Early Results of the CASCADE Technology Demonstration Payload on CASSIOPE

Mark Senez, Bruce Entus, Jeff Hemingway – MDA
A.W. Yau, G.A. Enno - UoC
Image Credits and Disclaimer Language

RESTRICION ON USE, PUBLICATION OR DISCLOSURE OF PROPRIETARY INFORMATION AND IMAGES
This document contains information and images that are proprietary to MacDonald, Dettwiler and Associates Ltd. (“MDA”), to its subsidiaries, and/or to third parties to which MDA may have legal obligations to protect such information or images from unauthorized disclosure, use or duplication. Any disclosure, use or duplication of this document or of any of the information or images contained herein is expressly prohibited.

The statements contained herein are based on good faith assumptions and provided for general information purposes only. These statements do not constitute an offer, promise, warranty or guarantee of performance. The products depicted are subject to change, and are not necessarily production representative. Actual results may vary depending on certain events or conditions. This document should not be used or relied upon for any purpose other than that intended by MDA.

COPYRIGHT © 2014 MacDonald, Dettwiler and Associates Ltd., subject to General Acknowledgements for the third parties whose images have been used in permissible forms. All rights reserved.

GENERAL ACKNOWLEDGEMENTS
Certain images contained in this document are property of third parties:
Image of [O’Higgins antenna] on P. [3]. COPYRIGHT © [BKG]. All rights reserved.
Image of [CASSIOPE] on P. [3,4]. COPYRIGHT © [Magellan]. All rights reserved.
Images of [Falcon9] on P. [5]. COPYRIGHT © [SpaceX]. All rights reserved.
CASSIOPE Mission

CASSIOPE Mission consists of:
CASSIOPE Spacecraft
Mission Ops Centre
 Rothney Astrophysical Observatory (RAO)
 Calgary (Canada)
CASCADE Ground Terminal
 RAO
TT&C Stations (SSC)
 O’Higgins (Antarctic)
 Inuvik (Canada)
 Svalbard (Norway)
ePOP Science Ops Centre
 University of Calgary (UoC)
CASSIOPE

CASSIOPE consists of:
 CAscade
 Ka-band Comms
 Payload Demo (termed CX)
 SmallSat Bus
 Generic Bus Development
 Ionospheric Polar Explorer
 Space Weather Science Payload
 aka ePOP (enhanced Polar Outflow Probe)
CASSIOPE Launch

Launch Sept 29th 9 am Pacific
325 x 1500 km orbit
81 deg inc.
51 years after Alouette 1
First Falcon 9 v1.1
First launch from Vandenberg
CX Concept

CX is a tech demo payload focusing on
High speed store and forward
Ka-band receive & transmit
Modulator/Demodulator
Data Storage Technology
Evaluation
Low Error Rate
CX Payload

CX demonstrates 2 channels of CASCADE

Each channel has a data rate of 350 Mbps
Right Hand Circular Polarized
Separated in frequency

CX operates in half-duplex mode

Data Storage Unit
storage of 1 Tb over four sub-units

Connection added to the ePOP Payload
allow science data download via CX
CX Operation

Key feature of CX is use of a beacon to minimize data loss/errors.

Measurement of Beacon levels allows adjustment of transmit power, start/stop transmission of data/fill.

Depending on number of errors CX can use backhaul, schedule additional pass to re-transmit.
CX On-Orbit Results

CX units commissioning started after confirmation of thermal maintenance of CX panel

Unit commissioning interleaved with Bus/ePOP commissioning
 Payload Control Software
 Master Oscillator
 Receive Chain (Demodulator and Frequency Generation Unit)
 Transmit Chain (Modulator and Travelling Wave Tube Amplifiers)

Ground Terminal Commissioning
 Antenna pointing calibration using Sun, Wild Blue and CASSIOPE
 Antenna power output calibration
CASCADE On-Orbit Results

End to End Data Transfer
Uplink from GT to CX
Upper plot shows Demodulator lock throughout pass
Lower plot shows Beacon power transmitted
CX On-Orbit Results

End to End Data Transfer
Downlink from CX to GT
Upper plot shows Beacon signal strength received
~ ¾ through plot Beacon strength goes below min criteria
CX transmits fill during period
CX On-Orbit Results Summary

Several end to end transfers now completed proving:
 Gigapackage format for transporting large amounts of data
 A relatively high error level can be corrected in the files
 moved through the satellite
 Technique for using a 30GHz beacon to assess 20 GHz data
 link (and vice versa)
 A qualified payload design and architecture
 A qualified Ground Terminal system design

ePOP science data transfers also completed
 CX provides a much higher transfer rate (350 Mbps, vs 4 Mbps)
Acknowledgements

The CASSIOPE mission and CX Demonstration was enabled by Canada’s contributions from the Canadian Space Agency (CSA) and the Industrial Technologies Office (ITO)
Thank You!