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Abstract
Studies of the two-dimensional motion of a magnet sphere in the presence of a
second, fixed sphere provide a convenient venue for exploring magnet–magnet
interactions, inertia, friction, and rich nonlinear dynamical behavior. These
studies exploit the equivalence of these magnetic interactions to the interac-
tions between two equivalent point dipoles. We show that magnet–magnet
friction plays a role when magnet spheres are in contact, table friction plays a
role at large sphere separations, and eddy currents are always negligible. Web-
based simulation and visualization software, called MagPhyx, is provided for
education, exploration, and discovery.

Keywords: force between uniformly magnetized spheres, torque between
uniformly magnetized spheres, equivalence between force between magnet
spheres and point dipoles, simulation of magnet interactions, magnet dynamics
simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

Small neodymium magnet spheres are used both in and out of the classroom to teach prin-
ciples of mathematics, physics, chemistry, biology, and engineering [1, 2]. They offer
engaging hands-on exposure to principles of magnetism and are particularly useful in
studying lattice structures, where they offer greater versatility than standard ball-and-stick
models because they can connect at a continuous range of angles. They have spawned a
learning community dedicated to sharing photos and tutorials of magnetic sculptures, some
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made from thousands of magnets, including models of molecules, fractals, and Platonic solids
[3]. YouTube magnet sphere videos have attracted over a hundred million views.4

A recent paper presents simple pedagogical arguments that confirm that the force
between two uniformly magnetized spheres is identical to the force between two equivalent
point magnetic dipoles, and confirms the same equivalence for the torque [4].

In this paper, we exploit this equivalence to investigate the dynamical interactions
between two uniformly magnetized spheres, both with and without friction. We present tools
intended to help students develop a better understanding of the forces and torques between
magnets, and of their intimate relationship with the energy of interaction. These tools include
instructive figures and discussions, and a web-based simulation tool called MagPhyx that
enables students to animate the 2D motion of a uniformly magnetized sphere in response to
the forces and torques produced by another sphere that is fixed in space. Explicit visualization
of the magnetic field, force, torque, velocity, and angular velocity of the free sphere enables
students to deepen their understanding of the role of inertia in magnet–magnet interactions.
We have fully validated this software to ensure that it matches the dynamical equations of
motion, and offer this simulation freely to the physics community [5].

This software fills a need. Online forums discuss the need for physically correct simu-
lations of magnet–magnet interactions and lament the lack of closed form solutions for the
forces between magnets [6–8]. The two-sphere problem is a good place to start with such
simulations, thanks to the mathematical simplicity arising from the point-sphere equivalence.
Commercial magnetic field mapping programs do not include simulations of magnet–magnet
interactions,5 nor does the PhET suite of interactive physics simulation software [9]. As seen
below, MagPhyx is a valuable exploration tool as well, revealing rich nonlinear behavior that
will be the subject of future investigations.

The study of the motion of charged particles in a magnetic field in introductory physics
courses can leave students with the false impression that magnetic fields do no work. It is true
that magnetic fields do no work on charged particles. But magnetic fields do work on
magnetic dipoles, translating and rotating them in fascinating ways, as discussed below.

One surprising property of small neodymium magnet spheres is how they generally find a
way to attract each other. Placed in a repulsive configuration that might seem to lead to
separation of two or more magnets, the magnets tend to twist and move until they attract and
are drawn together. In years of informal experience with Zen Magnets (one brand of 5 mm
diameter neodymium magnet spheres6 [10]), we do not recall observing an initial config-
uration whose magnetic repulsion led eventually to separation of two or more magnets. We
investigate non-conservative forces as possible mechanisms for this eventual attraction.

In the sections that follow, we review the magnetic interactions between two uniformly
magnetized spheres (section 2), illustrate these interactions in a 2D geometry with one sphere
fixed at the origin and the other free to move in a plane (section 3), consider non-conservative

4 Typing ‘Zen Magnets’ into the YouTube search field at https://youtube.com identifies over 90 000 videos
describing various (accessed 23 March 2016). As of 22 August 2014, the most popular of these had a total view count
exceeding 145 million ([2], appendix D).
5 Commercial magnetic-field mapping software can be found at http://gmw.com/magnetic_measure ments/
magmap.html?gclid=CLuJiK_NvssCFUKUfgod K9AAJg, https://integratedsoft.com, http://infolytica.com
(accessed 16 February 2016).
6 Several countries, including the United States, have banned the sale of 5 mm diameter nickel-coated neodymium
magnets marketed as a desk toys under the trade names BuckyBalls, Zen Magnets, Neoballs, etc.following reports of
intestinal injuries from ingestion of these magnets. But 2.5 mm magnets may be still be purchased at http://
micromagnets.com (accessed 16 February 2016), and magnet spheres of various sizes, including 5 mm spheres, may
still be purchased from industrial suppliers (http://kjmagnetics.com/, http://alibaba.com, http://magnet4less.com,
accessed 16 February 2016).
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forces (section 4), write dimensionless variables to simplify numerical implementation
(section 5), consider special cases to evaluate the role of non-conservative forces (section 6),
introduce and validate MagPhyx software by comparing its predictions for these special cases
(section 7), and summarize (section 8).

2. Magnetic interactions

We here review the magnetic interactions between two uniformly magnetized spheres with
arbitrary sizes, positions, magnetizations, and orientations [4]. Sphere i has position vector ri,
radius ai, magnetization Mi, and total magnetic dipole moment

( )p= am M
4

3
, 1i i i

3

where i=1, 2 (figure 1).
Outside of sphere i (for ∣ ∣- > ar ri i), its magnetic field is given by [11, 12]

( ) ( ) ( )= -B r B m r r; , 2i i i

where -r ri is the position vector relative to the sphere center, and where
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is the field of a dipole m located at the origin, in SI units [13, 14].
The interaction energy between sphere 2 and the magnetic field produced by sphere 1 is

given by
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where = -r r r12 2 1 is the vector from sphere 1 to sphere 2, and ( )B r1 2 is the field produced
by sphere 1 evaluated at the center of sphere 2.

Figure 1. Diagram showing two uniformly magnetized spheres with positions r1 and r2,
radii a1 and a2, magnetizations M1 and M2, and paired non-central magnetic forces F12

and F21. Shown also are an arbitrary position vector r and the relative position vectors
-r r1, -r r2, and = -r r r12 2 1. The same diagram applies for the forces between

two point dipoles if spheres M1 and M2 are replaced by equivalent point dipoles m1 and
m2 at the same locations.
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The force of sphere 1 on sphere 2 follows as

( )= - UF 612 2 12

( · ) ( · ) ( · ) ( · )( · )
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Here,2 is the gradient with respect to r2. F12 is conservative but not central, namely, it is not
generally parallel to the vector r12 between the dipoles (figure 1).

The torque of sphere 1 on sphere 2 is given by

τ ( ) ( )= ´m B r 812 2 1 2
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Energy considerations assist in the understanding of the forces and torques on uniformly
magnetized spheres. The force = - UF12 2 12 acts in the direction of maximum decrease of
the energy · ( )= -U m B r12 2 1 2 , that is, F12 acts in the direction of maximum increase in

·m B2 1. In other words, F12 is in the direction of the virtual displacement of m2 that gives the
largest increase in · b= m Bm B cos2 1 2 1 , where β is the angle between m2 and B1.
Equations (5) and (7) enable us to write the radial component of F12 in the simple form

ˆ · ( )= =F
U

r
r F

3
, 10r

12 12 12
12

12

where ˆ = rr r12 12 12 is the unit vector in the direction of r12. Because m2 and B1 are both non-
negative magnitudes, acute angles b p< 2 imply negative energies b= -U m B cos12 2 1 and
attractive forces ( <F 0r

12 ) that increase · >m B 02 1 by drawing m2 closer to m1 where the
fields are stronger. Obtuse angles b p> 2 imply positive energies b= -U m B cos12 2 1 and
repulsive forces ( >F 0r

12 ) that increase · <m B 02 1 by pushing m2 away from m1 into
regions with weaker fields.

Figure 2. Polar coordinate system used for 2D investigations of two spheres of the same
radius. A sphere with magnetic moment m1 is held fixed at the origin with its magnetic
moment in the +x-direction. A second sphere with magnetic moment m2 oriented at
angle f is located at position r, with polar coordinates ( )qr, .
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Figure 3. Magnetic field lines produced by a uniformly magnetized sphere of total
magnetic moment m1 (equation (1)), at the center of each panel, and the resulting
magnetic forces and torques on a uniformly magnetized sphere of total magnetic
moment m2, at various positions and orientations, as given by equations (3), (7), and
(9). Shown are drawings for m2 and m1 differing by angles 0 (a), p 4 (b), p 2, (c)
p3 4 (d), and π (e). For each panel, there are eight positions of sphere 2, labeled A–H,
spaced evenly around a circle centered on sphere 1. Force vectors are shown with their
lengths proportional to the force magnitude. Torques are indicated by clockwise and
counterclockwise circular arcs, with the arc length increasing with torque magnitude,
and with no arc if the torque is zero. The directions of the magnetic moments are
indicated by bold arrows centered on the sphere images.
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3. 2D geometry

It is instructive to consider the interactions between two identical magnet spheres whose
positions and magnetic orientations are confined to the x–y plane. We consider the forces and
torques on a free sphere (sphere 2, of radius a, mass m̃, and moment of inertia7 ˜=I ma2 52 )
in the x–y plane arising from the fields produced by a sphere (sphere 1, also of radius a) that is
fixed at the origin ( =r 01 ), with fixed dipole moment ˆ= mm x1 . We use polar coordinates
( )qr, to describe the position ˆ ˆq q= = = +r rr r r x ycos sin2 12 of the center of the free
sphere, and angle f to describe the angle of orientation of its dipole moment,

ˆ ˆf f= +m mm x ycos sin2 (figure 2). The velocity and acceleration of the free sphere are
given by ˙=v r and ˙=a v, while its angular velocity and angular acceleration are given by
ω ˙ ˆf= z and ω̇a = , where the overdot denotes a time derivative.

The 2D dynamics of the free sphere is characterized by the coordinates r, θ, and f, and
the corresponding momenta

˜ ( )=p mr, 11r

˜ ( )q=qp mr , 122

˙ ( )f=fp I , 13

which represent radial momentum, angular momentum, and spin angular momentum,
respectively. The kinetic energy is

˜ ˙ ˜ ˙ ˙ ( )q f= + +T
m

r
m

r
I

2 2 2
142 2 2 2

˜ ˜
( )= + +q fp

m

p

mr

p

I2 2 2
. 15r

2 2

2

2

Figure 3 illustrates the principles discussed in section 2. It shows the dipole magnetic
field B1 produced by the fixed sphere together with the magnetic forces and torques on the
free sphere, for various positions and orientations of this sphere.8 The forces fall into five
categories, which are characterized by the angle β between m2 and B1.

(1) Attractive, central (b = 0): the force between two spheres is attractive and central when
m1 and m2 are parallel and collinear (figure 3(a) A, E), leading to a stable equilibrium
state with the north pole of one magnet contacting the south pole of the other. The force
is also attractive and central when m1 and m2 are antiparallel to each other and
perpendicular to the line through their centers (figure 3(e) C, G). In both cases, m2 is
parallel to B1 (b = 0), giving τ = 012 and · = mBm B2 1 1. To increase this positive
product, m1 attracts m2 into its vicinity, where its field is stronger.

(2) Attractive, oblique ( b p< <0 2): for acute values of β, the force is attractive and non-
central (figure 3(a) B, D, F, and H; figure 3(b) A, B, E, and F; figure 3(c) B, F; figure 3(d)
B, C, F, and G). The force acts to increase · b= mBm B cos2 1 1 by moving m2 into

7 Neodymium magnets have thin metallic coatings, and therefore depart from uniform spheres. Taking these
coatings into account in calculating the moment of inertia leads to corrections that are less than 1%. We therefore
treat the spheres as solid, uniform spheres for convenience. For reference, the densities of Nd alloy, Cu, and Ni are
7.3 g cm−3, 9.0 g cm−3, and 8.9 g cm−3, respectively, and the Ni–Cu–Ni coatings on 5.00 mm diameter spheres have
thicknesses 0.015 mm, 0.025 mm, and 0.010 mm, respectively (section 4).
8 The vector magnetic fields shown in figure 3 are courtesy Wikipedia and Wikimedia Commons, https://en.
wikipedia.org/wiki/File:VFPt_dipole_point.svg (accessed 16 February 2016).
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regions where the field is stronger (larger B1) and better aligned with m2 (smaller β,
larger bcos ). The torque also acts to increase ·m B2 1 by rotating m2 into alignment
with B1.

(3) Perpendicular (b p= 2): when m2 is perpendicular to B1, the force of m1 on m2 is
perpendicular to the line joining these spheres—it is neither attractive nor repulsive
(figure 3(c) A, C, E, and G). This force acts to increase ·m B2 1 by moving m2 toward a
region where it is better aligned with the field. The torque again acts to rotate m2 into
alignment with B1.

(4) Repulsive, oblique (p b p< <2 ): for obtuse values of β, the force is repulsive and
non-central (figure 3(b) C, D, G, and H; figure 3(c) D, H; figure 3(d) A, D, E, and H;
figure 3(e) B, D, F, and H). The force acts to increase the negative product

· ∣ ∣b= -mBm B cos2 1 1 (that is, to bring it closer to zero) by moving m2 into regions
where the field is weaker (smaller B1 ) and better aligned with m2 (β approaching p 2
from above, smaller ∣ ∣bcos ). The torque acts to increase ·m B2 1 by rotating m2 into
alignment with the local field.

(5) Repulsive, central (b p= ): the force is repulsive and central when m1 and m2 are parallel
to each other and perpendicular to the line through their centers (figure 3(a) C, G), and
when m1 and m2 are antiparallel and collinear (figure 3(e) A, E). In both cases, m2 is
antiparallel to B1 (b p= ), giving τ = 012 and · = -mBm B2 1 1. To increase this
negative product, m1 repels m2 into regions where the field is weaker.

These five categories are useful in characterizing the magnetic interactions between
spheres; we found ourselves consulting figure 3 often as we explored these interactions.

4. Nonconservative forces

Magnets sliding across a table top or sliding against each other experience kinetic friction
forces, and electrically conducting magnets moving through a magnetic field experience eddy
forces. Because these forces can dissipate energy, they may help to explain why magnets tend
to attract rather than repel.

4.1. Kinetic friction

Kinetic friction dissipates energy for objects that slide along a surface such as a horizontal
table top. The downward gravitational force m̃g on a sliding magnet sphere equals the upward
normal force on it, and a table friction force

˜ ˆ ( )m= - mgf v 16t t

on the sphere is directed opposite to its direction of motion ˆ = vv v along the table. Here, mt
is the coefficient of kinetic friction between a magnet and the table, g is the local acceleration
of gravity, and m̃ is the sphere mass.

Similarly, a table exerts a frictional torque

τ ω˜ ˆ ( )*m= - mgD 17t t

on a magnet that is spinning on the table, where *mt is the associated coefficient of friction and
D is the sphere diameter. This torque is directed opposite to the direction ω ωˆ w= of the
spin of the sphere, assumed to be perpendicular to the table.

Kinetic friction can also occur between two magnet spheres that are sliding against each
other. If sphere 1 is held fixed at the origin, such sliding can occur because sphere 2 is rotating
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but not translating, because sphere 2 is translating along the surface of sphere 1 without
rotating, or because sphere 2 is both translating and rotating. The associated magnet–magnet
friction force

ˆ ( )m= - Ff v 18m m tN

of sphere 1 on sphere 2 is directed opposite to the tangential velocity vector ω ˆ= - ´av v rt

of sphere 2 at its point of contact with sphere 1, where fm is applied. Here, ˆ = rr r is a unit
position vector, ˆ = vv vt t t is a unit tangential velocity vector, FN is the magnitude of the
normal force of sphere 1 on sphere 2, mm is the coefficient of kinetic friction between the two
spheres, and ˆ-ar is the location of the sphere–sphere contact point relative to the center of
sphere 2. Since fm is applied along the tangent to the surface of sphere 2, it also exerts a torque

τ ˆ ( )= - ´ar f 19m m

on that sphere.
These kinetic friction forces are proportional to the applicable normal force, which is the

force of gravity in the case of table friction, and includes the radial component of the
magnetic force in the case of magnet–magnet friction. Given that magnetic forces between
two magnets that are in contact with each other typically exceed gravitational forces on these
magnets, magnet–magnet friction dominates when magnets are in contact.

4.2. Eddy currents

We also investigate eddy currents as a possible damping mechanism. An object with con-
ductivity σ that moves with velocity v through a static magnetic field experiences eddy
currents with current density s=J E, where = ´E v B is the motional electric field [15].
These currents act to oppose the change in magnetic flux, and produce an eddy force

ò= ´ VF J B deddy on the conductor, where the integral is over the volume of the con-
ductor. Thus

( ) ( )ò s= ´ ´ VF v B B d 20eddy

( · ) ( )ò òs s= - +B V Vv v B Bd d . 212

The component of this force in the direction of the velocity is given by

ˆ · (ˆ · ) ( )ò òs s= - +v B V v Vv F v Bd d , 22eddy 2 2

where ˆ = vv v is the unit vector in the direction of v. Unless v is parallel to B or antiparallel
to B throughout the volume of the conductor, the first term dominates and ˆ · <v F 0eddy .

To make an order-of-magnitude assessment of the eddy currents produced in sphere 2 as
it moves through the static field of sphere 1, held fixed, we ignore the second term of
equation (21) and replace B2 in the integrand of the first term with its value ( )B r1

2 at the center
of sphere 2, yielding the simple, approximate result

¯ ( ) ( )p s= - a BF r v
4

3
. 23eddy 3

1
2

In this approximation, the eddy force Feddy of sphere 1 on sphere 2 is antiparallel to the
velocity v of sphere 2, like the Stokes drag on a sphere moving slowly through a viscous fluid
[16], and is proportional to the square of the local magnetic field.

Commercial neodymium magnets typically have spherical nickel–copper coatings that
have significantly higher conductivities than their neodymium alloy interiors. To account for
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these coatings on the eddy forces, we write ( )s s r= , where ρ is the radial position from the
sphere center, and use the volume element pr r=Vd 4 d2 to calculate the average con-
ductivity

¯
( )

( ) ( )ò
ò
ò

s
s r

s r r r= =
V

V a

d

d

3
d , 24

a

3 0

2

which appears in equation (23).
Zen Magnets have neodymium–iron–boron alloy (Nd2Fe14B) interiors of radius 2.450

mm and conductivity s = ´ W- -6.67 10 ma
5 1 1 surrounded by a 0.015 mm layer of nickel

with conductivity s = ´ W- -1.43 10 mn
7 1 1, a 0.025 mm layer of copper with conductivity

s = ´ W- -5.96 10 mc
7 1 1, and a final 0.010 mm layer of nickel, for a total radius of 2.500

mm [17–20]. Accordingly, equation (24) gives

¯ ( )s = ´ W- -2.80 10 m . 256 1 1

Eddy currents also produce torques on spinning conductors in the presence of a magnetic
field [21–23]. A conductor that rotates with angular velocity ω in a magnetic field generates
eddy currents with current density s=J E, where the motional electric field = ´E v B
relies on the rotational velocity ω ρ= ´v of a point in sphere 2, located relative to the
sphere center by the position vector ρ [24]. The force on a volume element is ´ VJ B d , and
the associated torque is τ ρ ( )= ´ ´ VJ Bd d , so the total torque on the sphere is

τ ρ ( ) ( )ò= ´ ´ VJ B d . 26eddy

This can be rewritten as

τ ω ω ρ ρ[( ) · ] ( )ò òs r s= - + ´ ´B V VB Bd d . 27eddy 2 2

The component of this torque in the direction of the angular velocity is

ω τ ω ρˆ · [( ˆ ) · ] ( )ò òw sr w s= - + ´B V VBd d , 28eddy 2 2 2

where ω ωˆ w= is the unit vector in the direction of ω.
As before, the first term dominates, we ignore the second term of equation (27), and we

replace B2 in the integrand of the first term with its value ( )B r1
2 at the center of sphere 2,

giving the approximate result

τ ω( ) ( )*p s= - a B r
4

5
, 29eddy 5

1
2

where

( )
( ) ( )* ò

ò
ò

s
s r r

r
s r r= =

V

V a
r

d

d

5
d 30

a2

2 5 0

4

is the associated weighted average conductivity. In this approximation, the eddy torque is
antiparallel to the angular velocity vector and is proportional to the square of the local
magnetic field. Using the Zen Magnets data above, we obtain

( )*s = ´ W- -4.16 10 m . 316 1 1

In our simulations, we employ equations (23) and (29) to describe the eddy force and
torque on the free sphere, with equations (25) and (31) providing estimates of the associated
weighted conductivities.
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4.3. Newtonian formulation

To study the role of non-conservative forces on the 2D dynamics of sphere 2, it is convenient
to use Newtonian dynamics. Applied to sphere 2 (with sphere 1 held fixed at the origin),
Newton’s second law states

˜ ( )+ + + + = mF f f F F a, 32t m12
eddy

N

with terms on the left side given by equations (7), (16), (18), and (23) and a final term giving
the normal force of the fixed sphere on the free sphere. The forces fm and FN apply only when
the magnets are in contact. Newton’s second law for rotations states

τ τ τ τ α ( )+ + + = I , 33t m12
eddy

with terms given by equations (9), (17), (19), and (29).

5. Dimensionless variables

To simplify calculations, we scale length by the magnet diameter =D a2 , force by
( )m p=F m D3 20 0

2 4 , energy and torque by F D0 , time by ˜=T mD F0 0 , magnetic field by
F D m0 , magnetic moment by m, velocity by D T0, acceleration by D T0

2, angular velocity by
-T0

1, angular acceleration by -T0
2, radial (linear) momentum by m̃D T0, and orbital and spin

angular momentum by m̃D T2
0. Here, F0 is the force between two magnets in the minimum-

energy state with the north pole of one touching the south pole of the other, and T0 is the time
scale for the magnetic force to bring two magnets together starting from rest at separations of
the order of 2D. In dimensionless units, the magnet diameter and the center-to-center distance
between touching magnets are both 1, and the magnetic moment vectors are unit vectors.

In dimensionless variables in the 2D geometry described in section 3, equation (3) has
the dimensionless form

[( ) ˆ ˆ] ( )q q= + +
r

B x y
1

12
1 3 cos 2 3 sin 2 , 341 3

which has magnitude

( ) ( ) ( )q q= +B r
r

,
1

12
10 6 cos 2 351 3

1 2

and direction fm (measured counterclockwise from the +x-direction) given by

( )f
q
q

=
+

tan
3 sin 2

1 3 cos 2
. 36m

Equations (5), (15), (11)–(13), and (32) become

( )= +E T U, 37

[ ( )] ( )f f q= - + -U
r

1

12
cos 3 cos 2 , 38

3

( )= + +q
fT

p p

r
p

2 2
5 , 39r

2 2

2
2

( )=p r, 40r

( )q=qp r , 412
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( )f=fp 10, 42

( )= + + + +
t

v
F f f F F

d

d
, 43t m12

eddy
N

where E is the total energy, and where

[ ( )] ˆ ( ) ˆ ( )qf f q f q= - + - + -
r r

F r
1

4
cos 3 cos 2

1

2
sin 2 , 4412 4 4

ˆ ( )g= -f v, 45t

ˆ ( )m= - Ff v , 46m m tN

( ) ( )h= - BF r v. 47eddy
1
2

Here, fm and FN apply only when sphere 2 is in contact with sphere 1, that is, when r=1, and
ˆ = vv vt t t follows from the dimensionless tangential velocity vector

ω ˆ ( )= - ´v v r 2. 48t

The total energy E is conserved if the magnetic force = - UF12 2 12 only is included in
equation (43); E is a decreasing function of time otherwise.

Equation (44) is resolved into components in the polar directions

ˆ ˆ ˆ ( )q q= +r x ycos sin , 49

ˆ ˆ ˆ ( )q q q= - +x ysin cos . 50

In polar coordinates

˙ˆ ˙ ˆ ( )qq= = +
t

r rv
r

r
d

d
51

and

( ) ˆ ( ) ˆ ( )  qq q= = - +
t

r r
r t

ra
v

r
d

d
¨

1 d

d
. 522 2

The dimensionless coefficients

˜
( )g

pm
m

=
mgD

m

2

3
, 53t

4

0
2

¯
˜

( )h m s
m

p
= m

mD

1

4

3

2
540

0

respectively characterize the strength of table friction and eddy forces. Zen Magnets near
the Earth’s surface have D=5 mm, m=0.05 Am2, ˜ =m 0.5 g, g=9.8 m s−2,
m p= ´ -4 100

7 N A–2, and s̄ = ´ W- -2.80 10 m6 1 1 (equation (25)) [2]. Kinetic friction
coefficients generally lie between 0 and 1. In order to give a rough idea of the role of table
friction for a variety of table surfaces, we simply take m = 0.5t . Inserting these values gives
g = 0.001 and h = 0.02. For magnet–magnet friction, we take

( )m = 0.53, 55m

pertinent to nickel on nickel [25].
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Equation (33) has the dimensionless form

ω τ τ τ τ ( )= + + +
t

1

10

d

d
, 56t m12

eddy

with

τ [ ( )] ˆ ( )f f q= - + -
r

z
1

12
sin 3 sin 2 , 5712 3

τ ω̂ ( )*g= - , 58t

τ ˆ ( )= - ´r f 2, 59m m

τ ω( ) ( )*h= - B r , 60eddy
1
2

where τm applies only when sphere 2 is in contact with sphere 1, that is, when r=1.
The dimensionless coefficients

˜
( )*

*
g

pm

m
=

mgD

m

2

3
, 61t

4

0
2

˜
( )* *h m s

m
p

= m
mD

3

80

3

2
620

0

respectively characterize the strength of table friction and eddy torques. Inserting *m = 0.5t
and *s = ´ W- -4.16 10 m6 1 1 from equation (31) gives *g = 0.001 and *h = 0.005.

We can now combine the considerations in this section to cast equations (43) and (56) as
a system of first-order equations governing the dynamical variables r, θ, f, pr, pθ, and pf’,

( ) =r p , 63r

( )q = qp

r
, 64

2

( )f = fp10 , 65

˜ ( ) = + - +qp
p

r

U

r
f p F

3
, 66r r

2

3 N

( ) ˜ ( ) f q
m

= - - +q q fp
r

f p
F

v
rp

1

2
sin 2

5
, 67m N

t
3

[ ( )] ˜ ( ) f f q t
m

= - + - - +f f qp
r

p
F

v
p

1

12
sin 3 sin 2

2
, 68m

t
3

N

where

˜ ( )g
h

m
= + +f

v
B

F

v
, 69m

t
1
2 N

˜
∣ ∣

( )*
*t

g
h

m
= + +

fp
B

F

v
10

5

2
70m

t
1
2 N
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are combined frictional forces and torques, and where

( ) ( )= + qv p p r , 71r
2 2 2 1 2

[ ( ) ] ( )= + -q fv p p p5 72t r
2 2 1 2

are the speed of sphere 2 and the tangential speed of its point of contact with sphere 1, if
applicable. The terms involving FN are included only if the spheres are in contact, for which
r=1, pr=0, and

( )= - - qF U p3 73N
2

is chosen to satisfy ˙ =p 0r in equation (66). Consequently, < - qU p 32 must hold lest
<F 0N and sphere 2 lose contact with sphere 1. Equations (35) and (38) may be used to

evaluate B1 and U.
Dimensionless variables are used in all equations in this and subsequent sections, and in

all figures in the manuscript except for figure 1.

6. Special cases

Studying pure translations and pure rotations illustrates simple elements of the dynamics and
allows us to investigate the role of frictional forces and torques.

6.1. Translation

We release sphere 2 from rest at ( ) ( )q f =r x, , , 0, 00 (figure 3(a) A) and determine the
elapsed time and speed at which it collides with sphere 1, which is held fixed at the origin. In
this case, sphere 2 experiences no torque and moves in the-x-direction with time-dependent
position x(t) and velocity = <v x td d 0x obeying

( )g
h

= - + -
v

t x x
v

d

d

1

9
, 74x

x4 6

from equation (43). The terms on the right side give, from left to right, the attractive magnetic
force of sphere 1 on sphere 2, the dissipative force of table friction, and the dissipative force
of eddy friction.

Equation (74) can be integrated analytically in the absence of eddy friction (h = 0).
Writing

( )= =
v

t

v

x

x

t
v

v

x

d

d

d

d

d

d

d

d
75x x

x
x

enables us to cast equation (74) as

( )ò ò g= -⎜ ⎟⎛
⎝

⎞
⎠v v

x
xd

1
d . 76x x 4

Integrating and applying the initial conditions ( ) =x x0 0 and ( ) =v 0 0x gives

( ) ( ) ( )g= - - + -
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥v x

x x
x x

2

3

1 1
2 , 77x 3

0
3 0

1 2

which depends on time through ( )=x x t . Inserting =v x td dx and integrating allows us to
find the time at collision
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( ) ( )ò= - -t v x xd . 78
x

x
1

10

The integral is from x=1, where the collision occurs, to x 10 , the initial position of sphere
2. Equation (77) yields the corresponding speed = -v vx at the time of collision

( ) ( )g= - + -
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥v

x
x

2

3
1

1
2 1 . 79

0
3 0

1 2

Figure 4 shows results for v and t as a function of x0, for no table friction (g = 0) and for
table friction pertinent to Zen Magnets (g = 0.001, section 5). For =x 10 , sphere 2 is initially
in contact with sphere 1, and = =v t 0. As x0 increases from 1, v increases rapidly at first
and slowly thereafter, reflecting the rapid decay of the r1 4 magnetic force with increasing
sphere separation. The collision speed depends little on distance for large distances because
the magnetic force is weak at large distances, and this force contributes little to final speed of
sphere 2. On the other hand, t increases rapidly with increasing distance for large distances
because sphere 2, starting from rest, spends a lot of time traveling slowly before reaching the
regions near sphere 1 where the force is strong. Values for t were obtained from equation (78)
by numerical integration with = -xd 10 6.

Table friction is negligible for small x0 because there the magnetic force overwhelms the
table friction force. The role of friction on v remains negligible for »x 40 because at these
distances, table friction simply serves to oppose the magnetic force, which is already weak
and plays little role in the collision speed. Table friction does play a role on the elapsed time
for »x 40 , because it reduces the already small speed of sphere 2 at these distances, where
most of the time is spent.

Figure 4. Dimensionless collision speed v and elapsed time t for a uniformly
magnetized sphere that is released from rest at initial position ˆx x0 , and is attracted by a
second uniformly magnetized sphere that is held fixed at the origin (figure 3(a) A).
Both spheres have the same dipole moment, each pointed in the+x-direction. For v, the
solid trace and the open squares are given respectively by equation (79) and MagPhyx
software for g = 0 (no table friction), and the dashed trace and the plus symbols are
given by equation (79) and MagPhyx software for g = 0.001 (table friction pertinent to
Zen Magnets). For t, the solid trace and open circles are given by equation (78) and
MagPhyx for g = 0, and the dashed trace and the ‘×’ symbols are given by
equation (78) and MagPhyx for g = 0.001.
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To investigate the role of eddy friction, we use the forward Euler method with
dt=0.0001 to integrate equation (74) and =v x td dx for  x1 50 . For h = 0.02 perti-
nent to Zen Magnets (section 5), eddy friction decreases v and increases t by less than 0.1%.

6.2. Rotation

We now consider rotation without translation. We confine sphere 2 to a fixed location on the
+x-axis and allow it to spin freely about an axis through its center that is parallel to the z-axis,
in response to magnetic and frictional torques. We release it with zero initial angular velocity
at an initial angle f0 and calculate both the time required for it to align itself with the magnetic
field (f = 0) and its angular speed ω at that time. During this time, w f= <td d 0z and the
sphere is subject to the torques of equation (56),

( )*
*w

f g
m

f
h

w= - + + -
t x x

1

10

d

d

1

3
sin

2
cos

9
. 80z m

z3 6

The terms on the right side respectively represent the magnetic torque, the table friction
torque, the magnet–magnet friction torque (applicable only when sphere 2 is in contact with
sphere 1, and when the force between them is attractive), and the eddy torque.

Equation (80) can be solved analytically in the absence of the eddy torque ( *h = 0). We
insert

( )w w
f

f
w

w
f

= =
t t

d

d

d

d

d

d

d

d
81z z

z
z

into equation (80) and rewrite it to yield

( )*ò òw w f g
m

f f= - + +⎜ ⎟⎛
⎝

⎞
⎠x

d 10
1

3
sin

2
cos d . 82z z

m
3

Integrating and applying the initial conditions ( )w =0 0z and ( )f f=0 0 yields the angular
velocity

( ) ( ) ( )

( ) ( )

*w f f f g f f

m
f f

=- - + -

+ -

⎡
⎣⎢

⎤
⎦⎥

x
2 5

1

3
cos cos

2
sin sin , 83

z

m

3 0 0

0

1 2

which depends on time through ( )f f= t . Inserting w f= td dz and integrating gives

( ) ( )ò ò w f f= -
f

-td d . 84z
0

10

Equation (83) yields the corresponding speed w w= - z at f = 0,

( ) ( )*w f g f
m

f= - - -
⎡
⎣⎢

⎤
⎦⎥x

2 5
1

3
1 cos

2
sin . 85m

3 0 0 0

1 2

For f p= 20 , equation (85) gives

( )*w
p
g

m
= - -⎜ ⎟⎛

⎝
⎞
⎠x

2 5
1

3 2 2
. 86m

3

1 2

We first consider the frictionless case with *g m= = 0m , which oscillates indefinitely
about f = 0 with amplitude f0. For x=1, small-amplitude oscillations ( f 10 ) yield
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( )p
=t

2

3

10
87

and

( )w f=
10

3
, 880

while large-amplitude oscillations (f p0 ) give  ¥t and

( )w = 2
10

3
. 89

Figure 5 gives general results for x=1 and  f p<0 0 , with values of t obtained from
equation (84) by numerical integration with f = -d 10 6.

We next consider the role of friction. For x=1 and values m = 0.53m , *g = 0.001, and
*h = 0.005 pertinent to Zen Magnets (section 5), the magnitudes of terms in equations (80)
and (86) indicate that table friction, characterized by *g , and eddy friction, characterized by
*h , alter typical values of the force and the angular velocity by less than 1% when sphere 2 is
in contact with sphere 1. But magnet–magnet friction, characterized by mm, is proportional to
the magnet force between sphere 1 and sphere 2, and is non-negligible when these spheres are
in contact. When magnet–magnet friction is included, equations (80) and (85) are valid only
for  f p0 20 . For f p> 20 , the radial component of the magnetic force

Figure 5.Dimensionless angular speed ω and elapsed time t versusinitial angle f0 for a
uniformly magnetized sphere that is allowed to spin freely without friction at a fixed
location x=1 and y=0 in response to the magnetic torque from a second uniformly
magnetized sphere that is held fixed at the origin, with dipole moment in the
+x-direction. The spinning sphere is released from rest with its dipole moment oriented
at an angle f f= 0 with respect to the +x-direction. The angular speed ω and elapsed
time t pertain to the first zero crossing of f. For ω, the solid trace and the squares are
given respectively by equation (85) and MagPhyx software. For t, the solid trace and
the circles are given by equation (84) and MagPhyx. The short-dashed and chain-
dashed lines give the small-amplitude limits given by equations (87) and (88), and the
long-dashed line gives the large-amplitude limit given by equation (89).
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· ˆ f= -F r cos12 that provides the normal force for magnet–magnet kinetic friction
(equations (46) and (59)) is repulsive, hence there is no magnet–magnet friction force or
torque at these angles.

Considering just magnet–magnet friction by setting * *g h= = 0 in equation (80)
reveals that the magnitude of the magnet–magnet friction torque exceeds the magnitude of the
magnetic torque for small angles ( )f m p< =-tan 3 2 0.214m

1 . For these angles, magnet–
magnet friction can stop the rotation, after which static friction takes over and exactly bal-
ances the magnet torque. Figure 6 shows values of ω and t for m = 0.53m and
f f p< < 2L 0 . The lower limit fL can be obtained by setting w = 0 and f f=0 L in
equation (85), giving

( )f
m

f- =1 cos
3

2
sin . 90m

L L

Inserting m = 0.53m and solving numerically gives f p= 0.428L , where w = 0 and t has a
large negative slope in figure 6. For f0 satisfying f f p< < 2L 0 , the sphere has sufficient
angular momentum to overcome small-angle friction and reach the zero crossing at f = 0.
For f f<0 L, magnet–magnet friction stops the sphere before it reaches f = 0.

We now investigate the role of friction at the larger separation x=4, where the magnetic
torque is much smaller and magnet–magnet friction is irrelevant because the spheres are not
in contact. At this separation, equations (86) and (80) imply that the table friction torque is of
order 20% of the magnetic torque magnitude, while the eddy torque is of relative
order 7×10−6.

Figure 7 shows the results for ω and t with and without table friction, for *m h= = 0m

and x=4. Without table friction ( *g = 0), the results look similar to figure 5, except that ω is
smaller and t larger in figure 7 because the magnetic torque is weaker.

Figure 6.Dimensionless angular speed ω and elapsed time t versusinitial angle f0 for a
uniformly magnetized sphere that is allowed to spin at a fixed location x=1 and y=0
in response to the magnetic torque and the magnet–magnet friction torque with
m = 0.53m . For ω, the solid trace and the squares are given respectively by
equation (85) and MagPhyx. For t, the solid trace and circles are given by equation (84)
and MagPhyx. Also shown is the lower limit fL given by equation (90).
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With table friction ( *g = 0.001), f0 is restricted to the range f f f< <1 0 2. The lower
limit f1 given by setting f f=0 1 and w = 0 in equation (85), giving

( )*f g f- - =x1 cos 3 0. 911
3

1

Solving this equation numerically for x=4 and *g = 0.001 gives f p= 0.1241 , where ω

vanishes and t has a large negative slope. For f f<0 1, table friction stops the rotation before
the zero crossing can be achieved.

The upper limit f2 is given by setting f f= 2 and w =td d 0z in equation (80), giving

( )*f g- + =xsin 3 0. 922
3

Solving this equation numerically for x=4 and *g = 0.001 gives f p¢ = 0.0612 and
f p= 0.9392 , supplementary angles at which the net torque is zero. Outside the range
f f f¢ < <2 2, the kinetic friction torque exceeds the opposing magnetic torque on sphere 2,
and static friction succeeds in preventing any rotation of a sphere released from rest. Here, we
assume for simplicity that the coefficient of static friction equals the coefficient of kinetic
friction. The upper value f2 sets the upper limit on f0 because sphere 2, released from rest at
f f>0 2, is unable to overcome static friction and begin rotating. The lower value f¢2 does not
serve as the lower limit on f0 because it is smaller and less restrictive than the actual lower
limit, f1. Released at an angle f0 satisfying f f f< <1 0 2, sphere 2 has sufficient angular
momentum to carry it through the zero crossing, including through the range f f< < ¢0 2
where the kinetic friction torque exceeds the magnetic torque.

In summary, magnet–magnet friction plays a role when the spheres are in contact, table
friction plays a role at large sphere separations, and eddy currents are always negligible.

Figure 7.Dimensionless angular speed ω and elapsed time t versusinitial angle f0 for a
uniformly magnetized sphere that is allowed to spin at a fixed location x=4 and y=0
in response to the magnetic torque and the table friction torque. For ω, the solid trace
and the squares are given respectively by equation (85) and MagPhyx software for
*g = 0, and the dashed trace and the diamonds are given by equation (85) and

MagPhyx software for *g = 0.001. For t, the solid trace and the circles are given by
equation (84) and MagPhyx for *g = 0, and the dashed trace and the triangles are
given by equation (84) and MagPhyx for *g = 0.001. Also shown are the limiting
angles f1 and f2 given by equations (91) and (92).

Eur. J. Phys. 38 (2017) 015205 B F Edwards and J M Edwards

18



7. MagPhyx software

We have built magnet simulation and visualization software for education, exploration, and
discovery that integrates equations (63)–(68) using fourth-order Runge–Kutta with fixed step
size, for a free sphere (sphere 2) moving in two dimensions in response to the fields of a fixed
sphere (sphere 1). Visualization of force, velocity, torque, angular velocity, magnetic
moments, and magnetic fields aid in the understanding of magnet interactions. We make the
software freely available as an interactive, animated web page called MagPhyx, and invite
students and educators to take advantage of this learning and exploration tool [5].MagPhyx is
written in WebGL and is fully validated; its results appear as data points in figures 4–7, which
agree with our independent calculations to within 0.1%.

7.1. Visualization and controls

Figure 8 shows four MagPhyx screenshots that illustrate its capabilities and its predictions.
The fixed sphere is shown as a shaded gray disk at the center of the main window, with the
direction of its magnetic moment denoted by a black arrow at the center of the disk, and its
magnetic fields denoted by directed gray traces emanating from and entering the disk.

If ‘show path’ (lower right corner of screen) is not checked, the free sphere is shown as a
disk whose color is determined by the dimensionless potential energy ( )q fU r, , of
equation (38). Negative potential energies are denoted by a blue disk, with lower values
denoted by deeper blue colors (figure 8(a)). Positive potential energies are denoted by a red
disk, with higher values denoted by deeper red colors. The direction of the magnetic moment
of the free sphere is denoted by a black arrow atop the disk. Also atop the disk are shown a
light gray arrow indicating the direction of the magnetic field at the center of the sphere, a
green arrow representing velocity, and a green arc representing angular velocity. Shown just
outside of the disk are a gold arrow representing force and a gold arc representing torque. To
enable visualization over a wide range of these physical quantities, we take the length of the
force vector to be proportional to the fourth root of the force magnitude, the length of the
torque arc to be proportional to the cubed root of the torque magnitude, and the lengths of the
velocity arrow and the angular velocity arc to be proportional to the square roots of the
magnitudes of these quantities.

If ‘show path’ is checked, the path of the center of the free sphere is shown as a red trace,
and only outlines of the sphere and its magnetic moment vector are shown (figures 8(b)–(d)).
The other arrows and arcs are not shown in order to better see this path. The ‘show path’
checkbox may be checked and unchecked during a simulation. Paths are saved whether or not
the box is checked, so that when it is checked, all of the previous history of the simulation is
shown.

The five control buttons on the main window are used to zoom in, zoom out, save, reset,
and play/pause the simulation. The ‘save’ button saves a log file with information about
events (see below).

7.2. Input

Input parameters are shown at the lower right corner of the screen:
The ‘demo’ menu gives sets of input parameters to demonstrate various physical prin-

ciples discussed in this paper, and may be used to begin exploring the physics of magnet–
magnet interactions. Selecting one of these demonstrations sets all of the input parameters for
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Figure 8. MagPhyx screenshots from demos 3, 5, 7, and 8 (section 7.4).
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that demonstration. To run a demonstration, select it from the demo menu and press the ‘play’
button.

Three-dimensionless coordinates and three-dimensionless momenta of the free sphere
constitute the dynamical variables of the problem. They are: its radial coordinate r 1
measured in units of the sphere diameter, its azimuthal position θ measured in degrees
counterclockwise from the +x-axis, the orientation f of its magnetic moment measured in
degrees counterclockwise from the+x-axis (figure 2), its radial momentum ˙=p rr , its orbital
angular momentum q̇=qp r2 , and its spin angular momentum ḟ=fp 10 (equations (40)–
(42)). Values for the initial coordinates and momenta may be entered in the boxes on the
lower right corner of the screen.

Alternatively, the initial position may be specified by clicking the mouse at the desired
location of the free sphere, or by clicking and dragging the image of the sphere to the desired
location. The initial magnetic orientation of this sphere may be specified by holding down the
shift key and dragging the mouse in a circular arc until the desired orientation is achieved.

The dimensionless friction coefficients, together with estimates of these coefficients for
Zen Magnets, are: the table friction coefficients g = 0.001 and *g = 0.001 given by
equations (53) and (61), the eddy friction coefficients h = 0.02 and *h = 0.005 given by
equations (54) and (62), and the magnet–magnet friction coefficient m = 0.53m given by
equation (55). These estimates await experimental verification.

Governing the speed and accuracy of the simulations is the dimensionless Runge–Kutta
time-step dt. For simulations used to validate the code in simple cases (figures 4–7), we used

= ´ -td 1 10 4, which gives results that are accurate to 0.1%. Smaller values of dt give more
accurate results, while larger values give faster simulations.

The ‘collisions’ menu refers to collisions of the free sphere with the fixed sphere, and
enables either elastic or inelastic collisions. The ‘elastic’ option gives perfectly elastic hard-
sphere collisions for which the free sphere bounces off of the fixed sphere with T, pθ, and pf’
unchanged, and with  -p pr r, that is, with the angle of incidence equaling the angle of
reflection. The inelastic option gives perfectly inelastic collisions for which the free sphere
loses all of its radial momentum (pr=0) and some of its energy after the collision, with pθ
and pf’ unchanged. MagPhyx uses a binary search procedure, and time steps that are smaller
than dt, to locate collisions precisely: if a time step causes the free sphere to overlap with the
fixed sphere, shorter and shorter time steps are used to zoom in on the collision until a
specified accuracy is reached.

The ‘translate’ checkbox determines whether the free sphere is permitted to translate in
response to forces. If unchecked, the sphere will remain in place. The ‘rotate’ checkbox
determines whether the free sphere is permitted to rotate in response to torques. If unchecked,
the sphere will not rotate. Normal operation is with ‘translate’ and ‘rotate’ both checked.
These checkboxes were used to validate the code (section 6).

7.3. Output

To investigate nonlinear dynamical behavior and to enable convenient replication of beha-
viors discovered in the middle of long simulations, MagPhyx logs the values of dynamical
variables at seven different event types, including collisions (when r reaches the value r = 1
from above), q = 0 events, f = 0 events, pr=0 events (excluding collisions), =qp 0
events, =fp 0 events, and b = 0 events. Here, b f f= - m is the angle between the
magnetic moment of the free sphere and the local magnetic field given by equation (36).

This log file has 12 columns: the event number n, the event type, the time t of the event,
and the corresponding values of the dimensionless variables r, θ, f, pr, pθ, pf′, β, E, andDE,
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where = +E T U is the total dimensionless energy given by equation (37) and, and
D = -E E E0 is the difference between the current energy and its initial value E0. For long
simulations without friction, smallDE is an indicator of numerical accuracy. For simulations
with friction, DE measures the extent of dissipation. Values of these 12 quantities are also
displayed in the lower left corner of the screen.

Also shown on the upper right corner of the screen is an event map of values of β

versusθ at collision events, with each event represented by a small black dot on the screen.
Shown as light blue shaded regions in this event map, and in the main window, are domain
boundaries on β and r [26].

7.4. Demonstrations

A sampling of dynamical behaviors and program features may be selected from a pull-down
menu in MagPhyx. For each demo, the free sphere is released from rest at a particular initial
position and orientation, and is allowed to move in response to the magnetic force and torque
of the fixed sphere. Hard-sphere elastic collisions are used and friction is ignored except for
Demo 6, which includes perfectly inelastic collisions, table friction, and magnet–magnet
friction. The descriptions below are labeled (in italics) by the characteristics of the initial force
on the free sphere, according to the five force categories discussed in section 3.

Demo 1: attractive, central force with parallel collinear moments. This initial condition
gives a bound periodic orbit with the free sphere oscillating along the x-axis and colliding
elastically once per period with the fixed sphere, with the south pole of the free sphere
contacting the north pole of the fixed sphere during each collision (figure 3(a) A).
Demo 2: attractive, central force with antiparallel non-collinear moments. This initial
condition gives a bound periodic orbit with the free sphere oscillating along the y-axis and
colliding elastically once per period with the fixed sphere. The spheres collide at points on
their magnetic equators, with the north pole of the fixed sphere attracting the south pole of
the free sphere, and the south pole of the fixed sphere attracting the north pole of the free
sphere. (figure 3(e) C).
Demo 3: attractive, oblique force with a discontiguous domain: ‘S’ pattern. This initial
condition gives a bound, apparently nonperiodic orbit with the free sphere confined to the
right half plane. Although the orbit does not appear to repeat itself over many hundreds of
collisions, the β versusθ map shows intriguing ‘S’-shaped structure (figure 3(b) B).
Demo 4: attractive, oblique force with a discontiguous domain: zig-zag pattern. This high-
speed simulation shows the path of a bound, apparently nonperiodic orbit with the free
sphere confined to the right half plane. This orbit shows an intricate zig-zag pattern in the β
versusθ map.
Demo 5: attractive, oblique force with a contiguous domain. This high-speed simulation
shows the path of a bound, apparently nonperiodic orbit with the free sphere confined to the
right half plane for hundreds of events, then moving to the left half plane. This orbit fills in
much of the domain in the β versusθ map.
Demo 6: attractive, oblique force with friction and inelastic collisions. This simulation has
a domain that is contiguous initially and shrinks slowly as energy dissipates through table
friction. When the free sphere collides inelastically with the fixed sphere, the energy drops
abruptly to a lower value and the domain becomes discontiguous. Thereafter, the domain
shrinks slowly as energy dissipates through magnet–magnet friction and table friction until
the free sphere settles near the minimum-energy state, with the south pole of the free sphere
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near the north pole of the fixed sphere. Magnet–magnet friction prevents the free sphere
from actually reaching this state (section 6.2, figure 3(a) B).
Demo 7: perpendicular force at the infinite domain threshold. This high-speed simulation
shows the path of a chaotic orbit with energy =E 0, the threshold between bound and
unbound orbits. The free sphere takes long excursions from the fixed sphere, but always
returns because it lacks the energy to escape fully from the fixed sphere. To enable viewing
of the free sphere during its long excursions, the simulation is shown zoomed out
(figure 3(c) A).
Demo 8: repulsive, oblique force. This initial condition gives an unbounded orbit in which
the free sphere makes three collisions with the fixed sphere and then embarks on a long,
linear journey to infinity, never to return.
Demo 9: repulsive, central force with antiparallel collinear moments. In this simulation,
the north pole of the free sphere makes initial contact with the north pole of the fixed
sphere, which repels the free sphere to infinity along the +x-axis (figure 3(e) A).
Demo 10: repulsive, central force with parallel non-collinear moments. In this simulation,
a point on the equator of the free sphere makes initial contact with a point on the magnetic
equator of the fixed sphere. The north pole of the fixed sphere repels the north pole of the
free sphere, the south pole of the fixed sphere repels the south pole of the free sphere, and
the free sphere travels to infinity along the +y-axis (figure 3(a) C).

7.5. Results

With its force, torque, velocity, and angular velocity visualizations, MagPhyx is particularly
well suited to illustrate basic principles of inertia. A force in a particular direction does not
mean that the free sphere moves in that direction; it means that the change in its linear
momentum is in that direction (figure 8(a)). Similarly, a torque in a particular direction does
not mean that the sphere turns in that direction; it means that the change in its angular
momentum is in that direction. A torque that acts to align m2 with B1 can eventually lead to
angular momentum that acts to align these vectors. But the very angular momentum that
carries m2 into alignment with B1 continues to rotate the sphere in the same direction until m2

is out of alignment with B1 again, when a torque in the opposite direction begins to slow the
rotation in an attempt to bring the sphere back into alignment. In the absence of dissipation,
such oscillations can continue indefinitely. These oscillations are an integral part of
demonstrations 4, 5, 7, and 8. (Selecting a value of dt of about = ´ -td 1 10 4 is needed to
observe these oscillations in demonstrations 4, 5, and 7.) In a similar way, forces that strive to
bring the sphere into regions where m2 is better aligned with B1 give it linear momentum that
can carry the sphere beyond these regions.

8. Conclusions

We exploit the equivalence of the force between point dipoles to the force between spheres to
investigate the time-dependent interactions between two magnet spheres, with one held fixed.
We find both bound and unbound states, with the free sphere confined to one of two dis-
contiguous domains for bound states at low energies, and with these domains merging for
high-energy bound states. We investigate three different mechanisms of energy dissipation
through non-conservative forces, and determine when they are relevant. We offer a magnet
interaction software tool called MagPhyx to the community for use in teaching and
exploration.
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The 2D conservative problem has three coordinates and three momenta: radial
momentum, orbital angular momentum, and spin angular momentum. Because none these
momenta is conserved, energy may be exchanged between magnetic potential energy,
translational kinetic energy, and rotational kinetic energy. This exchange leads to rich non-
linear behavior, including both periodic and non-periodic orbits shown in the demonstrations
above. We intend to investigate this behavior further, by exploring the stability of fixed points
and periodic orbits, searching for non-trivial periodic orbits, and characterizing bound chaotic
orbits [26].

The tools presented in this paper may be used to investigate the stability of magnet
configurations used in building shapes using magnet spheres. These tools may also be used in
the classroom and teaching laboratory to investigate the magnetic fields produced by chains of
magnets of different lengths, and the energies of symmetric rings of magnets of different
lengths. The point-sphere equivalence may assist in research on arrays of nanoparticles and
permanent magnets, in dynamic simulations of magnet sphere interactions, and in applica-
tions in science education.

Experiments with real magnets could be used to refine our friction-coefficient estimates
and to test our predictions of dynamical behavior. One approach is to take high-speed
videography of a magnet released from various positions on a horizontal surface, with its
poles labeled, in the presence of a second magnet that is held fixed on the surface. Using
magnets larger than 5 mm in diameter might help to facilitate such measurements.
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