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Methods are described that extend fields from reconstructed equilibria to include scrape-off-layer

current through extrapolated parametrized and experimental fits. The extrapolation includes both

the effects of the toroidal-field and pressure gradients which produce scrape-off-layer current after

recomputation of the Grad-Shafranov solution. To quantify the degree that inclusion of scrape-off-

layer current modifies the equilibrium, the v-squared goodness-of-fit parameter is calculated for

cases with and without scrape-off-layer current. The change in v-squared is found to be minor

when scrape-off-layer current is included; however, flux surfaces are shifted by up to 3 cm. The

impact on edge modes of these scrape-off-layer modifications is also found to be small and the

importance of these methods to nonlinear computation is discussed. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4972822]

I. INTRODUCTION

Understanding of tokamak plasmas has greatly benefited

from the separation of time scales inherent in strongly magne-

tized plasmas. All orderings of strongly magnetized plasma

equations show that the magnetic pressure and line-bending

contributions from J� B and the force-density from rp are

the largest terms in the center-of-mass momentum equation.

Assuming symmetry and nested flux surfaces allows one to

derive the Grad-Shafranov equation1 that describes the

lowest-order steady-state fields. This solution is convention-

ally described as the plasma equilibrium. Perturbations that

drive the plasma away from equilibrium launch Alfv�en waves

that quickly act to restore the plasma to equilibrium.2

Transport occurs on slower time scales, while symmetry-

breaking macroscopic instabilities occur on intermediate time

scales between the transport and the stiff Alfv�en time scale.

This paradigm well describes the experimental phenome-

nology, and solutions to the Grad-Shafranov equation are rou-

tinely calculated hundreds of times per plasma discharge to

provide a measure of the location of magnetic-flux surfaces.

As such, these solutions are indispensable to controlling the

plasma and interpreting diagnostic data. Thus, Grad-Shafranov

theory may be considered as one of the most successful appli-

cations of tokamak-plasma theory. Measurement of both the

macro- and micro-scopic perturbations confirms the small-

fluctuation assumption embedded in the theory: tearing modes,

for example, have perturbed magnetic energies four orders of

magnitude below the equilibrium stored magnetic energy,3 and

ion-temperature-gradient-driven turbulence produces density

fluctuations less than 1% of the equilibrium density.4 The

small-fluctuation hierarchy coupled with slow temporal evolu-

tion permits the common approach of extended-MHD model-

ing about a Grad-Shafranov equilibrium (e.g., Ref. 5), as

opposed to modeling the symmetric fields with the full

extended-MHD equations (e.g., Ref. 6). The effects

encompassed by extended-MHD are variable: extended-MHD

refers to models beyond resistive MHD that include some

combination of anisotropic thermal conduction and stresses,7

two-fluid evolution,8 finite-Larmor-radius closures,9,10 and/or

advanced drift-kinetic-equation closures.11

One challenge to simulating small fluctuations about an

equilibrium state is that errors in the equilibrium can be on

the order of the perturbation magnitude. This issue is recog-

nized by Grimm et al.12 with the first “mapping code,” a

code that employs numerical maps to transfer fields from the

spatial discretization of an equilibrium code onto the spatial

discretization of another code, where the second code typi-

cally assesses stability or the evolution of nonlinear perturba-

tions. Despite considerable effort to increase the accuracy of

mapping codes, mapping errors are difficult, if not impossible,

to completely eliminate. In practice, extended-MHD codes,

such as NIMROD7,8 and M3D-C1,13,14 recompute the Grad-

Shafranov equilibrium with their native spatial discretizations

to circumvent these errors. Burke et al.15 discussed an example

of the impact of mapping errors. In that work, the NIMROD

extended-MHD code is benchmarked with the linear-MHD

codes GATO16 and ELITE17 on peeling-ballooning modes

(PBMs) in tokamak equilibria. GATO, like other global linear-

MHD codes, uses mapped equilibria while ELITE uses Miller

equilibria18 that effectively act to provide the same accuracy as

re-solving the Grad-Shafranov equation. In NIMROD calcula-

tions with mapped equilibria, better agreement with GATO is

obtained, whereas when the NIMEQ code19 is used to recom-

pute the Grad-Shafranov equation for the NIMROD initial con-

dition, better agreement with ELITE is obtained.

While this example demonstrates the importance of

high-accuracy Grad-Shafranov solutions that are recomputed

within a code’s native spatial discretization, a further exam-

ple is provided with Fig. 1. The figure shows a comparison

of the toroidal current density from both a mapped equilib-

rium along with a case where the Grad-Shafranov solution is
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recomputed with NIMEQ. This high-resolution computation

is performed with a 72� 512 finite-element grid with bi-

quartic elements. The bumps in the mapped solution roughly

correspond to the resolution of the 129� 129 grid used dur-

ing the reconstruction. Computations of edge-mode growth

rates with the mapped equilibria give markedly different

results relative to using the solution recomputed with

NIMEQ.

The work of Burke et al. considered the simple case of

an artificial peeling-ballooning equilibrium with exclusively

closed and nested-flux surfaces without diverted magnetic

topology. A diagram of the topology associated with cases

considered in this work, a diverted lower-single-null shot

within the DIII-D tokamak, is shown in Fig. 2 along with

labels of the terminology used for the topological regions

and contours. Operation with a divertor implies the presence

of a separatrix field line that separates the open- and closed-

flux regions. The surface immediately inside the separatrix is

the last-closed-flux surface (LCFS). The separatrix and

LCFS are indistinguishable from a practical standpoint, aside

from the separatrix field lines that extend to the divertor

strike point. The open field lines between the LCFS and the

first wall define the halo region,20,21 and in the modeling of

Burke et al., this region was approximated as a closed-field-

line region. Traditionally in linear-MHD modeling, this halo

region is treated as a vacuum, i.e., it has neither current nor

plasma density. In the extended-MHD modeling, the term

halo region is used instead to denote that it is a cold-plasma

region, capable of containing current, surrounding the hot,

closed-field-line region.

The goal of this work is to relax the vacuum constraint

of the halo region while remaining consistent with the meas-

urements that are used to produce the reconstruction. For

model fidelity to experiments, it is important to carefully

consider the vacuum assumption in the halo region relative

to the dynamics of study. Edge modeling is likely sensitive

to current and flows present in the scrape-off-layer (SOL)

region,22 a subregion of the halo that directs the energy and

particle exhaust from the hot plasma onto the divertor. Most

published simulations to date are initialized from equilibrium

that do not have current or flow in the halo region. This is

largely because this current is typically not included in recon-

structed equilibria from the highly successful, workhorse EFIT

code.23,24 Without SOL current, reconstructions must have one

of two undesirable properties: (1) either there is an artificial

constraint on the current which must smoothly vanish at the

separatrix or (2) there is a current discontinuity at the separa-

trix. The former constraint leads to the incorrect edge profiles,

whereas the latter impacts convergence—particularly for high-

order spatial discretizations such as those employed by

NIMROD and M3D-C1. Importantly, cases with either con-

straint fail to include the measured profiles outside the LCFS.

In this paper, we discuss our method for adding SOL

current to equilibrium reconstructions generated by EFIT.

One notable case that uses this method is the DIII-D QH-

mode modeling in Ref. 5. The difficulties with the current

and flow discontinuities and a desire for more accurate

modeling of the QH-mode instabilities motivated the devel-

opment of our methods that include SOL profile gradients.

This paper begins by reviewing the details of the EFIT

reconstructions, and discussing important metrics for deter-

mining the quality of the reconstructions in Sec. II. The

methods for recomputing equilibria with separatrices along

with the details on how we add SOL current to these new

equilibria are described in Sec. III. Example cases that use

these methods are introduced in Sec. IV. We then compare

the new and original equilibria using synthetic diagnostics

that are similar to those used to constrain the original recon-

structed equilibrium in Sec. V. Finally, we examine the

FIG. 1. Toroidal current on the upper half of the outboard midplane from

equilibria that are mapped (left) and that use a recomputed Grad-Shafranov

solution (right). From a reconstruction of DIII-D shot 145098 at 1800 ms.

FIG. 2. Diagram of topological regions of a diverted, lower-single-null shot

within the DIII-D tokamak.
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minor modification to the linear growth rates of peeling-

ballooning modes (PBMs) by the addition of SOL current in

Sec. VI before making concluding remarks in Sec. VII.

II. OVERVIEW OF EFIT EQUILIBRIUM
RECONSTRUCTIONS

Determination of the experimental configuration of

tokamak plasmas has become essential for understanding

and optimizing stability and confinement in fusion research

devices. Reconstruction of the experimental equilibrium

from a combined set of magnetic, temperature, and density

measurements is computed by minimizing the error between

modeled and observed signals. This technique, now routine,

was pioneered with the EFIT code which originally used

only magnetic diagnostics external to the first wall as a con-

straint.23,24 Later, the motional Stark effect diagnostic25,26

greatly improved the accuracy of the reconstructions by pro-

viding internal measurements of the magnetic and electric

fields. More recently, measurements of the density and tem-

perature profiles via Thompson scattering27,28 and charge

exchange recombination (CER)29,30 spectroscopy provide

further constraints on the pressure profiles.31

To quantify a reconstruction’s accuracy, results from

EFIT Grad-Shafranov solves are applied to a v-squared test

against the experimental measurements. In other words, the

goal is to find a Grad-Shafranov solution that minimizes

v2 ¼
X

i

Mi � Ci

ri

� �2

; (1)

where Mi is the measured signal, Ci is the computed signal,

and ri is the measurement uncertainty. In this paper, we per-

form this v-squared calculation to quantify the change that

arises from the numerical errors associated with mapping,

our recomputation of the Grad-Shafranov solution, and the

addition of the SOL pressure profiles and associated current

during the recomputation.

Typically, EFIT reconstructions do not include SOL cur-

rent and treat the region between the separatrix and wall, i.e.,

the halo region, as current free. This implies that if the

plasma discharge has a finite current on the separatrix, which

is often the case for H-mode discharges that contain large

bootstrap and Pfirsch-Schl€uter currents, there will be a dis-

continuity at the LCFS. Equivalently within the context of

the Grad-Shafranov equation, the EFIT profiles are con-

strained such that the pressure and toroidal magnetic field

are constant in the halo region. With finite gradients at the

LCFS, this leads to discontinuities in the first derivatives of

these profiles. These inconsistencies lead to subtle but signif-

icant issues when evolving tokamak-edge unstable cases ini-

tialized from EFIT reconstructions. For example, in codes

that retain the magneto-sonic wave physics both the SOL

current and profile gradients must be included such that the

equilibrium is consistent with force balance. Furthermore

during nonlinear computations, any inconsistencies to the

Grad-Shafranov equation, including discretization errors

from discontinuous fields, can launch spurious magneto-

sonic waves.

It must be noted that EFIT has the ability to include

force-free, poloidal current in the SOL through finite gra-

dients in the toroidal magnetic flux.32,33 However, this capa-

bility is rarely exercised and there is no published work on

the inclusion of finite pressure gradients in the SOL.

III. ALGORITHMS: BOUNDING CONTOURS AND SOL
FITS

Initializing a NIMROD computation from a reconstruc-

tion is a two-step process that involves mapping from the

reconstructed equilibrium, and then recomputation of the

equilibrium. The mapping code FLUXGRID creates both a

partially flux-aligned finite-element mesh and maps the

reconstructed-equilibrium fields onto this mesh. This

mapped solution is refined through the solution of the Grad-

Shafranov equation with the NIMEQ code.19 The solution

can then be iteratively passed between FLUXGRID and

NIMEQ for further grid refinement and Grad-Shafranov sol-

ves, as needed. The Grad-Shafranov solve is formulated as a

boundary-value problem where the boundary condition is

specified by the value of w from the mapped reconstruction.

This boundary condition constrains both the fields from the

external coils and those generated by the internal plasma that

are also determined by the pressure and toroidal-flux profiles.

With this method, the recomputed fields closely resemble the

reconstructed versions; however, mapping errors are largely

eliminated and the Grad-Shafranov equation is satisfied up to

an input tolerance.

Relative to the methods described in Ref. 19, we employ

extensions that identify the open- and closed-flux regions of

the domain in order to apply the appropriate fitted form of

the pressure and toroidal flux profiles. Within the closed-flux

regions, these profiles are specified by EFIT reconstructions

as a function of normalized flux (wn ¼ ðw� woÞ=ðwx � woÞ
which is zero at the O-point where w ¼ wo and unity on the

separatrix where w ¼ wx). With the exception of private-flux

regions, regions with wn < 1 contain closed field lines and

regions with wn > 1 contain open-field lines. Applying these

profiles to the domain requires identification of the closed-

flux region. In practice, we find the bounding LCFS contour

and use a simple algorithm that counts the number of cross-

ings of a line that extends from a finite-element node to the

boundary to determine if each node is enclosed by the con-

tour. The separatrix contour and location of the extrema of w
in the core are allowed to change and must be recomputed

after each iteration of the Grad-Shafranov solve. As the X-

point on the separatrix contour associated with diverted mag-

netic topology consists of a stagnation point for field-line

tracing, we instead elect to find a contour vanishingly close

to the separatrix which numerically approximates the LCFS.

For our purposes, we only need to bound the finite-element

nodes that are within the separatrix. We employ two methods

that use field-line tracing of the poloidal field to find this

approximate LCFS contour. The first method uses bisection

of the domain to determine where the field lines transition

from closed to open within a specified tolerance. For the par-

allel implementation, it becomes an N-section method where

each core is assigned a seed point between the known closed-
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and open-field-line locations. The second method is to use

the OCULUS code to find the saddle point in w that is asso-

ciated with the X-point, and a field-line seeded with a van-

ishingly small offset towards the O-point is used as the

LCFS in order to avoid stagnation of the field-line tracing

near the X-point. The latter method has the advantage of

being somewhat more robust for high-resolution cases, but

the disadvantage of not being amenable to a straight-forward

parallel implementation.

As discussed earlier, EFIT solutions have zero profile

gradients outside the LCFS. A cubic-spline fit of this data is

used to evaluate these fields within the LCFS. Equilibrium

generated using these spline fits with constant profile values

outside the LCFS closely match the solution given by EFIT

while largely eliminating mapping errors. One goal of this

work is to contrast this recomputed solution with a solution

that contains SOL-profile gradients.

SOL-profile gradients and associated currents are

included by defining bounding contours and normalizing the

flux as an extension to the methods used to determine the

open- and closed-flux regions. The SOL region is defined as

the region between the LCFS contour and contours with

wn ¼ wsol and wn ¼ wpf where wsol (>1) defines a contour(s)

at the edge of the SOL region and wpf (<1) defines a con-

tour(s) in the private-flux region(s) (see Fig. 2). The algo-

rithm that determines these contours is able to handle an

arbitrary number of intersections of this region and the com-

putational boundary of the domain and thus diverted topol-

ogy such as double null configurations is tractable. The

algorithm works as follows: The initial SOL bounding region

is assumed to be the computational boundary. The algorithm

checks the value of wn at each finite-element node location

outside the LCFS but contained within this “working” SOL

region. If the condition wpf < wn < wsol is not satisfied, the

location between the wall and the O-point where wn ¼ wsol

or wn ¼ wpf is identified, and a new contour is traced. In the

absence of integration error, the new contour is terminated at

the boundary. The section of the domain that does not encir-

cle the O-point is removed from the “working” SOL region

until only nodes with the property wpf < wn < wsol remain.

This new SOL contour, in addition to the LCFS contour,

bound the SOL region.

The appropriate pressure and toroidal magnetic flux pro-

files are defined within the SOL region via two methods: either

by fits from the experimental data (if available) or through

modified bump function fits. Two fits are performed for each

field: one fit for the SOL region immediately outside the sepa-

ratrix with wn > wx, and one for the private-flux SOL region

with wn < wx. The modified bump function uses the form,

f wnð Þ ¼ f0 exp
�D2

w2
n;sol � w2

n

" #
þ fc : (2)

This function has vanishing derivatives of all orders at its

endpoint and thus ensures that the current goes smoothly to

zero at the transition contour between the SOL region and

the current-free region. With this form, five free parameters

are available (wsol, wpf, f0, fc, and D). The values of wsol and

wpf are inputs that influence the width of the SOL and may

be inferred from experimental measurements. The other

three parameters may be determined either by requiring C2

continuity at the LCFS or by setting the functional value at

wsol and enforcing C1 continuity at the LCFS. The former

constraint has the advantage of producing a C1 smooth cur-

rent profile, whereas the latter method allows specification of

the density and/or temperature in the current-free regions. If

the fit requires that the function first reverse the sign of its

derivative, a truncated Gaussian is fit to half of the domain

followed by the bump function as is used in Ref. 34.

IV. EXAMPLE CASES

In order to demonstrate and quantify the impact of our

methods that recompute the Grad-Shafranov solution and add

SOL-profile gradients, we choose two specific cases to study

in detail: a low SOL-current case and a high SOL-current

case. The first of these cases is an EFIT reconstruction of

DIII-D shot 160414 at 3025 ms with profiles as shown in Fig.

3. Profiles are specified as a function of normalized flux. The

profiles shown are as included from the EFIT reconstruction

and for fits with SOL-profile gradients (NIMEQ-SOL) along

with the experimental Thomson and CER measurements.42

This shot is from an experiment of lithium pellet injection for

edge-localized-mode pacing and the specific time represents

the last 20% of the inter-ELM period. The reconstruction con-

tains a relatively cold plasma at the LCFS, and thus a small

pressure gradient in the fitted profiles within the SOL region.

This implies modest SOL current and modification to the

resulting equilibria when the SOL profiles are included in the

Grad-Shafranov solve. In particular, at the LCFS, Te¼ 72 eV,

Ti¼ 470 eV, and ne ¼ 8:6� 1018 m�3; and in the current-free

region, Te¼ 20 eV, Ti¼ 50 eV, and ne ¼ 2:1� 1018 m�3

where the latter values only apply to equilibria with SOL-

profile gradients.

The second case studied is an EFIT reconstruction of

DIII-D shot 145098 at 1800 ms as shown in Fig. 4. Again,

the profiles shown are as included from the EFIT reconstruc-

tion and for fits with SOL-profile gradients (NIMEQ-SOL)

along with the experimental Thomson and CER measure-

ments. This shot is from a DIII-D QH-mode experiment with

ITER-like shaping during a period with edge harmonic oscil-

lations (low-n/ perturbations). This shot contains a relatively

large pressure gradient from the fitted profiles in the SOL

region. Thus, relative to the reconstruction from shot

160414, we expect greater modifications to the equilibria

resulting from the inclusion of the SOL-profile gradients in

the Grad-Shafranov solve. In particular, at the LCFS

Te¼ 230 eV, Ti¼ 1020 eV, and ne ¼ 4:8� 1018 m�3; and in

the current-free region, Te¼ 50 eV, Ti¼ 50 eV, and ne ¼
2:7� 1018 m�3 where the latter values only apply to equilib-

ria with SOL-profile gradients.

As is clear from Figs. 3 and 4, the NIMEQ-SOL ion-

temperature profiles do not match the CER measured data.

This is a consequence of a two-temperature model which

over-constrains the profiles. Specifically, with a two-

temperature model assuming quasi-neutrality (ne ¼ Zini)

only the electron and ion fluids contribute to the pressure
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p2T ¼ pe þ pi ¼ neTe þ
ne

Zi
T2T

i : (3)

Thus, only three of the four profiles shown in the figures (ne,

p, Te, and Ti) can be matched exactly. Initializing computa-

tions with the measured pressure profile is essential as both

the Grad-Shafranov solution and ideal stability are critically

dependent on this profile. Secondary to this, the electron

temperature profile determines the resistivity profile and the

density profile sets Alfv�en speed (among other collisionality

parameters).

Within the context of an extended-MHD simulation, the

ion-temperature profile typically becomes significant only

when a two-fluid model is evolved and thus is often allowed

to vary with respect to experimental measurements. In

experiment, the pressure has contributions from both impuri-

ties and non-Maxwellian, or “hot,” ion particles from

neutral-beam injection

p ¼ pe þ pi þ pimp þ phot

¼ neTe þ niTi þ
Ximp

j

njTj þ
Xhot

h

nhTh : (4)

Comparing Eqs. (3) and (4), the ion temperature used to ini-

tialize our simulations includes the contributions from the

other species

T2T
i ¼ Ti þ

Ximp

j

njZi

ne
Tj þ

Xhot

h

nhZi

ne
Th : (5)

FIG. 3. Fitted profiles (lines) from the

Thompson (electron density and tem-

perature) and CER (ion temperature)

data from shot 160414 at 3025 ms. The

solid lines are fits to raw data inside

the LCFS where total pressure is com-

puted from the measured species’ data

and includes contributions from ener-

getic particles. The dashed lines are

the fits that include the SOL region and

dashed ion temperature is computed

after constraint by a two temperature

model and quasineutrality.

FIG. 4. Fitted profiles (lines) from the

Thompson (electron density and tem-

perature) and CER (ion temperature)

data from shot 145098 at 1800 ms. The

solid lines are fits to raw data inside

the LCFS where total pressure is com-

puted from the measured species’ data

and includes contributions from ener-

getic particles. The dashed lines are

the fits that include the SOL region and

dashed ion temperature is computed

after constraint by a two temperature

model and quasineutrality.
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As expected from this relation and as shown in the plots, the

NIMEQ-SOL ion temperature (equivalent to T2T
i in Eq. (5))

over estimates the measured ion temperature. For these

cases, Zi is chosen such that the edge ion-temperature profile

approximately matches the measured data in Figs. 3 and 4.43

Thus, computations in this work use the NIMEQ-SOL fits

for wn < 1 and only the computations with SOL-profile gra-

dients use the NIMEQ-SOL fits where wn > 1. Modeling

that includes separate species for hot particles and/or impuri-

ties is required to eliminate the discrepancy with the meas-

urements in the ion-temperature profile, and is thus planned

for future study.

To further examine the reduction of mapping errors

through the recomputation of the Grad-Shafranov solution,

Figs. 5 and 6 show the resulting current-density distributions

from the mapped and recomputed (GS) cases without SOL-

profile gradients, along with the two cases with SOL-profile

gradients that are discussed later in this section, based on

reconstructions from shots 160414 and 145098, respectively.

The DIII-D first wall, LCFS, and SOL contours are superim-

posed into the plotted computational domains. Shot 145098

uses a reversed plasma current relative to 160414, which

uses the standard current orientation for DIII-D. These cases

use a 72� 64 high-order finite-element mesh with bi-quartic

elements. For both reconstructions, the mapped current is

clearly distorted and contains numerical oscillations. This is

particularly evident for the edge current shown in the

zoomed insets of the figures and outside the LCFS as shown

in the inset figures that magnify the details near the X-point.

The numerical bumps in the current profiles inside the LCFS

are a result of the mapping and are associated with the reso-

lution of the EFIT grid. They are not eliminated but rather

only resolved with enhanced NIMEQ resolution (see Fig. 1).

While it is possible to partially circumvent this issue with

the closed-flux mapped current by using a high-resolution

EFIT (see, for example, Refs. 35 and 36), in practice most

EFIT reconstructions are generated at relatively low resolu-

tion relative to what is required for extended-MHD computa-

tions. The spatial requirements to solve for Grad-Shafranov

equilibria are less stringent than those to solve for 3D MHD

perturbations where, for example, the edge computations

presented in Sec. VI use a finite element grid with 72� 512

with high-order bi-quintic elements. The current outside the

LCFS in the mapped case results from the representation of

the discontinuous current profile on NIMEQ’s C0 finite-

element spatial discretization. The mapped plots in Figs. 5

and 6 are generated with finite-element calculations that

compute the poloidal magnetic field and current from the

mapped w and RBU fields. Alternatively, splines may be

used to map the poloidal magnetic field and current density.

While this method produces smooth, but not consistent,

fields, the derivatives of these fields with NIMEQ’s C0 finite-

element representation are used in extended-MHD calcula-

tions. Thus, mapped magnetic fields and current densities

with a spline spatial representation in effect hide, but do not

eliminate, the mapping errors.

For the cases with SOL current, we use wn;sol ¼ 1:1 and

wn;pf ¼ 0:96 in the fits to the electron density and tempera-

ture profiles from Thomson scattering measurements and

extrapolate the ion temperature to an assumed 50 eV. The

FIG. 5. Toroidal current density from shot 160414 at 3025 ms plotted with LCFS, SOL (if applicable), and DIII-D limiter contours for four different cases: a

mapped solution (using a finite-element computation for B and J), resolving the Grad-Shafranov equation (GS), and resolving the Grad-Shafranov equation

with two different treatments of the SOL (labeled GS-SOL and GS-SOLpf) as described in the text. The zoomed plots of the divertor region use a 10� smaller

contour color scale to show current features.
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resulting profiles are shown as the dashed purple line in Figs.

3 and 4. The half width of the electron pressure profiles are

roughly 3:3 mm and 2:7 mm at the outboard mid-plane and

7:3 cm and 4:7 cm at the divertor plate for the cases from

shots 160414 and 145098, respectively. This results in SOL

widths that are roughly consistent with the measured half

width of the heat-flux during the later half of the inter-ELM

period of DIII-D ELMy H-mode discharges in Ref. 37.

Currently, we do not have diagnostic information about

appropriate profiles for the private-flux region. Two methods

employing the bump function extrapolations are compared

with profiles shown in Fig. 7. In the first method, C2 continu-

ity is enforced at wn ¼ 1 resulting in a high-pressure, high-

density private-flux region. With the second method, C1

continuity is enforced at wn ¼ 1 and the values at wpf are set

to the same as those at wsol. In the figures and tables, these

cases are referred to as GS-SOL and GS-SOLpf, respec-

tively. The profiles generated with the second method (GS-

SOLpf) roughly match the measured heat-flux profile.34,37

In addition to the mapped and recomputed cases without

SOL current, Figs. 5 and 6 plot cases with SOL currents.

With low pressure in the private-flux region the toroidal cur-

rent density reverses locally near the divertor strike points

after the Grad-Shafranov solve as shown in the inset figure

for the GS-SOLpf case. Currents near and outside the limiter

are likely an artifact of our method. In this cold-plasma

region, additional terms in the momentum equation become

large (e.g., interactions with neutrals and the first wall),

which are outside the scope of the Grad-Shafranov equation.

As such, the approximation that quantities are functions of

the flux surfaces breaks down. However, at present our focus

is on the effects of the SOL-profile gradients near the LCFS

where there is the potential for interaction with perturbations

that originate from inside the separatrix. With SOL-profile

gradients, there is a modest modification (less than 1%) to

the plasma current. For the cases shown here, we re-

normalize the total current to match the value from the EFIT

reconstruction using the method of Ref. 38. Cases with and

without current re-normalization produce similar results,

where the v2 values discussed in the Sec. V are slightly

smaller for cases with re-normalization.

The poloidal current in the SOL that flows into and out

of the divertor plate are solely an effect of the profile gradi-

ent in the toroidal magnetic flux within the SOL. For these

cases, a bump-function fit that enforces C2 continuity at

wn ¼ 1 determines the toroidal-magnetic-flux profiles in the

SOL. The resulting poloidal currents have a maximum value

on the divertor plate of 4000 and 500 A=m2 for the cases

from shots 160414 and 145098, respectively. This current

must be less than the ion saturation current (Jmax ¼ neecs).

With a Deuteron ion species, a conservative calculation of

the ion saturation current (using the vacuum temperatures

and densities from each case) is over 2� 104 A=m2 for both

cases.

V. SYNTHETIC DIAGNOSTICS

Analysis between each nonlinear Grad-Shafranov-solve

iteration provides a confirmation that the macroscopic quanti-

ties of the equilibrium (e.g., total current, toroidal flux, and

internal energy) are invariant between the mapped equilibrium

FIG. 6. Toroidal current density from shot 145098 at 1800 ms plotted with LCFS, SOL (if applicable), and DIII-D limiter contours for four different cases: a

mapped solution (using a finite-element computation for B and J), resolving the Grad-Shafranov equation (GS), and resolving the Grad-Shafranov equation

with two different treatments of the SOL (labeled GS-SOL and GS-SOLpf) as described in the text. The zoomed plots of the divertor region use a 10� smaller

contour color scale to show current features.
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and the new solution. In the interest of showing that our meth-

ods which recompute the Grad-Shafranov equilibrium and add

SOL profiles and current only minimally impact the relative

agreement with measurements, we use a more advanced com-

parison that computes a v2 value. The Python code

NIMNOSTICS is used to calculate a v2 from the shots and sub-

cases previously discussed. NIMNOSTICS models the mag-

netic coils, MSE, and Thomson scattering through local evalua-

tions of the fields where linear interpolation is used between

finite-element nodes. Thus, the boundary of the domain is cho-

sen as the approximate vacuum vessel instead of the limiter in

order to encompass the magnetic coil locations for comparison.

Summaries of the v2 value by diagnostic and case for

the reconstructions from shots 160414 and 145098 are shown

in Tables I and II, respectively. In both shots, the mapped

and recomputed equilibria with SOL-profile gradients (GS

cases) are roughly equivalent indicating that the equilibrium

resulting from the recomputation is substantially similar. For

the cases with modest SOL-profile gradients and currents

(shot 160414), the v2 values for a given measurement either

decreases and the deviations of the LCFS contour are modest

or are roughly the same as the mapped and GS cases.

However, cases from the shot with large SOL current and

profile gradients exhibit mixed results with some measure-

ments decreasing in v2 (Thomson electron temperature) and

others increasing in v2 (Thomson electron density, MSE and

coils) when comparing relative to the mapped and GS cases.

The deviation of the LCFS contour is also as much as 2 cm

on the upper side of the contour. This deviation is apparent

in the inset figures of Fig. 6.

In order to examine the source of the changes in v2 in

detail, Figs. 8 and 9 show the local values of v2 from

Thomson electron density, MSE, and magnetic coils measure-

ments for our four different cases on shots 160414 and

145098, respectively. With shot 160414, the aggregate v2 val-

ues are improved or comparable for every diagnostic when

comparing the cases with SOL gradients to those without (as

seen in Table I). We note that v2 values are particularly

improved with SOL-profile gradients for the Thomson meas-

urements, and Fig. 8 shows that this is a result of improved

agreement in the SOL region. The results are mixed for shot

145098 (as seen in Table II). While the aggregate v2 value for

the Thompson electron temperature profile improves when

SOL-profile gradients are included, the v2 value for the

Thomson electron density profile is degraded. Examination of

Fig. 9 shows that while the v2 values in the SOL region are

smaller when the SOL-profile gradients are included, the val-

ues near the LCFS become large consistent with the approxi-

mately 2 cm movement of the separatrix line relative to the

cases without SOL-profile gradients. Additionally, the v2 val-

ues for the magnetic-coil measurements become marginally

larger near the divertor region as these values are affected by

the inclusion of toroidal current in this region.

As an additional test of the quality of the equilibrium,

we calculate the flux-surface-averaged geometrical quantity

discussed in Ref. 39,

C wð Þ ¼ 2
d

dw

þ
dlB � rR2

þ
þ

dl

B
2b � r rw � rlnR2

� �
þrw � r b � rlnjBjð Þ

� �
;

(6)

where b ¼ B=jBj. Figure 10 shows the result of this calcula-

tion and the decomposition of the expression in Eq. (6) into

separate contributions from the two integrals in the expres-

sion (referred to as intA and intB, respectively) for both

shots examined in our studies. This integral is known to

FIG. 7. Fitted pressure profiles in the SOL and private-flux region with two

different fits, one with bump function fits in the private-flux region (SOL

case) and the second with a fit that specifies a low pressure at the edge of the

private-flux region (SOLpf case), for two different shots, 160414 at 3025 ms

(top) and 145098 at 1800 ms (bottom).

TABLE I. Values of v2=N, where N is the number of measurements, for

each diagnostic for the reconstruction, change in plasmas current relative to

the EFIT value (�1178772 Amps), and change in the X-point and maximum

Z value of the LCFS for shot 160414 at 3025 ms.

v2=N Mapped GS GS-SOL GS-SOLpf

Thom. Te 22.3 23.4 4.80 4.15

Thom. ne 19.4 20.5 4.07 3.33

CER Ti 6.98 6.96 6.74 6.84

MSE 1.49 1.49 1.46 1.47

Mag. Coils 0.61 0.63 0.82 0.70

Ds Mapped GS GSþSOL GSþSOLpf

DI=I0 6.95 �10�5 7.97 �10�4 3.22 �10�7 3.22 �10�7

Drxpt (cm) N/A Ref. Value 0.72 1.07

Drzmax (cm) N/A Ref. Value 0.35 0.19
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vanish analytically;40 however, this behavior is only repro-

duced numerically with recomputation of the Grad-

Shafranov solution. Consistent with the relatively large

motion of the flux surfaces (2–3 cm) in the large SOL-

current case (145098), the contributing integrals for this case

differ slightly between the GS and GS-SOL cases where

only the latter includes the SOL current. The contributing

integrals lie on top of each other for the low SOL-current

case (160414). The improved equilibria provided by recom-

putation of the Grad-Shafranov solution are critical in

NIMROD drift-kinetic computations.11 For example, an

accurate account of b � rlnjBj in latter integral of Eq. (6)

(intB) is essential when assessing how trapped particles

affect parallel closures for NIMROD’s fluid system.

VI. EFFECT ON LINEAR PEELING BALLOONING
MODES

In order to assess the impact, if any, on linear stability,

we examine the toroidal-mode-number (n/) growth-rate

spectrum for shot 145098 at 1800 ms with and without SOL-

profile gradients. The reconstruction from shot 160414 is

during a stable inter-ELM period and thus it is not consid-

ered. As seen in Fig. 11, the growth rates are only minimally

FIG. 9. Values of v2 from different local measurements (crosses are from Thomson measurements of electron density, diamonds are from MSE measurements,

and squares are from coil measurements of the poloidal magnetic field) plotted with a color plot of the w solution and LCFS, SOL (if applicable), and DIII-D lim-

iter contours from shot 145098 at 1800 ms for four different cases: a mapped solution (using a finite-element computation for B and J), resolving the Grad-

Shafranov equation (GS), and resolving the Grad-Shafranov equation with two different treatments of the SOL (GS-SOL and GS-SOLpf) as described in the text.

FIG. 8. Values of v2 from different local measurements (crosses are from Thomson measurements of electron density, diamonds are from MSE measurements,

and squares are from coil measurements of the poloidal magnetic field) plotted with a color plot of the w solution and LCFS, SOL (if applicable), and DIII-D lim-

iter contours from shot 160414 at 3025 ms for four different cases: a mapped solution (using a finite-element computation for B and J), resolving the Grad-

Shafranov equation (GS), and resolving the Grad-Shafranov equation with two different treatments of the SOL (GS-SOL and GS-SOLpf) as described in the text.
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impacted by the inclusion of SOL-profile gradients where

the difference between the growth rates is at most 5% (at

n/ ¼ 6). A 72� 512 mesh with bi-quintic elements is used

for these computations. The growth rates with the SOL cur-

rent are larger than those without for n/ < 30 and 1%

smaller at n/ ¼ 30. This is consistent with the effect of

enhanced resistivity and decreased density outside the LCFS

as associated with the SOL-profile gradients that leads the

dynamics in this region to produce a more vacuum-like

response (see Refs. 14 and 15) whereby the low-n/ modes

are destabilized and the high-n/ modes are stabilized. In

order to investigate this response further, we examine a case

with a low electron temperature, 1 eV, at the edge of the

SOL region (annotated as GS-SOLpf-lt in the figure). The

stabilizing effect at low n/ and destabilization at high n/

from the enhanced vacuum-like response is more apparent

for this case. Relative to the case without SOL current, the

growth rates for this case are 7% larger at n/ ¼ 6 and

8% smaller at n/ ¼ 30. Thus, the effect of the SOL-profile

gradients is modest compared to the effect of drift-

stabilization (see, e.g., Refs. 36 and 41)—a result that is con-

sistent with prior PBM calculations.17

As seen in Fig. 12, the mode structure is localized within

the region just inside the LCFS. Convergence is affected by

discontinuity in the current-density profile when SOL-profile

gradients are not included even though the mode is localized

away from this discontinuity. NIMROD does not enforce the

r � B ¼ 0 constraint through the spatial discretization, but

TABLE II. Values of v2=N, where N is the number of measurements, for

each diagnostic for the reconstruction, change in plasmas current relative to

the EFIT value (1063788 Amps), and change in the X-point and maximum

Z value of the LCFS for shot 145098 at 1800 ms.

v2=N Mapped GS GS-SOL GS-SOLpf

Thom. Te 60.9 61.7 7.77 6.99

Thom. ne 2.87 5.22 11.4 9.93

CER Ti 10.2 10.3 19.7 19.6

MSE 1.14 1.13 1.13 1.13

Mag. coils 1.65 1.60 4.57 3.27

Ds Mapped GS GSþSOL GSþSOLpf

DI=I0 9.86 �10�5 5.46 �10�3 �3.57 �10�7 �3.57 �10�7

Drxpt (cm) N/A Ref. Value 0.86 0.55

Drzmax (cm) N/A Ref. Value 2.82 2.12

FIG. 10. The flux-surface-averaged

geometrical quantity of Eq. (6) from

Ref. 39, CðwÞ (right), and decomposi-

tion by integral contributions from the

two integrals in the expression (left)

which are referred to as intA and intB,

respectively. Figures from both exam-

ple cases, shots 160414 (top) and

145098 (bottom), are shown. The inte-

gral vanishes analytically, and this

behavior is only reproduced numeri-

cally with recomputation of the Grad-

Shafranov solution.

FIG. 11. Growth rates vs. toroidal mode from shot 145098 at 1800 ms with

and without SOL current. The presence of the SOL current does not modify

the growth rate (compare GS-SOLpf and GS cases). The GS-SOLpf-lt case

is a modification to the SOLpf case with Te¼ 1 eV at the edge of the SOL.

The low edge temperature enhances the vacuum response14,15 and modestly

modifies the growth rate.
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rather converges to a solution with small r � B error. The ‘2-

norm of r � B is reduced by approximately 50% in the cases

with SOL-profile gradients relative to cases without as a

result of the continuous equilibrium profiles.

VII. DISCUSSION AND CONCLUSIONS

Relative to the effect on linear computations (Sec. VI),

the inclusion of SOL-profile gradients and associated contin-

uous current-density profiles has a greater impact on nonlin-

ear modeling with perturbations that are advected across

the separatrix such as the studies of QH-mode evolution of

Ref. 5. Nonlinear computations can be affected by the inclu-

sion of SOL-profile gradients in multiple ways: the spatial

resolution required to converge on the dynamics at the LCFS

is less with a continuous current profile as the dynamics are

affected by discontinuities in the current and by the changes

in the vacuum-like response as described in Sec. VI.

Perhaps more importantly, the methods described to

extrapolate the thermodynamic profiles in the SOL can be

applied to modeling with flows. Typically, the measured

flows do not vanish at the LCFS and can be extrapolated to

zero in the SOL region. Including this extrapolation both

affects the dynamics of the perturbations as they cross the

LCFS and prevents the computationally pathological case

where perturbations may be advected quickly inside the

LCFS and not at all outside. Again, an example that applies

these methods to modeling with flows is found in Ref. 5.

The inclusion of SOL-profile gradients may have an

effect outside the context of modeling with initial value

codes. The last-closed flux-surface locations are shifted by

up to 3 cm in the cases included in this study. While this shift

may not greatly affect MHD stability, it could have an

impact on the methods that are predicated on highly accurate

reconstructions such as RF injection for current drive and/or

tearing mode stabilization. These considerations may moti-

vate the inclusion of the SOL-profile gradients within the

reconstruction itself.

One limitation to the methods described here is that the

flux from the plasma that penetrates through the walls

remains fixed. The flux can be decomposed into plasma and

external-coil contributions (w ¼ wplasma þ wext:coil). A poten-

tial extension to this work is to perform a free-boundary

computation where wext:coil is fixed but wplasma is allowed to

vary. Additionally, wext:coil could be extended to include con-

tributions from return currents flowing through the wall.

Ultimately, as these computations become more sophisti-

cated it may be better to include the SOL-profile gradients in

the v2 minimization performed during the reconstruction.

Even with this caveat, our methods represent substantial

progress on the initial condition for edge modeling. In partic-

ular, we have developed a workflow whereby SOL-profile

gradients and current can be included in the initial condition

for NIMROD even if they are not included in the reconstruc-

tion. Using both global (e.g., total current) and local (e.g.,

the separatrix location) metrics as well as a v2 test, we quan-

tify the impact of our methods on the accuracy of the initial

condition after inclusion of SOL-profile gradients. We find

that this impact is small and that the modified initial condi-

tion closely resembles the state found by the reconstruction.

While linear stability is modestly impacted by the inclusion

of the SOL-profile gradients through an enhancement of the

vacuum-like response, we argue that our methods are more

important for nonlinear modeling of dynamics across the

separatrix.
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