Linearized Conformal Gravity

James Thomas Wheeler
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/physics_facpub
Part of the Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/physics_facpub/2023
Abstract

We examine the linearization of Weyl conformal gravity, showing that the only solutions are also solutions to linearized general relativity.

1 The Bach equation

The Weyl gravity action is

$$S = \int C^{\alpha \mu \beta \nu} C_{\alpha \mu \beta \nu} \sqrt{-g} d^4x$$

It leads, in vacuum, to the Bach equation,

$$D_\mu D_\nu C^{\alpha \mu \beta \nu} - \frac{1}{2} R_{\mu \nu} C^{\alpha \mu \beta \nu} = 0$$

It is generally easier to compute from the alternate form of the Bach equation,

$$W_{\alpha \beta} = -\frac{1}{3} D_\alpha D_\beta R + D_\mu D^\mu R_{\alpha \beta} + \frac{1}{6} (R^2 - D_\mu D^\mu R - 3 R_{\mu \nu} R^{\mu \nu}) g_{\alpha \beta} + 2 R_{\mu \nu} R_{\alpha \mu \beta \nu} - \frac{2}{3} R R_{\alpha \beta}$$

which is found by expanding the Weyl curvatures in the action in terms of the Riemann curvature, then using the Gauss-Bonnet expression for the Euler character to eliminate all but the Ricci and Ricci scalar terms.

2 Linearized gravity

The linearization of general relativity is well established, either by perturbing around flat space or about a fixed background. We consider first a flat background, writing

$$g_{\alpha \beta} = \eta_{\alpha \beta} + h_{\alpha \beta}$$

where the components of $h_{\alpha \beta}$ are regarded as perturbatively small and $h^{\alpha \beta} \equiv \eta^{\alpha \mu} \eta^{\beta \nu} h_{\mu \nu}$. Then at first order, $h_{\alpha \beta}$ acts as a field on flat spacetime. The connection is

$$\Gamma^\alpha_{\beta \mu} = \frac{1}{2} \eta^{\alpha \nu} (h_{\nu \beta, \mu} + h_{\nu \mu, \beta} - h_{\beta \mu, \nu})$$

*Utah State University Dept of Physics email: jim.wheeler@usu.edu
The curvature becomes
\[
R^\alpha_{\beta \mu \nu} = \Gamma^\alpha_{\beta \mu, \nu} - \Gamma^\alpha_{\beta \nu, \mu} - \Gamma^\alpha_{\rho \mu} \Gamma^\rho_{\beta \nu} + \Gamma^\alpha_{\rho \nu} \Gamma^\rho_{\beta \mu}
\]
\[
\approx \frac{1}{2} \eta^{\alpha \sigma} (h_{\sigma \beta, \mu} + h_{\sigma \mu, \beta} - h_{\beta \mu, \sigma}) - \frac{1}{2} \eta^{\alpha \sigma} (h_{\sigma \beta, \mu} + h_{\sigma \mu, \beta} - h_{\beta \mu, \sigma})
\]
\[
= \frac{1}{2} \eta^{\alpha \sigma} (h_{\sigma \mu, \beta} - h_{\beta \mu, \sigma} - h_{\sigma \nu, \beta} + h_{\beta \nu, \sigma})
\]

It is useful to define the trace-reversed variable,
\[
\bar{h}_{\alpha \beta} \equiv h_{\alpha \beta} - \frac{1}{2} \eta_{\alpha \beta} h
\]
\[
h \equiv \eta^{\mu \nu} h_{\mu \nu}
\]

The Ricci tensor becomes
\[
R^\alpha_{\beta \alpha \nu} = \frac{1}{2} \eta^{\alpha \sigma} (h_{\sigma \alpha, \beta \nu} - h_{\beta \alpha, \sigma \nu} - h_{\sigma \nu, \beta \alpha} + h_{\beta \nu, \sigma \alpha})
\]
\[
= \frac{1}{2} \left(h_{\beta \nu} + \frac{1}{2} \eta_{\beta \nu} \Box h - h_{\beta \nu, \alpha - \beta} - h_{\beta \nu, \alpha} + \Box \left(h_{\beta \nu} - \frac{1}{2} \eta_{\beta \nu} h \right) \right)
\]

The infinitesimal coordinate freedom of the metric,
\[
g_{\alpha \beta} \rightarrow g_{\alpha \beta} + k_{\alpha \beta} + k_{\beta \alpha}
\]
allows us to change \(h_{\alpha \beta} \),
\[
\bar{h}_{\alpha \beta} = h_{\alpha \beta} + k_{\alpha \beta} + k_{\beta \alpha}
\]
to make it divergence free,
\[
0 = \bar{h}_{\alpha \beta, \beta}
\]
\[
= h_{\alpha \beta, \beta} + \Box k_{\alpha \beta}
\]

An additional transformation may make it traceless. The fully transverse-traceless mode for \(h_{\alpha \beta} \) allows us to write it as
\[
h_{\alpha \beta} = \begin{pmatrix}
0 & h_+ & h_- & h_+ \\
h_+ & h_- & -h_+ & 0
\end{pmatrix}
\]

Assuming the transverse traceless conditions hold for \(h_{\alpha \beta} \), the Riemann tensor, Ricci tensor and Ricci scalar reduce to
\[
R^\alpha_{\beta \mu \nu} = \frac{1}{2} \eta^{\alpha \sigma} (h_{\sigma \mu, \beta \nu} - h_{\beta \mu, \sigma \nu} - h_{\sigma \nu, \beta \mu} + h_{\beta \nu, \sigma \mu})
\]
\[
R_{\alpha \beta} = \Box h_{\alpha \beta}
\]
\[
R = 0
\]

3 Substituting into the Bach tensor

Now substitute into
\[
W_{\alpha \beta} = -\frac{1}{3} D_\alpha D_\beta R + D_\mu D^\mu R_{\alpha \beta} + \frac{1}{6} \left(R^2 - D_\mu D^\mu R - 3 R_{\mu \nu} R^{\mu \nu} \right) g_{\alpha \beta}
\]
\[+ 2 R^{\mu \nu} R_{\alpha \mu \beta \nu} - \frac{2}{3} R R_{\alpha \beta}
\]
\[= D_\mu D^\mu R_{\alpha \beta}
\]
\[= \Box \Box h_{\alpha \beta}
\]
We seek vacuum solutions for \(W_{\alpha \beta} = 0 \).

Setting
\[
\square h_{\alpha \beta} = 0
\]
or equivalently, the pair
\[
\square h_+ = 0 \quad \square h_- = 0
\]
we may solve for each component of \(\square h \) in the usual manner, by Fourier expansion,
\[
\square h_\pm = \int d^4k \left(A_\pm (k^\mu) e^{ik^\alpha x^\nu} \delta \left(k^\beta k_\beta \right) \right)
= \int d^4k \left(A_\pm (k^\mu) e^{ik^\alpha x^\nu} \delta \left(\omega^2 - k \cdot k \right) \right)
= \int \frac{d^3k}{2\omega} \left(A_\pm (k^i) e^{i(k \cdot x - \omega t)} + B_\pm (k^i) e^{i(k \cdot x + \omega t)} \right)
\]
where
\[
\omega = \omega (k)
= |k|
\]
This solution to the wave equation now acts as source for the same wave equation. To solve, we need the Green’s function. Choosing vanishing boundary conditions at infinity this is straightforward to derive. We need
\[
\square G (x^\alpha, x_0^\alpha) = -4\pi \delta^4 (x^\alpha - x_0^\alpha)
\]
Taking the Fourier transform,
\[
\frac{1}{4\pi^2} \square \int d^4k G (k^\nu) e^{ik_\alpha (x^\alpha - x_0^\alpha)} = -\frac{4\pi}{16\pi^4} \int d^4k e^{ik_\alpha (x^\alpha - x_0^\alpha)}
\]
\[
\frac{1}{4\pi^2} \int d^4k \left(\frac{1}{k_\beta k_\beta} G (k^\nu) + \frac{1}{\pi} \right) e^{ik_\alpha (x^\alpha - x_0^\alpha)} = 0
\]
\[
G (k^\nu) = -\frac{1}{\pi k_\beta k_\beta}
\]
Therefore,
\[
G (x^\alpha, x_0^\alpha) = \frac{1}{4\pi^2} \int d^4k G (k^\nu) e^{ik_\alpha (x^\alpha - x_0^\alpha)}
= -\frac{1}{4\pi^3} \int d^4k \frac{1}{k_\beta k_\beta} e^{ik_\alpha (x^\alpha - x_0^\alpha)}
= -\frac{1}{4\pi^4} \int d^4k e^{ik (x - x_0)} \int d\omega e^{\frac{-i\omega (t - t_0)}{\omega^2 - k \cdot k}}
\]
Infinitesimally offsetting the poles by replacing \(\omega \to \omega + i\varepsilon \), we complete contours by half circles at infinity.
\[
\int d\omega \frac{e^{-i\omega t}}{\omega^2 - k \cdot k} = \int d\omega \frac{e^{-i\omega t}}{(\omega + \sqrt{k \cdot k}) (\omega - \sqrt{k \cdot k})}
\rightarrow \int d\omega \frac{e^{-i\omega t + \varepsilon t}}{(\omega + \sqrt{k \cdot k} + i\varepsilon) (\omega - \sqrt{k \cdot k} + i\varepsilon)}
\]
For $t < 0$, we complete the contour in the upper half plane and there are no poles enclosed. For $t > 0$, we complete the contour with a half circle at infinity in the lower half plane and there are two poles. Letting $\varepsilon \to 0$, the integral becomes

$$
\int \frac{d\omega}{\omega^2 - k \cdot k} e^{-i\omega t} = 2\pi i \Theta (t) \left(\frac{e^{i\omega (k) t}}{-2\omega (k)} + \frac{e^{-i\omega (k) t}}{2\omega (k)} \right) = \frac{2\pi}{\omega} \Theta (t) \left(\frac{e^{i\omega (k) t} - e^{-i\omega (k) t}}{2i} \right) = \frac{2\pi}{\omega} \Theta (t) \sin \omega (k) t
$$

where $\omega (k) = +\sqrt{k \cdot k} \equiv k$. We are left with

$$
G (x^\alpha, x_0^\alpha) = -\frac{1}{4\pi^2 i} \Theta (t - t_0) \int \frac{d^3k}{\omega (k)} e^{i(k \cdot (x - x_0) + (t - t_0))} e^{i\omega (k)(t - t_0)} = \frac{1}{4\pi^2 i} \Theta (t - t_0) \int \frac{d^3k}{\omega (k)} e^{i\omega (k)(t - t_0)}
$$

For the remaining integrals,

$$
\int \frac{d^3k}{\omega (k)} = \int k^2 dk d\varphi d(\cos \theta) \frac{e^{i(k \cdot (x - x_0) + (t - t_0))}}{k} = 2\pi \int k^2 dk d(\cos \theta) \frac{e^{i(k \cdot (x - x_0) + (t - t_0))}}{k} = 2\pi \int k^2 dk \frac{e^{i(k \cdot (x - x_0) + (t - t_0))} e^{-ik(t - t_0)}}{ik^2 |x - x_0|} = \frac{2\pi}{i |x - x_0|} \int dk \frac{e^{i(k \cdot (x - x_0) + (t - t_0))} - e^{-ik(x - x_0) + (t - t_0))}}{i k^2 |x - x_0|}
$$

giving the advanced and retarded solutions. For clarity we have put in the speed of light explicitly.

$$
G (x^\alpha, x_0^\alpha) = \frac{1}{4\pi^2 i} \Theta (t - t_0) \int \frac{d^3k}{\omega (k)} e^{i(k \cdot (x - x_0) - (t - t_0))} \frac{1}{4\pi^2 i} \Theta (t) \int \frac{d^3k}{\omega (k)} e^{i(k \cdot (x - x_0) + (t - t_0))}
$$

$$
= \frac{1}{4\pi^2 i} \Theta (t - t_0) \frac{2\pi}{i |x - x_0|} 2\pi \left(\delta \left(t - t_0 - \frac{1}{c} |x - x_0| \right) - \delta \left(t - t_0 + \frac{1}{c} |x - x_0| \right) \right)
$$

$$
- \frac{1}{4\pi^2 i} \Theta (t - t_0) \frac{2\pi}{i |x - x_0|} 2\pi \left(\delta \left(t - t_0 - \frac{1}{c} |x - x_0| \right) - \delta \left(t - t_0 + \frac{1}{c} |x - x_0| \right) \right)
$$

$$
= -\Theta (t - t_0) \frac{1}{|x - x_0|} \delta \left(t - t_0 - \frac{1}{c} |x - x_0| \right)
$$

$$
+ \Theta (t - t_0) \frac{1}{|x - x_0|} \delta \left(t - t_0 - \frac{1}{c} |x - x_0| \right)
$$

Something’s wrong with signs and/or BC here, but let’s just use the retarded part:

$$
G (x^\alpha, x_0^\alpha) = \frac{\Theta (t - t_0)}{|x - x_0|} \delta \left(t - t_0 - |x - x_0| \right)
$$

With this, the solution to

$$
\Box h_\pm (x) = J_\pm (x)
$$

$$
J_\pm (x) = \int \frac{d^3k}{2\omega} \left(A_\pm (k^i) e^{i(k \cdot x - \omega t)} + B_\pm (k^i) e^{i(k \cdot x + \omega t)} \right)
$$
This shows that
\[\Box h_\pm(x) = \int d^4k (G(k) J_\pm(k)) e^{ik_\mu x^\mu} \]
\[= 0 \]
whenever
\[\Box \Box h_\pm(x) = 0 \]
But clearly, \(\Box \Box h_\pm(x) = 0 \) if \(\Box h_\pm(x) = 0 \) so we conclude that:
\[\Box \Box h_\pm(x) = 0 \iff \Box h_\pm(x) = 0 \]
This means we have a solution to linearized Weyl gravity in vacuum if and only if it is also a solution to linearized general relativity in vacuum.