The Small Satellite Integrated Communication Environment (ICE)

Paper: SSC14-IX-8

John Ploschnitznig
Lab Director
Modeling and Application Development Lab
Research and Engineering Group

Patent 8,751,064 B2
• **Problem**
 - How to improve communication with small satellites
 - SMALLSATS are supposed to be inexpensive
 - Building NANOSATs has become affordable
 - Launching your satellite has become affordable
 - Everyone forgets about communication
 - The benefits to many small satellites will be lost with the inability to communicate with them

• **Current Situation**
 - Dedicated dish antennas and corresponding ground site hardware
 - Cost: hardware and operations
 - Access: 1 satellite at a time, maybe 4 to 6 accesses per 24 hours
 - So, how do you handle 10, 100, 1000 satellites?

• **Solution**
 - Modify existing cellular network infrastructure to create an Integrated Communication Environment (ICE)
 - Leverage existing cellular phones, modified for space communication
 - Add fixed and upward pointing antennas to select cellular towers
Riverside Research Laboratories

The solution: How does it work?

- **The Satellite Phone (ICE Box)**
 - Smart phone technology
 - Serves as satellite CPU, an even better comms device

- **The Cell Tower (ICE Dish)**
 - Modify existing cell towers with fixed, upward pointing dishes
 - Location, Location, Location ... Cover the globe
 - 3rd world nations rely on cellular technology to communicate

- **Virtual Ground Site (ICE Tray)**
 - Breaks the ground site paradigm
 - The cellular network becomes the ground site
 - Just call your satellite(s)
 - Text commands - Up
 - Text data/product - Down
 - Stream data?
 - Will leverage data packets (ICE Pacs)
Riverside Research Laboratories
The Tower Infrastructure

- **Individual Towers**
 - Modified with a fixed upward pointing dish antenna
 - Size is frequency dependent
 - Very low sidelobes, minimize interference
 - Leverages existing tower infrastructure

- **It's all in the numbers**
 - One tower provides limited coverage
 - Many overlapping towers provide global coverage
Spacing

- Dependent on the desired footprint
 - Beam width (modeled at 3dB half power beamwidth)
 - Impacts satellite transition time (approx 10-20 seconds)
 - Bound logical ICE Pac size

- Numerical balancing act
 - Link Budget Analysis (frequency, gain, dish size, etc)
 - Frequency also defines provider and cell protocol (service you get)

- Overlap will also ensure handoff to neighboring cell

For Example

- Satellite altitude is 300 km (defines the range)
- Assume a 4G Network operating at 4GHz
- Dish must be 25 cm diameter illuminated area, larger dish to minimize interference
- Results in an ~18 degree footprint
- With a 35% overlap, ground spacing should be approximately 60 km
- Resulting in approximately 50K cell tower globally (land cover)
Riverside Research Laboratories
The Tower Infrastructure (Spacing)

Notional ICE Implementation in Florida
- Single Access
- Double Access
- Triple Access

Notional ICE Dish Antenna Pattern
Riverside Research Laboratories
The Satellite Phone (ICE Box)

• **Leverage Smartphone technology**
 - Powerful CPU, miniaturized, lightweight
 - Select Network based on anticipated product
 - Defines ICE Pac requirements
 - Bandwidth impacts Link Budget
 - Bandwidth defines products
 - Power is adjustable, not limited by safety

• **Antenna (Helix?)**
 - Designed to Overlap ICE Dish Coverage
 - Ensures continuing coverage
 - Designed to ensure comms
 - Link Budget
• **Operations (ICE Software)**
 - Satellite position is known
 - Status of Health – GPS
 - Cell Towers are known
 - Approved communication list
 - Cell Tower access will dictate continual coverage
 - No need to establish connection, shorten protocol
 - Many satellites can be managed by each tower

• **Data (ICE Pacs and ICE Tray)**
 - Uplink
 - Commands (small messages)
 - Downlink
 - Status of Health
 - Data (Images, Raw Data, Video, etc)
 - Software
 - Manage and reconstruct ICE Pacs
 - Manage tower assignment
Riverside Research Laboratories
Potential Applications

• “Look at me”
 • Your land device has GPS
 • Application will manage tasks
 • All participating/available satellites are assigned
 • Satellites are tasked based on mission planner
 • ICE ensures fast/timely response

• “The Dynamic Earth”
 • Utilizes available globe tools
 o Google Earth, World wind, CESIUM
 • Participating satellites
 o Image dump mode
 o Stream pics/video to DE server
 • Supports natural disaster tracking
 o Pre/post hurricane, tsunami,
 o Oil Spill tracker
 o etc
ICE offers a new novel approach to satellite communication
 • Leverages existing cellular technology and infrastructure

Offers a shift in the traditional communications paradigm
 • From single-node ground site, to a network of antennas

Scalable (as satellite numbers increase)
 • Each satellite has its own phone number
 • Many satellites can pass through a single node
 • No competition for communication access

ICE is not “Evolutionary”, its “Revolutionary”
 • Puts satellite communication in the hands of the operator
Questions