Space Universal Modular Architecture (SUMO)

Progress and Prospects

Paul Graven, Darryl Hummel and SUMO Integrated Transition Team (ITT)

SmallSat 2014
Topics

• SUMO Overview
• SUMO Transition Plan
• SUMO Workshop
• CSIS Workshop
• SmallSat Implications/Opportunities
• Conclusions and Prospects
Space Universal MOdular Architecture (SUMO)

Goal: Reduce the cost of satellites and help the US industry be more responsive in a growing international space market

What: Interoperability of satellite components through universalized environments and standardized data and electrical interfaces

How: Leverage existing & evolving standards to help US industry embrace industry consensus standards (which could become international)

Collaboration

SUMO Certified Components

Standards Process

Transition Plan

SUMO Certified Components

Space Universal MOdular architecture SUMO

Plug & Play

US Space Industrial Base
- More Competitive Internationally
- Larger Addressable Market
- Less Time to Market/Orbit
- Increased Innovation

US Government Buyer
- Reduced Acquisition Costs
- Enhanced Capabilities

ODNI

NRO

AFRL

SMC

NASA

Industry
SUMO Interfaces Concept

Component Interfaces Defined by Application

Supplier A

Symbol

OR

Prime X

Symbol

Prime Y

Symbol

Prime Z

Symbol

Catalog, Common, or Custom Bus

Component Interfaces Defined by Industry Consensus

Supplier A

Symbol

OR

Prime X

Symbol

Prime Y

Symbol

Prime Z

Symbol

Modular Bus with Open Interfaces
Leverage past and present government and industry investments to progress from proprietary, custom architectures to modular, open network architectures

Industry:
- Time-Triggered Gigabit Ethernet
- SPA Variants
- IRAD >$100M
- Integrated Modular Architecture
- Universal Qualification Environments
- Platform Commonality Framework

SUMO Heritage

AFRL: NGSIS
DARPA: F6 Experiment Opportunities $300M
ORS: MSV Risk Reduction Opportunities $50M
NASA: Common Instrument Interface
SMC: MONA and SNAP for Hosted payload interfaces
NASA: SpaceAge Bus $4M, 13 Missions
AFRL: MONARCH (SPA) $130M
NASA: Core Flight Executive $12M, 20 Missions
Industry: Universal Qualification Environments

Collaboration Fora:
EXISTING:
- Integrated Transition Team
- SUMO Special Interest Group*
- CCSDS Spacecraft Onboard Interface Services
- One-on-one technical interchanges

DEFINED:
- Letter of Intent
- Space Industrial Base Council Working Group
- DPA Title III Presidential Determination

DEVELOPING:
- Cooperative R&D Agreements
- Consortium for Space Industry Standards

Setting the Environment for Industry-Consensus Standards

*http://mailman.ccsds.org/cgi-bin/mailman/listinfo/uspacesig
SUMO Transition Plan

Track I

Engage Stakeholders

- Gov’t Agency Collaboration (ITT)
- Industry Consensus (CSIS)

Agreements: Inter-Agency LOIs
Charters & Forums: SIBC/ITT, CSIS

Track II

Develop Standards

- Detailed Plan
- Develop Standards
- Codify Standards

- Industry Leads
- Government at Table
- Develop Standards
 - Gap Analysis
 - Harmonize existing
 - Develop New
 - Design Conformity
 - Assessment
 - Consensus Draft
 - SDOs Support/Codify

Track III

Demonstrate Standards

- Bench Demos w/ 1st Article Production Components at Gov’t Labs

- Component Demos/Prototypes
- Flight via One-Offs & Hosted P/Ls
- Requirements for Standards on PORs
- Programs of Record (PORs)

Legend

- Government Agencies
- Industry (Primes & Suppliers)
- Standards Devel Orgs (SDOs)
• “The What”
 – Interface standards
 – Common qualification environments

• “The Why”
 – Business case

• “The How”
 – SUMO ITT
 – CSIS
• Overview
 – Kick-off the formal standards efforts
 – Transition to industry leadership
 – 75 participants ~50-50 government-industry

• Technical Working Groups
 – More than 20 breakout sessions
 – Software Architecture, Electronic Data Sheets, Cyber Security, Hardware Interfaces, Hosted Payloads, and Common Qualification Environments, and many others
CSIS Structure

- SUMO Architecture of Standards (AoS)
- Consortium for Space Industry Standards (CSIS) Steering Committee

CSIS Sub-Groups:
- Data Interface Standard(s)
- Electrical and Physical Interface Standard(s)
- Environmental Qualification Standard(s)

Electronic Data Sheets

- SW Reference Architecture
- Physical Characteristics
- Signal Characteristics
- Component Qualification
- Parts Qualification

Data Model

- Data Link
- Bus Power Voltage and Quality

Cybersecurity

Level of Maturity

- Used to organize our efforts
- Puts Candidate Subject Areas in Context
- Aligns to Industry Survey Interests
CSIS Organization(s)

Facilitate SUMO Transition
Advise Industry

Govern Standards Process

Develop Standards

ITT
Integrated Transition Team

CSIS
Consortium for Space Industry Standards

TWG 1
Technical Working Group

TWG 2
Technical Working Group

…

Industry-Led, Government-Advised, SDO-Supported Standards Development

ITT – Integrated Transition Team (Tri-Chair: NASA, SMC, NRO)
CSIS – Consortium for Space Industry Standards

TWG – Technical Working Group
SDOs – Standards Development Organizations

Advisory Group
Cooperative Relationships
Sub-Domain Working Groups
SmallSat Implications/Opportunities

- The Small Satellite movement provides much of the foundation for SUMO and CSIS success
- SmallSat players are conspicuously involved
- SmallSats will, almost certainly, be leveraged to demonstrate and validate the technologies
- The SmallSat industry will benefit greatly from SUMO success
- SUMO may open the doors to smallsats and smallsat manufacturers moving up-market
Conclusions and Prospects

• The transition to industry leadership is occurring

• Government and industry are coordinating formal commitments

 ⇒ Business cases that close

• CSIS is established and operating

• The stage is set, but it is not yet a “slam-dunk”
Acknowledgements

• SUMO Integrated Transition Team
• The numerous government and industry participants in the SUMO and CSIS workshops
• The countless individuals and organizations that have provided support, inputs and feedback to inform and guide SUMO development and implementation