Comm for Small Sats: The LADEE Communications Subsystem

Vanessa Kuroda
LADEE Communications Engineer, Cmd Controller
NASA Ames Research Center

Co-Authors: Mark Allard (LADEE Comm Subsystem Lead), Brian Lewis (LADEE S/C SE), Michael Lindsay (LADEE Comm)
Agenda

• Overview
• Design
 – S-Band Transponder
 – Antennas
• Integration & Test (I&T)
• Mission Operations
• Lessons Learned
• Summary/Conclusion
Lunar Atmosphere and Dust Environment Explorer

Objective
- Measure Lunar Dust
- Examine the lunar atmosphere

Key parameters
- Launch Vehicle: Minotaur V
- Launch Site: Wallops Flight Facility
- Launched Sept 6, 2013, Impacted April 17, 2014
- Total Mission Length: 8 months

Spacecraft
- Type: Small Orbiter - Category II, Enhanced Class D
- Providers: NASA ARC and NASA GSFC

Instruments
- Science Instruments:
 - LDEX: Lunar Dust EXperiment
 - NMS: Neutral Mass Spectrometer
 - UVS: Ultra Violet Spectrometer
- Technology Payload: Lunar Laser Communications Demo

Not covered in this talk, covered in-depth in SPIE Photonics West 2014.
LADEE Communications Overview

- S-Band Transponder
- Three evolved antennas
 - Two omnidirectional low gain
 - One directional medium gain
Integrated S-Band Transponder Unit
Space Micro μSTDN -100

- Integrated with diplexer/splitter/coupler
- Compatible with multiple ground stations
 - DSN (Deep Space Network)
 - NEN (Near Earth Network)
 - SN (Space Network, TDRSS)
- RS-422 interface instead of relay closures
 - Allowed for flexible number of commands
- Test ports for both transmit and receive
 - Greatly aided during I&T
- Precision coherent ranging
- Multiple Data Rates: 1 kbps-128 kbps, suppressed and residual carrier capability
- RF Out: 8W total, 4W/Omni; Power draw: up to 45 W
Genetically Evolved Antennas
By Antenna Development Corporation (AntDevCo), Carnegie Mellon University, NASA Ames Intelligent Systems Division

- Two omnidirectional low gain antennas
- One medium gain (transmit only)
- Utilized new, rapid, antenna design process based on Darwinian evolutionary algorithms originally developed at Ames
- Flight proven on ST-5 Mission, Interface Region Imaging Spectrograph (IRIS), and now LADEE
Integration and Test (I&T)

Test equipment rack built at Ames
- RF Level Matching Interface
- Full suite of test instruments configured together to allow for automation

Hardware Acceptance Configuration

Test equipment rack integrated with RT Logic T70/70XL and Hardware-in-the-Loop (HIL) to perform full end to end command and telemetry testing
LADEE Encapsulation
LADEE Launch: September 6, 2013!
• Clean acquisition through TDRSS
• Clean handover to DSN
LADEE Launch!

- Clean acquisition through TDRSS
- Clean handover to DSN
On Orbit Checkout

LADEE Omni Antennas Combined Pattern, 2249 Mhz

- Boresight predictions consistent with reality
- No reliable way of predicting performance within interference regions
- Cold area
- Sweet Spot

(Observed) – (Model): +5 dB, +2 dB, 0 dB, -2 dB, -5 dB
Mission Operations

• Regular operation at max of 128 kbps w/large link margin

• Dynamic Link Analysis Tool (DLAT) developed for LADEE but can be generalized to any spacecraft

• Experienced multipath
Dynamic Link Analysis Tool (DLAT)

- Developed for LADEE but can be generalized to any spacecraft
 - Excel = Ground station parameters
 - STK = Spacecraft and Groundstation Models
 - MATLAB = GUI, Ops Parameters, Final Output
Multipath

Symbol Signal to Noise Ratio at Ground Station (dB)

Received Power (dBm) at Ground Station
Lessons Learned

• There is still no space qualified “COTS” comm subsystem
 • Long lead, so start early!!

• Risk Mitigation with small/new vendors
 • Logic Simulators and Vendor-Built EGSE
 • Clear specifications and measurement methods
 • Pre-Release/Acceptance Compatibility Testing
 • Ground Networks
 • Portable Hardware-In-the-Loop (HIL) (“Traveling Road Show”)

• Multipath will occur when close to the surface of an orbiting body, and must be anticipated during Mission Ops
Summary/Conclusion

Utilizing state of the art technologies for low-cost small satellite communications, the LADEE Communications Subsystem performed beyond expectations on-orbit and now has the flight heritage for future small spacecraft communications systems.

- Flight qualified small sat -
 - S-band transponder
 - Evolved S-Band antennas
 - Dynamic Link Analysis Tool
 - Test Equipment Suite

![Engineering Unit in Thermal Chamber](image-url)
Thanks: Mark Allard (LADEE Communications Subsystem Lead), Michael Lindsay (DLAT), Brian Lewis (LADEE S/C Sys Engr), Victor Sank (GSFC), Howard Garon (GSFC), DSN, NEN/SN, Space Micro, AntDevCo, the rest of the LADEE team!
Questions?
Backup Slides
Mission Critical Events:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Type</th>
<th>Ground Station(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch Vehicle Separation</td>
<td>Mission Critical</td>
<td>TDRSS</td>
</tr>
<tr>
<td>Initial Safe-Mode Acquisition</td>
<td>Mission Critical</td>
<td>HBK</td>
</tr>
<tr>
<td>Phasing Maneuvers: PM1, PM-2*, PM-3*</td>
<td>Mission Critical with Time Constraint</td>
<td>WS-1 or DSN</td>
</tr>
<tr>
<td>Lunar Orbit Insertion 1 (LOI-1)</td>
<td>Mission Critical with Time Constraint</td>
<td>WS-1 or DSN</td>
</tr>
<tr>
<td>LDEX Cover Deploy</td>
<td>Mission Critical</td>
<td>WS-1 or DSN</td>
</tr>
<tr>
<td>NMS Cover Deploy</td>
<td>Mission Critical</td>
<td>WS-1 or DSN</td>
</tr>
<tr>
<td>UVS Cover Deploy</td>
<td>Mission Critical</td>
<td>WS-1 or DSN</td>
</tr>
<tr>
<td>Contingency OMM Burns</td>
<td>Mission Critical</td>
<td>WS-1 or DSN</td>
</tr>
</tbody>
</table>

Mission Phase:

1. Launch: Minotaur V Launch Vehicle
2. TLI: STAR 37 FM Upper Stage
3. TCM(s): Perigee/Apogee Bipropellant
4. LOI: Bipropellant

Phasing Loops: ~23 days

Time in Phasing Loops: ~23 days

Decay