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Amorphous carbon was used as a test case for the
embedded ring approach. A physically consistent set of force
constants for the valence force model was determined by
comparing the 6-membered ring E,, mode to the E,, mode in
graphite. Frequencies for selected ring modes were
calculated, resulting in a discrete line spectrun.

Calculated‘frequencies were fitted with gaussian peaks
and convoluted into theoretical spectra for comparison with
the experimental Raman spectrum of amorphous carbon.
Integrated gaussian lineshape intensities were assumed to be
directly proportional to the CRN ring statistics. The peaké
were convoluted with the peak widths, ring statistics, and
number of modes as the adjustable parameters.

Parameters consistent with previous research on the
structure and dynamics, of amorphous carbon provided
satisfactory fits to the data. The best fit to the Raman
data includes the E,, and A,, modes of 6-membered rings
(present in Raman spectra of nanocrystalline graphite), and
the Raman active E,’ modes of 5- and 7-membered rings. The
corresponding ring statistics agree with previous results,
supporting the presence of a sizable percentage of 5- and 7-
membered rings, but with no 4- or 8-membered rings. This
positive result provides verification for the embedded ring

approach, and supports a CRN model for amorphous carbon.

(156 pages)



-+.CHAPTER L.

- INTRODUCTION

Modellng'the‘v1brational dynamlcs of amorphous materlals
‘presents a more dlfflcult problem than that posed by
| crystalllne materrals.( Analys1s of the v1brat10nal dynamlcs
of crystalllne materlals is well establlshed The presence
of long—range translatlonal order (perlodlclty) in crystals
'allows analytlcal solutlon of the equatlons of motlon by
1ntroductlonylof thej Born-von ‘Karman perlodlc boundary
;condltlonr’Mﬁ bIn contrast structurally disordered—-or
amorphous-~mater1als by'deflnltlon lack long-range order and
are not amenable to the analytlcal treatments used for
crystalllne materlals.‘ As a consequence, other theoretlcal
approaches have been developed. to model ‘the v1bratlonal
dynamlcs of disordered materials. These approaches however,
are far from def1n1t1ve and yleld only approx1mate results.

A majorlty of the theoretlcal approaches used to study
the‘Vlbratlonal dynamlcs of amorphous materlals are numerlcal
approaches. The analytic approaches developed to date can be
applled only to a fev speclfic materials,.and‘yield only
qualitative ‘results. Note that ’no generalized analytic
approach has yet been found to model the dynamics of two-
dimensional (éD)Tﬁandu three-dimensional (3D) amorphous
materiais.?’ Therefore, in contrast to the lattice dynamics

of ‘crystalline materials, the vibrational dynamics of
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amorphous materials offers a field of research still in its
vigorous youth, and remains an open and fertile frontier for
new ideas.

Limiting the scope of an analytic apprééch to only 2D
materials reduces the complexity introduced by 3D materials.
Structurally disordered 2D materials present a' simpler
problem theoretically by the mere fact that one dimension is
eliminated. Such an analytic approach would still provide
meaningful results for real materials, however. In
comparison, theoretical techniques which confine themselves
to even simpler systems, such as one-dimensional disordered
chains, are severely restricted in applicability (for
example, to polymeric compounds or chalcogenidé glasses with
- one-dimensional networks). -

This thesis addresses ﬁhe problem of the vibrationai
dynamics of 2D disordei';ad Iﬁaterials by developing a new
method--the embedded ring approach. The embedded ring
approach is a generalized, analytical method based upon a
common structural unit present in covalent 2D materials--the
planar ring. The approach examines localized vibrations in
disordered 2D networks with the use of planar ring modes of
oscillation. A disordered 2D network is simulated by
embedding various sized rings in the network. Vibrational
frequencies and modes of oscillation for the various sized
rings are obtained for isolated rings and modified by

coupling the rings to the network. The results comprise a
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spectrum - of * frequéndiés which can be  compared o the
vibrational density of states (VDOS) of real materials, or
which can be used to generate theoretical vibrational
" spectra.

The embedded ring approach is limited in application to
materials having pTanar rihgs. It is therefore particularly
‘suited for modeéling the dynamical behavior of 2D materials.
 Examples of 2D'materials include-physisorbed and chemisorbed
monolayer films on surfaces, monolayer épitaxial films' (via
vapor deposition or molecular beéeam epitaxy), ahd ‘layered
' materials.’' These materials are currently theé sibjects of
active resea¥ch areas, proving ‘to be rich resdurces for both
basici'scientific knowledge and technological applications.

Layered materials are formeéd by stacking 2D planes or
layeré of atoms to form bulk 3D materials. In many layered
materials the atoms withi; an individual plane or layer are
strongly bonded by either covalent or ionic forces, whereas
' the layers themselves aré only weakly bonded by forcés such
' as the van der Waals interaction. Such intralayer forces may
" Pe an order of magnitude or more greater in strength than the
~ interlayer:  forces. Layered = materials = with . these
‘characteristics display anisotropic properties arising from
" tHeir nearly 2D nature, and can often be regarded essentially
as 2D materials. Examples of such materials ‘are the
‘compositionally simple crystals formed by graphite, boron

nitride, and several ' of the metal halides and metal
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dichalcogenides.®* Many of these materials also form the
basis (the intercalate) for intercalation compounds. Others
are of interest because they are semiconductors, superionic
conductors, or used as high technology cé?amics-‘with a
variety of applications.

Other compounds with more complex compositioné form
materials with definite planes or layers, but with stronger
interlayer bonding, usually of ionic or covalent forces.
Such materials display 1less anisotro?y, and are more
intermediate in nature between 2D and 3D materials. Several
silicate minerals are representative of this class of 1ayere€i
materials, and include biotite (mica), serpentine (asbestos),
and montmorillonite (clay).®? In the past five years, a group .
of complex oxide materials has risen to prominence because of .-
the superconducting properties endowed by their layered
stfucture. The copper oxide superconductors owe their high
temperature superconductivity to a layered perovskite crystal
structure, which consists of 2D copper oxide planes separated
by (depending upon composition and crystal structure)
alkaline earth cations, rare earth cations, thallium oxide
layers, bismuth oxide layers, or lead oxide layers. The
lattice dynamics of the copper oxide planes are of special
importance to theorists struggling to explain high
temperature superconductivity in terms of BCS theory.5%7 |

Examples of amorphous 2D materials are fewer, and yet

still important as 2D analogues for amorphous 3D materials.
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Physisorbed and chemisorbed monolayer films can occur as
disordered phases, as can intercalants in intercalation
compounds, due to:a random ordering of atoms.  Chalcogenide
glasses go a step further, forming d;i‘sordere'c:la 2D networks.
(Networks differ from random packings of atoms in that the
atoms in a network exhibit greater covalency in bonding and
therefore a higher degree of coordination with adjacent
. atoms.) Amorphous As,Se, and As,S; are typical examples of
chalcogenide. glasses where the covalently bonded. 2D network
can be considered as oneé very .large molecular unit (As;Se; and
As,S; are said to form 2D-network molecular glasses).®

By far the most well known example .of a 2D, layered
‘material is graphite, a crystalline polymorph of carbon.
Some forms of amorphous carbon also retain:a.2D character,
and can be modeled as 2D random networks. It is these forms
~of amorphous carbon.which ;.vill be used as a prototypical case
. for the embedded ring approach in this work.

The use of amorphous carbon:.as a test case has several
advantages. The elemental composition of amorphous carbon,
consisting of only carbon atoms, simplifies calculation of
the ring mode oscillations.:: The calculations become. more
complicated with materials of binary or ternary composition
(comprised of two or more elements), such as with the
chalcogenide glasses. Additionally, carbon.is a well-studied
‘and exhaustively characterized element in science because of

‘its astrophysical and biological rsignificance. Finally,
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vibrational spectra of various forms of amorphous carbon have
been extensively published and are widely available in the
literature. These spectra will permit direct comparisons of
the resﬁlts of the embedded ring approach éo experimental
data. Such comparisons will determine the wvalidity and

degree of usefulness of the embedded ring approach.



-CHAPTER ' II:
DYNAMICS AND MODELS OF AMORPHOUS MATERIALS

Vibrational Dynamics
of Amorphous. Materials.: Lo

To understand the difficulty: involved :in:modeling the
vibrational dynamics’deambrphOuswmaterials, one must start
with the lattice dynamics of crystalline materials. The
inapplicability of the 1lattice dynamical approach to
amorphous materials can then be examined, and provides a
stepping stone to dynamical approaches developed expressly
for amorphous materials.

Loss of periodicity in amorphous materials prevents
facile solution of their vibrational dynamics. In contrast,
periodicity in crystalline materials facilitates
determination of the dynamics. Solution of the dynamical
equations for crystals yields plane waves.! The Born-von
Karman periodic boundary condition allows simplification of
the equations of motion for crystalline materials by:

1. restricting the wave vectors in the plane wave
solutions to a linear combination of the
reciprocal lattice vectors;

2. decreasing the number of equations to be solved.

The use of the Born-von Karman periodic boundary condition,
however, is prohibited for amorphous materials due to a lack
of long-range order. As a consequence, a good set of wave

vectors to expand the wave functions for an amorphous
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material cannot be readily defined, and the number of
equations to be solved remains unmanageably large.
Additionally, propagating vibrations will not be in the form
of plane waves, except approximately at very l;w frequenéies.
Oon a large enough scale, an amorphous material appears
homogeneous and isotropic. At intermediate anci high
frequencies, vibrations in amorphous solids are localized and
do not propagate as far as in crystalline materials. 1In some
sense, the 1localized vibrational states in amorphous
materials resemble local phonon modes created by defects in
crystals.®

The inability to define a set of wave vectors for
amorphous materials precludes the use of phonon dispersionr
curves to characterize their vibrational properties. Indeed,
the term phonon is not even applidable to amorphous materials
since the vibrational modes cannot be separated by wave
vector. The vibrational density of states (VDOS), however,
remains a good measure to describe the vibrational dynamics
of both crystalline and amorphous materials by eschewing a
frequency-wave vector relationship for a frequency-number of
states per frequency interval relationship.

Figure 1(a) provides an example of a phonon dispersion
curve for graphite, a crystalline polymorph of carbon.?'®
Figure 1(b) displays the corresponding vibrational density of
states for graphite. Note that Figure 1(b)--the VDOS--

provides a means to adequately describe the vibrational
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states of an amorphous material as well as a crystalline
material, whereas a description such as presented by Figure
1(a)--the phonon dispersion curve--would be inadequate (could
not even be presented!) for an amorphous matérial.

The vibrational dynamics of amorphous materials can be
approached either analytically or numerically. Anélytical
approaches examine the local dynamics of atoms in a
disordered network.? For bonds in such networks showing a
high degree of covalency, the bond-stretching force constants
typically exceed the bond-angle-bending force constants by a
factor of five.? The bonding can therefore be adequatel&
approximated with only a central force model (i.e., only the
bond-stretching forces are considered). Vibrational
frequencies are calculated for a local arrangement of atoms
in the network, such as a tetrahedrally coordinated or an
octahedrally coordinated cluster of atoms. The calculations
derive from simple expressions (solutiéns to either
Lagrange’s equations--the eigenvalue problem--or Newtonian
equations of motion), and relate frequency to the atomic
masses, bond-stretching force constants, and bond angles.
The expressions yield bands of frequencies, with band limits
determined by simple criteria and band peaks centered on non-
zero vibrational modes. A number of zero-frequency modes
appear due to exclusion of bond-angle-bending fordes. To
date, analytical approaches have been limited in usefulness,

providing models which are more informative and instructive
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than they are quantitative.

- Numerical &dpproaches attempt to predict the VDOS for

" amorphois matérials by considering fairly ‘large clusters of

atoms-(SO*SOO‘aﬁcmsy; Again,. these approaéﬁes.solve the
-eigenvalue problem as formulated with.the: use of quantum
méchanics.?? ‘Sevéral numerical methods are available.? In
the cluster-Bethe-lattice method, a cluster is 'extracted from
'a- disordered network, and the ' influence : of ' the removed
network is accounted for by attaching-a branching structure
(the ‘Bethe lattice) onto éach dangling bond at the edge of
the cluster. = The Bethe lattice models the influencé of the
missing embracive network by eliminating the edge or.surface
~effects which arise from plucking:a finite cluster:out.of an
~infinite network.. Additionally, the Bethe lattice:sproduces
no anomalous'artifacts in the VDOS. Other nunierical methods
‘employed - include ..the negative eigenvalue method, the
equation=of-motion method, .and the recursion method. .

The embedded ring approach is a generalized, analytical
method which extends both previous analytical methods and
previous numerical methods to predict vibrational modes for
- disordered 2D materials. The concept embodies both the use

~0of Jlocal dynamics. (analytical approaches) and the use of

" mathematical. techniques to account for the influence of an

embracive disordered network (as in the cluster-Bethe-lattice
method) .. The embedded ring approach can also be.considered

a close cousin to numerical approaches since the vibrational
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mode intensities in the VDOS are directly computed from the
ring statistics of a representative raft model (network
cluster).

Because it builds upon previous methodé} a literature
search was conducted to assess the originality of the
embedded ring approach. No references were cited.from either
INSPEC or Chemical Abstracts databases regarding an embedded
ring approach or any similar approach for determining the
vibrational properties of disordered 2D materials.
Refe:ences were cited, however, for articles on the
vibrational dynamics of crystalline layered materials; one of
these papers details calculation of the dynamics of a 2D
lattice with the use of graphite as an example.!’ Aas with
other crystalline materials, the theory for the lattice
dynamics of crystalline layered materials is firmly rooted,
making extensive use of'periodicity in the form of point
group symmetries.®*

Several articles were found in the 1literature which
examine ring vibrational modes in SiO, and B,0,-based glasses
(see page 18 and Chapter IV).'?'® vibrational bands which
appear in the Raman spectra of these glasses are attributed
to ring modes of oscillation, and some analysis of the
mechanism of ring mode-network decoupling is presented.

The embedded ring approach builds upon these results in
an original manner. Instead of 1limiting itself to the

specific case of ring mode-network decoupling in some
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materials, the.embedded ring approach considers the general
case of ring modes‘ coupled to a continuous: random network
(CRN). Ring modes are calculated from basic principles:using
techniques deveéloped: for study of molecularﬁdynamics. A
method is then introduced to couple the rings to the CRN.
The modified vibrational modes are then used to construct a
material’s vibrational spectrum. It is this approach which

ed ring. appreach.

Models of Two-Dimensional
Amorphous. Materials

Any succeéssful dynamical model or approach is built upon
the foundations of an accurate sﬁructural‘model.for the
material. For a crystalline material, knowledge of the
“crystal structure is required for determining..the phonon
dispersion curve. Likewise, without a good structural,model,
.any - VDOS or. vibrational modes .~ derived .for  an  amorphous
material are meaningless. A prerequisite to the development
of the embedded ring approach, therefore, was to review and
-»select structural models for 2D'amorphousgmaterials.

Amorphous materials are classified into three types of
structure categories.? First, random close packing (RCP)
models structures where nondirectional forces--metallic,
ionic, or Van der Waals bonding--occur between the atoms in
the material. . Prototypical examples of amorphous materials
exhipiting RCP, structures are metallic glasses. Second,

organic polymer glasseS»are«mosgVsuccessfully represented by
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a random coil model (RCM), where interpenetrating random
coils constitute the amorphous structure. The third (but
definitely not the least interesting) structure category is
the continuous random network (CRN). Coﬂ£inuous random
networks arise from the disordered arrangement of atoms or
molecules with covalent bonding. Covalent bonds are highly
directional, resulting in low coordination number (less than
or eqﬁal to four) for atoms exhibiting this type of bonding.
Consequently, inorganic amorphous structures comprised of
covalently-bonded atoms differ markedly from RCP and RCM
structures.

Continuous random networks have been most successfully
applied to <covalent inorganic glasses with binary
compositions. In addition to As,Se; and As,S;, which were
previously discussed in Chapter I, typical glass-forming
binary compounds include B,0;, SiO,, Gedz, P,0;, AsS,0s, ond
As,0,.%°  Construction of CRN models for these materials
requires adherence to three basic rules:

1. The coordination of each atom is fixed, limiting

the degree of connectivity in the network;

2. No dangling bonds are allowed within the network;

3. A specified procedure is followed in constructing

the network to ensure randomness of the structure.
Criteria (1) and (2) arise from the physical oonstraints

imposed by the constituents of the material. The third

criterion precludes subjective biasing of the structure:
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human,consciousnessvdisplays‘anginherent’preference for order
~and regularity..

Atomic structures:are typically illustrated: with "ball
and stickﬂgmodelshéwhichyganwbe readily tranéferred;to the
printed page or computer screen. Three-dimensional CRN’s are
difficult to illustratenwith two-dimensional media, however.
Zachariasen -schematics -accomplish a 2D representation of
* CRN’s by simply limiting the structure of the network to two
~dimensions. ' .. Because . .of . this limitation; . .Zachariasen
schematics - are 'most amenable :to . compounds: .with an A,B;
stoichiometry. In fact, Zachariasen’s first =.diagrams
illustrated a CRN for an A;B;~type compound.!® Figure 2(a)

presents a Zachariasen schematic of a. CRN :for an: A;B;—type

compound. The schematic is constructed. of. AB; «building
blocks: The A atoms (open circles) have :three-~fold
coordination, while the B. atoms. (filled circles) ‘are only
““bonded to two other A atoms. . Each AB; building block (or
cluster) displays overall.three-fold coordination with other
AB; building blocks. The .. Zachariasen schematic is
particularly useful for amorphous structures consisting of
the compounds As,Se;, As,S;, B,;0;, and As,0;.

‘Amorphous structures can also be modeled with the use of
- "triangle rafts" based on Zachariasen schematics.?® As with
‘Zac¢hariasen schematics, triangle rafts are graphical
representations of 2D structures. Figure 2(b) presents a

-~ triangle raft model of thé structure shown in Figure 2(a).
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(a)

(b)

FIG. 2. Zachariasen schematic (a) and triangle raft
model (b) of a two-dimensional continuous

random network. After Shackelford.?®
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In Figure 2(b), triangular building blocks replace the AB,
clusters in the Zachariasen schematic. The triangular shape
of the building blocks reflects the overall three-fold
coordination of the AB; ¢luster. Note tha{t the use of
triangle rafts génefalizgsu and extends the Zachariasen
schematic. The buiiding blocks can now represent not only
AB;-type clusters, but also single atoms with planar three-
fold coordination and, to -some ’extent, the facets of
tetrahedra for four-fbld)~tétrahédrally coordinated clusters
that occur in compounds such as Sio, or amorphous silicon.
Continuous random networks are constructed from'trianglé
rafts by a specified procedure.?® The triangular building

blocks form rings of various sizes. A CRN is built by first

starting with an initial ring. Subsequent rings are then
added to the initial ring in a clockwise spiral fashion, with
the size of each ring selected randomly. The final structure
is a CRN comprising ah assemblage of rings of diverse size.
The distribution of n;meﬁbered brings (n=3 to about 10)
provides a measure for the fandomness of the 2D network.
Therefore, triangle raft models provide a means to
theoretically determine the ring statistics for amorphous
materials.

Ring statistics for real glasses are difficult to
determihe. ekﬁeriméntaliy; f'ﬁowever,' figg statistics for
vitredﬁslsioz, Bgy; énd various'siéfihbg glasses have been

determined with the use of infrared and Raman spectra.!? The
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determinations were accomplished by looking for B;0¢ boroxol
ring vibrational modes in the spectra, and with the use of
numerical methods to compute the VDOS. Raman spectra may
also be used to determine the ring statistiéé for vitreous
silica and various silicate glasses.?®

Chapter IV discusses ring mode decoupling in silica-
based materials, and details the embedded ring approach, a
theoretical method which may bridge the gap between
experimentally determined and theoretically predicted ring
statistics for amorphous materials other than amorphous
silica, silicate, and borate glasses. Triangle rafts presenf
model CRN structures from which the ring statistics are
readily obtained. The embedded ring approach uses these ring
statistics to construct theoretical spectra for comparison
with real vibrational spectra of materials. Such comparisons
permit the correiation be;ween a material’s atomic structure
and the model structure.

Note that triangle raft models can be extended to
crystalline and quasicrystalline structures as well.
Amorphous structures display a distribution of three or more
different ring sizes. Crystalline structures, by contrast,
would display either a single, bimodal, or multimodal
distribution of 3-, 4-, 5-, 6-, or 8-membered rings. Such
rings have the necessary symmetries for a periodic stfucture.
Figure 3 shows a triangle raft model (a) and ring statistics

(b) for a 2D crystal structure comprised of 4- and 8-membered
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FIG. 3.

(a)

Triangle raft model (a) and ring statistics

(b) for a (4,8) crystalline two-dimensional

material.
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rings. Figure 4 displays the unit cell (a) and ring
statistics (b) for another crystal structure, this time
consisting of 5- and 8-membered rings. Surprisingly, the
crystal structures in Figures 3 and 4 "are not just
theoretical models, but represent actual crystal structures
for some silicate minerals.? The triangular building blocks
in Figures 3 and 4 represent the faces of SiO, tetrahedral
clusters for the silicate minerals apophyllite and okenite,
respectively. As mentioned in Chapter I, many silicate
compositions form quasi-2D materials.

Two-dimensional quasicrystalline structures may be
characterized by a bimodal or multimodal distribution of
rings. Five or ten-membered rings provide five-fold synmetfy'
for aperiodicity, and at least one other structural unit
(ring size) is necessary to eliminate lattice frustration.
Such a quasicrystalline, structure is analogous to a 2D
Penrose tiling where at least two structural units are
required.?®? Figure 5 shows a 2D network displaying local
five-fold symmetry. Note, however, that the network in
Figure 5 is not truly quasicrystalline since lattice
frustration is not fully alleviated. The structure in Figure
5 would more likely curl up into a sphere, much like the
carbon network does in Buckminsterfullerene due to the
presence of five-membered rings.2?¢%®
Triangle rafts model con‘l‘:inuous random networks with a

variety of compositions ( elemental to ternary ), and also
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(a)

' Ring Size - 4 5 6 7 89

FIG.

4.

Triangle raft model (a) and ring statistics
(b) for the unit cell of a (5,8) crystalline

" two-dimensional material.



