Tomato Spotted Wilt Virus of Tomato & Pepper

Claudia Nischwitz, Associate Professor and Extension Plant Pathologist; Mariah Noorlander, Lab Assistant, and Mary Ann Hubbell, Plant Disease Assistant, Utah State University

What You Should Know

- In Utah, Tomato spotted wilt virus commonly affects tomatoes, peppers, and tomatillos
- This virus is transmitted by Western flower thrips
- Present in the farmscape in some areas of Utah, Otherwise introduced on transplants
- TSMV cannot be controlled with pesticides

SYMPTOMS

Symptoms of TSWV vary according to the type of plant, and the time the plant was infected. If tomato and pepper plants are infected early in the growing season, the plant can wilt and die, starting from the top and continuing to the bottom of the plant.

In tomato plants, symptoms on the leaves consist of small brown or necrotic spots. Brown ringspots can appear on immature, green fruit. Ringspots and a calico pattern can also be seen on ripe tomato fruit in red, orange and yellow colors.

Symptoms of TSWV in pepper plants are very similar to tomato plants in that the fruit can display ringspots or calico patterns appearing from green to red. Symptoms of the pepper foliage consist of chlorotic ringspot patterns. Weeds usually do not show symptoms of TSWV.

INTRODUCTION

In Utah, Tomato spotted wilt virus (TS WV) most commonly affects tomatoes, peppers and tomatillos. It has also been found in ornamental plants such as blanket flower (Gaillardia sp.), and zinnia and weeds. TSWV has become more prevalent in Utah in recent years. This virus is transmitted by western flower thrips (Frankliniella occidentalis), which are very small yellow/brown insects measuring less than 1 millimeter in size. TSWV can also be spread by onion thrips.

TSWV is transmitted by western flower thrips. The thrips acquire the virus when they are in the larval stage and are able to transmit it for the remainder of their lives. If an adult comes in contact with the virus, they can acquire it but are not able to transmit it. Plants become infected with TSWV once they are fed on by infected thrips. The virus is transmitted to the healthy plant tissue through the saliva of the thrips. Once a thrips has fed on a healthy plant, symptoms will begin to appear 7-10 days later. Usually, the virus spreads throughout the plant until the entire plant is infected with TSWV. There is no cure for infected plants and they should be removed to help prevent spread to uninfected, neighboring plants.

Fig. 1. Adult Western Flower Thrips

Fig. 2. Larva of Western Flower Thrips

Fig. 3. TSWV infected tomato
TOMATO LEAF AND FRUIT SYMPTOMS

Fig. 4. Tomato Leaf
PEPPER LEAF AND FRUIT SYMPTOMS
MANAGEMENT

Control of Thrips:
It is important to manage thrips early in the season before high populations develop. The most common way to control thrips spreading TSWV is with insecticides. Using insecticides can be challenging as thrips can build up resistance. Rotation between different chemistries is essential. Thrips may also escape insecticide applications due to their small size. They can hide in buds or other parts of the plants. Eggs are inserted into the leaf and may not be accessible to insecticides.

Remove infected plants immediately
Infected plants cannot be cured and would only provide inoculum for further and new infections.

Purchase and transplant of healthy plants:
In some instances, vegetable transplants may have been exposed to TSWV if they were grown near infected weeds or other plants. It can be extremely hard to tell if young transplants have been exposed because they may not show symptoms. It is very important to ensure good weed and thrips control to lessen the possibility of infection.

Use resistant varieties if available

Weed control:
Both thrips and TSWV can be found on weeds. As the thrips reproduce on these weeds, the number of infected thrips that can transfer the virus increases. To reduce the number of thrips and the chances of spreading TSWV, good weed control around the edges of fields and in gardens and landscapes is very important.

IMPORTANT WEEDS TO CONTROL IN UTAH

Amaranthus retroflexus L.; Redroot pigweed
Also known as: Red-root amaranth, Red-rooted pigweed, Common amaranth, Pigweed amaranth, and Common tumbleweed.

Lactuca serriola L.; Prickly lettuce
Also known as: China lettuce, Compass plant, Horse thistle, milk thistle, Wild lettuce, and Wild opium.

Portulaca oleracea L.; Purslane
Also known as: Little hogweed, Akulikuli-kula, Common purslane, Duckweed, Garden purslane, Little-hogweed, Purslane, Pursley, Pusley, and Wild portulaca.

Sonchus asper (L.) Hill; Spiny sowthistle
Also known as: Perennial Sowthistle, Prickly Sow Thistle, Sharp-fringed-Sowthisle, Sow-thistle, and Spiny-leaf Sow Thistle (Spanish: Chinila, Cerraja, Hoildkam iwaki).

Chenopodium album L.; Lambsquarter
Also known as: Common lambsquarter, White goosefoot, and Fat hen.
Utah State University is committed to providing an environment free from harassment and other forms of illegal discrimination based on race, color, religion, sex, national origin, age (40 and older), disability, and veteran’s status. USU’s policy also prohibits discrimination on the basis of sexual orientation in employment and academic related practices and decisions. Utah State University employees and students cannot, because of race, color, religion, sex, national origin, age, disability, or veteran’s status, refuse to hire; discharge; promote; demote; terminate; discriminate in compensation; or discriminate regarding terms, privileges, or conditions of employment, against any person otherwise qualified. Employees and students also cannot discriminate in the classroom, residence halls, or in on/off campus, USU-sponsored events and activities. This publication is issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Dept. of Ag., Ken White, Vice President for Extension and Agriculture, Utah State University.

REFERENCES


PHOTO CREDITS

Unless otherwise noted, photos by Claudia Nischwitz, Utah State University.

Figure 1. David Cappaert, Bugwood.org
Figure 2. J.P. Sanderson, Cornell University, Ithaca, New York
Figure 3. Edward Sikora, Auburn University, Bugwood.org
Figure 4. Clemson University.
Figure 5. Utah State University, Bugwood.org
Figure 6. Lynn Sosnoskie, University of Georgia, Bugwood.org
Figure 7. Ohio State Weed Lab, Ohio State University, Bugwood.org
Figure 8. Steve Dewey, Utah State University, Bugwood.org
Figure 9. Chris Evans, University of Illinois, Bugwood.org

Precautionary Statement: Utah State University Extension and its employees are not responsible for the use, misuse, or damage caused by application or misapplication of products or information mentioned in this document. All pesticides are labeled with active ingredients, directions for use, and hazards, and not all are registered for edible crops. “Restricted use” pesticides may only be applied by a licensed applicator. The pesticide applicator is legally responsible for proper use. USU makes no endorsement of the products listed herein.

Utah State University is committed to providing an environment free from harassment and other forms of illegal discrimination based on race, color, religion, sex, national origin, age (40 and older), disability, and veteran’s status. USU’s policy also prohibits discrimination on the basis of sexual orientation in employment and academic related practices and decisions. Utah State University employees and students cannot, because of race, color, religion, sex, national origin, age, disability, or veteran’s status, refuse to hire; discharge; promote; demote; terminate; discriminate in compensation; or discriminate regarding terms, privileges, or conditions of employment, against any person otherwise qualified. Employees and students also cannot discriminate in the classroom, residence halls, or in on/off campus, USU-sponsored events and activities. This publication is issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Dept. of Ag., Ken White, Vice President for Extension and Agriculture, Utah State University.