𝑚

 

                             × 𝑒𝑥𝑝 �
𝑠𝑐𝐽𝑏 �1−𝜎𝑦𝑖𝑒𝑙𝑑�𝜏𝑜𝑛𝑠𝑒𝑡

𝑞𝑒(1−𝑚)
�1 − �1 + 𝑡

𝜏𝑜𝑛𝑠𝑒𝑡
�
1−𝑚

�� + 𝐽𝑠𝑎𝑡      
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                                         {USU MPG SVP Current Density Charging Model}.                          (5.3.12) 

This model is not applied to data in this dissertation and its application must wait for future work.  In the 

next section, the SVP surface potential equation is developed, which can be used in conjunction with Eq. 

(5.3.12) to study the nature of charge transport in HDIM responding to nonpenetrating electron beam 

radiation.   

5.3.2. Surface Potential 

We now want to make contact with the measured surface potential as a function of time that 

results from the charging process.  Starting with (i) Poisson’s equation, Eq. (4.3.2), for the trapped charge 

density,  𝑞𝑒𝑛𝑡, and (ii) the assumption that the electric field due to the trapped charge distribution 

dominates the electric field at the surface of the HDIM, we find that 

𝜖0𝜖𝑟
𝑑𝐹𝑡(𝑧,𝑡)
𝑑𝑧

= 𝑞𝑒𝑛𝑡(𝑧, 𝑡).  (5.3.13) 

Since the movement of the charge distribution across the sample is much slower than the change 

in electric field due to the trapped charge distribution (Weaver et al., 1977; Liufu, 1998; Griseri et al., 

2006; Dissado et al., 2006), one can separate the spatial and time-dependent parts of Eq. (5.2.13) to obtain 

𝜖0𝜖𝑟
𝑑𝐹𝑡(𝑧,𝑡)
𝑑𝑧

= 𝑞𝑒𝑛𝑡(𝑧)𝑛𝑡(𝑡).  (5.3.14) 

Consider over what spatial range we should integrate this equation over to obtain the time-

dependent field.  The distribution of trapped carriers exists only in the region 𝑅(𝜀𝑏) < 𝑧 < 𝑑, between the 

upper surface and the penetration depth (where 𝑧 =  0 at the surface and  𝑧 =  𝑑 at the collecting 

electrode).  A very simple assumption is made here that the distribution of trapped carriers is uniform over 

this region.  (This assumption is not consistent with Fig. 5.1, as it displays a much more realistic charge 

distribution.)  This is not an accurate model and should be extended to represent the true spatial extent and 

character.  An excellent starting point can be found in Touzin (2006), Sessler (1987), and Cazaux (2004).  

There are no trapped electrons in the region   𝑅(𝜀𝑏) < 𝑧 < 𝑑 (e.g., there are no trapped charges in the 

region from 𝑧 =  𝑅(𝜀𝑏) to 𝑧 =  𝑑).  To simplify the integration, we assume a step function so that  𝑛𝑡(𝑧) =

Θ[z − R(εb)]Θ(z − 𝑑), which constrains the charge to the region of interest.  Then 

𝐹𝑡(𝑡) =  𝑞𝑒𝑛𝑡(𝑡)
𝜖0𝜖𝑟

∫ 𝑛𝑡(𝑧)𝑑𝑧𝑅(𝜀𝑏)
0  ,  (5.3.15) 
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which upon integration gives 

𝐹𝑡(𝑡) =  𝑞𝑒𝑛𝑡(𝑡)
𝜖0𝜖𝑟

𝑅(𝜀𝑏).  (5.3.16) 

Equation (5.2.18) describes the electric field created by the deposited charge distribution. The field 

extends in the positive and negative 𝑧 direction away from the trapped charge distribution in both 

directions.  We now directly employ our assumption that the deposited charge distribution can be treated as 

a plane of charge with uniform spatial extent in the 𝑥 and 𝑦 directions, and positioned at 𝑧 = 𝑅(𝜀𝑏).  Recall 

in Section 5.2 we discussed the assumptions, the key one being that we can treat the SVP system as a 

parallel plate capacitor in the region 𝑅(𝜀𝑏) < 𝑧 < 𝑑.  The physical picture for the SVP is exactly the same 

as that for the CVC system given by Fig 4.1.  Parallel plate capacitors act largely as if they have uniform 

electric fields between their plates, assuming that the geometry does not change. To estimate the surface 

potential, however, we must make one very poor assumption; that the field between the plates is the same 

as that at the surface.  This is not realistic, but has been applied by many authors see (Cazaux, 1999; 

Hodges, 2013).  We seek a simple analytical model for the surface potential at 𝑧 =  0. Then estimating the 

potential between the collecting electrode and our charge distribution follows from Eq. (5.3.16) and 

[𝑑 − 𝑅(𝜀𝑏)]𝐹𝑡(𝑡) =  𝑉(𝑡) to obtain 

𝑉𝑠(𝑡) =  𝑞𝑒𝑛𝑡(𝑡)
𝜖0𝜖𝑟

[𝑑 − 𝑅(𝜀𝑏)]𝑅(𝜀𝑏) =  𝑞𝑒𝑛𝑡(𝑡)𝑅(𝜀𝑏)𝑑
𝜖0𝜖𝑟

[1 − 𝑅(𝜀𝑏)/𝑑] .  (5.3.17) 

The accuracy of our calculation can be improved successively by selecting more realistic 

descriptions of the spatial extent of our charge distribution (i.e., (i) a delta function, which places the planar 

charge distribution at 𝑧 =  𝑅(𝜀𝑏), and (ii) a Gaussian distribution, which allows the charge to have some 

spatial extent in the 𝑧 direction). The extension of Eq. (5.3.17) to more realistic charge distributions is left 

as future work.  Equation (5.2.17) connects the number of trapped carriers and the energy-dependent range 

of electrons to the surface potential at the surface of the sample. For very early times, nearly all of the 

electrons will be absorbed into trapped states and 𝑛𝑡(𝑡) ≈ 𝑛𝑖𝑛𝑗(𝑡), so that we may estimate the surface 

potential for short timescales. Recall the definition of current density,  𝐽 = 𝑄/(𝐴 × 𝑡). Then by 

setting 𝑞𝑒𝑛𝑡(𝑡)𝑑 ≈
𝑞𝑒𝑛𝑒(𝑡)𝑡𝑅(𝜀𝑏)

𝑡
 ≈  𝐽0𝑡, using this estimation with Eq. (5.3.17) suggests that the surface 

potential is 𝑉𝑠(𝑡) =  𝐽0𝑡
𝜖0𝜖𝑟

𝑑 �(1 − 𝑅(𝜀𝑏)
𝑑

)� for very short times. One might ask what is meant by short 



190 
timescales?  This equation is valid as long as the time-dependence of the potential is linear; even for a 

nonlinear system, there is some very short timescale where the potential will be approximately linear. We 

also know that the surface potential asymptotically approaches a constant value, given by Eq. (5.3.17). 

However, we still need a general nonlinear description of the surface potential to understand to what final 

value the material with charge and the shape of the surface potential curve for intermediate times. 

Using Eq. (5.3.6), an extended expression for the surface potential can be written, which takes into 

account a changing charge injection function and the nonlinear nature of the charging process 

𝑉𝑠(𝑡) = 𝑞𝑒𝑁𝑡𝑅(𝜀𝑏)
𝜖0𝜖𝑟

𝑑 �(1 − 𝑅(𝜀𝑏)
𝑑

)� �1 − 𝑒𝑥𝑝 �
𝑠𝑐𝐽𝑏�1−𝜎𝑦𝑖𝑒𝑙𝑑�𝜏𝑜𝑛𝑠𝑒𝑡

𝑞𝑒(1−𝑚)
�1 − �1 + 𝑡

𝜏𝑜𝑛𝑠𝑒𝑡
�
1−𝑚

���. (5.3.18) 

We have included the dependence of both the range, 𝑅(𝜀𝑏), and the total yield, 𝜎𝑦𝑖𝑒𝑙𝑑(𝜀𝑏), on the incident 

beam energy in Eq. (5.3.18) for completeness. This model can be extended to an incident energy and 

spatially-dependent model using the range function developed by Wilson and Dennison (Touzin, 2006; 

Cornet et al., 2008; Wilson and Dennison, 2010; Fitting, 2010).    

Equation (5.3.18) expresses the surface potential in terms of time, penetration range of the incident 

PEs, a DOS, SEE yield, the indecent beam energy, and beam current density.  A very useful set of 

connections can be made through the work of Hoffmann (2010) and Thomson (2004) that primarily 

focused on electron emission and material charging.  In particular, the total yield is approximated in 

Thompson as  

𝜎𝑦𝑖𝑒𝑙𝑑(𝑡) = 1 + (𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 1) exp(−𝐶𝐽b𝑡). (5.3.19) 

The variable, 𝐽𝑏, is the beam current density, 𝐶 is a constant, and 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the uncharged yield. Both 

Hoffmann and Thompson give expressions for the surface potential; Hoffmann greatly extends this 

discussion.  The surface potential is given as  

V𝑠(t) =
Q𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑�1−𝜎𝑦𝑖𝑒𝑙𝑑(𝑡)�𝑑

𝐴𝑏𝑒𝑎𝑚𝜖0𝜖𝑟
. (5.3.20) 

Here,  Q𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑  is the accumulated charge incident on the sample, and 𝐴𝑏𝑒𝑎𝑚 is the area of the incident 

electron beam on the sample. Using Eqs. (5.3.19) and (5.3.20), a time-dependent expression for the surface 

potential can be obtained: 

V𝑠(t) = Q𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑑(1−𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙)exp(−𝐶𝐽b𝑡)
𝐴𝑏𝑒𝑎𝑚𝜖0𝜖𝑟

. (5.3.21) 
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Equation (5.3.21) bears a strong resemblance to Eq. (5.3.18), but they come from very different 

theoretical perspectives.  In addition, Eq. (5.3.21) is an approximation; it would seem clear that future work 

should investigate this connection.  It is the belief of this author that once this connection is made clear, a 

great deal about the true nature of surface charging in HDIM under electron irradiation will be understood. 

In particular, a great deal was washed under the rug in Section 5.2 to present the concept that the SVP 

system acts largely like a simple parallel plate capacitor; while these are reasonable assumptions, the SEE 

theory presented in Thomson et al. (2004), Hoffmann (2010), and Hodges (2013) gives a great deal of 

theoretical detail regarding the physics of electron interactions in the region between the surface and the 

deposited charge distribution.  In addition to these ideas, recent work has produced numerical models with 

what seems to be excellent predictive power using both the charge trapping equations presented in this 

work and the ideas of SEE; the interested reader should see Cornet et al. (2008), Fitting (2010), and Sessler 

(1987).   

Despite the rather large number of approximations and exclusion of processes in the development 

of Eq. (5.3.18), it does rather well in determining the surface potential due to irradiation by an electron 

beam. It will be shown in the analysis section below this model provides values for physical parameters 

that are in reasonable agreement with the literature and previous applications.   

5.4. Decay Model 

In the first part of this chapter, the charging of an HDIM due to incident electrons is presented and 

models for the current density at the rear collecting electrode, along with the surface potential, are 

developed. In this section, the model for the decay of the deposited charge after the cessation of the 

electron beam is presented.  Consider again Fig. 5.1 and how it will change when the electron beam is shut 

off.  First, all the electron transport behavior in regions (e), (f), and (j) will cease and some of the charge 

imbalance will dissipate.  The electron emission and RIC processes stop quickly—for modest beam 

energies and penetration depth—and largely the region above the deposited charge distribution will quickly 

come to equilibrium on a timescale much shorter than that required to dissipate the deposited charge. The 

measured current density at the rear collecting electrode and surface potential are then a direct result of 

changes in the trapped electron distribution, whether by release of electrons into the CB and subsequent re-
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capturer forming a conduction current or by movement of the charge distribution toward the rear collecting 

electrode via the same detrapping and re-trapping processes.  In order to estimate the material parameters 

and general form of the decay of deposited charge, we present a model originally developed by Toomer and 

Lewis (1980) and then extended by Aragoneses et al. (2008) using the work of Ferreira and de Almeida 

(1997) to include the effects of dispersive transport. The model of Aragoneses is extended in this 

dissertation, with an explicit derivation of all the physical parameters originally presented in Aragoneses et 

al. (2008) to which we add a physically motivated dispersion term. This surface potential decay model—

from this point on called the SVP decay model—is based on simple injection into the conduction band 

states, bulk transport properties, and is governed by a simplified set of transport equations. The basic form 

and solution of the equations can be found in Orenstein et al. (1982), Berlepsch (1985b), Molinie (2005), 

Toomer and Lewis (1980), and Aragoneses et al.(2008). 

The initial injection profile is a complicated trap controlled process, which has been modeled in 

the charging section of this chapter.  We assume an initial surface voltage and develop the time-dependent 

surface potential decay based on the ideas of electron trapping, detrapping, and their effects on electron 

mobility. In the experiments conducted at USU, there is no externally applied electric field, and therefore, 

the transport of electrons to the collecting electrode for the trapped charge distribution is governed by the 

self-field between the collecting electrode and the deposited charge distribution. We leave the application 

of an externally applied field to future work.  

The SVP decay model is derived for a single discrete energy level of bulk electron traps resulting 

from the disordered DOS [effectively a delta function (see Table 2.1)]. In order for the SVP decay model to 

be valid, the temperature cannot vary, so that the energy level of active traps responsible for the observed 

decay remains nearly constant.  This last statement is equivalent to stating the trapped electron distribution 

will act as though there is a single energetic level in the DOS.  In the analysis on LDPE by Toomer and 

Lewis (1980), there is often more than one term in the sum of possible states contributing to the observed 

decay, thus correcting for changes in the active region of the DOS.  In our derivation, we will show why the 

Toomer equations worked and show that certain terms assumed to be simple constants in the Aragoneses 

treatment are, in fact, functions of temperature.   
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The derivation of the SVP decay model is more complex than that of the charging model, and we, 

therefore, give an outline of the derivation to guide the reader.  First, we use Poisson’s equation, the charge 

density, and continuity equation to get the rate of change in surface potential. Second, we introduce the trap 

controlled mobility that will allow the derivation of the final expression for the surface potential as a 

function of the time-dependent mobility; this completes the derivation of the Toomer and Lewis model. 

Third, we extend the form of the surface potential model due to Toomer to incorporate the dispersive 

mobility. This is done by solving the transport equations, showing equivalence to the solution of Toomer 

and finally correcting the theory with the new dispersive term.  A discussion of the action of single level 

versus distributed level DOS is given and an estimation of the material conductivity presented.   

5.4.1. Surface Potential Decay  

In this section, a derivation connecting the surface potential, maximum (initial) charging potential, 

 𝑉(𝑡 =  0) = 𝑉0, and the effective mobility is presented.  The result of this derivation is an equation for the 

rate of change in the surface potential due to a time-dependent change in the effective mobility.  The 

mobility is characterized as the ratio of carrier trapping time to the sum of the release and trapping time.  

That is, since the effective mobility is a trap-controlled process, we can understand the dynamics of the 

system by studying the effective mobility (sometimes called the trap-controlled mobility).   

We begin with Poisson’s equation (in a common form), the continuity equations, and derive a 

simple expression for the surface potential as a function of carrier mobility.  Consider Poisson’s equation, 

in one-dimensional geometry: 

𝑑2

𝑑𝑧2
𝑉𝑠(𝑧, 𝑡) =  −𝜌𝑡𝑜𝑡(𝑧,𝑡)

𝜖0𝜖𝑟
.  (5.4.1) 

As it turns out, this expression is more useful if it can be cast in the form of a time-varying surface 

potential. Taking the derivative of both sides with respect to time and integrating twice in the spatial 

coordinate, z, over the thickness of the sample, we have 

𝑑
𝑑𝑡
𝑉𝑠(𝑡) =  − 1

𝜖0𝜖𝑟
∫ ∫ 𝑑

𝑑𝑡
ρ𝑡𝑜𝑡(�́�, t)𝑑�́�𝑑𝑧𝑧

0
𝑑
0 .  (5.4.2) 
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Consider the continuity equation with the current density replaced by 

 𝐽𝑐(t) =  𝑞𝑒𝑛𝑒𝜇𝑡𝑟𝑎𝑝(𝑡)𝐹𝑡(𝑧, 𝑡), where the internal electric field must be 𝐹𝑡(𝑧, 𝑡) as there are no other 

sources.  Then, the continuity equation becomes   

d
dt
ρtot(z, t) =  −𝑞𝑒𝑛𝑒𝜇trap(𝑡) ∂𝐹𝑡(𝑧,𝑡)

∂z
.  (5.4.3) 

We have assumed that the mobility and density of charge carriers are not spatially-dependent. This 

assumption works because it is the mobility of the trapped charge distribution that determines the transport 

and has a spatial dependence that is very weak, when compared with the time dependence of the electric 

field. The position of the electric field does strongly influence the transport dynamics and cannot be 

ignored. In order to solve Eq. (5.4.3), we also need a definition for the trap controlled mobility: 

𝜇𝑡𝑟𝑎𝑝(𝑡) ≡ 𝜇0𝑛𝑒(𝑡)
𝑛𝑒(𝑡)+𝑛𝑡(𝑡)

 . (5.4.4) 

Further, the relationship of the charge density to the free and trapped electron distribution is 

𝜌𝑡𝑜𝑡(𝑥, 𝑡) = 𝑞𝑒�𝑛𝑒(𝑧, 𝑡) + 𝑛𝑡(𝑧, 𝑡)�. (5.4.5) 

By combining Eqs. (5.4.2) through (5.4.5), we obtain the following expression for the rate of change in the 

surface potential as a function of the trap-reduced mobility and electric field 

𝑑
𝑑𝑡
𝑉𝑠(𝑡) =  𝜇𝑡𝑟𝑎𝑝(𝑡)∫ 𝐹(𝑧, 𝑡) 𝑑𝐹𝑡(𝑧,𝑡)

𝑑𝑧
𝑑
0 𝑑𝑧.  (5.4.6) 

Applying integration by parts, one gets 

𝑑
𝑑𝑡
𝑉𝑠(𝑡) =  𝜇𝑡𝑟𝑎𝑝(𝑡)

2
�𝐹2(𝑑, 𝑡) − 𝐹2(0, 𝑡)�.  (5.4.7) 

Equation (5.4.7) describes the connection between the electric fields at the collecting electrode and 

the surface of the sample, the trap-controlled mobility, and the temporal change in the surface potential. 

The field at the collecting electrode is zero, as that is the termination point for the field lines extending 

from the trapped charge distribution to the collecting electrode.  To first order, the initial potential is 𝑉0 ≈

 𝐹(𝑑, 0)/𝑑; this assumes that the depth of the charge distribution from the surface of the material, 𝑅, is 

much less than the sample thickness,  𝑑. The electric field in Eq. (5.4.7) clearly has a time-dependent 

component.  The derivation of Eq. (5.4.7) is presented by many authors and in all of those papers the 

authors assume that the electric field time dependence can be ignored in favor of a constant electric field 

(Toomer and Lewis, 1980; Berlepsch, 1985b; Sessler, 1987; Molinie, 2005; Aragoneses et al., 2008). There 
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is no clear way this author can see that this assumption is true.  Ferreira and de Almeida (1997) state this 

assumption, and its basis, and develop a more complete solution for the surface potential, which differs 

only slightly from the solution we obtain. The solution of Ferreira is complex and requires a lengthy 

mathematical treatment; we therefore, use the simpler approach by the authors listed above, which retains 

all the important features of the model. Further, we use a secondary analysis to develop the dispersive 

transport term in our SVP decay mode, which was originally found by Ferreira and de Almeida (1997).  It 

is true that the change in the electric field, and therefore the potential, is controlled by the time-dependent 

trap-controlled mobility.  If one makes this assumption and further assumes that the product electric field 

times the mobility is controlled by the mobility, the following equation can be found using Eq. (5.4.7): 

𝑑
𝑑𝑡
𝑉𝑠(𝑡) =  −𝜇𝑡𝑟𝑎𝑝(𝑡)

2
𝑉0
𝑑2
2
.  (5.4.8) 

While this equation is clearly a first-order estimate, its interpretation is physically sensible and 

consistent with the work of Ferreira and de Almeida (1997).  We should expect that the change in surface 

potential is controlled by a time- and field-dependent trap-controlled mobility.  Toomer and Lewis (1980) 

take the surface DOS into account and the injection of charge adjusted by a ratio of surface to bulk states. 

This is done because in corona charging, many of the electrons will stay in surface states, which therefore 

has an impact on the decay.  We assume perfect injection, and therefore, remove this analysis.  For the 

beam energies involved—those greater than the second crossover energy—this should be a good 

assumption.  However, for much lower energies and penetration depths, the distribution of energy states 

may need to be considered.  In the analysis of LDPE data by Toomer and Lewis (1980), nearly perfect 

injection is assumed while using low-incident electron energies to charge the sample. We get reasonable 

agreement with their data (see analysis in this section), which offers limited support for this approximation.   

5.4.2. Pre-transit Model 

Equation (5.4.8) describes the rate of change in the surface potential as a function of time. Now a 

description of the trap-controlled mobility is needed to estimate the change in the surface potential.  

Consider the conductivity, which in turn is related to the time dependence of carriers in traps, and can be 

written as 

𝜎𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑞𝑒𝑛𝑒(𝑡)〈𝜇(𝑡)〉, (5.4.9) 
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where 〈𝜇(𝑡)〉 is an (time) averaged mobility (Orenstein et al., 1982).  The problem has now been reduced to 

solving for the time-dependent mobility 

𝜇𝑡𝑟𝑎𝑝(𝑡) = 𝜇0𝑛𝑒(𝑡)
𝑛𝑒(𝑡)+𝑛𝑡(𝑡)

. (5.4.10) 

The sum of the conduction carriers and the trapped carriers, 𝑛𝑒(𝑡) + 𝑛𝑡(𝑡), is the total charge in 

the system,  𝑁𝑖𝑛𝑗 .  As long as the charge body does not make contact with the grounded rear electrode, all 

the charge is basically still in the material, and using Eq. (5.4.10), we can write 

〈𝜇(𝑡)〉 = 𝜇(𝑡) = 𝜇0𝑛𝑒(𝑡)
𝑁𝑖𝑛𝑗

. (5.4.11) 

Here, Ninj is the initial injected current density at the time when the electron beam was  turned off.  Now the 

problem is reduced to simply finding the number of carriers in the conduction band when recombination is 

not present, meaning that we do not have to include any positive charge distribution with which the 

electrons could recombine. This problem was solved for discrete and exponential DOS distributions by 

Orenstein et al. (1982), using the transport equations presented Section 2.6.  In order to simplify the 

discussion, we need to write the transport equations in a slightly different form than was presented in 

Chapter 4.  In the SVP decay model, recombination is ignored and it is assumed that the DOS is a delta 

function. Applying these assumptions to Eqs. (2.6.3) and  (2.6.4), one gets 

𝑑𝑛𝑒(𝑡)
𝑑𝑡

= 𝑁𝑖𝑛𝑗 − 𝛼𝑒𝑡  𝑛𝑒(𝑡)[𝑁𝑡 − 𝑛𝑡(𝑡)] + 𝛼𝑡𝑒𝑁𝑒𝑛𝑡(𝑡),   (5.4.12) 

and 

𝑑𝑛𝑡(𝑡)
𝑑𝑡

=  𝛼𝑒𝑡  𝑛𝑒(𝑡)[𝑁𝑡 − 𝑛𝑡(𝑡)]  −  𝛼𝑡𝑒𝑁𝑒𝑛𝑡(𝑡) .  (5.4.13) 

Recall from Section 2.5 that the frequencies at which electrons are captured and released are, 

respectively, 𝑣𝑒𝑡 = 𝑠𝑐𝑣𝑇�𝑁𝑡 − 𝑛𝑡(𝑡)� =  𝛼𝑒𝑡�𝑁𝑡 − 𝑛𝑡(𝑡)� and 𝑣𝑡𝑒 = 𝑠𝑐𝑣𝑇𝑁𝑒 =  𝛼𝑡𝑒𝑁𝑒. Inserting these 

definitions in Eqs. (5.4.12) and (5.4.13), we have   

𝑑𝑛𝑡(𝑡)
𝑑𝑡

=  −𝜈𝑡𝑒𝑛𝑡(𝑡) + 𝜈𝑒𝑡𝑛𝑒(𝑡),  (5.4.14) 

and 

𝑑𝑛𝑐(𝑡)/𝑑𝑡 =  +𝜈𝑡𝑒𝑛𝑡(𝑡) − 𝜈𝑒𝑡𝑛𝑒(𝑡)+𝑁𝑖𝑛𝑗𝛿�𝑡𝑏𝑒𝑎𝑚 𝑜𝑓𝑓�.  (5.4.15) 

The last term in Eq. (5.4.15) adds the initial injected charge at the instant the beam is turned off and the 

decay experiment begins.  In order to solve this system of equations for the ratio of free electron density to 
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the total injected electron density and obtain an estimate of the trap controlled mobility, we employ the 

method of Laplace transforms to obtain 

𝑠𝑛�𝑡(𝑠) =  −𝜈𝑡𝑒𝑛�𝑡(𝑠) + 𝜈𝑒𝑡𝑛�𝑒(𝑠),  (5.4.16) 

and 

𝑠𝑛�𝑒(𝑠) =  +𝜈𝑡𝑒𝑛�𝑡(𝑠) − 𝜈𝑒𝑡𝑛�𝑒(𝑠) + 𝑁𝑖𝑛𝑗 .  (5.4.17) 

Here s is the Laplace integration variable.  Some algebra yields the following solution: 

𝑛�𝑒(𝑠)
𝑁𝑖𝑛𝑗

=  1

𝑠�1+ 𝜈𝑒𝑡
𝜈𝑡𝑒+𝜈𝑒𝑡

�
.  (5.4.18) 

The inverse Laplace transform of this equation is 

𝑛𝑒(𝑡)
𝑁𝑖𝑛𝑗

=  �𝜈𝑡𝑒+𝜈𝑒𝑡𝑒
−(𝜈𝑡𝑒+𝜈𝑒𝑡)𝑡�

𝜈𝑡𝑒+𝜈𝑒𝑡
.  (5.4.19) 

Substitution of Eq. (5.4.19) into the mobility expression Eq. (5.4.11) yields 

𝜇(𝑡) = 𝜇0
�𝜈𝑡𝑒+𝜈𝑒𝑡𝑒−(𝜈𝑡𝑒+𝜈𝑒𝑡)𝑡�

𝜈𝑡𝑒+𝜈𝑒𝑡
. (5.4.20) 

Equation (5.4.20) is the expression for the trap-controlled mobility obtained by Toomer and Lewis 

(1980), Berlepsch (1985b), and Aragoneses et al. (2008).  In the work done by Toomer and Berlepsch, the 

solution was obtained by direct integration; in the case of Aragoneses et al. (2008) and Molinie (2005), it 

was found by Laplace transform.  Having this expression now allows for the time integration of the rate of 

surface potential decay equation: 

𝑑
𝑑𝑡
𝑉𝑠(𝑡) =  −𝜇0

2
�𝜈𝑡𝑒+𝜈𝑒𝑡𝑒−(𝜈𝑡𝑒+𝜈𝑒𝑡)𝑡�

𝜈𝑡𝑒+𝜈𝑒𝑡

𝑉0
𝑑2
2
,  (5.4.21) 

which upon integration, yields 

𝑉𝑠(𝑡) =  𝑉0 −  𝜇0 �
𝑉0

2𝑑2(𝜈𝑡𝑒+𝜈𝑒𝑡)
�
2
�𝜈𝑡𝑒𝑡 + 𝜈𝑒𝑡

𝜈𝑡𝑒+𝜈𝑒𝑡
�1 − 𝑒−(𝜈𝑡𝑒+𝜈𝑒𝑡)𝑡��.  (5.4.22) 

This is the model of Toomer, as it is presented in Aragoneses.  Equation (5.4.22), however, only 

describes the drift component of the decay at a single trapping and detrapping level.  The contribution of 

Aragoneses was to extend this model to include an expression for dispersive transport, using a model 

developed by Ferreira and de Almeida (1997).  As it turns out, the analysis required to derive the dispersive 

term–for an exponential DOS–clarifies constants, which were not explained in the work of Aragoneses or 
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Ferreira.  Further, having done the complete derivation of the dispersive component, one can extend the 

analysis to include the other DOS models presented in Chapter 2, Table 2.1.   

In the previous analysis, it is assumed that the DOS acts at one level (a delta function DOS).  We 

now lift this constraint to derive the expression for a dispersive surface potential behavior.  The excitation 

rate when the beam is off is driven by thermal processes and local fields.  For the present, we analyze only 

the thermally driven process (i.e., the low field limit).  This means that the release frequency is now a 

temperature- and energy-dependent process.  We further assume that a MB distribution can be employed to 

estimate the excitation rate or trapped electrons to the CB; in this case, the rate of release is given by 

𝑣𝑡𝑒(𝜀) = 𝑣𝑡𝑒𝑒𝑥𝑝[−𝜀/𝑘𝑏𝑇].  (5.4.23) 

An expression for the ratio of free electrons to total charge was found in Eq. (5.4.18); the same 

analysis can be applied to obtain a similar multiple discrete or continuous expressions (see Toomer and 

Lewis (1980) or Orenstein et al. (1982) for details). Toomer and Lewis (1980) suggest that we can modify 

Eq. (5.4.18) to include the effects of many discrete levels in the following way: 

𝑛�𝑒(𝑠)
𝑁𝑖𝑛𝑗

=  1

𝑠�1+∑
𝜈𝑖𝑡𝐶𝑡𝑜𝑡

𝑖

𝜈𝑖𝑟+𝜈𝑖𝑡
𝑖 �

.  (5.4.24) 

In Eq. (5.4.24), the superscripts 𝑖 are for the 𝑖𝑡ℎ trap and the value of 𝐶𝑡𝑜𝑡𝑖  is a ratio of total trapped carriers 

to those trapped at a particular level,  𝑖. There are many applications where the use and analysis of multiple 

discreet DOS is very useful; see Monroe (1986) and Schmidlin (1977) for a detailed discussion of the 

transition from multiple discreet states to a continuous distribution.   

In HDIM, the amorphous nature of the material lends itself to a distributed set of traps or groups 

of distributed traps spread across the band gap.  In a dispersive system, the distribution of states is 

exponential or Gaussian.  Thus, we need a continuous energy-dependent description of the ratio,  𝑛�𝑐(𝑠)/

𝑁𝑖𝑛𝑗, which can be obtained directly from the transport equations, Eqs. (2.6.3) and (2.6.4), or by letting the 

sum in Eq. (5.4.24) become an integral and assuming the energetic forms for the release and trapping rates 

(Orenstein et al., 1982; Fritzsche, 1990) to obtain 

𝑛�𝑒(𝑠)
𝑁𝑖𝑛𝑗

=  �𝑠 �1 + ∫ 𝛼𝑒𝑡 𝑁(𝜀)𝑑𝜀
𝑠+𝑣𝑡𝑒𝑒𝑥𝑝[𝜀/𝑘𝑏𝑇]

∞
0 ��

−1
.  (5.4.25) 
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In principle, this equation can be solved for any type of DOS profile (constant, exponential, or 

Gaussian) to determine the necessary ratio.  This, however, is easier said than done and there are caveats to 

each type of solution.  First, the upper limit of infinity is only good in the Gaussian and exponential 

integrations.  For each of these DOS types, the falloff in DOS with energy is relatively fast in the gap.  

From the point of view of the DOS, integration of energies, even a small fraction of the gap energy away 

from their edges, is nearly equivalent to an infinite integration.  For a constant DOS, one can only integrate 

down to the Fermi level as there is no dispersion in energy and no change in the energy dependence.  We 

assume a normalized exponential expression for the DOS, and find the dispersive solution using 

𝑁(𝜀) = 𝑁𝑡
𝑘𝑏𝑇0

𝑒 𝑒𝑥𝑝[−𝜀/𝑘𝑏𝑇0𝑒],  (5.4.26) 

and 

𝑛�𝑒(𝑠)
𝑁𝑖𝑛𝑗

=  �𝑠 + 𝛼𝛼𝑒𝑡 𝑁𝑡 �
𝑠
𝑣0
�
𝛼
∫ 𝑢𝛼−1𝑑𝑢

1+𝑢

𝑣𝑡𝑒
𝑠

0 �
−1

. (5.4.27) 

The limits of integration follow from the 𝑢 substitution (Orenstein et al., 1982). The integration of the 

interior term results in the hypergeometric expression (Abramowitz, 1965), 

∫ 𝑢𝛼−1𝑑𝑢
1+𝑢

𝑣𝑡𝑒
𝑠

0 =  1
𝛼
�
𝑣𝑡𝑒
𝑠
𝑠
�
𝛼

𝐹2 1
 �1,𝛼,𝛼 + 1,−𝑣𝑡𝑒

𝑠
�.  (5.4.28) 

In Eq. (5.4.28), 𝐹2 1
  is the hypergeometric function and 𝛼(𝑇) ≡ 𝑇

𝑇0
𝑒, often referred to as the dispersion 

parameter (Rose, 1951; Schmidlin, 1977).   Inserting this result back into Eq. (5.4.27), we get 

𝑛�𝑒(𝑠)
𝑁𝑖𝑛𝑗

=  �𝑠 + 𝛼𝑒𝑡 𝑁𝑡 𝐹2 1
 �1,𝛼,𝛼 + 1,−𝑣𝑡𝑒

𝑠
��
−1

.  (5.4.29) 

This equation cannot be solved in a closed form over all possible s.  However, we can solve it in 

the limiting cases for very small and large s, which corresponds to long and short times.  For large s, the 

hypergeometric function is simply one and we obtain 

𝑛�𝑒(𝑠)
𝑁𝑖𝑛𝑗

=  (𝑠 + 𝛼𝑒𝑡 𝑁𝑡)−1. (5.4.30) 

Taking the inverse Laplace transform of Eq. (5.4.30) we get 

𝑛𝑒(𝑡)
𝑁𝑖𝑛𝑗

= 𝑒𝑥𝑝[−𝛼𝑒𝑡 𝑁𝑡𝑡],  (5.4.31) 

and replacing the 𝛼𝑒𝑡 𝑁𝑡  with the simple trapping rate, we have 
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𝑛𝑒(𝑡)
𝑁𝑖𝑛𝑗

= 𝑒𝑥𝑝[−𝑣𝑒𝑡𝑡].  (5.4.32) 

Now, compare this result, with the Eq. (5.4.20) obtained for a simple single level discrete system shown 

below for reference: 

𝑛𝑒(𝑡)
𝑁𝑖𝑛𝑗

=  �𝜈𝑡𝑒+𝜈𝑒𝑡𝑒
−(𝜈𝑡𝑒+𝜈𝑒𝑡)𝑡�

𝜈𝑡𝑒+𝜈𝑒𝑡
. (5.4.33)  

            The trapping rate, 𝜈𝑒𝑡, of electrons from the CB to a trap state is always greater than or equal to the 

release rate, 𝜈𝑡𝑒 .  In most cases the traps are deep—far from the CB—in the DOS, and the release rate is 

much smaller than the trapping rate; therefore, we can take the limit as the release rate goes to zero of Eq. 

(5.4.33) (i.e., 𝜈𝑡𝑒 ≪ 𝜈𝑒𝑡) and we recover Eq. (5.4.32).  This approximation is consistent with traps in an 

exponential DOS that are energetically high in the DOS—far from the dark Fermi level—and far from the 

CB.  Our solution for a distributed DOS is in agreement with that of a single level system when trapping is 

the dominant mechanism under these conditions.   

Now consider what happens when 𝑠 is very small, which corresponds to very long release times. 

We expect that this will yield behavior for a system that has a large dispersion in wait times.  In this case, 

the hypergeometric function of Eq. (5.4.29) is approximately equal to �𝑠𝑖𝑛[𝛼𝜋]
𝛼𝜋

�
−1

.  Performing the Laplace 

transform for the long time approximation of Eq. (5.4.29), one has 

𝑛�𝑐(𝑠)
𝑁𝑖𝑛𝑗

=  �𝑠 + 𝛼𝜋
𝑠𝑖𝑛[𝛼𝜋]

𝛼𝑒𝑡𝑁𝑡 �
𝜈𝑡𝑒
𝑠
�
𝛼
�
−1

. (5.4.34) 

This can only be done numerically; but with the approximation that 𝛼𝜋
𝑠𝑖𝑛[𝛼𝜋]

𝛼𝑒𝑡𝑁𝑡 ≫ 𝑠 we have 

𝑛�𝑒(𝑠)
𝑁𝑖𝑛𝑗

≅  � 𝛼𝜋
𝑠𝑖𝑛[𝛼𝜋]

𝛼𝑒𝑡𝑁𝑡 �
𝜈𝑡𝑒
𝑠
�
𝛼
�
−1

. (5.4.35) 

Application of the inverse Laplace transform to Eq. (5.4.35) gives us the long-term time-dependence of the 

decay 

𝑛𝑒(𝑡)
𝑁𝑖𝑛𝑗

≅  𝑠𝑖𝑛[𝛼𝜋]
𝛼𝜋

𝜈𝑡𝑒
𝑣𝑡𝑒
� 1
𝜈𝑡𝑒𝑡

�
1−𝛼

.  (5.4.36) 

Equation (5.4.36) is the ratio of free electron density to the total injected electron density. A useful 

change of variables allows one to write Eq. (5.4.36) as a function of the density of conduction and trapping 

states using  𝜈𝑡𝑒
𝑣𝑡𝑒

=  𝑁𝑒
𝑁𝑡

, where 𝑁𝑒  is the density of conduction states within 𝑘𝑏𝑇 of the CB.  This substitution 



201 
will allow for the estimation of the DOS ratio from data.  Dispersive transport is often seen at low 

temperatures where hopping transport is active; when we are dealing with hopping transport, Eq. (5.4.36) 

holds, but the conduction states are then at the transport energy and the charge body is spread out in much 

deeper states (see Chapter 3).  

In Section 5.4.2 we developed a relationship between the time rate of change in the surface 

potential and the trap-controlled mobility, which we repeat here for reference 

𝑑
𝑑𝑡
𝑉𝑠(𝑡) =  −𝜇𝑡𝑟𝑎𝑝

(𝑡)

2
𝑉0
𝑑2
2
.  (5.4.37) 

Using Eq. (5.4.37) an expression for the surface rate of change for just the dispersive component is 

𝑑
𝑑𝑡
𝑉𝑠(𝑡) =  −𝜇0𝑠𝑖𝑛[𝛼𝜋]

2𝛼𝜋
�𝜈𝑡𝑒
𝑣𝑒𝑡
� � 1

𝜈𝑡𝑒𝑡
�
1−𝛼 𝑉0

𝑑2
2
. (5.4.38) 

Equation (5.4.38) is then integrated to obtain 

𝑉𝑠(𝑡) =  − 𝜇0𝑉0𝑠𝑖𝑛[𝛼(𝑇)𝜋]
2𝑑2𝛼(𝑇)2𝜋

� 1
𝑣𝑒𝑡
� � 1

𝜈𝑡𝑒𝑡
�
−𝛼(𝑇) 𝑉0

𝑑2
2
. (5.4.39) 

Equation (5.4.39) predicts the surface potential as a function of time, intrinsic mobility,  𝜇0, the dispersion 

parameter,  𝛼, the trapping and release rates, 𝑣𝑒𝑡 and 𝑣𝑡𝑒, and the initial surface potential, 𝑉0.  Note, the 

temperature dependence of 𝑉𝑠(𝑡) is contained in the dispersion parameter, 𝛼(𝑇). 

We now make a simple assumption about the scalar nature of the surface potentials given by Eqs. 

(5.4.22) and (5.4.39).  Equation (5.4.22) describes the decay of the surface potential, while the charge 

distribution is high in the density of states.  In Section 3.1, the dynamic nature of the trapped charge 

distribution was discussed at length.  In particular, the idea that the time spent in a trap went as the 

energetic depth in the DOS with respect to the CB edge was addressed; i.e., the deeper a trap in the DOS, 

the longer the time spent in those traps.  For those electrons in very deep traps—in the band tail of the 

exponential distribution—the escape times are very long and distributed.  The electric field due to electrons 

in deep traps will be nearly constant over a long period of time. For electrons in shallow states, the 

distribution of wait times will be a nearly single value; this results from the exponential nature of the DOS, 

causing a large number of electrons to be in states closer to the CB and fewer states in the deeper regions of 

the DOS resulting in a Fermi level that is high in the DOS.  Electrons near the Fermi level are released and 

trapped quickly resulting in a fast changing potential. The timescales of the deep trap distribution and trap 
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distribution near the Fermi level suggest that we can approximate the total surface potential as the sum of 

potentials from two separate charge distributions.   We, therefore, sum Eqs. (5.4.22) and (5.4.39) to obtain 

to SVP decay model for post electron beam charging 

𝑉𝑠(𝑡) =  𝑉0 �1 −  𝜇0𝑉(0)
2𝑑2(𝜈𝑡𝑒+𝑣𝑒𝑡)

�𝜈𝑡𝑒𝑡 + 𝑣𝑒𝑡
𝜈𝑡𝑒+𝑣𝑒𝑡

�1 − 𝑒−(𝜈𝑡𝑒+𝑣𝑒𝑡)𝑡� − 𝜇0𝑉(0)𝑠𝑖𝑛[𝛼𝜋]
2𝑑2𝛼2𝜋

� 1
𝑣𝑒𝑡
� � 1

𝜈𝑡𝑒𝑡
�
−𝛼
��. (5.4.40) 

This result is similar to that of Aragoneses et al. (2008), Toomer and Lewis (1980), and Ferreira 

and de Almeida (1997); there is one major notational difference. In the previous work, the temperature-

dependent term  𝛾(𝑇) ≡ 𝜋 𝑠𝑖𝑛[𝛼(𝑇)𝜋]
[𝛼(𝑇)𝜋]2

� 1
𝑣𝑒𝑡
� � 1

𝜈𝑡𝑒
�
−𝛼(𝑇)

 is defined giving 

𝑉𝑠(𝑡) =  𝑉0 �1 −  𝜇0𝑉0
2𝑑2(𝜈𝑡𝑒+𝑣𝑒𝑡)

�𝜈𝑡𝑒𝑡 + 𝑣𝑒𝑡
𝜈𝑡𝑒+𝑣𝑒𝑡

�1 − 𝑒−(𝜈𝑡𝑒+𝑣𝑒𝑡)𝑡� − 𝜇0𝑉0𝛾(𝑇)
2𝑑2𝛼

(𝑡)𝛼��. (5.4.41) 

This expression is exactly the result presented by Aragoneses et al. (2008) and used to fit surface 

potential data for KaptonTM after coronal charging; we compare out results in Section 5.5.  In our 

construction, we have identified the parameter γ(T), which was not done in the original paper, nor the 

theoretical work upon which the Aragoneses paper was based (Ferreira and de Almeida, 1997).  Figure 5.2 

shows the dependence of the function 𝑠𝑖𝑛𝑐(𝛼𝜋) ≡ sin(𝛼𝜋) /𝛼𝜋 on temperature—since the dispersion 

parameter, 𝛼(𝑇), is a function of temperature—suggesting a distinct change in the type of temperature 

dependence at some critical dispersion value. In the original work by Ferreira and de Almeida (1997) the 

Scher waiting time distribution function (Scher et al., 1980) was used to determine the decay in a dispersive 

system.  The work of Scher and Montroll—while ground breaking, Zallen (1983) called it a phase 

transition from the anomalous to the obvious)—showed that the dispersion of waiting times lead to 

dispersive transport behavior (Zallen and Scher, 1971; Monroe, 1985; Blythe and Bloor, 2005). The work 

of Monroe (Rose, 1951, 1955, 1963; Tiedje and Rose, 1981; Monroe, 1983, 1985, 1986) and Schmidlin 

(1977) showed the exponential and later Gaussian DOS were responsible for the dispersive behavior.  One 

of the criticisms of the Scher approach (Scher and Lax, 1973a, 1973b) was the lack of material-based 

parameters.  In the construction of Ferreira and de Almeida (1997), this lead to the parameter product,  𝑐𝑘, 

which was given no real interpretation.  Equation (5.4.40) has the advantage of a complete characterization 

of the surface potential decay in terms of temperature dependence, dispersion parameter, and trapping and 

detrapping rates.  The physical interpretation of dispersive transport is perhaps best explained in Tiedje and 
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Rose (1981),  Schmidlin (1977), Orenstein et al. (1982), and Kao (2004), where the derivation of the 

dispersive transport—in a photo excited system (Orenstein et al., 1982)—was used to derive our result.   

The reader may have realized that the decay of charge in the CVC system of Section 4.7 should be 

similar—if not exactly the same as—the SVP decay model given by Eq. (5.4.40).  This follows from our 

assumptions about the charge distribution and geometry in the HDIM after electron beam charging; i.e., we 

assumed the SVP decay model acted like a parallel plate capacitor.  These assumptions suggest that there 

should be a connection between Eq. (4.7.7) and Eq. (4.4.40) and there is.  In the work of Ferreira and de 

Almeida (1997), an expression for the dependence of the potential, electric field, and current density at the 

collecting electrode for a corona charge HDIM are presented.  The interested reader will find that a 

FIG 5.2. Dispersive surface potential decay parameter,  𝛾(𝑇). This is equivalent to a 1/T plot and 
demonstrates the TAH-type behavior marked by the straight portions of the curve in the lower LHS of the 
plot (black line).  We note that for very large dispersions, T << T0, or very large α, there is a different type 
of behavior; see in the RHS of the plot (red line).  This is the transition to low temperature 1/T2 behavior 
expected for VRH in an exponential DOS. 
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mathematical formalism similar to that used to obtain the SVP decay model, Eq. (5.4.40), produces an 

expression that bears resemblance to Eq. (4.7.7) for the CVC decay model.  This connection will not be 

discussed further in this dissertation and is left for future work; it seems obvious that this connection should 

exist and that it will allow a unified model of charge transport describing both the CVC and SVP surface 

potential decay experiments.  

5.4.3. Post-Transit Model 

In dispersive transport, the current decays linearly on a log-log plot until the charge distribution 

reaches the rear electrode, at which time it changes slope in a downward fashion (see Section 2.3.12).  

Thus, we would expect a major change in the surface potential decay profile, once the charge body makes 

contact with the rear electrode forming a new current path.  The decay of the surface potential for times 

greater than the transit time has been derived in Ferreira and de Almeida (1997): 

𝑉𝑠(𝑡) = 𝑑2𝑡−𝛼(𝑇)

2𝑐𝑘Γ[1−𝛼(𝑇)]
�3
2
− CEuler�,  (5.4.42) 

where 𝑐 and 𝑘 are unspecified constants, 𝐶𝐸𝑢𝑙𝑒𝑟  is called Euler’s constant, and Γ is the gamma function.  

Ferreira suggests that the transit time should be 

𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = Γ[1+𝛼(𝑇)]
𝑉02(𝑐𝑘)2Γ[1−𝛼(𝑇)]

�3
2
− CEuler�.  (5.4.43) 

Note again, that the temperature dependence of the surface potential and the transit time are contained in 

the dispersion parameter, 𝛼(𝑇). 

The decay after the transit time is expected to be a simple decreasing power law for any given 

temperature.  As we will show, this is consistent with surface potential decay in LDPE after the transit time.  

An interesting comment can be made about this result.  In the treatment of dispersive transport, the sum of 

the current slopes of the time dependence should be approximately−2.  If we consider the sum of the 

slopes for the surface potential we get ~0.  This is not surprising; it would seem that when dealing with the 

potential, the simple sum rule must be changed due to the derivative. We note that the sum of slopes 

for 𝑑𝑉𝑠/𝑑𝑡 does suggest the correct sum rule.  It should be kept in mind when doing experiments that 

involve current measurement and surface potential measurement that we expect a different power law.   
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5.5. Analysis of LDPE and KaptonTM 

In this section, the theory developed Sections 5.3 and 5.4 will be applied to data taken on LDPE 

and KaptonTM.  This section is broken into four parts, charging for LDPE and KaptonTM and the decay for 

LDPE and KaptonTM. The data used in this section were among the first experiments conducted on the SVP 

system developed by Hodges (2013).   For a description of the experimental details, instrumentation error 

analyses, and additional results, see Hodges (2013).  In each section we fit the requisite data, present the 

basic parameters, and give a brief discussion of their importance.   The intent of this section is not to 

provide a detailed analysis of the data, but rather a proof of concept.  Further, for each sample and charging 

regime we present only one data set, as there was only one data set at the time this dissertation was written.  

When analysis were preliminary in nature, the SVP system not fully characterized, and no additional data 

set over which the models can be tested were yet available, we find that the fitting of these data produced 

excellent agreement with the literature, thereby providing some confidence that, at least in part, the data 

itself were reasonable.  All measurements were carried out with nearly identical experimental conditions.  

The system was charged incrementally at 1.1 nA/cm2 electron flux and a beam energy of  5000 eV.  For 

charging tests, surface voltage measurements were made by stopping the irradiation for 15 s, with an 

average irradiation time between measurements of 10 s.  The internal pressure of the SEE SVP chamber 

was ~10−8 Torr.  The electron beam radius was estimated to be 0.8 mm.  The system temperature was not 

controlled, and thus, is approximated at room temperature, ~20 Co.  All data have been corrected to beam 

on and off time.  However, during the two-year editing process of this dissertation and the thesis of Hodges, 

there have been significant changes to the data set.  This includes a new data reduction procedure, changing 

the beam on/off times; for details of the data reduction process and improved fits, see Hodges (2013).  

While the results presented here are very good, the analysis must be redone. 

5.5.1. Charging of LDPE 

An LDPE sample with 27.4μm thickness was used. This sample had no charging history. The final 

data are presented in Fig. 5.3, with the charging model fit.  Data fitting was done with IGORTM 6.1, using 

the USU MPG SVP charging model.  In order to allow IGORTM to effectively fit the data, Eq. (5.3.18) was 

reduced from 
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𝑉𝑠(𝑡) = 𝑞𝑒𝑑𝑁𝑡

𝜖0𝜖𝑟
��(1 − 𝑅(𝜀𝑏)

𝑑
)�� 𝑅(𝜀𝑏) �1 − 𝑒𝑥𝑝 �

𝑠𝑐𝐽𝑏�1−𝜎𝑦𝑖𝑒𝑙𝑑�𝜏𝑜𝑛𝑠𝑒𝑡
𝑞𝑒(1−𝑚)

�1 − �1 + 𝑡
𝜏𝑜𝑛𝑠𝑒𝑡

�
1−𝑚

��� (5.5.1) 

to the simplified form 

𝑉𝑠(𝑡) = A �1 − exp �− �Bτonset
1−m

� �1 − �1 + t
τonset

�
1−m

� � �.  (5.5.2) 

There are four free parameters in Eq. (5.5.2), but only 𝜏𝑜𝑛𝑠𝑒𝑡  and 𝑚 are not condensed into a 

general parameter.  The decay onset time, 𝜏𝑜𝑛𝑠𝑒𝑡 , and the quantity (1 −𝑚) are purposely separated from 

the other constants; this is done to avoid erroneous values due to the mixed dependence in Eq. (5.2.2).   The 

quantities comprising the fitting parameter 𝐴 ≡ 𝑞𝑒𝑑𝑁𝑡
𝜖0𝜖𝑟

 are all known values, except the DOS Nt. The range, 

𝑅(𝜀𝑏), was predicted to be 1.1 μm at 5 keV, based on the models of Wilson and Dennison (2010).  It is, 

therefore, easy to estimate the DOS from this expression.  The same is true of the constant 𝐵 ≡

𝑠𝑐𝐽𝑏�1−𝜎𝑦𝑖𝑒𝑙𝑑�

𝑞𝑒
, where only the capture cross section, sc, in unknown; it also can be solved for easily once B is 

determined. The yield,  𝜎(𝜀𝑏), was predicted to be 0.3 electrons per incident electron, based on the 

measurements and models in Song et al. (1997). We assume the following parameters to estimate the 

DOS, 𝑁𝑡, and the capture cross section, 𝑠𝑐; the relative permittivity is 𝜖𝑟 = 2.8, sample thickness, 27.4 µm, 

electronic charge,  𝑞𝑒  =  1.602 × 10−19 C, and Jb = 0.8 nA/cm2.   

Equation (5.5.2) is fitted to the LDPE data and shown in Fig. 5.3 (black curve). Given the noise in 

the data, the fit is excellent.  The residual shown at the top of the figure (red curve) is centered on zero and 

shows a consistent noise error of about 40V thought the data set. The results of the fit are summarized in 

Table 5.1.  At worst, the fit suggests a 9% percent error and at best a 2 % percent error for early and late 

times, respectively.   For the capture cross section, the agreement is excellent (see Chapter 2). 

The estimated DOS is in modest agreement with literature (Montanari et al., 2005; Brunson, 2009; 

Dennison et al., 2009a). Often the DOS is predicted to be ~ 1018 cm-3.  The low result for the DOS obtained 

here is not surprising for the following reasons. First, the system had clearly not come to equilibrium, 

which would have given a higher value for the equilibrium surface potential, V0; this is consistent with a 

partially filled DOS.  It is also possible that the penetration range of the electrons was incorrectly 

estimated; this assumption should be checked against the USU MPG work on range equations (Wilson and 

Dennison, 2010; Hodges, 2013).  The estimation may be improved if we consider that the range in the 
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material is a distribution and the centroid is not at the maximum range, but rather closer to the sample 

irradiation surface.  For a factor of 10 decreases in the range, the DOS would be estimated at ~ 1017 cm−3.  

 There are two important points to take away from this result.  First, that our estimation of the 

DOS is strongly dependent on the effective range, and second that this estimation is in reasonable 

TABLE 5.1. USU MPG SVP charging model data for LDPE.  
𝜀𝑏𝑒𝑎𝑚 
[𝑘𝑒𝑉] 

𝐹𝑙𝑢𝑒𝑛𝑐𝑒  
[𝑛𝐴 · 𝑐𝑚−2] 

𝐷𝑂𝑆 
 [𝑐𝑚−3] 

𝑠𝑐   
[𝑐𝑚2] 

𝑉0  
[𝑉] 

𝜏𝑚𝑖𝑛  
[𝑠] 

𝑚 𝜎 
 [Ω−1𝑐𝑚−1] 

𝑅 
 [𝑚] 

5.0 0.8 0.81 × 10+17 5.2 × 10−13 1.30 × 103 100 0.001 4.37 × 10−18 1.1 × 10−6 
 

FIG 5.3. SVP electron beam charging model fit to LDPE. Surface potential charging of LDPE using a 5 
keV, 0.8 nA/cm2 flux electron beam. Data points are shown in (blue) and data are fit with the USU MPG 
SVP charging model (black curve) using Eq. (5.5.2).  The red curve above is the residual between the 
LDPE data and the model.  The residual is centered on zero and fluctuations are due entirely to noise in the 
data.  At worst the fit suggests a 9% error (early times) and at best the error is 2 % error (long times).    
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agreement with the literature.  Recall in Section 4.7 for the analysis of the CVC chamber, Fig. 4.5 

suggested that the DOS was only filling to a fraction of its true value. 

Finally, we estimate an effective conductivity using Ohms law as 𝐽𝑏�𝜎𝑦𝑒𝑖𝑙𝑑 − 1� = 𝜎𝑉0
𝑅

 . This is a 

gross estimate as we have assumed knowledge of the electric field at the surface, which as stated earlier, we 

do not know.  While the electric field at the surface cannot be zero, the concept of conductivity in the 

irradiated region is ill defined due to the complex nature of charge deposition and motion in this region. 

Keeping this in mind—and using our estimate—we find the conductivity for the charging process to 

be ~ 4.74 ×−18  Ω−1cm−1, in good agreement with values found by (Brunson, 2009).  Here we have used 

the range in place of the sample thickness as the charge distribution is situated at 𝑅 from the surface; note 

that the conductivity may, in fact, be lower because we have used 𝐽𝑏�𝜎𝑦𝑒𝑖𝑙𝑑 − 1� in place of the actual 

injection current density.  

A much better estimate of the conductivity can be found using the parameters from the surface 

potential fit and Eq. (5.3.12) for the current density that flows to the rear electrode.  In this case, one could 

estimate the conductivity—using the material parameters—and apply Ohm’s law over the region 0 <  𝑧 <

(𝑑 − 𝑅). Significant improvements to the estimation of the conductivity have been made in Hodges (2013).   

In Table 5.1, the decay time, 𝜏𝑜𝑛𝑠𝑒𝑡 , is listed with the subscript min; why is this?  As it turns out, in 

order to get a good fit to the data, the decay time must be set to a large value—100 sec in this case—or the 

power parameter must be set to a very small value, 𝑚 = 0.  These numerical results tell us a great deal 

about the type of fit; i.e., it is nearly an exponential in form.  In this case, a pure exponential was almost 

sufficient to fit the data; meaning that only a small contribution from the charge injection term is needed 

and the value of 𝜏𝑜𝑛𝑠𝑒𝑡  nearly drops out of the equation, but not quite. This is why it is estimated at 100 s 

and the reason for the use of a different decay parameter.  Physically this means that the relationship 

described by Eq. (5.3.1) between the trapped charge distribution and the injected current density is linear.  

For electron beam charging, the injection function is not expected to be very strong, as the electron beam 

deposits charge directly into the material.  LDPE also has a higher mobility and conductivity (than does, 

say, KaptonTM), a constant DOS, and does not exhibit dispersive behavior.  As we will see in the next 

section regarding KaptonTM, this pure exponential behavior is not always the case.     
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5.5.2. Charging of KaptonTM 

KaptonTM HN [DuPont] was chosen as the second test material in the SVP system.  The fitting and 

analysis is largely the same as for LDPE, and thus we present only the results and a discussion of the 

parameters.  Refer to Hodges (2013) for details.  The data (blue), fit (black curve), and residual (red curve) 

are shown in Fig. 5.4.  The residual again suggests the fit is quite good, with deviations due to experimental 

noise and measurement differences.  The fit to KaptonTM is plotted on a log-log scale to highlight both the 

power law-like behavior and the slight deviation from the data in the first 10 𝑠.  Table 5.2 contains the 

results of the fit and the extracted material parameters. The test conditions for the KaptonTM sample were 

kept as close to the LDPE run as possible, with the exception that surface voltage is much higher, that the 

total yield,  𝜎𝑦𝑒𝑖𝑙𝑑 , is different from LDPE, and that the beam on and off times were different (Hodges, 

2013).  For KaptonTM Hoffmann (2010) has measured the total yield to be between 0.5 and 0.3 at the 5 keV 

incident energy; an average value has been used in our calculations of 0.4.  The data fit is excellent after 10 

s.  (Recall that nearly 15 s is required to make a measurement; this likely causes errors for very short 

times.)  The percent error between the fit and the data is bounded between 1% and 2%; the deviations in the 

residuals are again due to system noise and experimental errors, including current adjustments during the 

data runs.   

The resulting DOS is slightly larger than for LDPE. However, the DOS is again lower than the 

predicted value ~1018 cm−3 (Breskin et al., 1994; Fowler, 1955). This suggests that our assumption, that 

the value of 𝑁𝑡  is only representative of a partially filled DOS, may be correct; in such a case, 𝑁𝑡  only 

represents the maximum number of filled trapped states in the material at the equilibrium surface potential, 

V0.  Further, it should be noted that the KaptonTM measurements did not come to equilibrium, meaning that 

the DOS was not at its equilibrium value; allowing the system to come to equilibrium will provide a better 

estimate of the DOS.  This must be investigated by subsequent researchers.  An excellent method for 

studying the DOS is presented in Sessler’s book, using thermally stimulated and photo-stimulated current 

methods (Sessler, 1987).   

The capture cross section is in reasonable agreement with the values predicted in Chapter 2 and is 

not expected to vary a great deal from one HDIM to another.   



210 

The parameters 𝜏 and 𝑚 are considerably different for LDPE, and the shape of the data and fit to 

the data are also very different in appearance from the LDPE run.  In KaptonTM—a material expected to 

exhibit dispersive behavior—the power law injection term is active and necessary to get a good fit to the 

data; a simple exponential or even a double exponential will not provide a good fit.  [Refer to Brunson 

FIG 5.4. SVP electron beam charging model fit to KaptonTM.  Surface potential charging of Kapton using a 
5 keV, 0.8 nA/cm2 flux electron beam. Data points are shown in (blue) and data are fit with the USU MPG 
SVP charging model (black curve).  The red curve above is the residual between the Kapton data and the 
model.  The residual is near zero with fluctuations caused by both noise in the data and changes in the data 
collection process.  Error for early times is estimated beyond 10 s—due to experimental difficulties—and is 
found to be less than 1% (best error case) and at worst the error is 2 % error (long times).    
 

 TABLE 5.2. USU MPG SVP charging model data for KaptonTM.  

𝜀𝑏𝑒𝑎𝑚 
[𝑘𝑒𝑉] 

𝐹𝑙𝑢𝑒𝑛𝑐𝑒  
[𝑛𝐴𝑐𝑚−2] 

𝐷𝑂𝑆 
 [𝑐𝑚−3] 

𝑠𝑐   
[𝑐𝑚2] 

𝑉0  
[𝑉] 

𝜏𝑚𝑖𝑛  
[𝑠] 

𝑚 𝜎 
 [Ω−1𝑐𝑚−1] 

𝑅 
 [𝑚] 

5.0 0.8 7.53
× 10+17 

6.35 ×
10−13  

2.91
× 103 

33.4 0.228 1.87 × 10−18 1.1
× 10−6 
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(2008) for an attempt to do this for LDPE data.]  The surface potential is more than twice that found for 

LDPE, suggesting stronger trapping in KaptonTM.  Using the same method as for LDPE, we estimate the 

conductivity to be only slightly less than for LDPE.  Typical estimates for the conductivity of KaptonTM are 

usually higher than for LDPE, in the 10−19(Ω cm)−1 range (Hoffmann, 2010).   

5.5.3. Decay of LDPE 

The decay of charge deposited in HDIM samples gives information about the strength of 

interaction of carriers with the material, trapping and detrapping rates, the intrinsic mobility, and—when 

present—the dispersion parameter. A detailed understanding of the material parameters is critical to 

understanding how long a deposited charge will require to dissipate.   In Section 5.4.2, we presented the 

USU MPG SVP decay model, Eq. (5.4.40); it is presented below for reference 

𝑉𝑠(𝑡) =  𝑉0 �1 −  𝜇0𝑉0
2𝑑2(𝜈𝑡𝑒+𝑣𝑒𝑡)

�𝜈𝑡𝑒𝑡 + 𝑣𝑒𝑡
𝜈𝑡𝑒+𝑣𝑒𝑡

�1 − 𝑒−(𝜈𝑡𝑒+𝑣𝑒𝑡)𝑡� − 𝜇0𝑉0𝛾(𝑇)
2𝑑2𝛼

(𝑡)𝛼��. (5.5.3) 

For review, 𝑉0 is the initial surface voltage, 𝜈𝑡𝑒  is the release rate of carriers from traps, 𝜈𝑒𝑡  is the trapping 

rate,  𝜇0 is the intrinsic mobility, 𝛼 is the dispersion parameter, d is of the sample thickness, and 𝛾(𝑇) is a 

temperature-dependent parameter discussed in Section 5.4.2. Equation (5.5.3) can be written in a slightly 

simpler form to fit data 

𝑓(𝑡) = 𝑉0 −
1
2
�𝑉0
𝑑
�
2 𝜇0

(𝜈𝑡𝑒+𝑣𝑒𝑡)
�𝜈𝑡𝑒𝑡 + 𝑣𝑒𝑡

𝜈𝑡𝑒+𝑣𝑒𝑡
{1 − 𝑒𝑥𝑝[−(𝜈𝑡𝑒 + 𝑣𝑒𝑡)𝑡]}� − 𝑉02𝐶5𝑡𝛼,     (5.5.4) 

where ; 𝐶5 ≡  𝜇0𝛾
2𝑑2𝛼

 has been condensed into a single constant for simplicity.  There are five free parameters 

in the fit: 𝜈𝑡𝑒, 𝑣𝑒𝑡 , 𝜇0, 𝛼, and t.   The values of 𝜈𝑡𝑒, 𝑣𝑒𝑡 ,  𝜇0, and 𝛼 are estimated from the literature to 

provide a starting point for the fit.  The details of the conditions under which the LDPE sample is charged 

is covered in Section 5.4.2 and will not be repeated here.  Using Eq. (5.5.4), the decay of the deposited 

charge is fitted and the results are shown in Fig. 5.4 and Table 5.3.  Figure 5.5 shows the LDPE data set in 

blue, the fit with Eq. (5.5.4) in black, and an additional fit in yellow.  Parameters obtained from the fit 

using Eq. (5.5.4) are shown in Table 5.3. The second fit in yellow is necessary, as after this time the charge 

body has traversed the sample and made contact with the rear electrode.  Notice that there is a vertical 

black line in the figure; this is the estimate of the transit time of the charge body as calculated for LDPE by 

Toomer and Lewis (1980).  Also note that this transit time, 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 , estimate is temporally situated at 1800 
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s. Since the data reduction used in this analysis does not take into account the time between measurements 

by the SVP probe—in an accurate way—the time spent by the charge in the material may exceed this 

expected value by a great deal, and our estimate of the transit time may be too small.  A detailed analysis of 

this problem must be left as future work; however, a discussion of the post-transit decay is presented later 

in this section.  

An important function of this model is the estimation of the charge decay time.  The SVP decay 

model can be solved for t when the potential is zero, thus providing an estimate for the true decay time.  

This decay time should exceed the actual decay time because the SVP decay model assumes the charge 

distribution does not make contact with the rear electrode, at which time faster decay of the charge will 

begin to occur.  The estimate of the decay time provides a simple way to estimate the conductivity of the 

material. Using the decay time versus resistivity plot as presented in Chapter 1 and found in Brunson 

(2009), we create a conductivity conversion formula, 

𝜎𝑑𝑎𝑟𝑘 =  𝜏𝑑𝑒𝑐𝑎𝑦𝜖0𝜖𝑟
10−13𝑂ℎ𝑚−𝑐𝑚−𝑠𝑒𝑐

. (5.5.5) 

Using the data for LDPE obtained from the fit in Fig. 5.5 suggests that the decay time 

is  ~1.448 × 104 𝑠, which yields a conductivity of ~ 4 ×−17  Ω−1𝑐𝑚−1.  This is lower than the expected 

conductivity of ~ 10−18 Ω−1cm−1 by a little more than a factor of  ½, but consistent with our estimate from 

the charging fits in Section 5.5.1.  The higher conductivity can be caused by a number of sources. For 

example, the charge distribution could have made contact with the collecting electrode during the 

measurement; the CVC results are for very long times, and it is possible that the short experimental time of 

the SVP measurement creates a disparity.  As discussed above, for LDPE the deposited charge is expected 

to move a fair amount during the charging and discharging process, consistent with PEA measurements 

(Perrin, 2005; Griseri et al., 2006; Chen, 2010).  In these studies, the beam energy is about 8 keV, which is 

larger than the USU beam energy, but the flux is much lower at 50 pA/cm2 versus 1.1 nA/cm2 for the 

USU MPG experiments. This suggests, that while there may be fewer electrons deposited in the material 

during the charging process, those electrons will penetrate deeper into the material. The work of Griseri et 

al. (2006), Chen (2010), and Perrin (2005) is used to estimate an upper limit for the motion of the deposited 

charge moving toward the collecting electrode.  The data suggest a charge body velocity of 0.17 μm/min.   
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Assuming a small penetration depth of 1.1 μm , subtracting this from the sample depth, we obtain an 

estimate for the transit time of 10,000 s. The charge body would be expected to move completely across the 

sample in this time.  This is slightly longer than the 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 time found by Toomer and Lewis (1980) 

of ~8000 s.  However, the 10,000 s is a single estimate from a completely different type of measurement 

system. Further, the 10,000 s limit happens well within the time span of the data collected by the SVP on 

LDPE.  The decay model we have presented is only good as long as the charge body does not contact the   

FIG 5.5. SVP decay model fit to LDPE. Data are shown in blue and fits are shown in black and yellow,  
respectively.  The LDPE decay data fitted with the USU MPG SVP decay model for times less than the 
transit time (black curve) and a simple power law for times greater than the transit time (yellow curve).    

TABLE 5.3. USU MPG SVP decay model data for LDPE . 
𝑉0[𝑉] 𝑇𝑟𝑎𝑝𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑣𝑒𝑡   

[𝑠−1] 
𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 𝑣𝑡𝑒 

[𝑠−1] 
𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝜎 

[Ω−1𝑐𝑚−1] 
𝑇𝑟𝑎𝑝 𝑒𝑛𝑒𝑟𝑔𝑦 

[eV] 
1168 1.06 × 10+3 2.13 × 10−4 3.50 × 10−17 −0.87 
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rear of the sample.  After the charge contacts the rear electrode, we must use the simple power law 

suggested by Ferreira and de Almeida (1997) and presented in Section 5.4.3.   

We can now present a discussion of the double fit to the LDPE data shown in Fig 5.5 using the 

sum of the USU SVP decay model and a simple power law. The first curve is essentially the model of 

Toomer and Lewis (1980) as the dispersion parameter is found to be negligible; the power law term is zero 

for LDPE (no dispersion). This is expected since LDPE is thought to have a constant DOS.  The form of 

the power law fit adapted from Ferreira and de Almeida (1997) is as follows: 

𝑓(𝑡) = 𝐶𝑐𝑜𝑒𝑓𝑡𝑝𝑤𝑟 + 𝐶𝑜𝑓𝑓𝑠𝑒𝑡.  (5.5.6)  

The fitted values that produce the yellow curve in Fig. (5.4) are: 𝐶𝑐𝑜𝑒𝑓 = 9264 𝑉 , 𝑝𝑤𝑟 = −0.323 , and 

𝐶𝑜𝑓𝑓𝑠𝑒𝑡 = −97.98 𝑉.  While this power law gives a good fit to the data after the transit time, its solution for 

the time to decay yields a very surprising result.  In the paper by Chen (2010), it is suggested that the decay 

will take ~ 15 days for complete charge leakage to occur, this is consistent with the estimate of the power 

law fit which suggests ~ 15.2 days for complete decay and a final dark conductivity 

of 3.4 × 1018 Ω−1cm−1 , which is quite large for LDPE. The USU MPG found that the dark current 

conductivity should be ~1.8 × 1018 Ω−1cm−1 (Brunson, 2009), which lies directly between our estimates 

for the conductivity using first the SVP decay model and second the power law model.  A word of caution 

is required here; the interpretation of the models is suspect and the data is very preliminary.  The SVP has 

errors in both the analysis and operation of the experiment itself. The application of models after the charge 

body contacts rear electrode should be scrutinized further, as it is not clear how the charge injection 

process, limits of the applied model, and decay of the local field affect the charge migration.  Given those 

concerns, it is surprising that our fit has suggested a good agreement with the work of Chen (2010) and 

Perrin (2005) for LDPE on the long time decay, ~15 days, and that the conductivity is well characterized.  

Given that our understanding of the charge decay is paramount to the spacecraft equilibration process, it 

seems prudent to undertake a study of these effects after the charge body has contacted the rear electrode.  

This can be accomplished with higher incident beam energies, large fluxes, and longer wait times after the 

cessation of the electron beam.  Since the model described for pre-transit describes over 63% of the total 

decay, it is a critical tool in understanding the fast response recovery of the spacecraft. Thus, in order to 
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understand this behavior in materials like LDPE, it is necessary to lower the beam energy and flux, thus 

allowing for longer times before the transit occurs.  

From this point on, we concentrate on the pre-transit behavior and the associated fit using the USU 

MPG SVP decay model. The results of the fitting parameters and estimation of the upper limits for the 

conductivity are presented in Table 5.3.  The trap energy is estimated using Eq. (5.4.23) and our calculated 

value, 𝜈𝑒𝑡(𝜀) = 1.055 × 10−3s−1. This is inconsistent with the constant attempt-to-escape frequency 

estimated to be 𝜈𝑒𝑡  ~ 1012 s−1; note, that the value of 𝜈𝑒𝑡  is found by analyzing the transport case, where 

the excitation rate, 𝜈𝑒𝑡, is equal to the trapping rate, 𝜈𝑡𝑒 [see, for instance, Rose (1951) and Toomer and 

Lewis (1980)].  For reference and comparison, the data from Toomer and Lewis (1980) on LDPE is 

presented with the USU MPG data, (in gray) and has been included in Table 5.4.  The agreement between 

the USU data and that of Toomer and Lewis is reasonable.  We note there were a number of errors in the 

Toomer and Lewis (1980) paper.  The trapping rates suggested by the Toomer and Lewis (1980) paper 

seem very high and may be an artifact of fitting their data over very short timescales; in fact, when 

adjusting the timescale in the USU fits, it was found that the exact number reported by Toomer and Lewis 

could be replicated, but only for short irradiation times.  The short time fits yielded numbers for the release 

rate and trap rate consistent with Toomer and Lewis (1980); however, the mobility remained unaffected.  

For longer timescales, the release rate decreased as did the trapping rate, which became very 

small, ~ 10−6 s−1.  In order to fit the data correctly, the transit time given by Toomer and Lewis (1980) 

must be used; this further suggests that this is a real problem with the current study.  LDPE will require a 

consistent set of studies varying the flux and beam energy, plus a test system calibration, to determine 

proper application of this model. These studies should mirror the work of Toomer and Lewis (1980) and 

Aragoneses et al. (2008) in order to understand the complete picture.   

Despite the difficulties in using the model and connecting our results with Toomer and Lewis, it is 

still clear that the model for both pre- and post-transit provide useful physical and predicative information 

about the decay of charge within LDPE. Though our estimates for the trapping rate and release rate are both 

an order of magnitude lower than those found by Toomer and Lewis, the overall agreement is still good.  

The fact that a single run on LDPE in a brand new experimental system yields results that are consistent 

with the literature is extraordinary.  Further, when our results on LDPE are compared with the charging 
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data, we find good agreement, as well.  As we shall see, the agreement with KaptonTM, (a material that the 

charge packet cannot cross quickly) is outstanding. 

5.5.4. Decay of KaptonTM 

In this section, the model for decay given by Eq. (5.5.4) is used to fit KaptonTM decay data taken 

by Hodges (2013).  The beam energy is the same as for LDPE outlined in Section 5.5.1, but the flux and 

beam on-off times differ somewhat Hodges (2013).  The resulting fit is shown in Fig. 5.6; the USU data on 

KaptonTM are shown in blue and the fit as a green curve.  In this case, the fit is quite good, given the noise 

in the data.   

Note, there is what appears to be a doubling of the data in the y-axis direction.  This is due to a 

repositioning error in the SVP system and has been addressed by Hodges (2012).  The next anomaly is gap 

that begins around 9 × 104 s; this occurred when the sample carousel was rotated to observe another 

sample and then returned after some time to continue to take data on KaptonTM.  The data after this gap 

have been corrected for an offset error.   The residual plot shows the two anomalies and a good deal of 

system noise; however, it is clear that the residual is centered about zero and—for the regions where there 

are no data anomalies—the error is bounded by 9% error for early times and 2% error for later times.   

TABLE 5.4. LDPE decay data comparison (USU MPG in grey). 
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

[ͦ 𝐶] 
𝑉0 103 

[𝑉] 
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 10−15 

[𝑚2/𝑉𝑠] 
𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 10−5 

[1/𝑠] 
𝑇𝑟𝑎𝑝 𝑒𝑛𝑒𝑟𝑔𝑦 

[𝑒𝑉] 
𝑇𝑟𝑎𝑝 𝑟𝑎𝑡𝑒 10−5 

[1/𝑠] 
21 .950 4.2 2.4 1.0 48 

 1.40 4.2 2.4 0.9 480 

 2.60 4.2 5.7 0.9 1140 
22 0.540 5.4 4.9 0.9 440 

 0.848 5.4 12.6 0.9 680 

 1.60 1.3 5.1 94 220 
31 4.60 14 0.13 1.0 95 

 1.25 16 1.1 0.1 250 

 +1.67 16 1 0.1 320 
21 -0.650 15 5.6 0.94 1200 

 -0.950 15 7.0 0.93 1500 

 -1.16 3.2 0.21 0.87 106 

 -1.50 15 9.3 0.92 2000 

 -2.10 15 21 0.90 4500 
22 -0.410 120 4.6 0.94 7800 

 -0.610 200 6.7 0.93 1900 

 -0.910 35 2.1 0.96 4900 

 -2.30 54 2.1 0.96 1600 
After Toomer and Lewis (1980). 
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PEA data taken by Perrin (2005) suggest that the movement of the charge body in KaptonTM is 

significant, but may not be enough to penetrate the sample much beyond the expected range. Aragoneses et 

al. (2008) fit decay data from KaptonTM acquired using a CVC-type system (Aragoneses et al., 2008); their 

fit appears to be in excellent agreement with data presented here.  The data on KaptonTM exhibit the 

expected dispersive behavior, as evidenced by the nonzero power,  α.  This is in stark contrast to the 

behavior of LDPE, which needs no dispersion parameter to obtain a good fit.  This result is also apparent in 

Time [s] 

 

FIG 5.6. SVP decay model applied to data on KaptonTM. Surface potential charging of LDPE using a 5 
keV, 0.8 nA/cm2 flux electron beam. Data points are shown in (blue) and data are fitted with the USU 
MPG SVP charging model (green curve).  The red curve above is the residual between the LDPE data and 
the model.  The residual is centered on zero and fluctuations are due entirely to noise in the data.  At worst 
the fit suggests a 9% error (early times) and at best the error is 2 % error (long times).    
 
 
 

TABLE 5.5 KaptonTM decay data comparison (USU MPG in grey). 
𝑉0[𝑉]  𝜇0 [𝑚2𝑉−1𝑠−1] 𝑣𝑡𝑒  [𝑠−1] 𝑣𝑒𝑡  [𝑠−1] 𝛾(𝑇) 𝛼 
983 2.03 × 10−17 4.63 × 10−4 6.36 × 10−4 4.83 × 10−3 9.40 × 10−1 

2018 2.02 × 10−17 7.01 × 10−5 2.34 × 10−4 3.93 × 10−3 1.29 × 10−1 
2827 6.98 × 10−17 4.34 × 10−5 7.32 × 10−4 2.83 × 10−3 3.35 × 10−1 
3011 2.13 × 10−17 4.13 × 10−5 5.05 × 10−4 1.94 × 10−3 6.87 × 10−1 
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Section 5.5.2 where the injection function has a nonzero power and is required to fit the charging data on 

KaptonTM.   

Table 5.5 includes the Aragoneses et al. (2008) results, together with the results of the USU SVP 

model fit to post-irradiated KaptonTM data (in grey).  Using the decay time estimation technique employed 

in Section 5.5.3, a decay time of ~ 1.6 × 106 s or ~ 18.5 days is found. This gives an estimated 

conductivity of 1.6 × 10−19Ω−1s−1 in excellent agreement with the literature (Hoffmann, 2010). Inspection 

of Table 5.5 suggests immediately that we have good agreement between Aragoneses et al. (2008) and the 

USU estimation of the fitting parameters (i.e., the trapping rate, 𝜈𝑒𝑡, detrapping rate, 𝜈𝑡𝑒, gamma constant, 

 γ(T), and dispersion parameter, α). The only parameter that is not in very good agreement is the mobility, 

which deviates from the Aragoneses value by ~ 50%.  However, Aragoneses et al. (2008) state that their 

samples were tested in 40% to 50 % relative humidity—much higher than USU’s samples.  Further, recall 

that they used a CVC-type system to make the measurements. The USU samples are kept in a low humidity 

environment and prepared using a vacuum bakeout procedure to remove water and volatile polymer 

synthesis by products.  The lower water concentration in the USU samples could easily account for the 

difference in mobility.  To illustrate the level of agreement, two plots have been made from Table 5.5; 

values of V0 are plotted versus the release rate and the dispersion parameter.   

Figure 5.7 shows the dispersion parameter data versus starting surface potential, where the marker 

of  𝑉0 on the plot indicates the USU data point.  Not only does the dispersion parameter show strong field 

dependence, but the USU data point lies very closely along the curve.  The field dependence of the 

dispersion parameter is not surprising.  In Section 3.2, a discussion is presented illustrating the connection 

between the local field, the DOS, and the release rate (then called the thermal upward hopping rate, which 

applies in the TAH model, as well as the VRH model).   

Next, the release rate, 𝜈𝑡𝑒, versus 𝑉0 is plotted in Fig. 5.8.  Again the agreement is remarkable and 

there is a clear field dependence on the release rate parameter.  This field dependence is predicted by the 

theory in Section 3.2.  A discussion of the mobility and 𝜈𝑒𝑡 is not presented, as the data given in 

Aragoneses et al. (2008) and the USU MPG data taken together are insufficient to suggest a trend.  In fact, 
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we should not expect that the parameter, 𝜈𝑒𝑡 , would be affected by internal fields, as it has no known 

energetic dependence.  

5.6. Conclusion 

The data analysis section has brought to light a number of interesting features in both the charging 

and decay models and the data.  First, our surface potential charging models seem to perform very well and 

predict reasonable values for the cross section, conductivity, and density of states.  For the decay models 

for LDPE, we have found a clear case where the model limit is reached and a post-charge packet transit 

model is required to explain the behavior.  In KaptonTM (a system that does not reach its transit time), we 

have excellent agreement with the literature and a model of dispersive transport, which handles the 

problems associated with  an  exponential DOS.   This is in contrast to a system like LDPE  whose  DOS  is  
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FIG 5.7. Comparison of dispersion parameter  for USU data versus Aragoneses. This plot shows data from 
Aragoneses et al. (2008) (open circles) for the dispersion parameter versus V0—initial surface potential—
compared with the USU data (closed circle).  The data point taken by the USU MPG falls predicable along 
the curve created. An increasing dispersion parameter is consistent with a field-induced disorder and 
enhanced dispersion. 
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likely to change—due to degradation effects and defect creation—over the energy spectrum (Mizutani et 

al., 2000) in a component-like way due to its semi-crystalline and amorphous nature. In fact, Mizutani et al. 

(2000) gives a table of activation energies, and the molecular regions within LDPE that are responsible; 

for 0.8 𝑡𝑜 1.0 eV activation energies, it is suggested that the amorphous regions associated with defect 

structures are the primary active components.  We obtained a value of  0.87 eV for our release rate 

activation energy, which seems to be in agreement.  However, even for a system as complex as LDPE, we 

find reasonable agreement with literature within the pre-transit regime.  Taking the data from the Toomer 

and Lewis (1980) table and creating plots for the release rate and trapping rate shows a strong dependence 

on the field (see Figs.5.7 and 5.8).  The appearance of field dependence in the physical parameters makes a 

direct connection to the inclusion of field dependence described in Section 3.2.  The results of this section 

clearly indicate that the dynamics of the high field regime are at work, and the system is controlled by the 
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FIG 5.8. Comparison of dispersion electron release rate . Shown are  data from [Aragoneses] (open circles) 
for the trapped electron release rate, 𝜈𝑡𝑒, versus V0—initial surface potential—USU SVP models prediction 
data (closed circle).  The data point taken by the USU MPG falls predictably along the curve created using 
Aragoneses. A decreasing release rate parameter is consistent with an increasingly high internal field; 
which acts to lower the energy necessary for an electron to escape. 
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interaction between the internal electric field, QFL (since the FL moves with time), and the demarcation 

energies (which govern the rate at which the DOS will fill up). A complete study on the dynamics of each 

material under a range of beam energies, temperatures, and fluxes will yield a great deal of information 

about these dynamics.  These studies—in addition to concurrent studies on the surface potential, SEE, and 

CVC—will open doors to a deep understanding of the spacecraft charging phenomena. 
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      CHAPTER 6 

6. CONCLUSION 

6.1. Introduction 

This dissertation is a first step in bringing together, in a common language, a vast set of ideas that 

determine the behavior of many phenomena, including charge transport in HDIM.  It provides an 

interpretation and methods for applications of the theoretical formalism set out in this dissertation, which 

are then applied to a specific set of experimental tests and results.  The primary goal of this dissertation was 

the development of a single theoretical formalism that connects nearly all the major types of charging 

phenomena in HDIM to the specific nature of spacecraft charging using a comprehensive nomenclature. 

For spacecraft charging applications, the key idea is to understand how to apply this formalism and 

resulting theory in specific circumstances to mitigate spacecraft damage or failure. We, therefore, 

categorize the text methods applicable to spacecraft charging problem into six major configurations.  These 

configurations were discussed in Chapter 1 and presented in Fig. 1.4.  We summarize them here for 

reference:  

(a) Nonpenetrating incident charge deposited on the surface of an insulator that is transported to a 

contacting metal surface through the bulk of the insulator or remains on the surface. 

(b) Partially penetrating incident charge that penetrates into an insulator, and is then transported to a 

contacting electrode or remains within the insulator. 

(c) Penetrating incident charge that passes through an insulator, generating a separation of positive 

and negative charge, enhancing the conductivity, and modifying the transport properties of the 

HDIM. 

(d) Electrode-injected charge that is injected into the bulk of the HDIM using a contact interface such 

as a metal electrode, and subsequently undergoes transport to some other region of the HDIM. 

(e) Polarization phenomena, or dielectric materials response to applied fields, caused by the 

application of an electric field leading to short timescale modifications of the exterior and/or 

interior fields of the HDIM.  
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(f) Electrostatic breakdown caused by the application of very high electric fields or large charged 

particle fluencies causing permanent damage to the HDIM.   

These six configurations represent all the basic situations that a spacecraft material may encounter with 

regard to charge transport.   

It is not surprising that the surface and bulk transport properties should determine movement of 

charge that is on the surface or internal to the material, establish electric fields internal and external to the 

HDIM, and provide information about the maximum fields that can be sustained, without permanently 

changing the material’s structure.  The level of difficulty in describing the charge transport comes largely 

from the fact that HDIM are—as the name implies—highly disordered, insulating, and subject to complex 

charge transport mechanisms.  Over 100 years of research has been condensed and connected in this 

dissertation beginning with early work in radiation-induced currents and subsequent charge transport by 

Curie (1904); see Fowler (1956) and references therein, and references cited in this dissertation to the 

present day. The disordered nature of HDIM creates a situation in which transport of charge must be 

considered in terms of:  

(i) Energy-dependent charge flux and fluence. (These are due to the local spacecraft 

environment.);  

(ii) Temperature. (This often governs both the rate with which charge is transported and the type 

of conduction mechanism at work.);  

(iii) Time. (Different configurations have different charging and discharging times, or equivalently 

trapping and release rates.); 

 (iv) Structural disorder. (This primarily determines the type, density, and energy depth of defects 

generated as localized states within the mobility gap.);  

(v) Electrochemical structure. (The DOS and disordered chemical nature play an important role in 

the transport of charge.);  

(vi) History of charging and discharging. (These include repeated stress—which can produce 

recoverable and irrecoverable defects—caused by external and internal fields, residual, or existing 

charge distributions.);  
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(vii) Types of transport. (There are several types of transport phenomena, e.g., TAH, VRH, 

diffusion, drift, and dispersion, as examples.);  

(viii) Applied field, (These create changes in the internal structure that govern transport, can 

produce defects, and can lead to breakdown of the HDIM.);  

(ix) Light and charged particle conditions. (Incident radiation can change the conductivity of the 

material via radiation induced processes.);  

(x) Material shape. (Geometry determines the strength and direction of the electric fields.), and 

electrical configurations induced by bringing materials of different types in to contact with one 

another (e.g., work functions of different materials, Schottkey barriers, and diffusion of charges).   

This extensive list highlights both the many areas of study that are part of this dissertation, but also the 

utility and required complexity of the single theoretical description presented in this dissertation, which 

allows all of these complex ideas to be connected and their physical actions understood.  The great value of 

the connection between the macroscopic transport equations of Chapter 2 and the microscopic physics 

presented in Chapter 3 is in the realization that one can use the transport equations in nearly all applications 

to understand charge transport at both low and high temperatures.  This is not to say that one can 

understand any and all transport phenomena through the transport equations; this is not true.  However, for 

systems whose behavior acts in such a way that average or macroscopic behavior results—as is the case 

with HDIM—the approach is very effective. 

This dissertation is a first step in completing the task of developing a complete understanding for 

how HDIM respond to their environment within a single theoretical formalism.  In particular, this work has 

approached the problem of HDIM charging in the following consistent way. First, Chapter 2 uses the basic 

equations of electrostatics and electrodynamics-coupled with charge conservation and a basic 

understanding of charge trapping and release processes within HDIM to develop a set of one-dimensional 

transport equations  under the condition that electrons are the majority carrier and all other carrier 

interactions can be ignored.  Chapter 2 describes the transport equations governing what we call 

macroscopic transport. Second, (in Chapter 3) a detailed discussion of the nature of disorder, its interaction 

with injected charge, and its extension to the transport equation discussed in Chapter 2 was given.  Chapters 

4 and 5 present simple applications of the transport equations to USU MPG experimental data using a novel 
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approach.  Specifically, the injection function concept is introduced and applied. The injection function is 

based on the DOS and interactions of injected charge at or near the surface upon which charge is incident.  

In large part, we have assumed simple geometries to make estimation of the physical quantities that 

determine charging and discharging characteristic easier.  The reader should note that the applications in 

Chapters 4 and 5 to the USU MPG data from the CVC and SVP experiments were preliminary analyses, 

whose purpose was only to show the merit of the theoretical ideas presented in the first three chapters. 

This dissertation has accomplished the main goals set out in the introduction.  In this work, it has 

been shown that the connection between microscopic physics, macroscopic behavior, and the fundamental 

nature of spacecraft charging materials can be characterized by an average view of carrier dynamics 

generated by the interaction between the DOS of the material and the experimental configuration for the 

CVC and SEE-SVP test configurations.  This average view leads to assumptions and insight into resulting 

phenomena that are embodied in the appropriate transport equations.  The key point in the above discussion 

is that transport in HDIM is difficult to understand and—by extension—spacecraft charging is difficult to 

understand. In the sections that follow, a brief overview of each chapter is given and major points that are 

central to this work are highlighted.  This chapter will close with a discussion of future work, additional 

insights, and some references for the interested reader. 

6.2. Summary of Chapters 1 and 2 

In Chapter 1, the basic problems facing the spacecraft charging community and research in HDIM 

as a whole are presented. The basic approach of this dissertation and six major experimental configurations 

are also outlined.   In particular, Chapter 1 lays out the fundamental goals of this dissertation:  

(a) Development of a theoretical framework in a common nomenclature that serves as a starting 

point for all of the experimental configurations discussed. 

(b) Application of current theoretical models in charge transport to spacecraft charging problems.  

(c) Extension of current USU MPG models to include a more complete description of charge 

transport in HDIM.  

(d) Extension of current static charge models to explicitly include time dependence.  

(e) Application of resulting models to contemporary USU MPG experimental systems. 
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(f) Generation of new USU MPG engineering design tools to assist spacecraft engineers to 

mitigate spacecraft charging.   

These are the primary goals set forth and accomplished in this dissertation.   

Chapter 2 lays the fundamental groundwork to understand how to unify charging in HDIM and 

develops a detailed set of transport equations that govern all the charge transport processes in the material 

bulk given the experimental configurations discussed in Chapter 1. These are, in fact, the key results of this 

dissertation.  In order to develop a deep understanding of charge transport, Chapter 2, starts with a 

fundamental approach, introducing basic types of transport—such as drift and diffusion—and clearly 

highlighting the effects of disorder with respect to the better understood crystalline transport processes.  

The transport equations are supported in Chapter 2 by a detailed discussion of disorder in HDIM, its 

effects, nomenclature, and the many ways in which a distribution of charge can interact with that disorder. 

In particular, the transport equations represent the macroscopic average (mean field) behavior resulting 

from the DOS and complex carrier interactions within the HDIM. The discussion is simplified with the use 

of “six easy pieces of charge transport”—which are very simplified DOS diagrams using only the delta 

function DOS—that show carrier excitations and interactions (see Fig. 2.9).   The discussion of the 

transport equations is supported by an explanation of space charge limited current and dispersive 

phenomena.  These phenomena highlight two very important charge transport cases: in the case of SCLC—

a charge transport process typically understood in the context of ordered systems—the theory is extended to 

include disordered materials; for the second case, dispersion—a charge transport process unique to 

disordered materials (not necessarily HDIM)—is presented.  This juxtaposition of processes, one extended 

from ordered materials to disorder and the second uniquely disordered, highlight the need for understanding 

the nature of charge transport at the microscopic level. Said another way, just having the transport 

equations of Chapter 2 is not enough to understand the true nature of electron transport; a deep 

understanding of the movement of electrons at the microscopic level is required to interpret differing types 

of HDIM.  The transport processes discussed in Chapter 2 are largely limited to transactions involving 

extended states and a single level of localized trap states with no energy dependence.  (This is not true for 

the discussion of dispersion, as it serves as the transition discussion between Chapters 2 and 3.)  This is not 

to say that the transport equations are limited to a single level DOS.  The transport equations apply to any 
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type of DOS and any temperature.  By contrast, the transport processes discussed in Chapter 3 involve 

distributions in energy of localized states, extending the transport equations to materials whose DOS covers 

many energies in the BG and allowing for a complete physical picture regarding carrier dynamics at all 

temperatures.  In particular, we find that each HDIM has a unique type of DOS that dramatically changes 

the type of transport observed.  Thus, Chapter 3 is dedicated to cementing the foundation upon which the 

transport equations of Chapter 2 are built. 

6.3. Summary of Chapter 3 

At the end of Chapter 2, a new process—called dispersion—was introduced; it was an exception 

to the simple mono-energetic delta function DOS that was used to assemble the transport equations.  An 

understanding for the dispersion phenomena can only occur when the DOS is energetically extended in the 

BG.  As it turns out, spatial disorder can also cause dispersion (Bässler, 1993).  This meant that (i) a new 

physical description of the dynamics of the carriers in the trapped states was required, and (ii) a connection 

to the macroscopic or average behavior was needed. Because disordered materials have a high degree of 

complexity—both electronic and chemical—in their internal structure, the best that one can hope for is to 

understand the motion of charges in some average or statistical way; hence, such transport is often referred 

to as stochastic transport.  As it turns out there is a tremendous body of research in this area generated by 

studies in photoconduction for disordered semiconductors.  Chapter 3 develops the microscopic physical 

mechanisms that lead to average macroscopic behavior (specifically the conductivity, current density, 

surface potential, and electric field at the surface and interior to the HDIM), using a set of extended DOS to 

describe disorder in the material and to predict electron transport in HDIM.   

The single electron approximation has been taken in this dissertation; however, it should be noted 

that in HDIMs, the influence of additional or internal carriers such as holes, excitons, and polarons are 

generally not significant.  The case of holes only came into play as recombination centers or bipolar 

injection from a contact, which were neglected in this work.  This assumption largely holds as electrons are 

the dominant form of carriers in USU MPG experiments.  However, for certain types of contacts and many 

space environment conditions, positive species are injected simultaneously with electrons.  For excitons 

and polarons, it is thought that due to their lifetime, the only contributions would be made via third party 
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interactions on timescales much shorter than the experimental times of interest; these are, therefore, 

neglected.   

The development of the microscopic physical mechanisms was accomplished by considering an 

atomistic description of processes that can occur in the band gap and the effect that the disordered states 

have on charge trapping, detrapping, and recombination.  All of these processes are shown to be controlled 

by the DOS; even charge generation can be affected by the nature of the DOS (see Section 4.4).  Chapter 3 

starts with an introduction to the microscopic concepts required to understand the effects the disordered 

states in the gap have on transport.  These mechanisms that were considered were: hopping and hopping 

rates, demarcation energies, thermalization, transport energies, segregation times, Fermi levels, and 

thermalization times.  These are all processes that are always active in determining the behavior of the 

observed localized state transport in any HDIM.  In most cases, their effects are not seen directly, unless 

one is dealing with dispersive transport or low-temperature transport (generally referred to as hopping 

transport).   In the literature, there has been a long-standing difficulty surrounding the concept of hopping 

transport.  By definition, a hop is a jump between two localized states. Many authors confuse hopping 

transport with simple thermally activated trapping and detrapping, which is often called thermally activated 

hopping (TAH). TAH is often confused with a form of conduction where the electrons are released from 

trapped states and then enter the CB (the CB electrons may or may not be recaptured by adjacent trap sites).  

In a true thermally activated transport, the electron will never leave the localized DOS unless liberated from 

its trapped state purely by thermal processes to hop to the next available trap state never entering the CB.  

There is another form of hopping often confused with the process just defined as a true TAH.  This hopping 

transport is called VRH and is fundamentally driven by low-temperature thermal process and a quantum 

mechanical interaction between localized states.  In fact, in this type of hopping the range of the electron 

can vary—hence its name, variable range hopping.  While the definition of each of these types of transport 

processes may seem mundane, they serve to highlight the very different ways in which the DOS—in a 

given HDIM—can drive the transport processes. It is exactly the machinery of Chapter 3 that allows the 

clear distinction of each of the processes.  In addition, Chapter 3’s results allow the extension of the 

trapping equations presented in Chapter 2 to low-temperature transport where TAH or VRH are the 
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dominant conduction mechanism. Without the tools of Chapter 3, it would be impossible to interpret the 

application of the transport equations when TAH or VRH are active.   

Chapter 3 proceeds with a well-founded connection between the ideas for average atomistic 

systems (microscopic behavior) and macroscopic systems (measurable currents, voltages, and electric fields 

that result from microscopic behavior).  In Section 3.2, insights into the validation and application of the 

transport energy, demarcation energy, thermalization time, and QFL were developed by interpreting 

macroscopic physical phenomena previously described by USU MPG VRH models via a concrete example, 

low-temperature VRH conductivity. This is in contrast to the high-temperature phenomena discussed in 

Section 2.7.  In this example, the three parameter fit of the original USU model can be understood in terms 

of a simple two parameter model using the theoretical descriptions put forth in Section 3.1.  Specially, the 

parameters 𝜎0𝑉 ,𝑇𝑉, and 𝐹𝑉 for the VRH model can be expressed in terms of the carrier escape frequency, 

 𝜈0𝑖 , and the segregation time, 𝜏𝑠𝑒𝑔.  This is an important result because it connects the average macroscopic 

parameters of the USU MPG model with average microscopic parameters that describe the thermalization 

of trapped charge within the DOS.  While this example only addresses the constant DOS, it clearly shows 

that the ideas presented in Section 3.1 provide predictive physical insight into current VRH models. 

Further, it connects details of averaging theory to a common interpretation originally developed by Mott 

and Twose (1961).  An important next step in understanding the macroscopic description of VRH transport 

for the USU MPG experiments is the application of the macroscopic transport equations to the results 

discussed above.  In Chapter 4 (see Section 4.4 and 4.6), only high-temperature data were used; therefore, 

the same equations should be applied to low-temperature data to test their predictive value.  A discussion of 

VRH conductivity models for the exponential and Gaussian DOS is given in the final sections of Chapter 3, 

thus, providing a description of the hopping conductivity for HDIM.  Chapter 3 provides a complete set of 

low-temperature, field-dependent conductivity models that will allow more accurate determination of 

spacecraft charging at low temperatures, where VRH is likely to be active.  Of key interest is the fact that, 

when an HDIM’s temperature drops low enough that its dominant method of transport is VRH, the 

conductivity—and hence ability to dissipate internal charge distributions—is severely reduced.  

Understanding these phenomena is critical to estimating the decay of charge in situations where the 

spacecraft is subjected to a high field or particle flux at low temperatures. Thus in Chapter 3, connections to 
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microscopic average behavior, macroscopic interpretation of those behaviors, and real examples leading to 

advances in spacecraft engineering have been developed. 

Having developed the microscopic tools that allow for a complete physical picture of transport and 

a correct interpretation of the application of the transport equations in HDIM, the focus of this work was 

turned toward the derivation of models that describe charge transport in two of the six configurations 

presented in Chapter 1.   

6.4. Summary of Chapter 4 

It is paramount that this work developed concrete examples of the application of the transport 

equations to specific experimental systems used by the USU MPG and spacecraft designers in general. This 

is the focus of Chapter 4.  The transport equations of Chapter 2 are applied to the CVC (parallel plate 

capacitor) system used to study the long-term effects of moderate to high electric fields on HDIM.  One of 

the key points of this chapter was the use of a charge injection function, which provides a method to 

moderate the injected charge based on the electrode contact physics and the time-dependent internal charge 

distribution. The inclusion of the charge injection function in the transport equations and subsequent 

solution produced a completely new model for the measured current density at the collecting electrode due 

to charging of an HDIM in a CVC system.    Further, it provided an estimation for the surface potential, 

electric field, and estimation of the dark current conductivity.  The USU MPG did not have any previous 

models that described the time-dependent transport of charge and resultant current density.   

The USU MPG CVC charging model can and should be used in conjunction with the models 

presented for SCLC (Section 2.7.1) and VRH transport (Sections 3.2.4, 3.2.6, and 3.2.7).  Taken together, 

these models represent a comprehensive set of tools to characterize the behavior, dissipation, and 

mitigation of spacecraft charge problems.  In particular a complete engineering tool for the estimation time-

dependent current density has been developed using MathcadTM.   

6.5. Summary of Chapter 5  

The primary goals of this chapter were approached through the development of theoretical models 

for the charging and decay of an HDIM leading to a surface potential. Specifically, we discussed surface 

voltage dependence due to a normally incident electron beam—allowing simulation of spacecraft 
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environment conditions—on an HDIM as it charges up (electron beam on) and decays (electron beam off).  

The injection function approach of Chapter 4 was again used to describe the time-dependent injection of 

charge into an HDIM.  Thus, using the same formalism with different physical interpretations to completely 

different experimental systems was shown to be related by the most obvious of common factors, the HDIM 

itself. Once developed, this theoretical body was then compared to data taken by using a small voltage 

probe (SVP) in the SEE system (Hodges, 2013).  These models were referred to as the SVP charging and 

decay models.     

The data analysis section brought to light a number of interesting features in both the charging and 

decay models and the data.  First, our surface potential charging models seem to perform very well and 

predict reasonable values for the cross section, conductivity, and DOS.  For the decay models in LDPE, we 

found a clear case where the model limit (The present model is limited to times before that deposited 

charge reaches the rear electrode,) is reached and a post-charging (beam off) transit model is required to 

explain the observed behavior.  In KaptonTM (a system that does not reach its transit time during the 

experiments), we found excellent agreement with the literature and a model of dispersive transport that 

handles the problems associated with an exponential DOS.  This is in contrast to a system like LDPE whose 

DOS is likely to change over the energy spectrum (Mizutani et al., 2000) in a component-like way due to 

its semi-crystalline and amorphous nature. In fact, Mizutani et al. (2000) gives a table of activation energies 

and the corresponding molecular regions within LDPE responsible for such transitions.   

For 0.8 eV to 1.0 eV activation energies, it is suggested that the amorphous regions associated with 

defect structures are the primary active components.  We obtained a value of 0.873 𝑒𝑉 for our release rate 

activation energy, which seems to be in agreement with Mizutani.  However, even for a system as complex 

as LDPE, we find reasonable agreement with literature within the pre-transit regime.   Taking the data from 

the Toomer and Lewis (1980) table and creating plots for the release rate and trapping rate shows their 

strong dependence on the field.  The appearance of field dependence in the physical parameters makes a 

direct connection to the inclusion of field dependence described in Section 3.2.  The results of this section 

clearly indicate that the dynamics of the high field regime are at work, and the system is controlled by the 

interaction between the internal electric field, QFL (since the FL moves with time), and the demarcation 

energies (which govern the rate at which the DOS will fill up). A complete study on the dynamics of each 
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material under a range of beam energies, temperatures, and fluencies will yield a great deal of information 

about these dynamics.  These studies—in addition to concurrent studies on the surface potential, SEE, and 

CVC—will open doors to a deep understanding of the spacecraft charging phenomena. 

This dissertation has accomplished the goal set forth in Chapter 1 of developing a single, 

consistent theoretical framework for the study of charge transport, resultant electric fields, and dependence 

on local and internal electric fields, temperature, and incident energy of injected particles, particle flux, 

fluence, and time.  This theoretical formalism has been shown to extend current theories and has allowed 

for the development of several new models for the study of charge transport, all of which are based on the 

transport equations from Section 2.6 and average microscopic tools introduced in Section 3.1.  First, in 

Section 2.7.1 the complete SCLC theory as discussed in Section 2.7 in conjunction with the work of Kao, is 

used to show how SCLC behavior—originally developed for ordered materials—is extended to disordered 

materials; see Section 2.7.1.  In Chapter 3, the original USU VRH model developed in Dennison et al. 

(2009a) is extended to include the average microscopic description. The USU VRH model is explained in 

terms of this new theoretical framework, leading to a reduction in the number of free parameters.  In 

Chapter 4 a new model for the CVC system is developed using a combination of two methods, both of 

which are fundamentally based on the transport equations; this new model is the first of its kind to this 

author’s knowledge. In Section 5.3, the developments made for charge injection are used to develop a new 

theory for the charging of HDIM under electron beam injection; this is also a new model though it is 

similar to a model that was incorrectly extended in Liufu et al. (1998).  This approach is used to develop an 

expression for both the surface potential and current density of the collecting electrode, using the transport 

equations as a guide. In Section 5.4, a model originally developed by Toomer and Lewis, (1980) and 

extended by Aragoneses et al. (2008) using the work of Ferreira and de Almeida (1997) is developed from 

the transport equations; this leads to a complete description of the model in Aragoneses et al. (2008) which 

previously suffered from undetermined constants.  Finally, the theoretical developments of Chapters 4 and 

5 are fit to charging and decay data taken on LDPE and KaptonTM. The agreement with the literature and 

across experimental platforms is modest, at worst, and in most cases, is excellent.  In particular, in Section 

5.5.4 regarding the decay of electron beam irradiated KaptonTM, the agreement with the previous results in 

Aragoneses et al. (2008) is outstanding.  This is particularly impressive as their data were taken on a 
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completely different type of apparatus that is essentially a CVC system.  Further, the data on KaptonTM and 

LDPE were among the very first runs ever performed with the USU MPG SEE-SVP system.  

 To solidify the results of the CVC and SVP model validation, and subsequently the transport 

formalism presented in this dissertation, a set of fitting parameters is brought together in Table 6.1 and 

Table 6.2 showing LDPE and KaptonTM, respectively (Sim, 2010). These parameters—the DOS, capture 

cross section, trapping and detrapping (or excitation) rates, conductivity, and mobility—are the most 

common predictors of a material’s ability to dissipate charge, and therefore, are relevant to the spacecraft 

charging problem. Tables 6.1 and 6.2 are organized by experiment type (left column) and split into two 

sections, one for LDPE and one for KaptonTM.  All of these data come from USU MPG experiments; only a 

single data run was used for each of the experimental systems and material types, which must be improved 

and leaves our validation suspect.  For LDPE, notice that in each of the columns, we get good agreement 

between experimental systems for all of the parameters where data are available. For KaptonTM, data from 

RIC experiments originally conducted by Gillespie (2013) were fit with the transport equations to obtain 

the parameters used in this table.  The application of the transport equations to RIC has been done by many 

authors and is discussed briefly in Section 5.2; for additional information, see Sim (2010).  A more 

compete development of RIC in the formalism laid out in this dissertation has been written, but is not 

included here.  The agreement between the different experimental systems is again good, with the 

exception of the detrapping parameter for RIC.  Completion of the development, application, and 

interpretation of the RIC equations for the data sets described by Gillespie (2013) is left as future work; 

however, what is clear is that very useful information about material properties can be extracted using the 

formalism presented in this dissertation.   

These results taken together with the theoretical formalism used to produce these models—in a 

single nomenclature—represents the totality of this dissertation.   There is a tremendous amount of 

additional work to be done and to that end the final section of this dissertation is dedicated to a brief 

discussion of these areas future work. 
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6.6. Future Work 

There are numerous areas in this dissertation where future work is suggested. Some of these areas 

are in clarification and validation of theoretical concepts and ideas presented.  In particular, the areas of 

RIC, SCLC, VRH, and ESD are all areas where the concepts presented in this dissertation can be used to 

extend the USU MPG understanding of charge transport, charge storage, and material breakdown in HDIM. 

A brief outline follows of major areas where extensions can be made. 

Radiation induced conductivity is a key component in understanding the spacecraft charging 

problem.  The transport equations of Chapter 2 should be applied to RIC; the interested reader should 

consult Rose (1951), Fowler (1955), Sessler (1987), Arkhipov (1993a), Weaver et al. (1977), Orenstein et 

al. (1982), Schmidlin (1977), Yahagi and Shinohara (2004),  Dennison et al. (2009c), Tyutnev (1996), 

Gillespie (2013), and Sim (2010).  In Chapter 5 a brief discussion of RIC was presented and its importance 

discussed.  Further, the inclusion of the RIC equations will allow for a more complete analysis of present 

data taken on the USU MPG RIC system (Dennison et al., 2009c; Gillespie, 2013).  The use of the 

transport equations will allow for a determination of the dynamic response due to RIC of various HDIM 

that have been tested at USU, but as yet, remain unanalyzed with the exception of the equilibrium data 

analyzed for Tables 6.1 and 6.2.  It will also allow for the cross checking of material parameters measured 

in the other USU systems and the literature.   

Closely related to RIC is a set of experiments called time of flight (TOF).  See Fig. 1.4 (a), (i).  In 

this configuration, electrons are deposited on the surface of the sample and allowed to traverse the sample 

TABLE 6.1 Cross-platform data for LDPE. 
Experiment 

type [cm−3] 
DOS 𝑁𝑡 𝜇0 10−15 

[m2Vs] 
Cross 

section 
[cm2] 

Trapping 
rate 

 [s−1] 

Detrapping 
rate 

  [s−1] 
[Ω−1 cm−1] 
Conductivity 

SVP -Charge 2.029
× 10+17 

N/A 1.498
× 10−14 

N/A N/A ~ 2 × 10−15 

SVP – Decay N/A 3.15 × 10−15 N/A 1.055
× 10−3 

2.135
× 10−4 

~ 4.0 ×
10−17 

CVC -Charge 3.08
× 1017 

1.256
× 10−15 

1.209 × 10−  N/A N/A ~ 1.0 ×
10−18 

ESD 6.48 × 1018 N/A N/A N/A N/A Curve 
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under the action of an applied electric field or a self-field.  This experimental method is often used to 

estimate intrinsic values for material parameters; the mobility is the most common parameter to measure.  

The interested reader should consult Orenstein et al. (1982), Monroe (1986), Tyutnev et al. (2008c), and 

Sessler (1987).  This type of measurement is very popular with researchers interested in photoconduction 

(sometimes confused with RIC).  The TOF measurement has been performed under a different name by the 

USU MPG; the method was at that time called charge storage method [see (Swaminathan (2004)].  The 

transport equations are easily extended to include this method for both photo-induced surface charge and 

charge distributions deposited on the surface of the HDIM; the method presented in Swaminathan (2004) 

was the latter of the two.   

The application of the SCLC theory is of critical importance to cross check results from the CVC 

charging model.  In particular, in Section 2.7.1 models for the inclusion of the DOS in the SCLC models 

were discussed; this work is based on theories by Kao (2004), whose development of the subject is far 

better than that given in Chapter 2.  Since the DOS is found to be critical in estimating the onset of different 

SCLS regimes and possibly breakdown phenomena (Montanari et al., 2001), it is of great importance.  

In Sections 3.2.4, 3.2.5, and 3.2.6 VRH models were discussed for the constant, exponential, and 

Gaussian DOS, respectively.  While the model of Section 3.2.4 is an extension of the previous USU MPG 

VRH model, it remains untested.  To this author’s knowledge, the remaining two models have never been 

tested in HDIM.  For HDIM known to have a given DOS and to exhibit VRH behavior in an attainable 

TABLE 6.2 Cross platform data for Kapton-HNTM 
Experiment 

type [𝐜𝐦−𝟑] 
DOS 𝑵𝒕 𝝁𝟎 𝟏𝟎−𝟏𝟓 

[𝐦𝟐𝐕𝐬] 

Cross section 
[cm2] 

Trapping 
rate 

 [𝐬−𝟏] 

Detrapping 
rate 

 [𝐬−𝟏] 
[𝛀−𝟏 𝐜𝐦−𝟏] 
Conductivity 

SVP -Charge 5.29
× 10+17 

N/A 1.29 × 10−14 N/A N/A ~ 3.85 ×
10−14 

SVP – 
Decay 

N/A 6.98 × 10−15 N/A 7.32
× 10−4 

4.34
× 10−5 

~ 1.57 ×
10−19 

CVC -
Charge 

4.27
× 1017 

5.00
× 10−14 

1.3 × 10−14 3.33
×  0−6 

7.7 × 10−2 ~ 1.0 × 10−18 

ESD 5.17 × 1017 N/A 1.5 × 10−13 4.61
× 10−4 

2.58
× 10−5 

N/A 
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temperature range, the verification of these models will provide an important verification of the theory 

presented in Chapter 3.  The combination of the VRH models with time-dependent studies using the USU 

MPG CVC charging model will provide a pathway to study the extension of the transport equations to the 

low-temperature regime. 

The extension of the transport equations and SCLC behavior to ESD is a critical component in the 

study and mitigation of spacecraft charging.  These extensions to models in the formalism of this 

dissertation were completed during the writing of this dissertation, but are not included. The results of this 

investigation can be found in Sim and Dennison (2010), Sim (2010), and Ball (2012).  Because this work is 

published elsewhere, no additional discussion will be given; the interested reader should consult Lewis 

(1990), Lewis et al. (1996), Lewis (2002), Crine et al. (1989a), Crine et al. (1989b), Crine et al. (1996), 

Dang et al. (1996), Blythe and Bloor (2005), Sessler (1987), Fothergill (1998), Kao (2004), Liufu (1998), 

and Avini (1987).  

The next—and perhaps most easily accomplished—extension of this work is in the area of 

secondary electron emission (SEE).  Several authors have made progress in applying some form of the 

transport equations to SEE [see, for instance Song et al. (1997), Cornet et al. (2008), and Fitting (2010)].  

However, it is the opinion of this author all of these models suffer from fatal flaws. In particular, the model 

developed by Song uses RIC in place of a charge injection term; while RIC must be involved in the charge 

injection, RIC is not necessary to explain most of the observed phenomena.  The models of Cornet et al. 

(2008) and Fitting (2010) are all numerical in nature and rely on a complex set of charge recombination 

mechanisms to explain the observed behavior.  PEA measurement show quite clearly that charge injection 

by contact methods leads to a charge distribution that stays near the injecting electrode; thus, if an electron 

beam is incident on one side of the sample and the collecting electrode is on the other side, only a small 

region near the contacting electrode will have a positive charge distribution.  It would seem difficult to 

explain how positive carriers can be involved in recombination processes anywhere but at the collecting 

electrode.  In Section 5.3.2, a simple expression for the surface potential as a linear function of time and 

electron total yield was presented, in addition to a time-dependent expression for the total yield.  These two 

results strongly suggest that a very general—and relatively simple—expression for the total yield can be 

obtained from the transport equations with careful inclusion of SEE theory.  This can also be directly 
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related to a large body of literature on the mean energy loss of incident electrons to the material through the 

range models (Wilson and Dennison, 2010) and inelastic mean free path models.  This work has been 

described in broad terms in Hodges (2013), but requires the detailed extensions available based of the 

theories of this dissertation. 

Finally, the extension of the transport equations to model surface charge transport should be 

investigated to understand how charge redistributes on the surface of the spacecraft, in addition to the 

internal charge transport.  This work has already been started by Toomer and Lewis (1980) and is an  

extension of the previous work used to develop the USU MPG SVP decay model.  The new SVP system 

offers a powerful method for the study of surface charge transport, as shown in Hodges (2013). 

For materials that have significant disorder—such as HDIM—the SCLC current density equations 

must be modified to reflect that disorder by including a description of the DOS.  Three tables are shown, 

each describing a different piece of the SCLC behavior.  These pieces are described in Section 2.7 and will 

not be discussed again here.  For a complete discussion of regarding the physics and derivation of these 

equations see Kao (2004).  In Table A.1, a list of the current density equations for various DOS types is 

shown. The parameter, θ (already described in Section 2.6), is characteristic of the effects the DOS will 

produce on the observed current density. Table A.3 shows expressions for 𝜃 for each of the DOS listed in 

Section 2.7.  A new parameter called the effective sample depth, deff, is now included to account for the 

depth to which the charge distribution penetrates into the sample. The effective sample depth follows from 

the fact that in HDIM, the spatial distribution of traps—and for that matter conduction states—is 

disordered.  Thus, the effective sample depth is a correction term based on the spatial distribution 

function, 𝑆(𝑥), of the injected charge.  This spatial disorder term, like its energetic counterparts, can be a 

constant, exponential, or Gaussian; see Kao (2004) and references therein. Calculation of this parameter is 

not covered in this dissertation and presented only to alert the reader to the depth of information available 

in the discussion of SCLC behavior.  In particular, the expression for m, l, deff, and θ are specific for each 

DOS, and therefore, carefully considered for each application.  Further, each of these expressions has an 

accompanying set of voltage threshold equations,  𝑉Ω, and 𝑉𝑇𝐹𝐿, that identify the various transition regions 

in Fig. (2.10).  
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TABLES FOR DOS TYPES IN SCLC BEHAVIOR 

 
 

 
TABLE A.1  List of SCLC DOS-dependent equations.  
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TABLE A.2  SCLC critical parameters.  
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TABLE A.3  Correction fucntions. 
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