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ABSTRACT

Gravitational Wave Astrophysics with

Compact Binary Systems

by

Eric Addison, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. Shane L. Larson
Department: Physics

In this dissertation, I present two studies in the field of gravitational wave astrophysics

applied to compact binary systems. In the first project, I investigate simulated encoun-

ters between a binary system comprised of two stellar mass black holes with a galactic

supermassive black hole. It is found that binaries disrupted by the supermassive black hole

form extreme mass ratio inspirals (EMRIs), which would begin with very high eccentric-

ity, e ≈ 1 − O(10−2), but circularize dramatically by the emission of gravitational wave

radiation. At the time when the stable orbit turns over to a plunge orbit, the EMRIs still

have some small residual eccentricity, e ≈ 0.05 on average, which is slightly larger than

previous estimates. The surviving binaries are classified based on their final relation with

the supermassive black hole. When inspecting the merger lifetime of the surviving binaries,

a mean new merger lifetime of T̃ = 0.8T0 is found. Factoring in this new lifetime with other

relevant data, I calculate the merger rate of these systems in the range of the advanced Laser

Interferometer Gravitational Wave Observatory to be about 0.25 yr−1, which represents a

small percentage of the current predicted CBC rates.

In the second project I propose and explore a new method of estimating the radius

of the accretion disc in cataclysmic variable binary systems though the use of coupled

electromagnetic and gravitational wave observations. By identifying the angle of the hot

spot formed by the impact of the accretion stream with the disc, φHS , the radius of the disc
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can be recovered. I test the proposed method against fully simulated lightcurve output, as

well as the true observed AM CVn lightcurve. In both cases, I find our method capable of

estimating the disc radius to high precision. I calculate a disc radius of R̂D/a ≈ 0.476±0.025

for the fully simulated data and R̂D/a ≈ 0.481 ± 0.05 for the true lightcurve data. These

estimates agree with the accepted value of RD = 0.478a within the uncertainties, and differ

from the accepted value by 0.4% and 0.6%, respectively. Because this method does not rely

on eclipses, it will be applicable to a much broader population of binaries.

(164 pages)
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PUBLIC ABSTRACT

Gravitational Wave Astrophysics with

Compact Binary Systems

Eric Addison

Gravitational waves are ripples in the fabric of spacetime that convey information about

changing gravitational fields. Large-scale detection projects are currently in operation, and

more advanced detectors are being designed and built. Though we have yet to make a

direct detection of a gravitational wave signal, upgrades to current detectors are expected

to bring the first detections within the next year or two.

Gravitational waves will bring us information about astrophysical phenomena that is

complementary to the information gained from photon-based observations (e.g., telescopes

and radio receivers). One of the primary sources of gravitational waves are binary systems:

two massive objects that orbit around each other due to their mutual gravitational attrac-

tion. These systems can have very predictable gravitational wave signatures due to their

repetitive motions, making them ideal gravitational wave sources.

In this dissertation, I present two research projects pertaining to gravitational wave

astrophysics and compact binary systems. In the first, I explore interactions between com-

pact binary systems near the center of our galaxy with the supermassive black hole that

resides there. I am interested in the final state of the binary as a result of the interaction,

ranging from small perturbations to the orbit up to total disruption. In the case of disrup-

tion, I characterize the new orbits formed between the binary components and the central

black hole, known as extreme mass ratio inspirals. For binaries that survive the encounter,

I examine the changes they experience, and find on average, they will merge together as a

result of gravitational wave emission faster than before the encounter.

In the second project, I propose a new method of measuring the radius of the swirling

disc of gas and dust that encircles some stars in compact binary systems, known as the

accretion disc. This method relies on the use of coupled electromagnetic and gravitational
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wave observations, a synthesis of information known as multi-messenger astronomy. This

new method proves very accurate when used on both simulated and observed data from a

candidate system known as AM CVn.

The simulation codes written for this research are freely available at

• https://github.com/ericaddison/Binary-SMBH-Encounter-Simulation

• https://github.com/ericaddison/LightCurveSim

I also plan to post the codes to the Astrophysics code database Starship Asterisk

(http://asterisk.apod.com/) once the corresponding papers are published.
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NOTATION

Binary Systems

mi Binary component masses, i ∈ {1, 2}

M Binary total mass, M = m1 +m2

µ Binary reduced mass

�r Separation vector connecting m1 and m2

a Semimajor axis

e Orbital eccentricity

θ True anomaly

i Inclination angle

Ω0 Longitude of the ascending node

ω0 Argument of periapse

�L Orbital angular momentum

E Total binary energy

Relativity

c Speed of light

G Gravitational constant

�x Three-vector

x Four-vector

γ Lorentz factor

Conversions
�

G

c2

�

=
m

kg

�

G

c3

�

=
s

kg



xvii

ACRONYMS

GW Gravitational Wave(s)

GR General Relativity

CO Compact Object

CSR Compact Stellar Remnant

SMBH Supermassive Black Hole

CBC Compact Binary Coalescence

EMRI Extreme Mass Ratio Inspiral

BEMRI Binary Extreme Mass Ratio Inspiral

GC Galactic Center

HVS Hypervelocity Star



CHAPTER 1

INTRODUCTION

1.1 Astronomy, Astrophysics, and the Universe

We live in a universe that is paradoxically desolate and isolating, yet teeming with

activity and full of mystery. The nearest astronomical object, our Moon, is an incredibly

distant object by any terrestrial comparison (≈ 385, 000 km away, or nearly 10 times the

distance around the Earth), yet it creates the tides here on Earth, provides illumination in

the dark of night, and varies its motion in predictable ways. The Sun, our star, is vastly

further still, nearly 400 times more distant than the Moon, yet in addition to having been

responsible for Earth’s formation, it provides us with the warmth, light, and energy we

require. The closest star after our Sun is an incomprehensible distance in any terms relative

to our direct experiences, more than 250, 000 times further from Earth than the Sun, yet

the stars twinkle in the night and slowly move across the sky if we care to watch for long

enough.

As individuals, we can look out into a clear night sky and experience any range of

emotions when faced with the display of the cosmos, be it the smallest amusement, the

deepest wonder, or a disturbing sense of insignificance. Whatever we feel individually, on

a collective level, the nature of the heavens has captivated us as a species for millennia.

Historical evidence strongly suggests many ancient civilizations observed and studied the

cosmos, including the ancient Egyptians, Greeks, Mesopotamians, Europeans, Indians, Chi-

nese, and Central Americans. Astronomy is considered the oldest of the natural sciences

for good reason: the universe presents its mysteries to us directly every night, and we need

only to look up with an inquisitive eye to begin the exploration.

Astronomy consists of the study of celestial objects such as the stars, the planets,

and their moons. While historically the study of the universe and its motions were closely

linked with some form of religion or mythology, the careful study of astronomy has yielded

a bounty of practical outcomes, such as advanced seaborne navigation, the modern GPS

navigation system, and countless technology spinoffs. Astronomy, and by direct connection
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astrophysics (between which the defining line can be quite blurry), also satisfy a more

profound human need. These disciplines seek to answer fundamental questions about the

universe in which we exist, questions such as how did the universe begin, how did the

universe get to be the way it is, is there other life in the universe, and are our circumstances

unique in the universe. Through the process of studying the sky, we learn more about

the cosmos that created us, the world that shelters us, and as we increase our collective

knowledge, we learn more about what it means to be human.

1.2 Gravitational Waves: A New Observing Tool

For as long as we have been studying the sky, the overwhelming majority of our astro-

nomical knowledge comes from observations of light, i.e., electromagnetic (EM) radiation.

For the last several decades we have been observing extraterrestrial neutrinos as well; how-

ever, it is commonly stated in an anecdotal fashion that 99.9% of our knowledge about

the universe comes from observations of light. There is a distinct advantage of light-based

astronomical observations, which is that EM radiation is exceedingly easy to observe. Our

own personal astronomical observation apparatuses (our eyes) are capable of detailed ob-

servations right out of the box with little or no calibration. We are able to extend our

own capabilities with the aid of technology, reaching both deeper and more broadly into

and across the EM spectrum. It is by this combination of biological and technological

instrumentation that we have learned so much about the universe.

There are inherent limitations to EM astronomy associated with the nature of photons,

and these limitations tend to stem from a common cause: photons interact strongly with

matter. All matter is capable of absorbing and reradiating photons at a variety of wave-

lengths, and because of this, the light we observe when we point our instruments toward

distant objects may have (probably has) been bumped, jostled, altered, and mucked up

during its long journey from source to receiver. Any information photons carry about the

matter that generated them becomes corrupted by later interactions. That is not to say we

should not trust the information we gain from EM astronomy, but that the original encoded

information becomes more difficult to interpret.
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As an example, EM observations looking back toward the beginning of the universe

are limited by the time when space (or rather the primordial plasma that filled all of

space) became transparent to photons. Previous to this time the matter in the universe

was so hot and dense that photons were not able to travel freely without being scattered

by the dense cloud of subatomic particles. After the universe expanded and cooled, the

protons and electrons that made up the plasma combined into neutral atoms and their

density dropped sufficiently so photons could begin to travel long distances without being

severely disturbed. This event is know as photon decoupling, which is estimated to have

occurred approximately 380, 000 years after the Big Bang and produced the light we see

now as the Cosmic Microwave Background. This is the oldest light we can observe. We

are fundamentally unable to observe the universe with EM radiation prior to this time

(Weinberg 1972).

Another example is the absorption and scattering of light due to the sparse dust that

exists between stars in our galaxy. The absorption and scattering of light changes the

apparent brightness of objects, and is known as extinction. It arises due to interstellar dust

absorbing and scattering short wavelength light to a greater degree than long wavelength

light. The preferential scattering of short wavelength light results in an effect known as

interstellar reddening, and causes objects to appear redder than expected (Bennett et al.

2013).

The EM spectrum covers a wide range of energy levels encompassing many different

physical phenomena; however, we are still limited by the fact that this is a single channel of

information. There is another channel, free from the static of absorption and scattering that

plagues the EM spectrum. Gravitational waves (GWs) are a fundamentally different channel

of information, a channel to which we have only begun to listen. Where EM radiation

is generated by accelerated electrical charges, GW radiation is generated by accelerated

masses. When massive objects move, their gravitational field changes, and this change is

propagated as GW radiation. GWs are propagating disturbances in gravity, often referred

to poetically as ripples in the fabric of spacetime (Misner et al. 1973) in reference to their
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theoretical foundation in the General Theory of Relativity.

The utility of GWs as a tool for observing the cosmos is immense. Where EM radiation

interacts strongly with atoms and can easily be absorbed, altered, and redirected, GWs have

incredibly weak coupling to matter. Because of this, once GWs are generated they will

propagate outwards from their source, essentially unimpeded by any intervening material,

be it Earth’s atmosphere, interstellar dust, or even the dense soupy plasma of the early

universe. GW observations will allow us to probe the depths of the universe by carrying

information about events that EM radiation cannot provide, such as:

• Details about the dynamical evolution of the massive stellar cores at the heart of

supernova explosions.

• The merger of compact stellar remnants (CSR) such as neutron stars and white dwarfs.

• The presence of CSR binaries in our galaxy, too faint to see with light.

• The ellipticity of pulsars.

• Collisions of supermassive black holes at the cores of merging galaxies.

• Echoes from the Big Bang.

GWs are complementary to EM observations, and are certainly not a panacea for all of

the gaps in our astronomical knowledge. GW detectors are not nearly as directional as EM

instruments; an analogy between a GW detector and a microphone would be more accurate

than with a telescope. The most crippling limitation of GW observations, precisely opposite

from the EM situation, is exactly that virtue upon which the benefits of gravitational waves

rest: GWs interact weakly with matter! We are necessarily constrained to construct our

GW detectors from matter; and hence, our detectors are intrinsically not very sensitive to

GWs. The nature of this problem will be discussed further in Section 1.4, though at this

point, it suffices to say the development and construction of GW detectors is pushing the

boundaries of technology and engineering and represents one of the most ambitious (and

expensive) scientific endeavors in history.
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1.3 A Short History of Gravitational Wave Science

As GWs are a consequence of changing gravitational fields, a brief discussion of gravita-

tional theory follows. Currently, the most complete and well-tested theory of gravity is the

General Theory of Relativity (GR), originally developed by Albert Einstein in a collection

of four papers published in 1915-16 (Einstein 1916a). GR extends the previous dominant

theory: Newton’s universal law of gravitational attraction, also known as Newtonian grav-

ity. Newton’s theory (Brackenridge 1996) explains and quantifies a great number of physical

phenomena including falling bodies, Earth’s orbit around our Sun, and the tides caused by

the Moon. Newtonian gravity has limitations, however. The first observed deviation from

Newtonian gravity was an observed excess in the precession of the perihelion of the orbit of

the planet Mercury around the Sun (Figure 1.1), noted by the French mathematician Urbain

Le Verrier in 1859 (Le Verrier 1859). This precession could not be adequately explained by

taking into account perturbations from all of the known planets using Newtonian gravity.

The papers introducing GR were published by Albert Einstein in 1915-16 (Einstein

1916a). GR is a geometric theory that interprets the motion of particles through space,

not as the result of gravitational forces, but rather as a response to motion on the curved

background of spacetime itself, whose shape (curvature) is influenced by the matter present

within it. Newtonian gravity is the weak field and slow motion limit of GR, and GR is

consistent with Einstein’s previously established theory of special relativity. The use of GR

to explain the precession of Mercury’s perihelion was done by Einstein in 1916 (Einstein

1916b), which represented an instant triumph for the theory. This is the first of the three

so-called classic tests of GR, the other two include measuring the deflection of starlight by

the Sun’s gravitational field, which was tested on the famous Eddington expedition in 1920

(Dyson et al. 1920), and measuring the gravitational red-shift of photons (Pound & Rebka

1959).

Einstein formally predicted the existence of GWs in 1918, three years after the pub-

lication of GR (Einstein 1918). The existence of GWs as a theoretical entity endured a

turbulent period in the decades following their initial development, wrought with contro-
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Figure 1.1: Perihelion precession. As a planet orbits the Sun, it’s ellipti-
cal path will rotate due to various factors. Calculations of Mercury’s perihe-
lion precession were made very accurate by including effects from GR. Figure from
http://en.wikipedia.org/wiki/Apsidal precession

versy and skepticism (Kennefick 2007). Whether these waves traveled at the speed of light

was an early point of contention, as the preeminent astrophysicist, Arthur Eddington (a

noted GW skeptic) questioned what he saw as a presupposition by Einstein. Einstein had

discovered three types of waves present in GR, only one of which was believed to carry en-

ergy. The other two waves were found to be merely coordinate artifacts; that is, they could

be made to disappear in certain coordinate systems (Eddington 1922). Einstein’s claims

were eventually vindicated by Eddington, who independently showed the one energy carry-

ing GW did, in fact, travel at the speed of light where the other two could take arbitrary

velocities based on the choice of coordinates.

Though Einstein, Eddington and others had shown GWs could theoretically carry

energy (shown mathematically, that is), whether this was a physical reality was the subject

of a long debate. This debate was primarily centered around the question of whether an

accelerated mass would experience a resistive force, or back reaction as it is often called, as

it loses energy to GW radiation, and the closely related question of whether a pair of stars

orbiting one another would eventually spiral inward as they radiate energy. The idea of

inspiralling binary stars was uncomfortable for many physicists, as this implied there could
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be no stationary solution to the so-called two-body problem in GR. In addition to these

troubles, Einstein himself prepared a paper with Nathan Rosen, which claimed to disprove

the existence of GWs! The story of this paper is interesting in itself, as it was denied

publication in the important journal, The Physical Review; however, Einsten eventually

reversed his conclusion that GWs do not exist (Einstein & Rosen 1937). There is much

more to the story of these early controversies, though it is clear the existence and nature of

GWs were on uncertain footing.

The issue of whether GWs carry energy was eventually settled (more or less) by a

simple thought experiment proposed by the famous physicist, Richard Feynman, at a 1957

conference in Chapel Hill, NC (Preskill & Thorne 1995), and popularized by the mathemati-

cian and cosmologist, Hermann Bondi (Bondi 1957), who was an early skeptic of GWs. The

argument goes like this: consider Figure 1.2, showing two rings on a long rod, they are free

to slide along, though not without friction. As will be discussed in Section 1.4, the effect of

a GW is to alternately stretch and compress space; hence, stretching and compressing any

matter present.

Since the material that makes up the rod is held together by internal electric forces,

which oppose the stretching and shrinking, the effect of the GW is not as strong on the rod

as it would be on two free particles. The rings, however, being subject to the same GW, will

experience stretching and shrinking of the space between them, which is not bound by the

same restoring forces. Because the rings are constrained to slide on the rod, the distance

between them can stretch and shrink, reminiscent of the case of two free particles under

the influence of a passing gravitational wave. Unlike the rod, there are no restraining forces

between them, so the effect of the wave is to move the rings to a greater degree than the

individual elements of the rod. The difference in these motions will cause the rings to slide

across the rod, thus generating heat by friction. The energy that is transformed into heat

must have come from somewhere, and since the ring-rod system is assumed to have been

completely static before the arrival of the wave, the only sensible solution is the energy

must have been imparted by the GW itself. This argument led to the general acceptance



8

Figure 1.2: The Bondi thought experiment. As a GW passes the rod, the initial effect is
to shorten and fatten the rod, and then to stretch and thin it. Internal forces cause the
effect on the rod to be less pronounced than on the rings, which are free to slide along the
rod. Because the rings move further than the rod stretches, friction is generated and must
heat up the material. The heat energy must have been imparted from the passing wave.
Figure from Kennefick (2007).

of the reality and energy transport of GWs.

In the decade following the understanding of GW energy transport, serious effort in the

detection of GWs began. The principal pioneer in this field was Joseph Weber (1919 - 2000),

who in the 1960s designed and constructed a series of resonant bar detectors. These detec-

tors consisted of large aluminum cylinders, approximately 2 m long, 1 m in diameter, and

massing roughly 4,200 kg with electrical sensors connected around the circumference that

would detect vibrations in the bar. Just as with the bar in the Bondi thought experiment, a

passing gravitational wave would stretch or compress the bar; when the gravitational wave

passed, the restoring forces would pull the bar back to its original shape, exciting vibrational

modes in the bar. The dominant modes of vibration would be the resonant modes defined

by the geometry of the bar; for Weber’s bars, there was a resonant vibration near 1660 Hz
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that could be detected by the sensors (Lindley 2005). In 1968, and again in 1970, Weber

published papers claiming that he had indeed observed gravitational waves using these de-

tectors (Weber 1968, 1969). Weber claimed to have observed not just a few, but hundreds

of events over a two-year period. These claims were met with serious reservations, not least

of which was that between the sensitivity of his instruments, the incredibly weak predicted

strength of GWs, and the small estimated rate of occurrence for events capable of creating

GWs in the frequency range to which his bars were sensitive, there was no plausible way

the observed events were multiple GW signals. Many other concerns were raised, including

possible manipulation of his data. Other research groups constructed bars of their own and

observed nothing but noise. Though Weber steadfastly insisted his findings were real, his

claims were all but dismissed by the larger physics community by the late 1970s (Collins

2010).

Bar detectors were not the only variety of early GW instruments. Robert Forward (1932

- 2002) proposed and built the first laser interferometric detector, which was operational

by 1972 (Hawking & Israel 1989). The beam detector is based on the interference of laser

beams traveling separate paths of initially equal length, similar to the famous Michelson-

Morely interferometer used to investigate the existence of the ether in the early Twentieth

Century. Forward’s beam detector was operational during the same time period as several

bar detectors, and while there were (spurious) detection claims made by the groups operat-

ing the bars, no corresponding detections were made by the beam detector (Forward 1978).

Forward’s work paved the way for the large-scale laser interferometers in use today, which

present the most realistic possibility of GW detection yet.

1.4 The Nature of Gravitational Waves

As mentioned previously, GWs can be described as ripples in the fabric of spacetime.

What does this mean? GWs are traveling disturbances to the geometry of spacetime. In

many ways GWs are just like any other waves encountered in science: they are described

by characteristic quantities such as wavelength, frequency, oscillation period, and propaga-

tion direction. The waves we consider, which are assumed to be small disturbances to the
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background geometry, travel at the speed of light, c. In this regime of small disturbances,

arbitrarily complex waves can be constructed by combining plane waves of various frequen-

cies and amplitudes. Like EM waves and waves on a guitar string, GWs are transverse.

That is, the oscillation caused by a GW occurs in a direction perpendicular to the direction

of wave propagation. Like other waves, GWs carry energy and angular momentum away

from their source, and hence, can impart this energy and angular momentum to matter.

The physical effect of a passing GW, as will be developed mathematically in Chapter 2

and was briefly introduced in Section 1.3, is to alter the proper distance between two freely

falling particles. A freely falling particle is one that is subject to no forces. Its trajectory is

completely governed by the shape of the background spacetime curvature. An oscillatory

wave that passes by a pair of particles will alternately stretch and shrink the distance

between them. If we imagine ourselves sitting on one of these particles and surrounding

ourselves with a ring of additional particles, then the proper distance between us and the

surrounding particles will alternately stretch and shrink as a GW passes through the ring,

depending on location. There are two possible manners in which the oscillation can occur,

known as the polarizations of a GW. The polarizations are referred to as plus and cross,

based on the shape of the oscillation. The GW effect for each polarization is shown in Figure

1.3, where the ring of particles is shown at times equal to t = 0, T/4, T/2, 3T/4, and T ,

where T is the period of the GW. This picture sheds some light on the Bondi thought

experiment. If we consider the rings on the rod to be the two test particles shown in green

which are horizontally separated from the center, then the GW has the effect of alternately

moving the rings further apart and closer together. Since the rod is stretching less (due to

internal forces), the beads move along the rod and heat is generated by friction.

The GWs described here are predictions based on GR, but other theories of gravity

exist with as many as six different polarization states (Will 2006). Alternate theories make

different predictions about the nature of GWs, and so measuring and analyzing GWs is a

strong test of GR (Arun & Pai 2013).
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Figure 1.3: The effect of a GW passing through the page on a ring of test particles. The
upper row shows the plus polarization, and the lower shows the cross polarization.

1.4.1 Indirect Evidence

Before discussing the efforts to detect the direct effects of GWs, there are several

astronomical systems worth mentioning, which display behavior consistent with the loss of

energy due to GW radiation.

In 1975, physicists Russell Hulse and Joseph Taylor discovered a remarkable binary

star system, designated PSR B1913+16, consisting of a pulsar with a companion neutron

star (Hulse & Taylor 1975), which are both very dense remnants from supernova explosions.

The remarkable part of this system is it could be used to test the predictions of GR: as

the stars orbit each other, they should slowly spiral inward as they lose energy to GW

radiation (Taylor & Weisberg 1982). What makes this system different from others is the

orbital period was already small enough (about 7.5 hours) so the change in period would

be a measurable effect, with an initial predicted change of about −2.403 × 10−12 seconds

per second. Binaries with larger periods have much slower changes, which are too small

to observe. Figure 1.4 shows the result of more than 30 years of observing this system

(Weisberg et al. 2010). The Figure shows the observational data with error bars, and

the solid line shows the theoretical prediction by GR due to the emission of GW with no
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Figure 1.4: Decrease in orbital period of the Hulse-Taylor binary pulsar over 30 years
of observation. The solid parabolic curve shows the predicted change from GR, and the
data points are shown by the error bars, which are too small to see vertically. Figure from
Weisberg et al. (2010).

substantive deviations from theoretical predictions, giving confidence to our expectations

for the strength and effect of GW on astrophysical systems.

In 2003, the first and (so far) only double pulsar system, PSR J0737-3039, was dis-

covered (Burgay et al. 2003). This system had an even smaller orbital period than the

Hulse-Taylor binary pulsar. The two stars orbited each other every 2.5 hours. This sys-

tem has allowed for precision tests of GR by matching observed parameter values to those

predicted by GR. In a comparison of five parameters present when extending the equations

of Keplerian orbital motion beyond Newtonian gravity, four of the five values observed for

the double pulsar system agree with the GR predictions with an error of less than 1%. The

fifth parameter agrees with an error of about 6% (Kramer & Wex 2009).

More recently, in 2011, there has been a discovery of a very short period white dwarf

(WD) binary with an astonishingly small orbital period of about 12.75 minutes, designated

SDSS J065133.33+284423.3 (Brown et al. 2011). This system is rather unusual. It is
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expected by the time a WD binary has shrunk to such a small size, one of the stars will

have puffed up enough to fill its Roche lobe (see Chapter 5) and will be transferring matter

to its companion. This type of interaction changes the dynamics of the system’s evolution,

making the effects from GR more difficult to observe. Since the WDs in this system are still

detached (not transferring mass), the evolution will still be largely governed by GR, though

the proximity of the stars has introduced some tidal deformation. This deformation has

been explored and quantified by Benacquista (2011) so the additional orbital perturbations

due to the deformation can be isolated from the effects of GR.

These three examples show that there is strong indirect evidence for both the existence

of GWs, and the correctness of GR as the dominant theory of gravity. The extreme nature

of these and other systems will continue to provide tests for gravitational theory, though

the strongest test concerning GWs is that of direct detection.

1.4.2 Modern Detection Efforts

To date, there have been no direct experimental detections of GW radiation. That

is, there has not yet been a sufficiently sensitive GW detector coupled with precise signal

analysis techniques to unambiguously identify a GW signal distinct from the various sources

of noise. The primary style of detector in use today is the laser interferometer, or beam

detector. Modern ground-based detectors have laser arms that range in length from sev-

eral hundred meters to a few kilometers. Current operational detectors include: the Laser

Interferometer Gravitational Wave Observatories in Hanford, Washington (LHO) and Liv-

ingston, Louisianna (LLO) (collectively referred to as LIGO); the VIRGO detector in Italy;

and the GEO600 in Germany. Near-term advanced ground-based detectors currently under

construction include: advanced LIGO (aLIGO), a major technological upgrade to the ex-

isting LHO and LLO detectors (Virgo technology is also being upgraded); and KAGRA, an

underground, cryogenically cooled interferometer under construction in Japan. A summary

of important characteristics for several prominent current and planned GW detectors is

presented in Table 1.
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Table 1

Gravitational Wave Detectors

fpeak Sensitivity
Name Type (Hz) (10−23) Reference

LHO Ground, Beam 200 1.5 1
LLO Ground, Beam 200 1.5 1
aLIGOb Ground, Beam 200 0.3a 2
Virgoc Ground, Beam 150 6 3
GEO600 Ground, Beam 600 15 4
KAGRA Underground, Beam 90 0.3a 5
LISA Space, Beam 0.008 0.4a 6,7
eLISA Space, Beam 0.02 0.2a 7
PTA Space, Pulsar Timing 10−8 1010 8

Notes. a Theoretical value.
b aLIGO is a technology upgrade to LHO and LLO, currently underway.
c The Virgo detector is also undergoing upgrades presently.
References. (1) LSC 2010b1; (2) LSC 2010a2; (3) Virgo/INFN 20113;
(4) GEO600 20064; (5) ICRR 20105; (6) Larson 20036;
(7) Amaro-Seoane et al. 2013; (8) Yardley et al. 2010.

The interferometer detectors consist of a laser beam split along two perpendicular arms,

reflected off of suspended mirrors on either end, and rejoined to create an interference

pattern. The armlengths are chosen to yield a fixed interference pattern. When a GW

passes, the changing proper distance along the arms invokes a corresponding time-dependent

shift in the interference pattern. A schematic of a laser interferometer, as well as a picture

of the LLO are shown in Figure 1.5.

Ground-based interferometers are sensitive to relatively high-frequency GW events.

Sources include supernova explosions, bumpy pulsars, and merging CSR binaries. The

sensitive frequency range is primarily limited by the size of the interferometer arms: shorter

arms are sensitive to shorter wavelengths (higher frequencies). For this reason, and for noise

concerns, several space-based GW missions have been conceived (Gair et al. 2013). In space,

many of the constraints that limit the size and sensitivity of ground-based detectors vanish,

1http://www.ligo.caltech.edu/˜jzweizig/distribution/LSC Data/.
2https://dcc.ligo.org/LIGO-T0900288/public.
3https://www.cascina.virgo.infn.it/DataAnalysis/Calibration/Sensitivity/.
4http://www.geo600.uni-hannover.de/geocurves/.
5http://gwcenter.icrr.u-tokyo.ac.jp/en/researcher/parameter.
6http://www.srl.caltech.edu/˜shane/sensitivity/.
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(a) Schematic of a ground-based laser inter-
ferometer like LIGO or Virgo.
Figure from Pitkin et al. (2011).

(b) The LIGO Livingston Observatory.
Figure from www.ligo.caltech.edu.

Figure 1.5: Ground-based laser interferometer detectors.

such as seismic noise and the need to maintain a high vacuum. These are replaced by new

challenges, such as satellite position adjustments, beam spreading due to diffraction, and

laser scattering off of interplanetary dust particles (Rubanu et al. 2009). The archetype for

space-based GW observatories is a mission concept known as the Laser Interferometer Space

Antenna (LISA). The standard LISA configuration specified a trio of cylindrical shaped

satellites arranged in a triangular constellation that orbits the Sun lagging 20◦ behind the

Earth. The distance between the LISA spacecraft was originally planned to be 5,000,000

km (Prince et al. 2006)! Such long arms would make LISA sensitive to frequencies in the

millihertz range, where sources include close binary systems with orbital periods of tens

of minutes, extreme mass ratio inspirals of stellar remnants into massive black holes, the

coalescence of massive black holes, and GWs generated by the Big Bang.

The European Space Agency is currently developing a mission based on the LISA ar-

chitecture, to be developed over the next decade, known as eLISA. The laser arms for

eLISA will be only 1,000,000 km long and instead of forming a triangle of identical space-

craft, eLISA will contain one primary spacecraft at the vertex of the interferometer and

two simpler craft as the endstations of the interferometer arms that maintain only two laser

links, forming a V-shaped set of arms instead of a triangle (Amaro-Seoane et al. 2013).

The eLISA mission boasts similar performance specifications to the original LISA design,
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with slightly reduced sensitivity and slightly higher frequency range. See Figure 1.6 for a

schematic representation of the eLISA mission.

The GW spectrum is covered in the kHz region by ground-based detectors and the

mHz region by the proposed space-based missions. Supermassive black hole binaries with

masses of 108M⊙ to 1010M⊙ at the centers of merging galaxies are expected to produce

loud GW signals in the nano-Hz region (Lee et al. 2011). Pulsar timing is a GW detection

technique in the nanohertz band of the spectrum, and several pulsar timing efforts are cur-

rently underway, for example the Parkes Pulsar Timing Array (Manchester et al. 2013), the

European Pulsar Timing Array (Ferdman et al. 2010), and the North American Nanohertz

Observatory for Gravitational Waves (Demorest et al. 2013). A pulsar is a neutron star

which spins rapidly and emits EM radiation in very focused beams, like a lighthouse signal.

Pulsars can have rotation periods as short as several milliseconds and rotate very steadily,

making them very stable clocks. The basic idea of using pulsar timing for GW detection is

that the pulsar and Earth can be thought of as the two test masses in the interferometer

setup, except here instead of interfering two laser beams, researchers search for deviations

in the arrival time of the pulses. If a GW passes through the space separating the Earth

and the pulsar, the pulses will arrive earlier and then later than expected in an alternating

fashion. Pulsar timing research groups observe multiple pulsars at once (such a group is

called a pulsar timing array), which reduces statistical uncertainty and can wash out other

local perturbations to the pulse arrival times (such as the effect of the Earth’s atmosphere).

Figure 1.6: The proposed eLISA space-based GW observatory. eLISA will orbit the Sun
at a distance of 1 AU, set 20◦ behind the Earth. Figure from Amaro-Seoane et al. (2013).
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1.5 Gravitational Waves and Binary Systems

The connection between GWs with binary star systems should be apparent by now.

Binaries present one of the simplest theoretical models for GW emission, and also stand

as the primary prospect for GW detection because they are exceedingly common in astro-

physics. Emissions from binary systems are of interest to both the low- and high-frequency

GW communities. On the ground, observatories such as LIGO search for short GW bursts

from the last stages of the inspiral and merger of a CSR binary system, while space-based

missions such as eLISA will easily be able to detect the persistent hum of compact binary

systems, largely white dwarf binaries, that are nowhere near merger and radiate at very

steady frequencies. In fact, eLISA is expected to see so many binaries that they will form a

constant source of background noise! Since binaries constitute the bread and butter of GW

detection, a substantial amount of research has been done investigating the science that can

be accomplished using GW observations of binary systems. The content of this dissertation

adds to that body of work, developing new frameworks for interpreting astrophysical results

that will be useful once GW observations become readily available.

1.6 The Future of Gravitational Wave Science

We currently sit at the verge of direct GW detections. The advanced LIGO detectors

are expected to come online later this decade, the LISA pathfinder mission to test the core

eLISA technology is scheduled to launch next year (2015), and pulsar timing array efforts

are ongoing, but widely expected to make their first detections before the end of the decade.

Plans for future detectors, such as the Einstein Telescope with exquisite sensitivity (Hild

et al. 2008), are currently being developed, and even more speculative technology is being

talked about for the distant future, such as atom interferometry (Dimopoulos et al. 2009).

It has been said that we belong to the last generation of scientists who will not know GW

observations as commonplace. Once GW observations become routine, the GW community

will shift much of its focus from data analysis and instrumentation toward the astrophysical

questions that GWs promised to help explore in the first place: what happens when neutron

stars merge together, how well do we understand gravity in its strongest forms, what can
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we still learn about the early universe, and what else is out there that we have not had the

imagination to dream of yet. The promises of GWs are mighty, and the fruits of the labor

of a century of science are just around the corner.

1.7 This Document

The work in this dissertation represents my research in GW astrophysics: studying

ways in which GW observations will enhance our knowledge of astrophysical phenomena

and vice-versa. Specifically, this research deals with GW astrophysics applied to compact

binary systems. The remainder of this document will be arranged as follows: Chapters 2

and 3 develop foundational material relating to gravitational wave emissions and binary

systems necessary for my research.

Chapter 4 contains my first research project exploring interactions between CO binaries

and SMBHs. In this project we show for the extreme mass ratios (EMRIs) created by tidal

disruption of a binary by the SMBH, orbital eccentricity in the LISA sensitivity band is

significantly smaller than for single star capture EMRIs, though the merging eccentricity

is found to be larger than estimated in previous studies. We also explore the altered

parameters of binaries that survive the encounter, finding on average, their merger lifetime

has been shortened, leading to a net increase to the predicted BH-BH merger rate.

In Chapter 5, my second project is presented, which develops a novel method for

estimating the radius of accretion discs in cataclysmic variable systems with multi-messenger

astronomy. We describe and test this method with both simulated and observational data

for the compact binary system AM CVn; and in both cases, we are able to estimate the

disc radius with an error of less than 1%.

Chapter 6 summarizes future directions for this work. The simulation codes used to

perform this research are available online at

• https://github.com/ericaddison/Binary-SMBH-Encounter-Simulation, and

• https://github.com/ericaddison/LightCurveSim.
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CHAPTER 2

GRAVITATIONAL WAVES

2.1 What Are Gravitational Waves?

Waves are a familiar phenomenon in science, and fundamental to many disciplines in

physics. Waves are prominent in electromagnetism, quantum mechanics, geophysics, fluid

mechanics, and most other subfields of physics. Waves form the foundation of Fourier anal-

ysis, a powerful mathematical tool for analyzing signals and solving differential equations.

It should come as no surprise, then, that wave phenomena exist in the field of gravitational

physics.

Gravitational waves (hereafter GWs) emerge mathematically as a natural consequence

of Einstein’s General Theory of Relativity (GR). GWs are present in other theories of gravity

as well; however, here I will proceed solely in the context of GR. GWs transmit information

about the changing state of the gravitational fields produced by accelerated masses, and

exist as propagating disturbances to the spacetime metric. In the weak field regime, where

variations of the gravitational field are small and masses move slowly compared to c, a GW

can be described mathematically as a small scale perturbation to a background spacetime

metric (taken here to be flat):

gαβ = ηαβ + hαβ , (2.1)

where ηαβ is the flat Minkowski metric ηαβ = diag(−1, 1, 1, 1), and hαβ is the perturbation

with each element satisfying |hαβ | ≪ 1. It is from this assumption that the weak-field,

or linearized Einstein field Equations are derived, which lead to many interesting results

including the admittance of wave-like solutions. The utility of GWs, besides providing a

testing ground for GR, will be new and unprecedented astrophysical observations, providing

a better understanding of compact systems dominated by gravity, our galaxy, our universe,

and the nature of physical law.

This chapter presents the basic concepts of gravitational waves in the context of Gen-

eral Relativity, enough to provide a proper basis for my research. The material presented
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here comes primarily from texts on GR and review papers: (Maggiore 2008; Sathyaprakash

& Schutz 2009; Schutz 2009). Calculations performed in this chapter will be done in geo-

metricized units with G = c = 1.

2.2 Conventions

The notation and conventions used in this Section follow closely to those in Schutz

(2009). The conversion factors that bring time and mass quantities into units of meters are

[c] =
m

s
and

�

G

c2

�

=
m

kg
. (2.2)

For example, the mass of the Sun is converted to meters in geometricized units as M⊙ =
�

2× 1030 kg
� �

G/c2
�

≈ 1500 m. In this way distances, times, and masses can be manipu-

lated together under the common units of meters.

The Einstein summation notation is used where repeated indices indicate summation

on that variable, i.e.,

vαuα ≡
3
�

α=0

vαuα. (2.3)

In general, Greek indices (α,β, µ, ν etc.) imply four total dimensions, while Latin indices

(i, j, k) indicate only three, typically the spatial dimensions. Vectors will be denoted in

boldface for four-vectors, e.g., k, while three-vectors will have an over-arrow, e.g., �k.

Indices on vectors and tensors will be raised and lowered using the metric gαβ unless oth-

erwise noted for approximation purposes. For example, vα = gαβv
β and Tαβ = Tµνg

µαgνβ ,

where gαβ is the inverse of the metric tensor. The metric is chosen with a signature of

diag(-1,+1,+1,+1), i.e., with a negative timelike dimension. This choice can vary between

texts, and more information can be found in Misner et al. (1973).

Standard partial differentiation is denoted with the comma notation

∂vα

∂xβ
≡ vα,β, and (2.4)

∂uα

∂xβ
≡ uα,β . (2.5)
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The covariant derivative is signified with the del notation, i.e.,

∇βv
α ≡ vα,β + vµΓα

µβ , (2.6)

where Γα
,µβ is the Christoffel symbol associated with the metric gαβ . Equation 2.6 gives the

component of the covariant derivative in the direction of ∂/∂xβ ; the directional covariant

derivative in the direction of a unit vector Uα is given simply as in the standard calculus

fashion:

∇Uv
α = Uβ∇βv

α. (2.7)

2.3 Linearized GR

In order to simplify the highly nonlinear equations that describe GR, a set of linearized

equations are developed that neglect powers of small quantities higher than first order.

Begin with a coordinate transformation of the form

xα
′

= xα + ξα(xβ), (2.8)

which transforms from the unprimed to the primed coordinate system, where xα are in-

ertial coordinates and ξα(xβ) is a slowly varying transformation vector valued function of

spacetime position in the inertial frame xα, i.e., |ξα,β| ≪ 1. The transformation tensor Λα′

β

then has the form

Λα′

β =
∂xα

′

∂xβ
= δαβ + ξα,β. (2.9)

The inverse transformation Λα
β′ is simply

Λα
β′ =

∂xα

∂xβ′
=

�

∂xβ
′

∂xα

�−1

≈ δαβ − ξα,β, (2.10)

where the approximation is valid to first order in ξα,β.

Applying this transformation to the perturbed metric (equation 2.1), we have
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gα′β′ = Λµ
α′Λ

ν
β′gµν (2.11)

= Λµ
α′Λ

ν
β′(ηµν + hµν) (2.12)

= (δµα − ξµ,α)(δ
ν
β − ξν ,β)(ηµν + hµν) (2.13)

= ηαβ − ηανξ
ν
,β − ηµβξ

µ
,α + hαβ +O(ξ2) +O(h2) (2.14)

= ηαβ − ξα,β − ξβ,α + hαβ +O(ξ2) +O(h2) (2.15)

≈ ηαβ − ξα,β − ξβ,α + hαβ , (2.16)

where we define ξα = ηαβξ
β. The approximation is valid to first order in the small quantities

|ξα,β| and |hαβ |. We can now identify that in the primed coordinates, the perturbation hαβ

has transformed to

hαβ → hαβ − ξα,β − ξβ,α, (2.17)

and remains a small quantity. This sort of transformation is known as a gauge transfor-

mation, and allows us to simplify the Einstein Equations by a clever choice of the vector,

ξα. A gauge transformation takes advantage of the freedom to choose a coordinate system,

which makes calculations simpler.

The Einstein Equations are a set of ten nonlinear coupled, partial differential equations,

written as

Gµν = 8πT µν , (2.18)

where Gµν is called the Einstein tensor, constructed from combinations of second derivatives

of the metric, and T µν is the stress energy tensor, which characterizes all the matter and

energy present. This is the second order differential equation which dictates the dynamical

evolution of spacetime. The Riemann curvature tensor, Rαβµν , quantifies the curvature of

spacetime, in one sense by quantifying the change in a vector after parallel transporting it

around an infinitesimally small closed loop, and in another by determining the deviation of

initially parallel lines. The Riemann tensor is constructed from derivatives of the metric. We
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are interested in the Riemann tensor specifically because the Einstein tensor is constructed

from it. We can now compute the Riemann curvature tensor from our perturbed metric as

Rαβµν =
1

2
(gαν,βµ − gαµ,βν + gβµ,αν − gβν,αµ) (2.19)

=
1

2
(hαν,βµ − hαµ,βν + hβµ,αν − hβν,αµ) . (2.20)

Equation 2.20 is gauge invariant to first order, as any gauge transformation would introduce

a collection of ξα derivative terms as in Equation 2.17, which exactly cancel at first order.

We previously defined the lowered index vector ξα = ηαβξ
β. In a similar manner we

can adopt the index raising convention of

hµβ = ηµαhαβ , and (2.21)

hµν = ηνβhµβ. (2.22)

These operations are simply the first-order terms of index raising on hαβ using the full

metric gαβ . With this convention, we can also define the trace of hαβ as

h = hαα, (2.23)

and introduce the trace reversed version of hαβ ,

h̄αβ = hαβ − 1

2
ηαβh. (2.24)

The trace reversed h̄αβ has the useful property that

h̄ = h̄αα (2.25)

= ηαµh̄µα (2.26)

= ηαµhµα − 1

2
ηαµηαµh (2.27)

= h− 2h = −h. (2.28)
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Next, compute the Ricci tensor and scalar in order to find the Einstein tensor:

Rαβ = Rµ
αµβ (2.29)

= ηµνRναµβ +O(h2) (2.30)

≈ ηµν
1

2
(hνβ,αµ − hνµ,αβ + hαµ,νβ − hαβ,νµ) (2.31)

=
1

2
(h ,µ

µβ,α − hµµ,αβ + h ,µ
αµ,β − h ,µ

αβ,µ ) (2.32)

=
1

2

�

h̄ ,µ
µβ,α +

1

2
ηµβh

,µ
,α − h,αβ + h̄ ,µ

αµ,β +
1

2
ηαµh

,µ
,β − h̄ ,µ

αβ,µ − 1

2
ηαβh

,µ
,µ

�

(2.33)

=
1

2

�

h̄ ,µ
µβ,α + h̄ ,µ

αµ,β − h̄ ,µ
αβ,µ − 1

2
ηαβh

,µ
,µ

�

, (2.34)

and

R ≈ ηαβRαβ , (2.35)

= ηαβ
1

2

�

h̄ ,µ
µβ,α + h̄ ,µ

αµ,β − h̄ ,µ
αβ,µ − 1

2
ηαβh

,µ
,µ

�

(2.36)

=
1

2

�

2h̄ ,µα
µα − h ,µ

,µ

�

, (2.37)

with the approximations correct to first order in |hαβ |. The Einstein tensor, Gαβ , is then

(again correct to first order)

Gαβ = Rαβ − 1

2
ηαβR, (2.38)

≈ 1

2

��

h̄ ,µ
µβ,α + h̄ ,µ

αµ,β − h̄ ,µ
αβ,µ − 1

2
ηαβh

,µ
,µ

�

− 1

2
ηαβ
�

2h̄ ,µν
µν − h ,µ

,µ

�

�

(2.39)

= −1

2

�

h̄ ,µ
αβ,µ + ηαβ h̄

,µν
µν − h̄ ,µ

µβ,α − h̄ ,µ
αµ,β

�

. (2.40)

We now move into the harmonic gauge, which has the property that

h̄µν (NEW)
,ν = 0, (2.41)
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and is achieved when ξµ satisfies

�ξµ = ξµ,ν,ν = h̄µν (OLD)
,ν , (2.42)

where the box, �, denotes the D’Alembertian operator or wave operator with our metric

signature: � ≡ ηαβ∂α∂β. The superscripts (OLD) and (NEW) are shown here to explicitly

identify hαβ before and after the gauge transformation, and from now on it will be assumed

the h’s are in the new transformed coordinates.

This choice of constraint on hαβ uses up some (but not all) of the gauge freedom that

we have available in the gauge transformation. This is analogous to choosing the Lorenz

gauge in electromagnetism when the gauge condition ∇ · �A = −(1/c2)∂Φ/∂t is chosen so the

magnetic vector potential, �A, and the electric potential, Φ, each satisfy an inhomogeneous

wave equation.

In this gauge, the Einstein tensor quickly reduces to

Gαβ = −1

2
�h̄αβ , (2.43)

and the Einstein Equations then read

Gαβ = 8πTαβ , (2.44)

⇒ �h̄αβ = −16πTαβ . (2.45)

These are the so-called weak field Einstein Equations in the harmonic gauge, since

they were produced under the assumption that the perturbation to the background metric is

weak. They are also known as the linearized Einstein Equations (in the harmonic gauge), or

linearized GR, because at each step, terms were only kept to first order in small parameters.

It is important to remind ourselves of the gauge these equations belong to, as the additional

gauge condition (equation 2.41) is required for any solution, hαβ . These are the equations

that will be used in subsequent sections.
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2.4 Propagation of Gravitational Waves

We will now use the linearized Einstein Equations to explore the propagation of an

oscillatory metric disturbance (a GW) in vacuum. The equations then read











�h̄αβ =

�

− ∂2

∂t2
+∇2

�

h̄αβ = 0,

h̄αβ ,β = 0.

(2.46)

If we assume a complex oscillatory solution representing plane waves of the form

h̄αβ = Aαβ exp(ikαx
α), (2.47)

where Aαβ is complex, and in the end we will take the real part of the solution, then we

can insert into the Einstein Equations to find

�h̄αβ = h̄αβ,ν,ν (2.48)

= ηµν h̄αβ ,µν (2.49)

= −ηµνkµkν h̄
αβ (2.50)

= −kνkν h̄
αβ = 0. (2.51)

Since h̄αβ is not identically zero (or else we have no GW), this equation can only hold

if kνkν = 0, i.e., kα is a null vector. This implies the GW travels on a null surface; that

is, the surfaces of constant phase are null, and therefore move at the speed of light. This

follows from satisfying the nullity condition with

ω2 = |�k|2, (2.52)

where ω = k0 and �k = ki with i = 1, 2, 3, so the wave four-vector is k = (ω,�k). This is the

dispersion relation for vacuum GWs, which immediately results in both phase and group

velocities of 1 (the speed of light in geometricized units). Furthermore, by imposing the
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harmonic gauge property (equation 2.41), we find

h̄αβ ,β = Aαβikβ exp(ikνx
ν) = 0 ⇒ Aαβkβ = 0, (2.53)

which shows Aαβ (amplitude-polarization tensor) is orthogonal to kβ (propagation vector);

and therefore, the GW h̄αβ is transverse to the direction of propagation.

Here it has been shown Equation 2.47 is a solution to the vacuum linearized Einstein

Equations when the propagation vector kα is null, and that the amplitude tensor is orthog-

onal to k. Of course, from this plane-wave solution, it is possible to construct arbitrary

solutions through superposition.

So far, we have used the condition of the harmonic gauge (equation 2.41), but have not

uniquely determined a choice of the gauge vector, ξα. We can choose a gauge vector while

remaining in the harmonic gauge of the form

ξα = Bα exp(ikνx
ν), (2.54)

where kν is the same propagation vector as in h̄αβ , and Bµ is a constant (complex) vector.

The nullity of kν shows this choice of gauge vector leaves us in the harmonic gauge by

enforcing the gauge requirement of �ξα = h̄αβ ,β = 0. Using this gauge vector and applying

Equation 2.17 results in a new GW with (after cancellation of exponential terms)

Aαβ → Aαβ − iBαkβ − iBβkα + iηαβB
µkµ. (2.55)

The remaining gauge freedom allows the following convenient conditions to be imposed on

Aαβ :

Aµ
µ = 0 and AαβU

β = 0, (2.56)
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where Uα is any fixed timelike unit vector. These conditions simplify the form of Aαβ , and

Bα becomes fixed with the form

Bα =
i

kβUβ

�

kα
2kβUβ

�

1

2
Aµ

µ − UµUνAµν

�

+
1

2
UαA

µ
µ −AαβU

β

�

. (2.57)

To see why Uα is chosen to be timelike, note that since a timelike vector and a null vector

cannot be orthogonal, the quantity kβU
β �= 0, and we can never run into divide-by-zero

issues, even when integrating over all k. That these conditions hold for general h̄αβ , and

not just plane-wave solutions is proved explicitly in Wald (1984).

By choosing U = (1, 0, 0, 0), and setting coordinates such that the wave is propagating

in the z direction, i.e., k = (ω, 0, 0,ω), the following components of Aαβ can be determined:

Aα0 = A0α = 0, (2.58)

Azα = Aαz = 0, (2.59)

Axx = −Ayy, and (2.60)

Axy = Ayx (due to symmetry). (2.61)

This choice of Bα and Uα defines the Transverse-Traceless gauge: traceless because

of Equation 2.56 and transverse because of Equation 2.59. In this gauge, the amplitude-

polarization tensor, Aαβ, looks like

(ATT
αβ ) =



















0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0



















. (2.62)

This can be split into a sum of two terms, each proportional to a polarization tensor:

(ATT
αβ ) = A+ǫ+ +A×ǫ×, (2.63)
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where A+ = Axx, A× = Axy, and

ǫ+ = x̂⊗ x̂− ŷ ⊗ ŷ =



















0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0



















, ǫ× = x̂⊗ ŷ + ŷ ⊗ x̂ =



















0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0



















. (2.64)

Here the polarization tensors have been given subscripts + and ×, referred to as the plus and

cross polarizations for reasons discussed below. We have found there exists a gauge in which

only two independent amplitude terms remain, which can be split into two independent

polarizations, and the plane GW can now be written as

hTT
αβ = R[(A+ǫ+ +A×ǫ×) exp(ikµx

µ)], (2.65)

whereR denotes the real part. We can build up arbitrary waves using Fourier superposition,

i.e.,

hTT
αβ → R

�
�

ATT
αβ (

�k) exp(ikµx
µ)d�k

�

, (2.66)

where ATT
αβ (

�k) is the Fourier decomposition of the general wave, and �k is the spatial part of

the wave vector satisfying the dispersion relation in Equation 2.52.

2.5 Generation of Gravitational Waves

Now that the propagation of GWs in vacuum has been established, we can turn to

their generation. The general solution to the sourced Einstein Equations (Equation 2.45)

is given by integration of the source along with the retarded Green’s function for the wave

equation (Jackson 1998):

h̄αβ(x) = −16π

�

Gret(x;x
′)Tαβ(x′)dx′, (2.67)
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where x = (t, �x), �x is a position three-vector, the integral is taken over the region where

the source Tαβ �= 0, and the Green’s function Gret(x;x
′) is

Gret(x;x
′) = Gret(t, �x; t

′, �x′) = −δ (t′ − [t− |�x− �x′|])

4π|�x− �x′|
. (2.68)

The retarded Green’s function describes the observation at time, t, and location, �x, of the

effect from an impulsive source located at position, �x′, occurring at time, t′. The time, t′,

is known as the retarded time because it is the time in the past at which an event occurs

such that it will be observed at time, t, at a distance |�x− �x′|.

The integral in Equation 2.67 can now be written as

h̄αβ(t, �x) = 4

�

Tαβ(t′, �x′)

|�x− �x′|
d�x′, (2.69)

where t′ = t− |�x− �x′| is the retarded time. Now impose the condition that the observation

occurs at a distance very large compared to the size of the source region, i.e.,
|�x′|

|�x|
≪ 1, and

the wavelength is long compared to the source region,
|�x′|

λ
≪ 1. If we write |�x| = R, this

allows us to write h̄αβ(t, �x) to first order in |�x′|/R as

h̄αβ(t, �x) ≈ 4

R

�

Tαβ(t−R, �x′)d�x′. (2.70)

It should be noted here that the integration in Equations 2.67, 2.69, and 2.70 are only

appropriate for Cartesian coordinates, and hence, Cartesian tensors. Now by applying the

conservation law

Tαβ
,β = 0, (2.71)

it can be shown

∂2

∂t2

�

T 00xixjd�x = 2

�

T ijd�x, (2.72)
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where i, j = 1, 2, 3 run over spatial components. For a source with velocities v ≪ 1, the

component, T 00, is approximately the mass density, ρ, and the left side of Equation 2.72 is

∂2

∂t2

�

T 00xixjd�x ≈ ∂2

∂t2

�

ρxixjd�x = Q̈ij, (2.73)

where Q is the mass-quadrupole moment1 (often denoted I), and over-dots denote time

derivatives. We can now write down the spatial part of the GW as

h̄ij =
2

R
Q̈ij(t−R). (2.74)

This is the famous quadrupole formula for the gravitational radiation from distant slow-

moving sources, and finds many applications in astrophysics. This is the equation that will

be used in Chapter 3 to derive the GW signal from a binary system.

2.6 Physical Effects

As stated in Chapter 1, the physical effect of a GW is to change the proper distance

between points, and to alternately stretch and compress a ring of test particles. To demon-

strate this effect mathematically, consider two freely falling test particles whose geodesics

are connected by a vector, ζα, and define an inertial coordinate system in the rest frame of

the particle where ζα originates, as in Figure 2.1.

Since ζα is a connecting vector between two geodesics, and we parametrize both curves

by a common parameter, τ , we can appeal to the equation of geodesic deviation:

∇U∇Uζ
α = Rα

µνβU
µUνζβ, (2.75)

where Uα is the tangent curve to the geodesic from which ζα originates, and ∇U is the

1There are various conventions for defining and denoting the quadrupole moment tensor. In particular,
the quantity Q is often defined to be trace-free; however, the trace-free quadrupole moment tensor is also
commonly referred to as the reduced quadrupole moment tensor, further confusing the matter. As defined
above, Q is not trace free in general, but is the natural form that emerges from the GW derivation. This
definition could be unambiguously described as the “second moment of the mass distribution,” however this
differs from the common language. The notation Q is chosen as a base quantity, which appears in the initial
GW quadrupole formula, and is explicitly denoted as trace free with a superscript T when transformed in
subsequent sections.
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Figure 2.1: Two freely falling test particles with geodesics parametrized by τ and con-
necting vector ζ. Coordinates are chosen to move along the geodesic with tangent vector,
U , and from which ζ originates.

covariant derivative along the curve with tangent vector, U . This equation describes the

evolution of the connecting vector, ζ, and represents the effect of spacetime curvature on

a pair of nearby particles. Note that in flat space, where Rα
µνβ = 0, there is no deviation

so geodesics that begin parallel will remain parallel, which is generally not true for curved

spacetimes.

The choice of coordinates that move along the geodesic with tangent vector, U , provide

several simplifications. First, in this frame we have Uα =
dxα

dτ
= δα0, and hence, we can

consider the proper time parameter, τ , and the coordinate time, t, interchangeably. In this

freely falling frame, all the Christoffel symbols vanish at the spatial origin, i.e., the location

of the test particle, and so the covariant derivatives, ∇U , reduce to ordinary derivatives,

d

dτ
. Lastly, since we are always in the rest frame of the first test particle, the components,

ζα(τ), can be regarded as the proper distances between the two test particles at parameter

value, τ . These simplifications lead to

d2ζα

dτ2
=

∂2ζα

∂t2
= Rα

µνβU
µUνζβ = Rα

00βζ
β. (2.76)
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Define the initial connecting vector as ζ(τ0) = (0, ε, 0, 0), which further simplifies the equa-

tion to

∂2ζα

∂t2
= εRα

00x = −εRα
0x0. (2.77)

The components of the Riemann tensor are gauge invariant quantities, so we can use the

transverse-traceless gauge to determine the equations of motion for ζ:

Rx
0x0 = Rx0x0 = −1

2
hTT
xx,00, (2.78)

Rx
0y0 = Rx0y0 = −1

2
hTT
xy,00, and (2.79)

Ry
0y0 = Ry0y0 =

1

2
hTT
xx,00, (2.80)

and so, for the two particles beginning with separation vector ζ(τ0) = (0, ε, 0, 0), the Equa-

tions of motion for ζ are

∂2ζx

∂t2
=

ε

2

∂2

∂t2
hTT
xx , and (2.81)

∂2ζy

∂t2
=

ε

2

∂2

∂t2
hTT
xy , (2.82)

and for a pair of particles initially separated in the y direction with ζ(τ0) = (0, 0, ε, 0):

∂2ζx

∂t2
=

ε

2

∂2

∂t2
hTT
xy , and (2.83)

∂2ζy

∂t2
= −ε

2

∂2

∂t2
hTT
xx . (2.84)

Since the geodesic deviation equation is linear, we can form the general solution for a

pair of particles displaced by small distance in an arbitrary direction in the plane orthogonal

to the direction of wave propagation, i.e., ζ(τ0) = (0, εx, εy, 0):

∂2ζx

∂t2
=

1

2

∂2

∂t2
�

εxh
TT
xx + εyh

TT
xy

�

, and (2.85)

∂2ζy

∂t2
=

1

2

∂2

∂t2
�

εxh
TT
xy − εyh

TT
xx

�

. (2.86)
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We can solve these equations by assuming a plane-wave form for hTT , as in Equation

2.47 and initial rest conditions for the two particles. This leads to







ζx

ζy






=







εx

εy






+

1

2







Axx Axy

Axy −Axx













εx

εy






exp(iωt). (2.87)

This equation gives justification to the polarization labels plus and cross. If we have a pure

plus wave with Axy = 0, then the effect on a ring of test particles is to alternately stretch and

compress the ring along the x and y dimensions, creating a plus-shaped pattern of oscillation.

For a cross wave with Axx = 0, the ring of particles is stretched and compressed along the

lines y = x and y = −x, forming a cross-shaped pattern (see Figure 1.3). This solution also

shows the amplitude of oscillation depends on the initial separation. Of course, this solution

only holds to first order in a variety of small quantities, including the components of ζ. If

separation becomes large compared to the GW wavelength, then the linear approximation

is no longer valid.

It is important to note we have restricted the GW to be small in the sense that |hαβ | ≪

1, and for a plane wave, the amplitude of oscillation created by a passing GW is proportional

to hαβ . By inserting explicit factors of G and c, we can find an order of magnitude estimate

for the upper limit on the oscillation amplitude in standard units for a source at distance,

R, with mass, M , and spatial extent, D, oscillating at frequency, f :

Δ|ζ| ∼ |h||ζ0| ∼
G|Q̈|

c4R
|ζ0| �

GMD2f2

c4R
|ζ0|. (2.88)

For a galactic source with R ∼ 10 ly, M ∼ M⊙, f ∼ 0.1 mHz, and D ∼ R⊙ (a compact

binary, for example), the strain |h| ∼ 10−21, and a pair of particles separated by a distance

ε ∼ 1km, the amplitude of oscillation has an upper limit on the order Δ|ζ| ∼ 10−18 m,

or several orders of magnitude smaller than the nucleus of an atom. Even for much more

energetic sources, strains are expected to have upper limits on the order of |h| ∼ 10−19.

These terribly small numbers explain why the GW detection effort has been so difficult,

and why Einstein himself initially thought GWs could not possibly be physically real.
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CHAPTER 3

BINARY SYSTEMS

One of the most common subjects of study in astrophysics is binary star systems. A

binary star system (or simply binary for brevity) consists of two stars that are gravitationally

bound together. Binaries occupy an important role in astrophysics. It has been estimated

that while only ≈ 33% of stars with spectral types G-M have binary companions (Lada

2006), as many as 75% of larger stars (types O-F) are in multiple systems (Raghavan et al.

2010). When the stars that make up a binary are sufficiently far away, they can live out

their lives in a more or less typical manner, generally unaffected by the presence of an

orbiting companion. It can occur, however, that the component stars are close enough so

that gravitational tidal forces have nonnegligible effects on the orbit or stars themselves. I

will refer to this second family of binaries as compact binary systems.

Binaries and binary system dynamics are at the core of my research. This chapter will

introduce the fundamental physics and nuances of binaries. It will consist of background

information that will be heavily utilized in subsequent material, e.g., binary orbital paths,

orbit orientation, GW emission, etc.

3.1 One-Body Reduction

The beauty of the two-body central force problem is that it can be reduced to an

equivalent one-body problem and the shape of the orbit can be analytically solved for an

inverse square force law. The derivations shown here closely parallel those in Goldstein

et al. (2002). Begin by considering two masses, m1 and m2, at absolute locations given by

�x1 and �x2 in some arbitrary coordinate system, respectively. We can write the separation

vector and center of mass location as

�r = �x2 − �x1 and �R = �rcm =
m1�x1 +m2�x2

M
, (3.1)

where M = m1 + m2 is the total mass of the system. These quantities are illustrated in

Figure 3.1.
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Figure 3.1: Geometry associated with the two-body problem.

Writing these Equations in a matrix form, i.e.,







�r

�R






=







−1 1

m1/M m2/M













�x1

�x2






, (3.2)

we can easily solve for �x1 and �x2 in terms of �r and �R by inverting the matrix







�x1

�x2






=







−m2/M 1

m1/M 1













�r

�R






. (3.3)

This equation results in the following relationships:

�x1 = �R− m2

M
�r, and (3.4)

�x2 = �R+
m1

M
�r. (3.5)
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Using these location vectors as generalized coordinates, the Lagrangian for this system

can now be written as

L =
1

2
m1�̇x

2
1 +

1

2
m2�̇x

2
2 − U(�r) (3.6)

=
1

2

�

m1

�

�̇R− m2

M
�̇r
�2

+m2( �̇R +
m1

M
�̇r)2
�

− U(�r) (3.7)

=
1

2

�

M �̇R2 + 2 �̇R · �̇r
�m1m2

M
− m2m1

M

�

+ �̇r 2

�

m1m
2
2

M2
+

m2m
2
1

M2

��

− U(�r) (3.8)

=
1

2

�

M �̇R2 +
m1m2

M
�̇r 2
�

− U(�r), (3.9)

where U(�r) = V (r) = −G
m1m2

r
is the standard Newtonian gravitational potential energy.

By appealing to the Lagrange Equations, we can find the equations of motion for �R to be

d

dt

∂L

∂ �̇R
=

∂L

∂ �R
⇒ �̈R = 0. (3.10)

This shows the system as a whole will move at a constant velocity, �̇R, or stand still. Either

way, we are now free to investigate the dynamics of the two-body problem in terms of the

single quantity, �r, as the vector, �R, does not dynamically affect the separation vector. The

problem has now been recast as the motion of a particle with mass µ ≡ m1m2/M (called the

reduced mass) at location, �r, in a potential V (r) = −Gm1m2/r = −GMµ/r. Heuristically,

this is the orbit problem for a particle of mass µ orbiting around a fixed mass, M .

3.1.1 Solving for the Orbit of the One-Body Problem

Now that the physical system has been reformulated as the motion of a single mass,

we can solve for the orbital path. Since the potential term, V (r), is spherically symmetric

(only depends on the radial distance, r), the angular momentum, �ℓ = �r × �p, of the system

must be conserved (a central force field applies no torque). This fixes the value of �ℓ for all

time, restricting both �r and �p to lie in the plane with normal vector parallel to �ℓ. We now

describe the vector, �r, in terms of polar coordinates (r, θ) in this plane. The Langrangian
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for the system in these coordinates can be written

L =
1

2
µ�̇r 2 − V (r) (3.11)

=
1

2
µ(ṙ2 + r2θ̇2)− V (r). (3.12)

The straightforward expansion of �̇r 2 follows from writing �̇r = ẋx̂+ẏŷ, so �̇r 2 = �̇r ·�̇r = ẋ2+ẏ2,

then writing x and y in polar form and expanding.

We now find the Equations of Motion (EOM) for the coordinates r and θ. The EOM

for θ comes from the angular momentum, pθ = ∂L/∂θ̇, and is given by

d

dt

∂L

∂θ̇
= ṗθ =

∂L

∂θ
= 0 (3.13)

⇒ d

dt
(µr2θ̇) = 0 (3.14)

⇒ µr2θ̇ = ℓ = constant. (3.15)

Here ℓ is the magnitude of the angular momentum vector, �ℓ, which is now confirmed to be

a conserved quantity. Moving to the equation for r, we see

d

dt

∂L

∂ṙ
=

∂L

∂r
(3.16)

⇒ µr̈ = µrθ̇2 − ∂V

∂r
(3.17)

⇒ µr̈ − ℓ2

µr3
+

∂V

∂r
= 0. (3.18)

Apply the standard first integral technique of multiplying through by ṙ and identifying total

derivatives:

µṙr̈ − ṙ
ℓ2

µr3
+ ṙ

∂V

∂r
= 0 (3.19)

⇒ d

dt

�

1

2
µṙ2
�

+
dr

dt

d

dr

�

ℓ2

2µr2

�

+
dr

dt

∂V

∂r
= 0 (3.20)

⇒ d

dt

�

1

2
µṙ2
�

+
d

dt

�

ℓ2

2µr2

�

+
dV (r)

dt
= 0 (3.21)
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⇒ d

dt

�

1

2
µṙ2 +

ℓ2

2µr2
+ V (r)

�

= 0 (3.22)

⇒ d

dt

�

1

2
µṙ2 +

1

2
µr2θ̇2 + V (r)

�

= 0 (3.23)

⇒ d

dt

�

1

2
µ(ṙ2 + r2θ̇2) + V (r)

�

= 0 (3.24)

⇒ d

dt

�

1

2
µ�̇r 2 + V (r)

�

= 0 (3.25)

⇒ 1

2
µ�̇r 2 + V (r) = E = constant. (3.26)

We recognize this term as the total energy, which is now explicitly shown to be conserved.

We can use the two conserved quantities, ℓ and E, to find an integrable ODE that will

result in the shape of the orbit:

1

2
µṙ2 +

ℓ2

2µr2
+ V (r) = E (3.27)

⇒ ṙ =

�

2

µ

�

E − V − ℓ2

2µr2

�

(3.28)

⇒ dt =
dr

�

2

µ

�

E − V − ℓ2

2µr2

�

. (3.29)

As we are interested in the shape of the orbit, r(θ), at this point we can exchange derivatives

with respect to t for derivatives with respect to θ in the following manner:

ℓ = µr2
dθ

dt
, (3.30)

⇒ ℓdt = µr2dθ, (3.31)

where we impose the restriction that ℓ > 0. Making this substitution in Equation 3.29

yields

dθ =
ℓdr

µr2

�

2

µ

�

E − V − ℓ2

2µr2

�

. (3.32)
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Substituting u = 1/r with du = −(1/r2)dr gives

dθ = −
ℓ

u2
du

µ
1

u2

�

2

µ

�

E − V

�

1

u

�

− ℓ2u2

2µ

�

= − du
�

2µE

l2
− 2µV

ℓ2
− u2

. (3.33)

Finally, inserting the potential for an inverse-square force law, i.e., V (r) = −(k/r) ⇒

V (1/u) = −ku where k = GMµ, we have

dθ = − du
�

2µE

l2
+

2µku

l2
− u2

. (3.34)

We are now able to integrate this differential equation. Note that Equation 3.34 has

the general form

θ = θ′ −
�

du√
au2 + bu+ c

, (3.35)

which has solution

θ = θ′ − 1√
−a

arccos

�

−2au+ b

α

�

, (3.36)

where α2 = b2 − 4ac. By identifying a = −1, b = (2µk)/ℓ2, and c = (2µE)/ℓ2, we can form

our solution as

θ − θ′ = − arccos









2u− 2µk

ℓ2
�

4µ2k2

ℓ4
+ 4

2µE

ℓ2









(3.37)

= − arccos













ℓ2u

µk
− 1

�

1 +
2ℓ2E

µk2













(3.38)

⇒ u =
µk

ℓ2



1 +

�

1 +
2ℓ2E

µk2
cos(θ − θ′)



 (3.39)

⇒ r =
C

1 + e cos(θ − θ′)
, (3.40)
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where C = ℓ2/(µk), e =
�

1 + (2ℓ2E)/(µk2), and θ′ is the value of θ at periapse. Equation

3.40 is the general form of a conic section in polar coordinates with one focus at the origin

and eccentricity, e. The eccentricity determines the shape of the orbit according to Table

2, which in turn puts corresponding constraints on the shape due to the total energy, E.

Table 2

Conic Sections

Eccentricity Shape Energy

e = 0 circle E = −µk2

2l2
0 < e < 1 ellipse E < 0
e = 1 parabola E = 0
e > 1 hyperbola E > 0

We can gain additional insight into the nature of these orbits by rewriting Equation

3.22 as

1

2
µṙ2 +

ℓ2

2µr2
+ V (r) =

1

2
µṙ2 + Veff (r) = E, (3.41)

where we have defined an effective potential Veff (r) = V (r)+ ℓ2/(2µr2). This can be inter-

preted as the total energy of the radial motion of a particle in an effective potential Veff (r).

The orbits with negative energy are bound together so their separation will alternately grow

and shrink for elliptical orbits or remain stationary for circular orbits. Bound orbits are

those that are caught in the potential well formed by the effective potential, whose minimum

corresponds to circular orbits. The bound orbits reach apoapse and periapse at the points

where the total energy equals the effective potential energy (zero radial motion), known as

the turning points. Unbound orbits are those with positive total energy, which only have

one turning point. These orbits come in from infinity for a single interaction at the turning

point, and then move away back to infinite distance. This is all illustrated in terms of the

total energy in Figure 3.2.

Since we are particularly interested in bound systems, i.e., systems with E < 0, we will

restrict further attention to the elliptical orbits. Consider the motion of a mass along an

elliptical trajectory described by Equation 3.40, as in Figure 3.3.
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Figure 3.2: The effective potential, Veff (r) (blue), of a particle in the two-body problem
experiencing radial motion. The red lines show the various types of orbits corresponding
to their total energy, E. Bound orbits are those with E < 0, which have two intersections
with Veff (r) for elliptical orbits and a single intersection for the circular orbit, which is the
global minimum of Veff (r). The unbound orbits are those with E ≥ 0, and have only one
turning point.
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Figure 3.3: The elliptical orbit of the reduced mass, µ, about the center of mass including
the periapse and apoapse distances, rp and ra, as well as the radial distance, r, and angular
position, θ.

The major axis of the ellipse is the longest chord that can be drawn within the ellipse,

and analogous to the diameter of a circle. The semimajor axis, typically denoted a, is

half the value of the major axis, and is akin to the radius of a circle. We can identify a

relationship between a, rp, and ra, namely rp + ra = 2a. Additionally, note the turning

points in the orbit (which occur when ṙ = 0) are located at the apoapse and periapse

distances. By referring back to Equation 3.26 and setting ṙ = 0, we can write

ℓ2

2µr2
− k

r
= E (3.42)

⇒ r2 +
k

E
r − ℓ2

2µE
= 0. (3.43)

The two roots of this quadratic equation, which we can identify at rp and ra from the

preceding discussion, are

rp = − k

2E
(1− e) and ra = − k

2E
(1 + e), (3.44)
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which leaves us with the relationship

a =
rp + ra

2
= − k

2E
. (3.45)

Now note in the definition of eccentricity e, we can write

e =

�

1 +
2ℓ2E

µk2
=

�

1− ℓ2

µka
⇒ ℓ2

µk
= a(1− e2). (3.46)

Using this relation, and making the conventional choice that θ′ = 0 (define θ so that θ = 0

at periapse), we can finalize the form of the orbital path to be

r(θ) =
a(1− e2)

1 + e cos(θ)
. (3.47)

What has been derived here? This equation represents the orbital path of the reduced

mass µ around the center of mass, which can be completely specified by either pair of values

{a, e} or {ℓ, E}. This is only one orbital path, however, and there are two stars in the binary

system. The relations between this orbit and the trajectory of the actual component masses

will be developed in the next section.

3.1.2 Relations Between the One-Body and Two-Body Orbits

Given the relations in Equations 3.4 and 3.5, and by working in the barycenter frame

(set �R = 0), the orbital path of the two component masses can be written as

r1(θ) =
a1(1− e2)

1 + e cos(θ)
and r2(θ) = − a2(1− e2)

1 + e cos(θ)
, (3.48)

where a1 = a(m2/M) and a2 = a(m1/M). Or, by exchanging the negative sign in r2 for a

180◦ phase shift in θ, we can rewrite as

r2(θ) =
a2(1− e2)

1− e cos(θ)
. (3.49)

We can now draw an important conclusion. Since the individual component masses each
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follow an elliptical path with focus at the origin, and the origin in the barycenter frame is

the center of mass, we can conclude that both stars orbit their common center of mass. In

addition to the positional relationship, we also have the following momenta relations:

�p = µ�̇r = µ
M

m2
�̇r1 = m1�̇r1 = �p1, (3.50)

and similarly �p2 = −�p. This both verifies conservation of momentum in the barycenter

frame (�p1 + �p2 = 0), as well as gives the additional connection between the reduced mass

orbit and the two-body orbit.

3.2 The Laplace-Runge-Lenz Vector

There is another conserved quantity that can be constructed, and will be useful in later

sections. For a general central force problem, we have

�̇p = f(r)
�r

r
, (3.51)

where f(r) is a conservative central force, i.e., a force whose magnitude depends only on the

radial distance from the the origin of coordinates, and always points in a radial direction.

Consider the cross product

�̇p× �ℓ = �̇p× (�r × �p) (3.52)

=
mf (r)

r
[�r × (�r × �̇r)] (3.53)

=
mf (r)

r
[�r(�r · �̇r)− �̇r(�r · �r)], (3.54)

and note

�r · �̇r =
1

2

d

dt
(�r · �r) = rṙ, (3.55)

where ṙ is the velocity in the radial direction. Because �ℓ is conserved, we have
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�̇p× �ℓ =
d

dt
(�p× �ℓ) (3.56)

= −µf(r)r2

�

�̇r

r
− �rṙ

r2

�

(3.57)

= −µf(r)r2
d

dt

�

�r

r

�

. (3.58)

If we now specify the central force to be the Kepler force, i.e., f(r) = −k/r2, we have

d

dt
(�p× �ℓ) =

µk

r2
r2

d

dt

�

�r

r

�

(3.59)

=
d

dt

�

µk�r

r

�

, (3.60)

which directly implies

d

dt

�

�p× �ℓ− µk�r

r

�

= 0. (3.61)

This is another conserved vector, known as the Laplace-Runge-Lenz vector, and is denoted

�A = �p× �ℓ− µk�r

r
. (3.62)

At pericenter, both �p and �ℓ are orthogonal to �r, which implies �p × �ℓ must point toward

the same direction as �r, i.e., toward pericenter. Since �A is conserved, it then always points

toward pericenter. The magnitude of �A is found by taking the dot product of �A with �r:

�A · �r = Ar cos(θ) = �r · (�p× �ℓ)− µkr (3.63)

= �ℓ · (�r × �p)− µkr (3.64)

= ℓ2 − µkr (3.65)

= µka(1− e2)− µkr (3.66)

= µk (r[1 + e cos(θ)]− r) (3.67)

= µkr[e cos(θ)], (3.68)
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and so we have

A = µke. (3.69)

Scaling �A by 1/(µk) leaves a conserved vector with magnitude equal to the eccentricity of

the binary, known as the eccentricity vector, �e. This will be of use in Chapter 4.

3.3 Orbital Parameters

The orbital path followed by the individual stars, or component masses, is specified by

Equation 3.47. This is the equation of an ellipse with one focus (the center of mass) at the

origin, eccentricity, e, and semimajor axis, a. If desired, Equation 3.47 can be modified by

substituting rp = a(1− e) to read

r(θ) =
rp(1 + e)

1 + e cos(θ)
, (3.70)

which is now more generally applicable to conic sections of any eccentricity. Values without

a numerical subscript, e.g. a and rp, will be used to denote quantities relating to the reduced

mass orbit, while numeric subscripts will be added when referring to the parameters for the

individual masses, e.g., a1 or rp,2. These parameters define the intrinsic (inherent to the

system itself) geometrical parameters of the orbit, i.e., the shape of the orbit within the

orbital plane. See Figure 3.4.

The extrinsic (observer dependent) geometrical parameters must specify the orientation

of the orbit in three-dimensional space. For orientation we adopt the standard Euler angles,

but label them in accordance with astronomical convention: inclination, ι, argument of

periapse, ω0, and the longitude of the ascending node, Ω0. These angles, as well as the true

anomaly, θ (angular position of the mass in its orbit), and are depicted in Figure 3.5.

3.4 Observation Geometry

To begin relating binary quantities to observations from Earth, we must first define

appropriate coordinate systems in which to work. This will be particularly important when

attempting to express GWs in an observer coordinate system.
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Figure 3.4: Several standard orbital parameters, including the component masses m1 and
m2, the semimajor axis of the second, smaller mass, a2, and the corresponding periapse
distance, rp,2.

Figure 3.5: The orbital angles of a binary system including true anomaly, θ, inclination,
ι, longitude of the ascending node, Ω0, and argument of periapse, ω0.
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Define a fundamental coordinate system called the celestial frame, described by the

three orthonormal unit vectors î, ĵ, and k̂. Let k̂ point toward the north celestial pole,

along the axis of Earth’s rotation, and î point to the so-called first point in Aries, which is

one of two points where the ecliptic plane intersects the celestial equator.

On this coordinate frame we define angular coordinates α and δ, the right ascension

and declination, respectively. In comparison with standard spherical-polar coordinates, α

maps one-to-one to the azimuthal angle and δ is the complement of the polar angle, i.e.,

δ = θpol − π/2. We can write the unit vectors for these angular coordinates as

α̂ = − sin(α)̂i + cos(α)ĵ, and (3.71)

δ̂ = − sin(δ)[cos(α)̂i+ sin(α)ĵ] + cos(δ)k̂. (3.72)

If a source of interest is located by a vector, �R, define the sky plane as the plane located a

distance, R, from the origin with normal vector, �R, as shown in Figure 3.6. This plane is

tangent to the celestial sphere at radius, R, and can be described as the α-δ plane in the

{α̂, δ̂, R̂} coordinate system.

Next, suppose we observe a binary system and wish to relate the binary orientation

Figure 3.6: Illustration of the sky plane (purple): the coordinate plane on the sky, tangent
to the Celestial Sphere (grey), as observed from a location on Earth. Here R is the radial
vector pointing along the line of sight to a source, α̂ is a unit vector pointing in the direction
of increasing right ascension, and δ̂ is a unit vector pointing in the direction of increasing
declination.
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to the sky plane. Define a vector, û, which points along the line of nodes, defined by the

longitude of the ascending node angle, Ω0, measured CCW from the α̂ axis. Additionally,

define a unit normal vector, n̂, parallel to the binary angular momentum vector, �ℓ, and a

third vector, v̂, which completes a right-handed coordinate system {û, v̂, n̂} (see Figure 3.7).

Note when the argument of periapse ω0 = 0, the vector u points along the binary axis.

Writing these three vectors in the celestial frame in terms of observational angles de-

scribing the binary orientation gives

û = cos(Ω0)α̂+ sin(Ω0)δ̂, (3.73)

v̂ = cos(ι)[− sin(Ω0)α̂+ cos(Ω0)δ̂] + sin(ι)R̂, and (3.74)

n̂ = sin(ι)[sin(Ω0)α̂− cos(Ω0)δ̂] + cos(ι)R̂. (3.75)

To finally connect this back with the orbital shape equation, define polar coordinates (r,ϑ)

in the u-v orbital plane such that a point auû+ av v̂ can be expressed by

au = r cos(ϑ), and (3.76)

av = r sin(ϑ). (3.77)

In this coordinate system, the orbital shape equation becomes r(θ) = r(ϑ− ω0), where θ is

the angular distance of a binary component from periapse, and ϑ is the angular coordinate

in the u-v plane measured from the vector û, and ω0 is the argument of periapse. We now

have the ability to move from the binary coordinate frame (r, θ) (i.e., the orbital plane with

coordinates aligned with the binary axis), into the Earth-based observer frame {̂i, ĵ, k̂} and

back again through the series of invertible coordinate transformations (r, θ) ↔ (û, v̂, n̂) ↔

(α̂, δ̂, R̂) ↔ (̂i, ĵ, k̂).

3.5 Gravitational Wave Emissions

In this Section, the GW emissions from a binary system are calculated. The calculation

is performed in the linearized GW theory, and factors of G and c are left explicit. The
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(a) Observer view. (b) Edge on view.

Figure 3.7: Observing a binary system in the sky-plane coordinates. The unit vector
û points along the line of nodes, n̂ is parallel to the angular momentum vector of the
binary, and v̂ completes an orthonormal triad for coordinates in the orbital plane such that
û× v̂ = n̂.

derivation in this Section closely parallels that in Wahlquist (1987), with some notational

changes, namely vectors will be written with an over-arrow, e.g., �x, and dyadic notation

will be used for tensors, written in bold face X as opposed to using index notation Xαβ

and with outer products denoted by �x⊗ �x = �x�x. Since all tensors involved in this section

will be formed by the tensor product (outer product) of two vectors, e.g., X = �x�x, tensor

manipulation will be essentially identical to matrix manipulation, and therefore I may use

the terms tensor and matrix interchangeably here (however, explicit matrix/vector transpose

notation will be dropped for less notational clutter).

Begin with the quadrupole formula for GW emission,

hTT (t) =
2G

Rc4
Q̈

TT
�

t− R

c

�

, (3.78)

where �R is a vector pointing from the observer to the center of mass, the TT superscript

signifies the transverse-traceless gauge. Keeping with the previous definition of the mass
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quadrupole moment for a system of mass, M (see Section 2.5), we start with

Q ≡
�

M

�x�xdm, (3.79)

which for a binary system simplifies to

Q = m1�x1�x1 +m2�x2�x2 = M �R �R+ µ�r�r. (3.80)

Making use of the transformations in Equations 3.4 and 3.5 once again, we can rewrite this

as

Q = M �R �R+ µ�r�r. (3.81)

Equation 3.78 has been transformed from Equation 2.74 by transforming each side into the

transverse-traceless coordinates. We, therefore, need to transform the quadrupole tensor,

Q, to the transverse-traceless coordinate system before it can be used in Equation 3.78.

Gravitational waves emitted from a source very far away from us will have propagation di-

rection −R̂, so we can form the transverse part of Q by projecting onto the space orthogonal

to R̂, i.e., with the projection operator

P⊥ = I−PR = I− R̂(R̂ · R̂)−1R̂ = I− R̂R̂, (3.82)

where I is the identity matrix, so the transverse part QT is found to be

QT = P⊥QP⊥ = P⊥(M �R �R+ µ�r�r)P⊥ = µ�rT�rT . (3.83)

Here we have used the projection P⊥
�R = 0, and defined the transverse part of �r as �rT =

P⊥�r. We could now create a traceless version by subtracting the trace of QT , i.e.,

X = QT − Tr(QT )

�

I

Tr(I)

�

; (3.84)



53

however, this would destroy the transverse nature we have established forQT . Alternatively,

note that we can detrace a matrix X with respect to any other matrix A by the following:

XA = XA− Tr(XA)

�

A

Tr(A)

�

. (3.85)

In order to maintain the transverse nature of QT , we can detrace it with respect to the

projection, P⊥,

QTT = QTP⊥ − Tr(QTP⊥)

�

P⊥

Tr(P⊥)

�

, (3.86)

but note since QT = P⊥QP⊥ and P⊥P⊥ = P⊥, we have QTP⊥ = QT . Additionally, note

Tr(P⊥) = Tr(I− R̂R̂) = Tr(I)− Tr(R̂R̂) = 3− Tr(R̂ · R̂) = 3− 1 = 2. (3.87)

Using these two facts, we can write QTT as

QTT = QT − 1

2
Tr(QT )P⊥ = µ

�

�r T�r T − 1

2
[�r T · �r T ]P⊥

�

. (3.88)

Now move from the binary coordinate system into the u-v coordinates defined in Section

3.4,

�r = r cos(ϑ)û+ r sin(ϑ)v̂, (3.89)

from which we can find (with ϑ = θ + ω0)

�r T = P⊥(r cos(θ + ω0)û+ r sin(θ + ω0)v̂) (3.90)

= (I− R̂R̂)(r cos(θ + ω0)û+ r sin(θ + ω0)v̂) (3.91)

= r(cos(θ + ω0)û+ r sin(θ + ω0)[v̂ − (v̂ · R̂)R̂]) (3.92)

= r(cos(θ + ω0)û+ r sin(θ + ω0)[v̂ − sin(ι)R̂]). (3.93)
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If we now express �r T in terms of α̂ and δ̂ using Equations 3.73 and 3.74, we have

�r T = r[cos(Ω0) cos(θ + ω0)− sin(Ω0) cos(ι) sin(θ + ω0)]α̂ (3.94)

+ r[sin(Ω0) cos(θ + ω0) + cos(Ω0) cos(ι) sin(θ + ω0)]δ̂. (3.95)

Write �r T = rαα̂+ rδ δ̂, then compute �r T�r T ,

�r T�r T = (rαα̂+ rδ δ̂)(rαα̂+ rδ δ̂) = r2αα̂α̂+ rαrδ(α̂δ̂ + α̂δ̂) + r2δ δ̂δ̂. (3.96)

Writing I − R̂R̂ = α̂α̂ + δ̂δ̂ + R̂R̂ − R̂R̂ = α̂α̂ + δ̂δ̂, we can now express QTT in the sky

frame as

QTT = µ

�

�r T�r T − 1

2
[�r T · �r T ]P⊥

�

(3.97)

= µ

�

r2αα̂α̂+ rαrδ(α̂δ̂ + δ̂α̂) + r2δ δ̂δ̂ −
1

2
[r2α + r2δ ][α̂α̂+ δ̂δ̂]

�

(3.98)

= µ

�

1

2
(r2α − r2δ )(α̂α̂− δ̂δ̂) + rαrδ(α̂δ̂ + δ̂α̂)

�

(3.99)

= Q+e+ +Q×e×, (3.100)

where the following definitions have been made:

Q+ =
µ

2
(r2α − r2δ ) , Q× = µrαrδ, (3.101)

and

e+ = α̂α̂− δ̂δ̂ , e× = α̂δ̂ + δ̂α̂. (3.102)

Some simple trigonometric substitutions allow us to write

Q+ =
µr2

2

�

cos(2Ω0)[cos
2(θ + ω0)− cos2(ι) sin2(θ + ω0)] (3.103)

− sin(2Ω0) cos(ι) sin[2(θ + ω0)]) ,
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and

Q× =
µr2

2

�

sin(2Ω0)[cos
2(θ + ω0)− cos2(ι) sin2(θ + ω0)] (3.104)

+ cos(2Ω0) cos(ι) sin[2(θ + ω0)]) .

We are almost at the point of evaluating the derivatives of QTT , which we must do with

respect to θ since we have no explicit time dependence, i.e.,

Q̈
TT

= θ̇
d

dθ

�

θ̇
dQTT

dθ

�

. (3.105)

Before that, however, we must find θ̇. We can do so by the making use of several relations

from Section 3.1.1 (equations 3.30 and 3.46):

µr2θ̇ = ℓ (3.106)

⇒ θ̇2 =
ℓ2

µ2r4
(3.107)

⇒ θ̇2 =
µka(1− e2)

µ2r4
(3.108)

⇒ θ̇2 =
GMa(1 − e2)
�

a(1− e2)

1 + e cos(θ)

�4 (3.109)

⇒ θ̇ =

�

GM

a3

�1/2

(1− e2)−3/2(1 + e cos(θ))2. (3.110)

Equation 3.105 can now be rewritten as

Q̈
TT

=

�

GM

a3

�

�

1− e2
�−3

(1 + e cos(θ))2
d

dθ

�

(1 + e cos(θ))2
dQTT

dθ

�

. (3.111)

Now collect all of the terms not involved with the θ derivatives, including µ in the Q

coefficients, the numerator in r(θ), and a factor of 2 to find

Q̈
TT

=

�

2GMµ

a

�

�

1− e2
�−1

�

(1 + e cos(θ))2
d

dθ

�

(1 + e cos(θ))2
dQ̃

TT

dθ

��

, (3.112)
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with Q̃ = Q/(2µa2(1− e2)2). Substituting this into Equation 3.78, we have

hTT = H

�

[1 + e cos(θ)]2
d

dθ

�

[1 + e cos(θ)]2
dQ̃

TT

dθ

��

, (3.113)

where

H =
4G2Mµ

c4a(1− e2)R
. (3.114)

The calculation of the θ derivatives in Equation 3.113 is long and tedious (and best done

with the aid of a computer algebra package), but once complete, the properly arranged final

result can be written as

h+(θ) = H
�

cos(2Ω0)[A0 + eA1 + e2A2]− sin(2Ω0)[B0 + eB1 + e2B2]
�

, and (3.115)

h×(θ) = H
�

sin(2Ω0)[A0 + eA1 + e2A2] + cos(2Ω0)[B0 + eB1 + e2B2]
�

. (3.116)

While these expressions have the appearance of a truncated series in e, these are simply

the powers of e that emerge in the derivation. This form is convenient so circular orbits

(e = 0) collapse to simpler expressions. The Ai and Bi coefficients have the forms

A0 = −1

2
[1 + cos2(ι)] cos[2(θ + ω0)], (3.117)

A1 =
1

4
sin2(ι) cos(θ − θ′)− 1

8
[1 + cos2(ι)][5 cos(θ + 2ω0 + θ′) (3.118)

+ cos(3θ + 2ω0 − θ′)], and

A2 =
1

4
sin2(ι)− 1

4
[1 + cos2(ι)] cos(2[ω0 + θ′]), (3.119)

and

B0 = − cos(ι) cos[2(θ + ω0)], (3.120)

B1 = −1

4
cos(ι)[5 sin(θ + 2ω0 + θ′) + sin(3θ + 2ω0 − θ′)], and (3.121)

B2 = −1

2
cos(ι) sin[2(ω0 + θ′)]. (3.122)
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This completes the expressions for quadrupole GW radiation from an arbitrarily ori-

ented elliptical binary. This form of the binary GW Equations was originally published by

Wahlquist (1987).

In this chapter we have derived, from first principles, the dynamics of two gravitation-

ally interacting massive bodies. Special attention was paid to bound systems, which result

in elliptical orbits. An observer coordinate frame was defined and related to an arbitrarily

oriented binary system, and the gravitational wave emissions in this frame were computed.

We are now equipped to step into my research projects, which will occupy the subsequent

chapters.
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CHAPTER 4

BUSTING UP BINARIES: PARABOLIC ENCOUNTERS BETWEEN COMPACT

BINARIES AND A SUPERMASSIVE BLACK HOLE

Given the stellar density near the galactic center, close encounters between compact

object binaries and the supermassive black hole are a plausible occurrence. Tidal disruptions

resulting from these encounters have been proposed as possible sources of extreme-mass-

ratio inspirals (EMRIs) and hyper-velocity stars in the galaxy. For disrupted binaries, we

show the component of the compact object binary becoming bound to the supermassive

black hole have initial eccentricities ≈ 1−O(10−2), but circularize dramatically by the time

they enter the classical LISA band, consistent with previous studies. Surviving binaries also

merit attention as they will suffer perturbations to their internal orbital parameters. We

show the conditions under which compact object binaries are able to survive the tidal field of

supermassive black holes during a parabolic encounter, as well as the distribution of orbital

parameters post-encounter. The effect of the tidal field on binaries that remain unbound

from the supermassive black hole is to decircularize and shrink them, thus accelerating

merger due gravitational radiation emission and increasing the predicted merger rates by

approximately 0.25 mergers per year. This work is being prepared for publication in the

Astrophysical Journal.1

4.1 Introduction

Gravitational waves (GW) will provide new probes of dynamic astrophysical systems

in regimes where strong gravity plays a role. In galactic nuclei, stellar mass interactions

with supermassive black holes (SMBH) will be a good probe, not only of the properties of

the SMBH, but also of the stellar population itself. Our own galactic center (GC) is the

easiest to study and can provide insight into the types of encounters we can expect, and

the frequency of observable GW events.

Previous studies of encounters between stellar mass binaries and a galactic SMBH have

focused on the generation of hyper-velocity stars (HVS) and stellar collisions (Hills 1988;

1Coauthored by Eric Addison, Shane L. Larson, and Pablo Laguna.
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Gualandris et al. 2005; Antonini et al. 2010), and the eccentricity of EMRIs created by tidal

separation (Miller et al. 2005) (hereafter M05). More recently, these interactions have been

explored in the context of the GW emissions in the LIGO band from binaries driven to

merger by Kozai resonance (Antonini & Perets 2012; Antonini et al. 2014).

The strongest GW sources will involve compact, degenerate stellar remnants that can

survive close encounters with the central black hole, namely neutron stars and stellar mass

black holes. The fraction of field stars in binaries varies by stellar type, but for O- and

B-type stars, which are the stellar types massive enough to form neutron stars or black

holes, it is estimated that more than 75% of O-type and 70% of B-type stars have some

number of companions (Raghavan et al. 2010). Near the GC, the density of stars grows

very large compared to field conditions, with density estimates up to 108M⊙ pc−3 within

the inner 0.1pc (Alexander 2005). Given this information, it is reasonable to expect the

existence of compact object (CO) binaries in the GC, and, in fact, it has been observed by

way of X-ray transients that CO binaries exist near the GC, and are more abundant within

the inner 1 pc (Muno et al. 2005). It has been estimated that as many as ∼ 20, 000 stellar

mass BH binaries have segregated within the inner ≈ 1 pc of the Milky Way GC (O’Leary

et al. 2009).

With the existence of CO binaries near the GC, it is reasonable to expect some number

of them may interact directly with the SMBH. Many known main sequence stars exist in

bound orbits around the SMBH (Ghez et al. 2005, 2008, 2009), suggesting the same could

be true for COs and CO binaries. Such interactions have implications for gravitational

wave (GW) observation campaigns, for example ground-based observatories (e.g., LIGO)

searching for compact binary coalescences (CBC). Proposed space-based interferometers

(e.g., LISA) will be sensitive to EMRIs, which can be created by the tidal disruption of CO

binaries near the SMBH.

In this study we complement previous work by extending the results of M05 for the

formation of EMRIs by tidal disruption to arbitrary binary orientations, as well as clas-

sifying and examining surviving binary systems after the SMBH encounter with respect
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to the merger lifetime from GW emission, the so-called Peters’ lifetime (Peters 1964), and

estimating the impact on predicted CBC rates. We consider a significantly different section

of parameter space than the previous GW studies, focusing on CO binaries that are on

initially parabolic orbits with the SMBH with e = 1 and varying orbital angles and peri-

center distance, where Antonini & Perets (2012) focused on binaries bound to the SMBH

at a fixed orientation, and M05 explored hyperbolic encounters with coplanar binaries. The

exploration of a greater volume of the parameter space comes at the expense of integration

sophistication, though the time and distance scales involved in our simulation suggest rel-

ativistic effects will not play a significant role for the majority of the parameter range, and

Newtonian gravitational forces should suffice.

Resulting systems will be classified into one of four categories:

1. binary disrupted,

2. survived, bound to SMBH, T > P•,

3. survived, bound to SMBH, T < P•, or

4. survived, unbound from SMBH, T < T0,

where T is the resulting binary Peters’ lifetime post-encounter, P• is the period of the bound

binary around the SMBH, and T0 is the original unperturbed Peters’ lifetime of the binary.

It will be shown that the case of survived and unbound with T > T0 is not possible. We

are interested in how the probability of a binary falling into one of these categories could

alter the predicted CBC rate by perturbing the merger lifetime.

The remainder of this chapter is organized as follows. Section 4.2 outlines some an-

alytic expectations of the three-body encounter. In Section 4.3 we describe the numerical

integration and simulation setup, as well as the parameters that have been used. Section 4.4

presents the simulation results and provides discussion for both the disrupted and surviving

populations. Results are discussed in terms of binary disruption and EMRI formation, sur-

viving parameter distributions, and the effect on the Peters’ lifetime. An estimate of how

these outcomes may affect the estimated CBC rates is also presented.
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4.2 Initial Estimates

4.2.1 Tidal Disruption Radius

The tidal disruption radius for a binary, rt, is defined as the distance inside which a

binary will be separated by the tidal force of the SMBH, and has the general form

rt ≡
�

η
M•

Mb

�1/3

a0, (4.1)

where a0 is the initial semi-major axis of the binary, Mb is the total mass of the binary,

M• is the mass of the SMBH, and η can vary depending on the nature of the encounter.

For example, it is found that η ≈ 3 for a circular prograde orbits (M05), η ≈ 4 for weakly

hyperbolic prograde orbits, and about half that for retrograde orbits (Hamilton & Burns

1991, 1992).

The functional form in Equation 4.1 can be derived simply by balancing forces. Set

a binary with masses m1 and m2 in line with a SMBH of mass m3 such that the three

masses are collinear and the binary center of mass a distance R from the SMBH. Assume

disruption will occur when the tidal force on the binary due to the SMBH is equal to the

internal force between m1 and m2 and expand to first order in r/R, where r is the binary

separation. This leads to an expression for a circular equal mass binary of

rt ≈
�

4
m3

Mb

�1/3

a0. (4.2)

4.2.2 Energy Considerations

While the binary is bound, we can assume r/R ≪ 1, where r is the binary separation

distance and R is the distance from the binary center of mass to the SMBH. The total

energy of the three-body system can be written to first order in the small quantities r/R

and m/M• as

Esys =
1

2
m(v21 + v22)−Gm

�

M•

r1
+

M•

r2
+

m

r

�

+O

�

m

M•

�

,
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= Ecm + Eb +O

�

m

M•

�

+O
� r

R

�

, (4.3)

where ri and vi are the speeds and distances of the binary components relative to the SMBH,

and Ecm and Eb are the binding energies of the binary-SMBH orbit and the binary orbit

respectively.

The case of disruption removes energy from Ecm and donates it to Eb of an amount

δE ≥ |Eb|. After disruption, it is assumed the separation, r, grows to the same scale as r1

and r2 such that r/ri � 1, then we can write the system energy to first order in m/M• as

Esys = E1h + E2h +O

�

m

M•

�

, (4.4)

where Eih is the binding energy between binary component i and the SMBH. Equating this

expression to the original binary binding energy Esys,0 = Eb0, and recalling the parabolic

binary-SMBH orbit has Ecm = 0,

E1h + E2h ≈ Eb0 < 0. (4.5)

It is clear from the preceeding expression that the possible outcomes of a disrupted binary

include both E1h, E2h < 0 and Eih < 0 < Ejh, but exclude the possibility of 0 < E1h, E2h.

This implies the disrupted binary components can either form one bound and one unbound

orbit, or two bound orbits. Intuitively this makes sense as the increase in energy required

to disrupt the binary can only come from a corresponding decrease in the black hole orbital

energy, and maintaining the negative system energy requires at least one component stay

bound.

4.2.3 Multipole Expansion of Three-Body Tidal Force

The purpose of this study is to investigate the effect of the tidal field of the SMBH on

a compact binary system, and so the tidal force on the binary is a central consideration.

The tidal acceleration term, �̈r, can be expressed as a power series in the small parameter,

(r/R), where �r is the separation vector between two components of a binary system and �R
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is the distance from the SMBH to the binary. The expansion is done assuming there is a

third body acting on the binary as shown in Figure 4.1.

With the separation vector defined as �r = �x2 − �x1, we can write

�̈r = �̈x2 − �̈x1, (4.6)

which we can write out in terms of the total acceleration on each mass:

�̈r =

�

−GM•

x32
�x2 −

Gm1

|�x2 − �x1|
3 (�x2 − �x1)

�

−
�

−GM•

x31
�x1 −

Gm2

|�x2 − �x2|
3 (�x1 − �x2)

�

. (4.7)

Substituting in for �x1 and �x2 from Equations 3.4 and 3.5, we have

�̈r = −GM

r3
�r −GM•







(�R+ m1

M �r)
�

�

�

�R+ m1

M �r
�

�

�

3 − (�R− m2

M �r)
�

�

�

�R− m2

M �r
�

�

�

3






, (4.8)

where M is the total binary mass M = m1+m2. With the useful identity ∇r(1/r) = −�r/r3

(where the∇r means taking derivatives with respect to the components of �r), we can rewrite

Figure 4.1: Coordinates and relevant vectors for the three-body tidal force problem. Here
the black hole is much more massive than the masses m1 and m2, so these coordinates keep
it fixed at the origin.
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this as

�̈r = −GM

r3
�r +GM•∇r





M
m1

�

�

�

�R+ m1

M �r
�

�

�

+
M
m2

�

�

�

�R− m2

M �r
�

�

�



 . (4.9)

Pull out a factor of R from the gradient,

�̈r = −GM

r3
�r +

GM•

R
∇r





M
m1

�

�

�
R̂+ m1

M
�r
R

�

�

�

+
M
m2

�

�

�
R̂− m2

M
�r
R

�

�

�



 , (4.10)

and write out the fractions in the gradient as
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where ϕ is the angle between �r and �R, and R̂ = �R/R. Now, take note of the Legendre

polynomial identity, which can be shown by using a binomial expansion and collecting

powers of Z

(1− 2XZ + Z2)−1/2 =

∞
�

n=0

ZnPn(X), (4.12)

which is valid for |X| ≤ 1 and |Z| ≤ 1, and Pn(X) is the nth Legendre polynomial. We

identify Z = −(m1/M)(r/R) and X = cos(ϕ), and so

1
�
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�
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M
�r
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�

�

�
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Now insert this back into Equation 4.10 to find
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where cos(ϕ) has been written as (�r · �R)/(rR). For an equal mass binary this reduces to

�̈r = −GM
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4
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��

. (4.16)

The tidal force acting on the binary from the SMBH in our simulations is then given by

�Ftid = �F•2 − �F•1 = m�̈r +
GM

r3
�r =

GmM•

R
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��

. (4.17)

4.2.4 Perturbed Eccentricity

An analytic result for the perturbed eccentricity after an encounter between a binary

system and a third body has been derived by Heggie & Rasio (1996) (hereafter HR96).

The result is derived by integrating the time derivative of the eccentricity vector of the

binary in the presence of a tidal acceleration due to the third body. The tidal acceleration

is expressed as a multipole expansion in powers of (r/R)n (see Section 4.2.3), and the final

results are presented for the n = 2 and n = 3 terms. In the case of an initially circular equal

mass binary on a parabolic orbit around a third body, the leading order term has n = 3

and is given by

δe = 3
√
2π

m3M
1/4
b
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tot

�
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2
sin2

ι

2
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�1/2

, (4.18)

where Mb = m1 + m2, Mtot = Mb + m3, rp is the pericenter distance for the orbit of the

binary around m3, ι is the relative inclination of the two orbits, and φ depends on the

initial phase of the binary and the longitude of the ascending node. This expression will be

compared against simulation results in Section 4.4.4. Note this term vanishes as inclination

ι → π, so at high inclinations, the higher order terms in the multipole expansion will

dominate the change in eccentricity and this expression loses validity. Additionally, as r/R

grows, higher order terms may become nonnegligible as well. Given these considerations,

we expect to see stronger agreement between simulation results and Equation 4.18 for the
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low inclination and large pericenter regime.

4.3 Numerical Experiments

4.3.1 Numerical Runs

Fully integrated, three-body interaction simulations are used to study the effects of

encounters between a CO binary and a galactic SMBH (black hole orbit). The outcomes of

these simulations provide insight into the range of final states the binary can attain after

such an encounter. Integration of the Newtonian Equations of motion is performed using

Burlish-Stoer extrapolation with a leap-frog integrator as described in Mikkola & Tanikawa

(1999), and the accuracy is increased by the use of the CHAIN concept a la Mikkola &

Aarseth (1993). The coordinate system used for the numerical integration are barycentric

coordinates with the three-body center of mass at the origin. The z-axis is normal to the

plane of the black hole orbit, and the x-axis points toward the SMBH at pericenter. Figure

4.2 displays this coordinate system for clarity, but note the parabolic paths are not to scale.

Figure 4.3 shows a flowchart describing the general execution flow of the code.

The center of mass of the binary is set in a parabolic orbit around the SMBH, with

initial separation set to 200rp, where rp is the pericenter distance of the black hole orbit.

Figure 4.2: Coordinate system used for numerical integration.
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Figure 4.3: Binary-SMBH encounter simulation flowchart. The simulation begins by
drawing random parameters and setting up initial positions and velocities of the three
masses. The equations of motion (EOM) are then integrated using an adaptive step size
leap-frog integrator. At every time step, energy and angular momentum conservation are
checked, followed by checks for binary disruption and pericenter passage. If all tests fail,
then the EOM are integrated again and the simulation continues. If the binary is disrupted
or pericenter has been passed, then the three-body system is checked for stable parameters.
If the orbital parameters have stabilized (remained constant over the last several time steps),
then the simulation is halted and the results are recorded. If not, the integration continues.

All masses are scaled by the binary component mass m1 and the integration is carried out

with fundamental constants set to unity, i.e., G = c = 1. The integration runs until either

the binary is tidally disrupted by the SMBH and an amount of time equal to the initial time

passes, or the center of mass of the binary has reached a true anomaly of Θ = −Θ0, where

Θ0 < 0 is the initial true anomaly of the black hole orbit. Illustrations of the disruption

and survival scenarios are shown in Figure 4.4.

Conservation of energy and angular momentum is checked at every time step, and

simulations are halted and rejected if either quantity deviates from the initial value by one

part in 106.
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(a) Illustration of a binary surviving the
SMBH encounter.

(b) Illustration of a binary being disrupted as
a result of the SMBH encounter.

Figure 4.4: Two possible simulation outcomes.

4.3.2 System Parameters

The study is carried out by randomly sampling initial parameters to seed each indi-

vidual simulation and collecting statistics on the output data points. Input parameters

include the binary orbital angles inclination, ι, and longitude of the ascending node, Ω0,

both relative to the simulation coordinates, the binary initial phase, θ0, and the penetration

factor, β, which is related to the tidal disruption radius and the pericenter distance of the

black hole orbit by rp = β−1rt.

We adopt a generic definition of rt from Equation 4.1 with η = 1 and use this to

probe the range of possible disruption radii for varying orientation. Fixed parameters

include the component masses m1 = m2 = 10M⊙, as well as the SMBH mass M• =

106M⊙, the initial binary semimajor axis a0 = 10R⊙ ∼ 0.05AU , and the initial binary

eccentricity e0 = 0. This leaves us with a four-dimensional parameter space, from which

β−1, Ω0, and cos ι are sampled uniformly as β−1 ∼ U [0.5, 5] (where ∼ U [a, b] denotes

a uniformly distributed random variable taking values between a and b) corresponding

approximately to rp ∼ U [0.6AU, 8.5AU ], Ω0 ∼ U [0, 2π], and cos ι ∼ U [−1, 1], and for each

triple (β,Ω0, ι), θ0 takes 200 evenly spaced values between 0 and 2π. In addition to the raw
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parameter distributions, it is also the case that the binary orientation parameters (Ω0, ι, θ0)

are uniformly distributed with respect to β−1.

Approximately 13,000,000 individual simulations have been run with initial parameters

drawn from (β,Ω0, ι, θ0) space according to the distributions described above.

4.3.3 Relativistic Effects

Basing our study on the Newtonian Equations of motion allows us to quickly explore

a large volume of parameter space, but necessarily sacrifices accuracy due to the omission

of any relativistic effects. The closest approach between the binary and the SMBH, as well

as the largest velocities, occurs at the pericenter passage in the black hole orbit. Given our

range of pericenter values, the velocity fraction v2/c2 = (2GM•)/(c
2rp) falls between

0.002 ≤ v2

c2
≤ 0.039. (4.19)

For the smallest values of β−1 this implies first order relativistic corrections on the order of

γrel =
1

�

1− v2

c2

≈ 1− 1

2

v2

c2
≈ 1− 0.02. (4.20)

That is, to first order the first post-Newtonian correction is only ≈ 2%.

The Schwarzchild radius of the 106M⊙ SMBH is rs ≈ 0.02 AU, so the closest approach

in our simulations is about rp ≈ 30rs = 5rISCO. Also neglected is the evolution of the

binary semimajor axis due to the emission of GW energy, which we find to be small; how-

ever, the slow evolution due to periapsis passage GW emission could be included using the

technique of Gair et al. (2006) to slowly evolve the system to the point where these effects

are important. The rate at which the semimajor axis of an equal mass circular binary

decreases, in the quadrupole approximation, is given by (Peters 1964) as

�

da

dt

�

= −128

5

Gm3

c5a3
. (4.21)

The typical evolutionary timescale of the individual simulations is on the order of several
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years, with the maximum simulation time at several hundred years. For a binary with a0 =

10R⊙ and m1 = m2 = 10M⊙, the rate of semimajor axis decay is �da/dt� ≈ −2.3 m yr−1,

or about −3.3×10−8% yr−1. Even over a few hundred years, the total change to semimajor

axis is less than 1 km or ≈ 1.5× 10−5%. Precession of the binary periapse is not accounted

for, but for a circular binary would only affect the initial phase, θ0.

For all the relativistic effects, the only one that causes some concern is the velocity

fraction for low values of β−1. For completeness’ sake we include results for all parameters,

but for β−1 < 1 it should be understood that there is potential for v > 0.1c, and relativistic

effects may become nonnegligible.

4.3.4 Computing Instantaneous Orbital Parameters

In our simulation, the tidal force on the binary components due to the SMBH will

cause the binary orbital parameters to change in time. These parameters can include the

intrinsic quantities eccentricity, e, semimajor axis, a, internal energy, E, and orbital angular

momentum, �ℓ, as well as extrinsic quantities, the three orbital angles inclination, ι, longitude

of the ascending node, Ω0, and the argument of periapse, ω0 (see Figure 4.5a). The rate of

advancement of the true anomaly, θ, can change as well, making analytic calculations for θ

unreliable.

In Newtonian simulations of gravitationally interacting point masses, the quantities

that are explicitly evolved in time are generally the positions and velocities (or momenta)

of the components. We can use the separation vector �r = �x2 − �x1 and the component

velocities �v1 and �v2 to compute any of the instantaneous orbital parameters for a pair

of masses, m1 and m2 (see orbit diagram in Figure 4.5b). This can include determining

whether or not a given pair of masses is gravitationally bound.

This section will develop algorithms for computing the initial orbital position and

momentum, and the instantaneous energy, angular momentum, eccentricity and semimajor

axis, as well as the orbital angles of a binary system. These are used in simulation to set

up and monitor the time varying orbital parameters between various pairs of masses, which

may or may not form bound systems.
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(a) Standard orbital angles.
(b) Orbital path of reduced mass µ and
barycentric coordinate system.

Figure 4.5: Orbital parameters for an elliptical orbit.

Initial Orbit Position and Momentum

When computing initial conditions for a simulation, position and momentum must be

specified for each component of a binary system. Here, we derive expressions for each of

these quantities as a function of the true anomaly, θ, so an initial value of θ will fix the

position and velocity values within the orbital plane.

The position of the reduced mass in an orbit is given by the ellipse shape equation

r(θ) =
a(1− e2)

1 + e cos(θ)
, (4.22)

where 0 ≤ θ < 2π is the true anomaly of the orbit, and a is the semi-major axis of the

reduced mass orbit.

In the Cartesian coordinate system with origin at the binary center of mass and x-axis

pointing toward periapse, we can write

x = r cos(θ) =
a(1− e2)

1 + e cos(θ)
cos(θ), and (4.23)

y = r sin(θ) =
a(1− e2)

1 + e cos(θ)
sin(θ). (4.24)
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Then to find the velocity as a function of anomaly, take derivatives (shown for x) as

ẋ =
d

dt
(r cos(θ)) =

dr

dθ

dθ

dt
cos(θ)− r sin(θ)

dθ

dt
(4.25)

= θ̇

�

dr

dθ
cos(θ)− r sin(θ)

�

, (4.26)

where θ̇ ≡ dθ

dt
is the instantaneous orbital frequency.

Next, recall the orbital angular momentum ℓ = µr2θ̇. Since ℓ is known and constant

for a stable orbit, we can replace θ̇ by

θ̇ =
ℓ

µr2
, (4.27)

and with this, we have momentum values px = µẋ and py = µẏ,

px =
ℓ

r2

�

dr

dθ
cos(θ)− r sin(θ)

�

, and (4.28)

py =
ℓ

r2

�

dr

dθ
cos(θ) + r cos(θ)

�

. (4.29)

Calculate
dr

dθ
as

dr

dθ
=

d

dθ

�

a(1− e2)

1 + e cos(θ)

�

=
ae(1− e2) sin(θ)

(1 + e cos(θ))2
= r

e sin(θ)

1 + e cos(θ)
, (4.30)

and substitute this into equations 4.28 and 4.29 to find

px(θ) =
ℓ

r2

�

r
e sin(θ) cos(θ)

1 + e cos(θ)
− r sin(θ)

�

= − ℓ

r

�

sin(θ)

1 + e cos(θ)

�

, and (4.31)

py(θ) =
ℓ

r2

�

r
e sin2(θ)

1 + e cos(θ)
+ r cos(θ)

�

=
ℓ

r

�

e+ cos(θ)

1 + e cos(θ)

�

. (4.32)

Finally, substitute equation 4.22 back in for r to find

px =
−ℓ sin(θ)

a(1− e2)
, and

py =
ℓ[e+ cos(θ)]

a(1− e2)
.

(4.33)
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Any orbit is defined by two constants of the motion; (ℓ, E) or (a, e). Here, we have

mixed the two sets of parameters for convenience, though only two are actually needed. The

expressions in equation 4.33 could be put completely in terms of either pair of parameters

using the transformations

e =

�

1 +
2Eℓ2

µk2
, a = − k

2E
, (4.34)

ℓ =
�

µka(1− e2) , E = − k

2a
. (4.35)

Conservation of momentum in the orbit implies the component masses have momenta

p1,x = px and p1,y = py, (4.36)

and

p2,x = −px and p2,y = −py, (4.37)

where p1 and p2 refer to the momenta of the component masses, m1 and m2.

From this, we can identify the anomaly-dependent velocities of each component as:

v1,x(θ) =
px(θ)

m1
, v1,y(θ) =

py(θ)

m1
(4.38)

v2,x(θ) = −px(θ)

m1
, v1,y(θ) = −py(θ)

m2
. (4.39)

Energy and Angular Momentum

The instantaneous internal energy and angular momentum between a pair of masses

are used frequently in this simulation to compute the orbital eccentricity and semimajor

axis at any point in time. These quantities can be computed for a pair of masses using the

relevant positions and velocities in the global coordinate system, which are the quantities

evolved by the simulation.
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For any pair of masses, the internal binding energy can be computed as the total energy

in the rest frame of the center of mass

Einternal =
1

2
m1(�v1 − �vcm)2 +

1

2
m2(�v2 − �vcm)2 −G

m1m2

r
, (4.40)

where the center of mass velocity, �vcm = (m1�v1 + m2�v2)/M , and M is the total mass

M = m1 +m2. Note that

�v1 − �vcm = �v1 −
�

m1�v1 +m2�v2
M

�

(4.41)

=
(m1 +m2)�v1 −m1�v1 −m2�v2

M
(4.42)

=
m2�v1 −m2�v2

M
(4.43)

=
�m2

M

�

(�v1 − �v2) (4.44)

= −
�m2

M

�

�v, (4.45)

where the relative velocity �v = �v2 −�v1. Similarly, we have �v2 −�vcm =
�m1

M

�

�v. Using these

expressions in the internal energy Equation gives

Einternal =
1

2
m1

�m2

M

�2
v2 +

1

2
m2

�m1

M

�2
v2 −G

m1m2

r
(4.46)

=
1

2
µ
�m1

M

�

v2 +
1

2
µ
�m1

M

�

v2 −G
m1m2

r
(4.47)

=
1

2
µv2 −G

µM

r
, (4.48)

where µ is the reduced mass µ = m1m2/M . This is essentially just the one-body reduction;

however, here we see the energy equivalence between the binary rest frame and the one-body

formulation. Computationally this allows us to calculate the instantaneous internal energy

of a pair of masses simply by moving into the rest frame of one of the masses, finding the

relative position, �r, and velocity, �v, of the second mass and computing the internal energy

as in Equation 4.48. So given the simulation positions and velocities �x1, �x2, �v1, �v2, the
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internal energy can be computed by

Einternal =
1

2

�

m1m2

m1 +m2

�

(�v2 − �v1)
2 −G

m1m2

|�x2 − �x1|
. (4.49)

In a similar manner, the internal angular momentum, �ℓinternal, is computed from

ℓinternal = m1(�r1 − �R)× (�v1 − �vcm) +m2(�r2 − �R)× (�v2 − �vcm), (4.50)

which can be expressed as

�ℓinternal = µ�r × �v =
m1m2

(m1 +m2)
(�x2 − �x1)× (�v2 − �v1). (4.51)

Eccentricity and Semimajor Axis

With the internal energy and angular momentum for a pair of masses computed as

described above, the eccentricity and semimajor axis between a pair of masses can be

calculated directly by the equations in Chapter 3,

e =

�

1 +
2Eℓ2

µk2
, a = − k

2E
, (4.52)

where k = Gm1m2, and ℓ = |�ℓ|. These expressions allow the simulation to track and output

the instantaneous eccentricity and semimajor axis as a function of simulation time, which is

shown in Figure 4.6 as used in our SMBH encounter simulation for both a disruption orbit

and a surviving orbit, where the strong change in eccentricity can be seen after the close

interaction with the SMBH at about t̃ ≈ 0.7 (normalized time t̃ = t/Tmax) in both panels.

For the disrupted binary, the binary eccentricity quickly rises from zero and increases above

eb = 1, indicating disruption, while at the same time the eccentricity of the individual

components with the SMBH lock into steady values just above and below e = 1. The

surviving binary shows a significant increase in eccentricity after the interaction, but stays

below eb = 1 and is therefore not disrupted.
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Figure 4.6: Two examples of instantaneous eccentricity tracking with the binary eccen-
tricity in blue, eccentricity between the component masses and the SMBH in red and green,
and the center of mass eccentricity around the SMBH in cyan. The top panel displays eccen-
tricities for a disrupted binary, and the bottom for a surviving binary. Time is normalized
by the maximum simulation time, t̃ = t/Tmax.

True Anomaly

It is possible to compute the instantaneous true anomaly (orbital phase) between any

two masses. This is used in simulation to track the true anomaly of the SMBH orbit. This

method relies on the eccentricity vector, which is simply a scaled version of the Laplace-

Runge-Lenz vector

�e =
�A

µk
=

�v × �h

k̃
− �r

|�r|
, (4.53)

where �h is the specific angular momentum �h = �ℓ/µ = �r × �v, k = GMµ and k̃ = GM .

Note that the term eccentricity vector makes sense, as the magnitude is |�e| = | �A|/(µk) =

µke/(µk) = e. The eccentricity vector is conserved and always points towards pericenter,

the angle between �e and �r must be the true anomaly θ measured from pericenter. Note in

this context where external forces and torques are present, the term conserved should be
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taken to mean if all external forces and torques were instantly removed, then this vector

will maintain constant magnitude and direction in time. The true anomaly is then given by

θ =















cos−1

�

�e · �r

|�e| · |�r|

�

�r · �v > 0

− cos−1

�

�e · �r

|�e| · |�r|

�

�r · �v < 0
. (4.54)

The �r · �v conditions in Equation 4.54 can be understood by considering the dot product of

�r · �p with the components from Equations 4.22 and 4.33, which is

�r · �v ∝ �r · �p =
ℓ

1 + e cos(θ)
(− sin(θ) cos(θ) + sin(θ)[e+ cos(θ)]) (4.55)

= eℓ

�

sin(θ)

1 + e cos(θ)

�

(4.56)

For an elliptical orbit with e < 1, this expression is always positive for 0 < θ < π and

negative for −π < θ < 0. For parabolic and hyperbolic orbits with e ≥ 1, the orbit is

defined out to the true anomaly value, θ∞, where r → ∞, given by 1+ e cos(θ∞) = 0. With

this definition, we still have the dot product, �r · �v, positive for 0 < θ < θ∞ and negative for

−θ∞ < θ < 0.

Coordinate Dependent Parameters

The following parameters, which are the orientation angles of the binary, require an

external (arbitrary) coordinate system to be properly defined. In an observational setting,

this coordinate system could be the sky-plane coordinates described in Section 3.4. For the

purposes of this simulation we use the simulation coordinates, i.e., with the z-axis pointing

parallel to the initial angular momentum vector of the SMBH orbit, and the x-axis pointing

toward the SMBH at periapse (see Figure 4.2).

Inclination

To compute the inclination of the orbital plane with respect to the simulation coordi-

nate system, note the two vectors, �r and �v1 (or �v2), are never parallel, and therefore define
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the orbital plane. The unit normal vector to the plane of the orbit can then be written as

n̂ =
�r × �v1
|�r × �v1|

, (4.57)

and the inclination angle, ι, can be found by

cos(ι) = n̂ · ẑ. (4.58)

Longitude of the Ascending Node

The longitude of the ascending node angle can be computed in a straightforward manner

by writing the normal vector to the orbital plane as

n̂ =













nx

ny

nz













=













sin(ι) sin(Ω0)

− sin(ι) cos(Ω0)

cos(ι)













. (4.59)

This form follows easily from the sky-plane Equations 3.75, and is also stated explicitly in

Larson (2001). By taking the ratio of the first two components of n̂, we have

tan(Ω0) =
nx

−ny
, (4.60)

and so

Ω0 = tan−1(−ny

nx
), (4.61)

where the components nx and ny are found from Equation 4.57.

Argument of Periapse

Now that the true anomaly, θ, inclination, ι, and longitude of ascending node, Ω0, can

be found, so too can the argument of periapse, ω0. This is done simply by rotating the
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Table 3

Binary End State Classification

Nc

Class ID End State (millions)

0 Binary disrupted by SMBH 2.1
1 Survived, bound to SMBH with T < P• 1.7
2 Survived, bound to SMBH with T > P• 2.0
3 Survived, unbound from SMBH 7.1

binary plane into the xy-plane, so the separation vector, �r, becomes:

�r ′ = Mx(−ι)Mz(−Ω0)�r =













r′x

r′y

0













, (4.62)

where Mx and Mz represent CCW rotation operators about the x and z axes respectively

by the angles given as arguments. Now the angle between the pericenter position and the

vector �r ′ is the true anomaly θ, so if the angle between the x-axis and �r ′ is designated β,

then the argument of periapse is simply

ω0 = β − θ. (4.63)

4.4 Results and Discussion

4.4.1 Classification and Distributions

The encounter between the binary and SMBH can result in one of four possible end

states, which we label class 0 through class 3. Table 3 defines these classes and indicates

the number of simulations which resulted in each class.

Each of these classes will be discussed in detail in the following sections. We use the

technique of kernel density estimation (KDE) to visualize the probability distribution of each

class by assuming independence in the input parameters. KDE is a nonparametric method

for estimating probability densities in which a kernel function, K(x), is convolved with a

collection of Dirac Delta functions, which asymptotically converges to the true distribution
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Figure 4.7: KDE results for single parameter probability distributions for each class.
The lines-class correspondence is: black-dot/dash-class 0, red-dash-class 1, blue-dot-class 2,
green-solid-class 3.

faster than histograms (Scott 1979),

fKDE(x) =
1

N

N
�

i=0

K(x) ∗ δ(x − xi) =
1

N

N
�

i=0

K(x− xi), (4.64)

where N is the number of data points in the sample. We use a Gaussian kernel, K(x) =

(2πh2)−1/2 exp
�

x2/(2h2)
�

with a variance of h2 = [parameter range]/100, chosen to produce

distributions that retain structure while not being over-smoothed. The resulting normalized

distributions are shown in Figure 4.7.

Based on these distributions, we can draw several conclusions about the nature of

the binary end state relative to the input parameters, as well as the predictive power of



81

the individual parameters. It is clear the disrupted (class 0) state occurs primarily with

small values of β−1. This should be obvious: closer passes to the SMBH mean stronger

tidal forces and higher likelihood of disruption. Additionally, prograde binaries (defined

here as those with inclination ι < π/2) are more likely to disrupt than retrograde binaries

(those with ι > π/2). In general, retrograde binaries are more likely to survive and become

bound to the SMBH, implying the energy gained by the binary orbit from the black hole

orbit is not generally enough to disrupt the binary. It is apparent from the distributions

that the parameters β and ι have the largest effect on the binary end state, which will be

explored further in subsequent sections. It can be seen here as well, that the longitude of

the ascending node, Ω0, has a weaker but notable effect on the end state, namely a binary

is more likely to survive and remain unbound from the SMBH for values of Ω0 near zero

and π. In addition, the initial phase of the binary θ0 provides no predictive power, as the

distributions on this parameter are essentially identical for each class.

4.4.2 Binary Survival and the Tidal Disruption Radius

When a binary passes too close to the SMBH, the tidal force on the binary may be

sufficient to unbind or disrupt the binary, resulting in two separate components that are

no longer gravitationally bound. These components may become individually bound to the

SMBH in highly eccentric orbits, resulting in the classical EMRI scenario, or be ejected at

high velocity. Figure 4.8 shows the ratio of surviving and disrupted binaries to the total

number of binaries in the corresponding parameter bin, shown for 100 evenly spaced bins in

each parameter dimension. The top left panel shows the ratio of surviving binaries vs. β−1,

showing that β−1 has a strong effect on the probability of survival. The top right panel

shows that inclination plays an important role as well, with prograde binaries in general

more likely to be disrupted than retrograde binaries. The bottom panels show that Ω0 has

a very weak influence on the survival ratio, though the doubly periodic effect is consistent

with the prediction from HR96, and θ0 has no notable effect.

As a gross statistic, an incoming binary drawn from this parameter space has a 83.8%

chance of survival. It can also be seen that the probability of disruption goes to zero for
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Figure 4.8: The ratio of surviving binaries to the total number of binaries in the corre-
sponding parameter bin.

β−1 � 2.1, which is described below.

The tidal disruption radius depends on the orientation of the binary, the nature of the

binary-SMBH orbit, and the binary semimajor axis, and is generally taken to be propor-

tional to rt as defined in Equation 4.1. Our results suggest for a parabolic encounter the

maximum possible tidal disruption radius is rt,max ≈ 2.08rt corresponding to a coplanar

prograde binary, and the average over all orientations is rt,ave ≈ 0.95rt.

This result can be compared to the HR96 analytic estimate by determining where

Equation 4.18 predicts a change in eccentricity of δe = 1. This is shown in Figure 4.9 on top

of a 2D histogram of tidal disruptions vs. β−1 and ι. The parameter φ in Equation 4.18 was

set to zero as this produces maximum δe. It can be seen that the analytic approximation

bounds the region containing disruptions well for β−1 � 1, but does not do so well for

β−1 < 1 due to higher-order terms in r/R becoming important.
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Figure 4.9: 2D histogram of disruptions vs. β−1 and ι. Analytic estimate for the disruption
radius as a function of β−1 and ι shown in white.

4.4.3 The Disrupted Population

The components of the disrupted binaries will either form new elliptical orbits around

the SMBH, or remain unbound and continue moving away from the SMBH until either

interactions with field stars bring them back to a bound orbit or they leave the influence of

the SMBH. Disrupted systems are of interest both in the gravitational wave community as

a formation pathway for EMRIs, and in the astrophysics community as a possible source of

HVS. In this section we explore the EMRI formation scenario at length, and use previous

HVS results as a check for our simulation accuracy.

Energy Considerations in Disruption

Once the binary has been disrupted, the energy of the system can be approximated by

Equation 4.4. Figure 4.10 shows a histogram of the energies of the disrupted components,

E1h and E2h, while Figure 4.11 shows E2h/|Eb0| vs. E1h/|Eb0|, which fits the line y =

−(x+1) very well with a coefficient of determination value of R2 ≈ 1−10−9. Our simulation

results show the case of two bound orbits after disruption is exceedingly rare, with nearly

all disruptions resulting in the one bound and one unbound orbit.



84

−300 −200 −100 0 100 200 300
0

0.5

1

1.5

2

2.5
x 10

5

Energy/|E
b0

|

0.9 0.95 1 1.05 1.1
0

5

10

15
x 10

4

Eccentricity

Figure 4.10: Histograms showing binding energy (top) and eccentricity (bottom) distri-
butions of each disrupted component in new orbit around the SMBH.

Due to the parabolic motion of the center of mass of the binary around the SMBH, the

binary component masses before disruption are each on a roughly parabolic orbit around the

SMBH as well, with pericenter distance comparable to rp±a0. The eccentricity histograms

in the lower pane of Figure 4.10 indicate that the resulting orbits after disruption typically

have |1 − ei| < 0.05, which for the bound orbits implies high eccentricity. Why is there

a preference for highly eccentric orbits, as opposed to more circular ones? If we assume

the pericenter distance of each orbit does not change dramatically after disruption, that is

rp,i = rp + Δr, where rp and rp,i are the pericenter distances before and after disruption

,respectively, and Δr/rp ≪ 1, then the resulting bound orbit has energy

Eih

Eb0
=

�

M•

m

�2/3

(1− ei)β +O

�

Δr

rp

�

. (4.65)

This energy takes a maximum value for a circular orbit with ei = 0, for which Eih,max/Eb0 ∼
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Figure 4.11: E2h vs. E1h for disrupted binaries. The upper right pane shows a zoomed
view about the origin, displaying the small region of possible double-bound outcomes.

O(103). For the values of β and resulting eccentricities we see from simulations, this means

the typical orbital energies are only on the order Eih/Eih,max = (1−ei) � 5% of the possible

energies for a bound orbit with pericenter rp,i ≈ rp, and so the preference for highly eccentric

orbits stems from the typical scale of energy exchange between the binary components and

the SMBH.

We can roughly estimate the amount of energy that will be imparted to the binary

components during the close interaction by treating the binary with fixed orbital parameters

a and e. Additionally we assume the binary phase evolves linearly with the phase of the

black hole orbit, which allows for a simplified expression compared to the true nonlinear

phase evolution, and the node passage time τN ≈ 0.5Pb, which corresponds to β−1 ≈ 1.

These assumptions allow for a semi-analytical relation, which provides some insight to the

simulation results, at least at the level of order of magnitudes. We expand the tidal force

on the binary due to the SMBH using the multipole expansion for an equal mass binary
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(HR96),

�Ftid =
GM•m

R

∞
�

n=0

1

4n−1
∇r

�

� r

R

�2n
P2n

�

�r · �R

rR

��

, (4.66)

and include terms to n = 2, with Pn(x) the nth Legendre polynomial. We then integrate to

find the difference in work done on each of the binary components during the node passage,

assuming the components each follow approximately parabolic paths and the binary disrupts

at pericenter, i.e.,

ΔW =

�

�Ftid · t̂ ds =

� 0

−π/2

�

�Ftid · t̂(θ)
�

�

ds

dθ

�

dθ, (4.67)

where t̂ is the tangent vector to the parabolic path and ds/dθ is the differential arc-length

traveled per differential change in orbital anomaly θ. This leads to an approximate expres-

sion of the form

ΔW

|Eb0|
∼ 2.3

�

M•

m

�1/3

β2 + 0.65

�

M•

m

�−1/3

β4. (4.68)

This expression predicts a difference in work done on the binary components in a prograde

black hole orbit of order ∼ 100|Eb0|. If we further assume the amount of work done on the

components is equal and opposite and this energy is donated entirely to the newly formed

orbit with the SMBH, we find that the individual orbital energies are predicted to fall in

the range of 10 ≤ |Eih/Eb0| ≤ 450 for 0.35 ≤ β−1 ≤ 2, which is compatible with the range

of energies seen in Figures 4.11 and is displayed explicitly in Figure 4.12. Inserting these

results back into Equation 4.65, we find eccentricities decreasing with β and in the range

0.93 < ẽ < 0.99, compatible with the observed simulation eccentricities.

The coefficients in Equation 4.68 are for coplanar prograde binaries. For retrograde

binaries this estimate predicts coefficients about four times smaller, confirming that retro-

grade binaries are generally less prone to disruption.

Ejected Components and High Velocity Stars

Hypervelocity stars are stars with large velocities, on the order of hundreds or thousands

of km s−1, which may exceed the escape velocity of our galaxy. These stars were predicted
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Figure 4.12: Normalized energy |Eih/Eb0| vs. β−1. The predictions from Equation 4.68
for prograde binaries shown in cyan, and for retrograde binaries in magenta. The prediction
values lie well within the range of possible energy outcomes.

by Hills (1988) as the result of binary disruption in the GC where the ejected component

can gain substantial energy, and discovered observationally nearly two decades later (Brown

et al. 2005; Edelmann et al. 2005).

The generation of HVS from the tidal disruption of binary systems by a SMBH has

been discussed for some time (see references in introduction). Here we show agreement

between our simulations and previous results and once again confirm binary disruption as

a plausible mechanism for the formation of HVS.

We can use the internal energy of the orbit between an ejected component and the

SMBH to find the ejection velocity, i.e.,

Eih =
1

2
mv2∞, (4.69)

where v∞ is the velocity of the ejected component at ri = ∞, and then examine the

distribution of ejection velocities resulting from tidal disruptions in our simulations. Figure

4.13 plots the complete range of ejection velocities, vej, converted using Equation 4.69

and the binned average of these velocities with 100 evenly spaced β bins between 0.35 ≤
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Figure 4.13: Hypervelocity star results. Top panel: plot of ejection velocity for all ejected
components in gray, average over 100 β bins as red stars, model prediction in black. Bottom
panel: distribution of vej for all ejected components.

β−1 ≤ 2.1. Not only do we predict ejection velocities on the correct order of magnitude,

vej ∼ O
�

103km/s
�

, the β-bin average velocities match well to the analytic prediction based

on previous numerical studies (Hills 1988; Yu & Tremaine 2003; Antonini et al. 2010), which

found

vej ≈ 1770
� a0
0.1AU

�−1/2
�

Mb

2M⊙

�1/3� M•

3.5 × 106M⊙

�1/6

fR(D) km/s, (4.70)

where fR(D) is a function of the dimensionless closest approach parameter, also known as

the Hills’ parameter:

D =

�

rp
a0

��

2M•

106MB

�−1/3

= (5× 105)1/3β−1. (4.71)
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A 5th order polynomial expression for fR(D) has been fit by Bromley et al. (2006) and

found to be

fR(D) = 0.774 + (0.0204 + (−6.23 × 10−4 + (7.62 × 10−6+

(−4.24× 10−8 + 8.62× 10−11D)D)D)D)D. (4.72)

The predicted ejection velocity from Equation 4.70 is shown in the top panel of Figure

4.13 as a solid black line. Our averaged results agree with this model with a coefficient of

determination value of R2 = 0.9033, though it should be noted that the range of possible

velocities can vary significantly from this average, with the largest values roughly double the

analytic prediction and nearly 59% of ejections in our simulations exceeding the predicted

value.

EMRI Formation

The traditional formation channel for EMRIs is the capture of single stars by the central

SMBH by the emission of GW radiation after a close encounter. This occurs when a star

passes within the capture radius, which is given by Amaro-Seoane et al. (2007) as

rcapt = 5rs

�

m

10M⊙

�2/7� M•

106M⊙

�−2/7� v

100 km s−1

�−4/7

. (4.73)

This has typical values on the order rcapt ∼ 5rs. Comparing this to the binary tidal

disruption radius, rtid, gives rtid/rcapt ≈ 17. Since binary disruption will always leave

a component bound to the SMBH (see Section 4.2.2), it is clear CO binaries can form

potential EMRIs with much more distant encounters via tidal disruption than singles via

GW capture.

After a disruption, the remaining bound orbit(s) is (are) highly eccentric with aver-

age eccentricity �eEMRI� ≈ 0.97. The relationship between the EMRI eccentricity and

semimajor axis (or pericenter distance) determines the merger lifetime of the orbit. Fig-

ure 4.14 displays the relative frequency of EMRI parameter combinations (aEMRI , eEMRI)

and (rp,EMRI , eEMRI) as intensity maps, as well as contours of constant β−1 and constant
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Figure 4.14: 2D histogram of EMRI eccentricity eEMRI vs. pericenter distance rp,EMRI

on left, and vs. semimajor axis aEMRI on right. White contours show lines of constant
Peters’ lifetime with values TEMRI = 10α years, where α ∈ {5.0, 5.5, 6.0, ..., 8.5}, increasing
from left to right in both plots. Red lines in the left plot show lines of constant β−1 binned
in eccentricity and averaged over rp,EMRI , and associated standard deviations, while the
left plot shows the individual points associated with constant β−1. In both plots the values
are β−1 ∈ {0.35, 0.5, 0.75, 1.0, ..., 2.0}, and increase from left to right.

merger lifetime. The pericenter distances are tightly correlated with the input parameter

β−1, and hence rp for the original parabolic orbit with typical values rp,EMRI � rp, which

can be seen by the nearly vertical lines of constant β in Figure 4.14.

The EMRIs formed by single capture need to penetrate so deeply into the SMBH

potential well that despite circularization from GW emissions, the EMRI can still have

significant eccentricity in the LISA band e ∼ 0.5 − 0.9. It was shown in M05 that while

EMRIs formed by tidal disruption of binaries are not expected to contribute significantly

to the overall rate of EMRI detections, they will likely have a unique signature in that

they will have circularized dramatically by the time they enter the LISA band. This work

confirms and extends those results to disruptions of binaries with arbitrary orientations.

Eccentricity in the LISA Band

The EMRIs created from disrupted binaries will gradually circularize and shrink as

energy and angular momentum are radiated away in gravitational waves. Given the ini-
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tial semimajor axis aE,0 and eccentricity eE,0 of a newly formed EMRI, we compute the

eccentricity at which the EMRI orbit will have fundamental frequency f by solving the

equation

e(f) = argmin
e

|a(e, eE,0, aE,0)− aEMRI(f)|, (4.74)

where aEMRI(f) is the semimajor axis of the EMRI when the orbital frequency is f =

1/Porb, given by Kepler’s third law, and a(e, eE,0, aE,0) is the semimajor axis as a function

of eccentricity due to the emission of gravitational radiation (Peters 1964),

a(e, e0, a0) =
c0(e0, a0)e

12/19

(1− e2)

�

1 +
121

304
e2
�870/2299

, (4.75)

with c0(e0, a0) determined by the condition that a(e0, e0, a0) = a0.

The EMRI eccentricity at frequencies in the LISA band were calculated and averaged,

with the result shown in Figure 4.15. This figure shows that in the sensitive LISA band,

from about 0.1 mHz � fGW � 100 mHz the EMRIs can have an average eccentricity as

high as eEMRI � 0.1. At the most sensitive frequencies, however, at fGW � 10 mHz, these

EMRIs will have typical eccentricities e < 0.01, in agreement with M05.

The semimajor axis of these particular EMRIs at f = 5 mHz is a ≈ 1.7rs, which is

well within the radius of the innermost stable circular orbit, rISCO = 6rs for a nonrotating

SMBH, and approaching r̃ISCO = rs for a maximally rotating SMBH. In fact, the orbital

frequency at which these EMRIs reach rISCO is at fISCO ≈ 0.77 mHz (in the Keplerian

approximation), so we should not generally expect these EMRIs to survive to the most

sensitive LISA range. Given these factors, a more conservative estimate of the eccentricity

of EMRIs formed by binary tidal separation in the LISA band would be eEMRI � 0.05,

several times larger than previously thought. While these EMRIs will still have significantly

reduced eccentricity in the LISA band compared to their single capture counterparts, it may

not reach quite as low as that predicted by M05 due to moving from slow orbital shrinkage

to rapid plunge.
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Figure 4.15: EMRI eccentricity at fundamental frequency, f . Eccentricity for individual
EMRIs shown in gray, average shown in black. Note that GW energy for nearly circular
binaries will be radiated primarily at a frequency fGW = 2f .

4.4.4 The Surviving Population

We now turn to the population of binaries that survive the encounter with the SMBH.

These binaries make up the majority of the data, given the range of β. The energy exchange

is simpler in this scenario: energy is either drained from the black hole orbit and donated

to the binary, or vice versa (this follows from Equation 4.3). For this reason, we can expect

two general cases of the binary softening and becoming bound to the SMBH, or tightening

and remaining unbound. In this section we explore the distributions of orbital parameters

of the surviving binaries, with the goal of determining the net change to merger lifetime

and whether this leads to detectable changes in the CBC rate observed by detectors like

LIGO.
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The Effect of Initial Phase

The phase of the binary at the beginning of the simulation represents the most random

and unpredictable physical parameter considered in this study, and by all rights should

be considered a nuisance parameter. It was previously shown that in general, the initial

phase alone provides no predictive power for determining the end state of a given binary.

For a particular choice of (β−1, ι,Ω0), however, the end state can be highly dependent

on θ0. Since our simulations step through θ0 in a nonrandom fashion, we can investigate

the outcome of a given binary with parameters (β−1, ι,Ω0) with respect to θ0. Figure 4.16

displays the perturbed eccentricity as a function of θ0 for a selection of binaries with different

values of (β−1, ι,Ω0), where it can be seen that the variability in the eccentricity due to θ0

tends to become smaller as β−1 increases and the binary orbit becomes more retrograde.
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Figure 4.16: Resulting eccentricity of surviving binaries as a function of θ0. Upper pane:
the circles have parameters (β−1, ι,Ω0) = (0.77, 123◦ , 46◦), the squares have (1.9, 101◦ , 312◦),
and the diamonds have (4.6, 49◦, 152◦). Points where the curve jumps above 1 indicate
disrupted binaries. Lower pane: The binary making a closer pass (circles) generally suffers
a reduced perturbation to eccentricity due to the nearly retrograde orbit. The circles have
parameters (β−1, ι,Ω0) = (0.57, 177◦ , 255◦), the squares have (1.7, 79◦, 308◦).
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Subsequent plots and statistics will be computed by marginalizing over θ0 and reducing to

a three dimensional parameter space.

Final Binary Eccentricity

Eccentricity of the surviving binaries is shown as a histogram in Figure 4.17 along with

the cumulative distribution function (CDF) of the eccentricity values. Note the majority

of the surviving binaries are relatively unperturbed in eccentricity, with the 65% quantile

lying at approximately e65% ≈ 0.109 and the 90% quantile at e90% ≈ 0.553.

We can compare the simulation results to the analytic estimate for δe from Equation

4.18 by first converting to an Equation in β,

δe = 3
√
2πg(ι)

�

β

2

�−3/4

exp

�

−2
√
2

3
β−3/2

�

+O

�

m

M•

�

, (4.76)

where g(ι) contains all of the angular terms from Equation 4.18, averaged over φ. The con-

tours of constant δe = 10α for α ∈ {−5.5,−5.0,−4.5, ..., 0} plotted on top of the eccentricity

intensity map for β−1 and ι with matching contours is shown in Figure 4.18. As expected,

we see better agreement between the prediction and simulation results for large β−1 and
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Figure 4.17: Histogram showing final eccentricity distribution with eccentricity CDF
shown in red and the 65% and 90% quantiles shown as blue lines.



95

β
−1

ι

 

 

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Figure 4.18: Resulting eccentricity log(e) for surviving binaries plotted as an intensity
map vs. β−1 and ι. Contours of constant δe = 10α for α ∈ {−5.5,−5.0,−4.5, ..., 0} are
shown for simulation data in white and for the analytic estimate from Equation 4.76 in
black. Note the contour for δe = 1 is not present for the simulation data. All simulation
values have been averaged over θ0.

small ι. The small overestimation of the prediction at small inclination is consistent with

what was found in HR96 for an equal mass binary.

Figure 4.20 plots the perturbed eccentricity values for surviving binaries as 2D intensity

maps against the pairs of the three parameters β−1, ι, and Ω0, averaged over θ0. Here some

of the effects of the individual parameters become clear. As β−1 increases, the perturbed

eccentricity decreases toward zero; however, even binaries at penetration factors as large as

β−1 = 3 can receive a nonnegligible amount of eccentricity, e ∼ 0.2, after the encounter.

Inclination plays a smaller, but important, role in determining the allowable range of final

eccentricities, with eccentricity decreasing as the binary orbit approaches retrograde with

respect to the SMBH orbit. The longitude of the ascending node, Ω0, plays no predictable

role in the perturbed eccentricity.
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Computing overall statistics for eccentricity of surviving binaries gives a mean of µe =

0.158 and standard deviation of σe = 0.239.

Final Binary Semimajor Axis

The semimajor axis of the surviving binaries is shown as a histogram in Figure 4.19.

This histogram is truncated on the x-axis for better resolution of the central peak, though

there are a small number of surviving binaries with substantially increased semimajor axes.

It is clear the semimajor axis is generally not perturbed to a strong degree, with the overall

mean being µa = 1.03. If the sample size is restricted to binaries with final semimajor axes

in the range 0.5 < a/a0 < 1.5, which accounts for > 97% of the data and removes the

outliers, then the mean is µ̃a = 0.988 and standard deviation is σ̃a = 0.084.

Figure 4.21 shows the final semimajor axes as 2D intensity maps over pairs of the input

parameters. It can be seen here that for β−1 < 2, the binary can suffer a large change to

the semimajor axis, while above this value, the change is small. Inclination has the general

effect of tightening the binary for ι < π/2, and loosening it for ι > π/2. There is some
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Figure 4.19: Histogram of the binary semimajor axis distribution after SMBH encounter.
The horizontal axis has been stretched so the few outliers did not dominate the plot scale,
and the vertical axis has been truncated to show detail with the central bin having a true
count of ∼ 6.7 × 106. It is clear the majority of encounters result in very small change in
semimajor axis.
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variation in the extent of semimajor axis perturbation as a function of Ω0, particularly when

the inclination is around ι ≈ π/2 or at low values of β−1, with minimum change to ab at

Ω0 ≈ {0,π}.

The binding energy of the binary is related to the semimajor as Eb ∝ −a−1
b , and so

an increase in ab results in an increase in Eb and vice versa. This allows us to use Figure

4.21 to identify regions where the energy increases or decreases. From the energy terms in

Equation 4.3, it is clear that an increase in binary energy, Eb, must be compensated by a

decrease in the black hole orbit energy, Ecm, resulting in capture of the binary. Therefore,

the points in Figure 4.21 where a/a0 > 1 correspond to binaries that become bound, while

a/a0 < 1 indicates binaries that remain unbound.

Final Peters’ Lifetime

The Peters’ lifetime of a binary system is a measure of how much time it will take for

two point masses in a binary orbit to spiral together and reach a separation of zero from the

emission of quadrupolar gravitational radiation. This is a standard estimate for the merger

lifetime of a physical binary system. The Peters’ lifetime for a given binary is computed

from the component masses, the eccentricity, and the semimajor axis. The initial binary

system used in these simulations has a lifetime of T0 ≈ 2.37 × 1016 s, or 7.5 × 108 years.

The resulting lifetimes for all surviving binaries are shown in Figure 4.22.

We can construct four separate categories with respect to the merger lifetime: binaries

bound to the SMBH with T < P•, bound with T > P•, unbound with T < T0, and unbound

with T > T0, where P• is the orbital period of the binary around the SMBH, and T0 is the

original unperturbed binary merger lifetime. The last situation is impossible: for the binary

to remain unbound from the SMBH, the binding energy, Eb, must decrease, which requires

the semimajor axis to decrease as well. This alone would cause the lifetime to decrease,

and coupled with increased binary eccentricity further decreases the binary lifetime. Since

the initial binary eccentricity is zero, an increase in T would require the semimajor axis to

increase, which is not possible in our first-order approximation. All of the unbound binaries

will therefore have accelerated merger times due to the encounter.
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BEMRIs

We refer to the population of binaries that become bound to the SMBH as binary

extreme mass ratio inspirals (BEMRIs). Because the BEMRI orbits are highly elliptical

with average eccentricity eBEMRI ≈ 1 − 10−5 and long periods, the binary systems have

the potential to merge due to GW emission before a single orbit is completed. Analyzing

the evolution of the BEMRI systems with T/P• > 1 (short-period BEMRIs) will require

careful consideration of GW radiation effects, as the binaries will circularize and shrink by

the time they reencounter the SMBH. Careful analysis of the BEMRI systems will be the

focus of a future study.

CBC Rate Enhancement

The acceleration of merger lifetimes may have an effect on the CBC rate, and therefore

affect the rate at which ground-based GW observatories such as LIGO detect such events.

We construct a simple formula to get a first estimate of this effect as

ECBC = [Γ ∗ fb ∗NG(Dh)] ∗ (ET ∗ fL), (4.77)

where ECBC is the enhancement to the current predicted CBC rate RCBC , i.e., R̂CBC =

RCBC + ECBC . The first three terms in the Equation are observational quantities taken

from the literature. Γ is the estimated encounter rate per SMBH per year, fb is the binary

fraction, and NG(Dh) is the number of Milky Way equivalent galaxies (MWEGs) observable

by a GW detector with horizon distance, Dh. The product of these factors is the rate of

binary encounters with a SMBH in the observable volume of a GW detector.

The next two factors come from our simulation results. The single binary enhancement

ET = (1 − T̃ /T0) is the percent difference between the old merger lifetime, T0, and the

mean new lifetime, T̃ , and fL is the fraction of binaries from our simulations that result

in guaranteed LIGO sources after the SMBH encounter. From our data we consider the

binaries which are either

1. survived, bound to SMBH, T < P•, or
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2. survived, unbound from SMBH,

as these binaries are guaranteed to merge before subsequent encounters (if any) with the

SMBH.

Encounter rates in galaxies with a 106M⊙ SMBH, estimates for the single CO capture

rate range from Γ ∼ 5× 10−9 yr−1 MWEG−1 to as high as Γ ∼ 10−6 yr−1 MWEG−1 (Hils

& Bender 1995; Sigurdsson & Rees 1997; Ivanov 2002; Hopman & Alexander 2005; Merritt

et al. 2011); we use the higher side of these estimates, Γ = 10−7 yr−1 MWEG−1, as the

pericenter distances in our simulations reach much larger values than the single star capture

radius. The binary fraction, fb, near the GC is not a well determined value, however, in

the absence of better knowledge, we take it to be roughly the same as the binary fraction of

field stars, fb = 0.5. The number of MWEGs observable by aLIGO with a BH-BH merger

horizon distance of Dh = 2187 Mpc is given by Abadie et al. (2010); Kalogera et al. (2001)

as

NG =
4

3
π

�

Dh

Mpc

�3 0.0116

(2.26)3
, (4.78)

which gives a value of NG ≈ 4.4 × 107 MWEGs.

From our simulation results, we find that binaries from the fL categories have a mean

Peters’ lifetime of T̃ ≈ 0.84T0 giving ET ≈ 0.16 and LIGO fraction fL ≈ 0.68.

With all of this, we compute an estimated enhancement to the CBC rate of ECBC ≈

0.25 yr−1. The predicted rate of expected BH-BH mergers has been estimated to lie between

0.4 MWEG−1 Myr−1 < ΓBH < 30 MWEG−1 Myr−1 for realistic to optimistic scenarios

(Kalogera et al. 2007; Abadie et al. 2010). This corresponds to an estimated merger rate

within the aLIGO volume of ∼ 20 yr−1 < ṄBH < 1300 yr−1, which our estimated rate

enhancement ECBC may change by as much as ≈ 1%. This enhancement may be difficult to

detect with small observation catalogs given the uncertainty in the estimated merger rates,

but could become noticeable over long observation times.
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4.5 Summary

In this chapter we have presented the results of ∼ 13, 000, 000 individual simulations of

parabolic encounters between compact circular BH-BH binaries and a galactic SMBH while

varying binary orientation and SMBH pericenter distance.

4.5.1 Disruption Results

Tidal disruption of the binary occurs with about 16% probability given our range of

parameters. Consistent with previous work in this area, this sort of disruption can create

HVS which can escape from the SMBH with high speed. We also explored disruption as

a formation mechanism for EMRIs, which are of interest to space-based GW detection

missions, and found the EMRIs formed in this way will generally have very low eccentricity

when they enter the LISA band. This work shows that considering the full range of possible

orientations gives a broader range of formation eccentricities than previous estimates have

predicted.

4.5.2 Survival Results

Surviving binaries can either become bound to the SMBH after the encounter or remain

unbound. Binaries that become bound to the SMBH are designated BEMRIs; those with

a small enough black hole orbital period such that they will not merge before completing

one orbit are the short-period BEMRIs, and understanding their full evolution requires

a more careful (i.e., Post-Newtonian) approach to the integration in order to account for

eccentricity and semimajor axis change due to GW loss during the long orbit. Both the

unbound binaries and the long-period BEMRIs, which merge before one SMBH orbit, are

factored into the calculation for the CBC rate enhancement, which is potentially important

to ground-based GW detectors. We find for the aLIGO volume an enhancement factor for

BH-BH mergers of ECBC ≈ 0.25 yr−1. Despite being a small percentage of the realistic

CBC rate predictions, this effect could become meaningful over long observing campaigns.
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CHAPTER 5

MEASURING ACCRETION IMPACT RADII WITH OPTICAL AND

GRAVITATIONAL WAVE OBSERVATIONS OF COMPACT BINARIES

One of the primary astrophysical sources for space-based gravitational wave observa-

tories will be ultra-compact binary star systems in the Milky Way. Of the millions of such

systems in the galaxy, several thousand will be individually resolvable to a spaceborne grav-

itational wave observatory. For a large number of these systems, multi-messenger observing

campaigns with both gravitational wave and electromagnetic telescopes will be possible.

The multi-messenger characterization of compact binaries provides a useful synergy of ob-

serving capabilities, which can be exploited to recover detailed information about the un-

derlying astrophysical processes in the binary. This chapter describes a novel method for

characterizing the accretion discs around the primary in mass transferring binaries using

simultaneous photon and gravitational wave observations. The results suggest that for a

large number of systems at a variety of inclinations, accretion disc radii can be measured to

a precision of better than 5%. This is comparable to measurements using electromagnetic

observations of eclipsing systems, but is important because it will work for a much wider

range of binary inclination angles, including noneclipsing systems. This work is currently

being prepared for publication in the Astrophysical Journal.1

5.1 Introduction

The interface between astrophysics and gravitational wave astronomy is an important,

emerging area of research as new methods of analyzing and correlating gravitational data

with traditional electromagnetic data are found. Of particular interest are ultra-compact

binary stars in the Milky Way galaxy. Population estimates based on observed local space

densities (Hils et al. 1990; Timpano et al. 2006), as well as population synthesis calculations

(Nelemans et al. 2001a,b; Belczynski et al. 2008) suggest that all told, the Milky Way may

be populated by as many as 107 ultra-compact binaries. This population will be dominated

1Coauthored by Eric Addison, Shane L. Larson, and Katelyn Breivik.
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by white dwarf systems, with fewer numbers of systems where at least one component is a

neutron star or stellar mass black hole.

The ultra-compact binaries are characterized by strongly bound components (often

mass transferring, or having evolved to their current state through significant periods of

mass transfer) and short orbital periods. Binaries with orbital periods of Porb ∼ 105 s to

Porb ∼ 1 s should be easily observable in the gravitational wave spectrum by any future

space-based observatory. The archetype of such detectors has been the Laser Interferometer

Space Antenna (LISA) (Bender et al. 1998); current design concepts include the European

eLISA-NGO (Amaro-Seoane et al. 2013), and the US SGO (Amaro-Seoane et al. 2013; Livas

et al. 2012; Stebbins et al. 2012) designs.

The sheer numbers of ultra-compact binary systems are expected to produce a confusion-

limited foreground of gravitational waves, which will blanket the gravitational wave spec-

trum below f ∼ 3 mHz. An example of the expected level of the confusion limit is shown

in Figure 5.1 (Bender & Hils 1997), plotted against the nominal sensitivity curves (Larson

2003) for missions with 5 Gm and 2 Gm armlengths. Strong sources of gravitational waves

will rise up above this confusion foreground and be observable by a space-based gravitational

wave observatory.

Figure 5.1: The average gravitational wave power spectral amplitude, hf , of the confusion
foreground due to ultra-compact galactic binaries, plotted against the standard sensitivity
curve (Larson 2003) for a 5 Gm (LISA) and 2 Gm (SGO) armlength observatory. The
assumed bandwidth is one year.
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An interesting subset of the ultra-compact binaries are cataclysmic variable stars (CVs),

comprised of a primary white dwarf star and a low-mass secondary that has filled its Roche

lobe and is transferring mass to the primary; several thousand CVs have been cataloged

in the Milky Way (Downes et al. 2001), but a gravitational wave detector in space will be

sensitive to as many as 20,000 strewn throughout the galaxy. The disparity in number here

is the dim electromagnetic brightness of ultra-compact binary systems, which restricts EM

detections to those that lie close to Earth, whereas a gravitational wave detector will detect

systems of this sort across the entire galaxy. Already, a growing number of ultra-compact

binaries and CVs have been observed and characterized with traditional electromagnetic

telescopes (Nelemans 2010), a large fraction of which are a class of helium cataclysmic vari-

ables (HeCV) similar to the star AM Canum Venaticorum (AM CVn). These systems have

primary white dwarfs with low-mass helium companions providing mass flow onto accretion

discs of unknown radii. They are expected to be strong gravitational wave radiators.

Realistic simulations on mock data (Babak et al. 2008, 2010) have shown tens of thou-

sands of these stars will be detectable by a space-based gravitational wave detector as

individually resolved sources (Crowder & Cornish 2007), and several hundred of those will

be simultaneously detectable by electromagnetic telescopes, even for mission designs more

modest in scope than LISA (Littenberg et al. 2013). A population of binaries that can be

observed with both electromagnetic telescopes and gravitational wave interferometers can

be used as probes of the fundamental astrophysics that governs these systems; this multi-

messenger mode of observations can reveal information that is difficult or even impossible

to extract otherwise.

Models of the accretion discs in HeCV systems have been studied in the past, and sug-

gest the disc radii will be around 75% of the primary Roche radius (Sulkanen et al. 1981a),

but this estimate is only certain to within about 10%. Measurements of accretion disc radii

in ultra-compact binary systems have been made using eclipsing systems, with results that

are accurate to about ∼ 10% (Sulkanen et al. 1981b). Future space interferometry mission

concepts (Peterson & Shao 1997; Beichman et al. 1999) may make direct optical imaging of
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close binary systems (like AM CVn) possible, allowing a direct measurement of the accre-

tion disc radius. This chapter demonstrates how correlating optical observations of a mass

transferring CV system with simultaneous gravitational wave observations by a space-based

interferometer can yield a measure of the primary accretion disc’s radius.

The chapter is organized as follows. Section 5.2 reviews the conceptual model for

the electromagnetic lightcurve and the gravitational wave emission from these systems, as

well as the multi-messenger comparison. Section 5.3 describes our model for overflow and

accretion and our model for the light curve from these systems. Our results and discussion

are presented in Sections 5.4 and 5.5.

5.2 Multi-Messenger Signals

5.2.1 The Restricted Three-Body Problem

The general gravitational three-body problem has no analytic solution, and only with

the advent of digital computers has any significant progress been made in understanding

few-body dynamics (Valtonen & Mikkola 1991). The intractability of the general problem

explains why so much work has been done exploring analytic approximations, as well as

developing specialized numerical techniques (Mikkola & Tanikawa 1999; Mikkola & Aarseth

1993). When considering the dynamics of a small test mass in the presence of two much

larger masses in a binary orbit, however, a case known as the Restricted Three-Body Prob-

lem, a solid analytic framework exists (Hellings 1994).

A test mass at rest in the corotating frame of a binary system (a coordinate frame with

origin at the center of mass, which rotates along with the binary) will experience both the

standard gravitational attraction and a centrifugal force. These forces can be written as

the gradient of a single potential function:

V (x, y) = −G
m1

r1
−G

m2

r2
− ω2x

2 + y2

2
, (5.1)

where m1 and m2 are the masses of the binary components, r1 and r2 are the distances

between the test particle and the binary components, and ω is the angular speed of binary
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rotation. This potential function and several equipotential contours are plotted in Figure

5.2.

The white contour in Figure 5.2 defines two separate teardrop-shaped regions, one

around each component of the binary. These regions are known as the Roche lobes, and they

define the regions where each binary component has the dominant influence. A test mass

within the Roche lobe of a binary component is gravitationally bound to that component,

while outside of the Roche lobe it may still be bound to the binary system, though not

necessarily associated with one component.

Compact binary systems can be tight enough such that the gravitational influence of

one component (the primary) causes the other (the secondary) to expand and puff up, filling

its Roche lobe. As the secondary star fills its Roche lobe, the stellar material that lies along

the boundary of the Roche lobe is free to move along without a change in energy. Material

that crosses into the Roche lobe of the primary star (passing through the L1 Lagrange

point) will become bound to the primary and form a stream of matter that flows inward

toward the star. The phenomenon of matter flowing from one tidally deformed star onto

its companion is known as accretion, the stream of matter is the accretion stream, and the

resulting disc that often forms is the accretion disc.

5.2.2 Electromagnetic Lightcurve

Roche lobe overflow through the Lagrange point in ultra-compact binaries will often

lead to the formation of an accretion disc around the primary star in mass transferring

systems (Lubow & Shu 1975; Paczynski 1977). A model (Warner 1995) that can explain

the optical properties of mass-transferring HeCVs has a massive (∼ 1M⊙) CO white dwarf

embedded in an accretion disc as a primary, and a less massive (∼ 0.02M⊙) helium dwarf

that has expanded to fill its Roche lobe. Material spills through the inner Lagrange point,

streaming onto the accretion disc and causing a bright hot spot (see Figure 5.3). This hot

spot radiates approximately radially outward from the disc; as the binary orbits, the spot

alternately turns towards and away from distant observers, modulating the lightcurve. This

model has been applied to AM CVn in extenso (Faulkner et al. 1972; Patterson et al. 1992,
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Figure 5.2: The potential and equipotential contours for the restricted three-body prob-
lem. Several equipotentials are shown in black. The contour shown in white is the special
equipotential line that crosses itself at a point known at the L1 Lagrange point; one of five
points in the corotating frame where the forces on a test mass balance. The teardrop-shaped
regions outlined by the white contour are known as the Roche lobes, and each component
of the binary has its own Roche lobe.

1993) and successfully describes a variety of signals present in the photometric lightcurve

of this star. Photometric observations have measured an orbital period of τo = 1028.7325±

0.0004 s (Harvey et al. 1998), confirming previous theoretical predictions (Patterson et al.

1993).

Electromagnetic observation methods exist for determining accretion disc radii from

the lightcurve in eclipsing binary systems (Ritter 1980; Sulkanen et al. 1981a). In eclipsing

systems, the accretion disc can be occulted by the secondary, and then can itself occult

the secondary a half period later. The contact points of the eclipse in the electromagnetic

lightcurve encode the exact position of the binary components, and provide solutions for all
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Figure 5.3: The secondary companion has expanded to fill its Roche lobe, which overflows,
forming an accretion disc around the white dwarf primary. The point of accretion impact
on the edge of the disc creates a electromagnetically bright hot spot.

the geometric parameters of the binary, including the size of the accretion disc. The error

expected from these eclipsing methods is ∼ 10%, estimated by Sulkanen et al. (1981b).

5.2.3 The Gravitational Wave Signal

The ultra-compact binaries are strong gravitational wave radiators in the millihertz

gravitational wave band. In this regime, with orbital periods on the order of several thou-

sand seconds to tens of seconds, the gravitational wave emission is well described by the

quadrupole formula (Peters & Mathews 1963; Peters 1964). The gravitational wave emission

extracts energy and angular momentum from the binary on long timescales, until ultimately

the components merge [for compact stellar remnants like neutron stars and black holes, the

merger occurs at high frequencies, in the regime covered by ground-based gravitational

wave detectors like LIGO (Harry & the LIGO Scientific Collaboration 2010)]. A partic-

ularly useful formulation of the emission from compact binaries utilizing the quadrupole

formula is due to (Wahlquist 1987), expressed in terms of standard binary observational

parameters (inclination, argument of periapsis, longitude of the ascending node, etc.). The

overall strength of the gravitational waves depends on a scaling factor H:

H =
4G2m1m2

c4a(1− e2)D
=

4G5/3

c4(1− e2)

M

D
(2πfoM)2/3 , (5.2)

where Kepler’s third law has been used to express a in terms of the orbital frequency fo,
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D is the luminosity distance, and M = (m1m2)
3/5/(m1 + m2)

1/5 is the chirp mass of

the system. It is expected that compact interacting binaries will have become circularized

through mass transfer and common envelope evolution; gravitational wave emission also

tends to circularize binaries. For circular binaries, e = 0, and the gravitational wave

frequency, f , is simply related to the orbital frequency by f = 2fo. Then the scaling

amplitude is simply

H =
4G5/3

c4
M

D
(πfM)2/3 . (5.3)

Gravitational wave detectors will detect two polarization states, the strength of which are

expressed in terms of the scaling amplitude, H. Using the quadrupole formula for an

arbitrarily oriented circular binary gives (see Section 3.5):

h+(θ) = H(cos(2φ)A0 − sin(2φ)B0), and

h×(θ) = H(sin(2φ)A0 + cos(2φ)B0) . (5.4)

Here, φ can be interpreted as either the binary longitude of the ascending node, or the

gravitational wave polarization angle, and

A0 = −1

2
[1 + cos2(ι)] cos 2(θ − θn), and (5.5)

B0 = − cos(ι) sin 2(θ − θn) (5.6)

are orientation-dependent functions (additional terms for e �= 0 may be found in section

3.5). The angle θ is the angular position in the orbit (the true anomaly), and θn is the

value of θ at the line of nodes, which we will set to zero for convenience. In a circular

binary, the orbital phase angle, θ(t), is related to the gravitational phase angle, ϕ(t), by

ϕ(t) = 2θ(t), where ϕ(t) is the phase function of the gravitational wave determined from the

orbital dynamics and evolution. The gravitational wave phase for most of the population
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of ultra-compact binaries is a simple function of the gravitational wave frequency

ϕ(t) = ft+
1

2
ḟ t2 + φ0 , (5.7)

where f and φ0 are the gravitational wave frequency and wave phase at t = 0, and ḟ is the

chirp. The gravitational wave contribution to the chirp, from the quadrupole approximation,

is

ḟ =
96

5
π8/3G

5/3

c5
f
11/3
0 M5/3 . (5.8)

Astrophysical effects [such as spin orbit interactions (Hut 1981), tidal interactions

(Willems et al. 2008) or mass transfer (Deloye & Taam 2006)] will alter the angular momen-

tum in the binary, and thus the orbital period and observed frequency, f0. The ultimate

effect is that there are many competing processes that drive the evolution of angular mo-

mentum in the system. It is clear the relative contributions of each physical process will

alter the interpretation of the orbital evolution derived from LISA’s gravitational wave

observations, a matter that will be considered in a future study.

A LISA-like detector will have a frequency resolution related to the mission duration

Tobs given by Δf = 1/Tobs; this is the frequency bin width for observations. As Tobs

lengthens, the bin width narrows. In general, a conservative estimate is that a detector

will detect a binary chirping if the frequency evolves by a bin or more during the observing

time, or ḟ � Δf/Tobs. For the known parameters of AM CVn, Equation 5.8 predicts an

evolution of ḟ = 4.79×10−19 Hz/s. For a Tobs = 1 year observation, the limiting chirp would

be ḟ = 1 bin/yr = 1.00 × 10−15 Hz/s; AM CVn’s chirp falls well below this conservative

threshold. For the purposes of this work, it is assumed the binaries are all monochromatic

(nonchirping).

A spaceborne interferometer will characterize both polarization amplitudes as part of

its deconstruction of the data stream; the ratio of h+ to h× is a direct measure of the

inclination angle, ι, of the binary, as shown in Figure 5.4. Knowledge of the inclination

angle provides further constraints on the model of the electromagnetic lightcurve, making
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Figure 5.4: Measuring the ratio of measured gravitational wave polarization amplitudes,
h×/h+, is a measure of the binary inclination angle, ι.

any derived radius of the accretion disc more secure.

5.2.4 Multi-Messenger Phase Comparison

The multi-messenger comparison being examined in this project is exploiting the peri-

odic structure in both the gravitational wave and the electromagnetic signals as a probe of

the geometry of the source. Consider a circularized ultra-compact binary with orbital fre-

quency, fo. The gravitational wave frequency, f , is twice the orbital frequency of the binary,

f = 2fo. In this case, the gravitational wave signals peak at the times when the distance be-

tween the components of the binary when projected onto the sky plane is minimized, which

occurs when one of the components is at its closest distance to the observer. This provides

a fundamental marker for the orientation of the binary components in time. By contrast,

the electromagnetic lightcurve shows variation (on orbital timescales) corresponding to the

underlying components of the binary changing position and orientation with respect to the

line of sight. The tool for determining the location of those structures, by measuring them

against the reference provided by the gravitational waves, is the measured phase difference

between the arriving gravitational waves and the electromagnetic lightcurve.

The phase difference between the lightcurve and the gravitational waves at any obser-

vation time t is

Φ(t) = φgw(t)− φem(t) = 2πt(fgw − fem) + α , (5.9)

where α is a phase offset between the gravitational waves as compared to the electromagnetic
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lightcurve at the time of measurement. The term α can encode a variety of physical and

geometric effects, but in principle can be divided into two basic flavors: effects that delay

propagation after the signals are emitted, and model-dependent delays that produce phase

offsets when the signals are originally generated in the system.

For propagation delays, there are two fundamental origins. First, gravitational waves

and photons could propagate at intrinsically different speeds. General relativity predicts

that gravitational waves should propagate at vgw = vem = c, but as a matter of observational

science this can be tested using multi-messenger observations like those described here

(Hazboun & Larson 2013). As the expectations are for general relativity’s predictions to be

correct, this chapter assumes gravitational waves will propagate at the speed of light: vgw =

c. A second fundamental delay during propagation could be experienced by the photons,

traveling through media with nonunit index of refraction: first through the interstellar

medium, and then through the Earth’s atmosphere. Given the typical distance to sources

that will be simultaneously detectable in both EM and GW spectra, the typical phase

delay from propagation delays is estimated to be αprop ∼ 5 × 10−11, about four orders

of magnitude less than the expected accuracy of the raw phase measurements themselves

(Larson & Hiscock 2000), and can be safely neglected for this analysis.

For geometric and model-dependent phase differences, one must consider the structure

of the waves being observed. The gravitational wave structure is simple. The ultra-compact

binaries being considered here are assumed to be circular and monochromatic, with the

waveforms being accurately described by the quadrupole radiation formula. In this context,

the gravitational waves are sinusoidal. Even for systems that harbor small amounts of

eccentricity, the signals will still be exceedingly clean (both cases are shown in Figure 5.5).

The peaks in the gravitational wave signals correspond to times when the binary components

reach their closest distance to the observer; thus, the gravitational waves provide an absolute

reference for locating the binary axis orientation as a function of time. There is an ambiguity

associated with the quadrupolar nature of the gravitational radiation pattern — it peaks

when one component is at its closest distance to the observer, but also 180◦ away in the orbit,
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Figure 5.5: Simulated gravitational wave signals for AM CVn using current, best known
parameters (Nelemans 2010). Top panel shows the signal for a purely circular, monochro-
matic system. Lower panel illustrates how signal changes if system had moderate eccentric-
ity (e = 0.1), but otherwise identical parameters.

when the positions of the binary components are reversed (this is most obviously indicated

in the gravitational wave frequency, which is twice the orbital frequency, ωg = 2ωorb).

By contrast, the electromagnetic lightcurve is rich in structure, with shapes and peaks

in the curve being the result of the changing aspect of the system’s internal components

during the course of an orbit. There are several primary contributions to the lightcurve

shape: emission from the white dwarf primary; emission from the Roche expanded secondary

giving ellipsoidal variations as the secondary shape rotates relative to the line of sight;

emission from the accretion disc; and lastly, emission from the hot spot where the overflow

stream impacts the accretion disc. Consequently one must choose where we want the

gravitational wave signal and the lightcurve signal to line up, and the offset from this

alignment point to the point of zero binary phase constitutes the geometrical part of α.

In this project we are interested in characterizing the accretion disc radius by measuring
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the phase of the hot spot compared to the phase of the gravitational wave signal. In this

context then, the value of the parameter α in Equation 5.9 is affected by the geometric angle

α⋆ illustrated in Figure 5.6, the angle between the binary axis and the impact point on the

accretion disc. For a given model of the overflow stream, the measured value of α⋆ will

correspond to a unique accretion disc radius. The ability to measure α⋆ will be limited by

the errors associated with each of the independent phase measurements, and by our ability

to recognize the contribution of the hot spot to the electromagnetic lightcurve.

5.3 A Simple Model for Ultra-Compact Mass Overflow Binaries

5.3.1 Model System: AM CVn

Many ultra-compact binaries have already been identified as candidate verification

binaries for space-based gravitational wave detectors (Nelemans 2010). For the purposes of

demonstration, the current known values for AM Canum Venaticorum (AM CVn) are used

as canonical parameters. AM CVn is the archetype for a large number of ultra-compact

binaries that are expected to be visible in gravitational waves. The physical parameters for

AM CVn are (see Table 4): m1 = 0.68M⊙, m2 = 0.125M⊙, and ω = 6.108 × 10−3 s−1 (a

circular binary with semimajor axis 0.21R⊙). The disc radius is estimated to beRd = 0.478a

(Solheim et al. 1998). The temperature parameters were estimated by minimizing the L2

error between the output of our lightcurve model (see Section 5.3.3) and the observed

lightcurve. A temperature T = 104K is adopted as an initial guess for the pole temperature

Figure 5.6: The overflow stream from the donor creates a hot spot at the impact point on
the accretion disc. The value of the angle α⋆ depends on the radius of the accretion disc.
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Table 4

AM CVn Simulation Parameters

Parameter Notation Value Reference

Mass 1 m1 0.68M⊙ 1
Mass 2 m2 0.125M⊙ 1
Orbital Period Porb 1028.73 s 2
Inclination ι 43◦ 1
Luminosity Distance d 606 pc 1
Disc Radius Rdisc 0.48a 3

Char. Disc Temp. Tdisc 90000 K Fit
Pole Temp. Tpole 15065 K Fit, 4
WD Temp. TWD 19473 K Fit
Max HS Temp. THS 131000 K Fit
HS Cooling Parameter ζ 2.9828 Fit

Notes. Parameters below the horizontal line are fitted using our lightcurve model.
References. (1) Roelofs et al. 2006; (2) Harvey et al. 1998;
(3) Solheim et al. 1998; (4) Roelofs et al. 2006.

of the secondary (Roelofs et al. 2006).

5.3.2 Overflow Simulations

Equations of Motion

In order to demonstrate this method for measuring the accretion disc radius, a simple

model of the accretion overflow was created using the restricted three-body approximation

(Flannery 1975). In the corotating frame of the binary, the accelerations on a fluid particle

in the x and y directions may be written as

ẍ = −Gm1

r31

�

x− aq

1 + q

�

− Gm2

r32

�

x+
a

1 + q

�

+ ω2x+ 2ωẏ − ξẋ, and (5.10)

ÿ = −Gm1

r31
y − Gm2

r32
y + ω2y − 2ωẋ− ξẏ . (5.11)

Here ω = 2πforb is the orbital angular velocity of the stellar components, q = m2/m1 is the

mass ratio, and ξ is a parameter that characterizes the viscous drag on the fluid element.

In simulation, the equation is nondimensionalized by introducing scaling factors M
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(total mass) for mass, a (binary separation) for length, ω−1 for time, and GM/a for poten-

tial. The dimensionless equations then read

x̃′′ = − µ

r̃31
(x̃− ãQ)− (1− µ)

r̃32

�

x̃+
ã

q
Q

�

+ x̃+ 2ỹ′ − ξ̃x̃′, and

ỹ′′ = − µ

r̃31
ỹ − (1− µ)

r̃32
ỹ + ỹ − 2x̃′ − ξ̃ỹ′ , (5.12)

where x̃ and ỹ are dimensionless coordinates, ξ̃ is the dimensionless viscosity coefficient,

µ is the mass fraction µ = m1/M , Q = q/(1 + q), and prime denotes differentiation with

respect to the dimensionless time variable.

These equations are simultaneously numerically integrated to give the position and ve-

locity of particles in the overflowing accretion stream. The geometric information regarding

the position of the stream is an essential player in the determination of the accretion disc

radius, and the stream particle velocity at disc impact is used in the energetic calculations

that give the model brightness for the hot spot.

From this point on, tildes will be dropped and quantities discussed in the context of

the overflow simulation will be the dimensionless variables.

Stream Coherence

Early numerical simulations (Flannery 1975) of matter overflow in cataclysmic variables

suggested the stream maintains coherence as it falls toward impact. Coherence in the over-

flow stream through impact with the primary accretion disc is a necessity to understanding

the variable lightcurve created by cataclysmic variable stars such as AM CVn. To evalu-

ate the stream coherence in this model, initial velocity data for Equation 5.12 were drawn

from the Maxwell-Boltzmann Speed Distribution, which describes the speed distribution of

particles in a simple gas:

f(υ) =

�

2
πυ

2 exp(−υ2

2η2
)

η3
, (5.13)
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where η is determined by the thermal coefficient

η =

�

kT

m
, (5.14)

and k, T , and m are Boltzmann’s constant, the temperature of the secondary, and the

mass of the particle in the stream. The velocities were constrained by angle θ = ±57◦, the

maximum opening angle of the gravitational equipotential that passes through the inner

Lagrange point.

Taking the canonical particle mass to be the mass of a proton, the simulation was run

2, 500 times pulling randomly from the speed distribution and attaching that speed to an

angle drawn from a uniform distribution in the range of θ. Results of this simulation are

shown in Figure 5.7, in the corotating frame of the binary. This histogram shows the injected

parameters, while the trajectory plot shows overlays of all 2, 500 runs in the equipotential

space dominated by the white dwarf (the vertex of the equipotential boundary drawn at

y = 0 is the Lagrange point between the primary and secondary). All of the trajectories,

irrespective of initial conditions at the overflow point, coalesce around a central trajectory.

(a) Histogram of sampled speeds with most
probable speed vp =

√
2η = 0.0145.

(b) Overflow stream simulation for AM CVn
parameters. Stream is visually observed to
maintain coherency until self impact.

Figure 5.7: Overflow stream simulation figures.
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Hot Spot Phase Angle

Based on the stream coherence simulation, the trajectory of the matter overflow stream

is known until the time it intersects the accretion disc. The HS phase offset angle, α⋆, is

measured from the binary axis (located from the gravitational waves) to the hot spot impact

point (measured from the electromagnetic lightcurve), and using the trajectory model yields

the accretion disc radius at which the trajectory crosses the angle α⋆ (i.e., the radius of the

disc when it intersects the matter stream). For the AM CVn demonstration parameters,

Figure 5.8 displays calculated values of the HS phase offset angle, α⋆, for a range of disc

radii lying within the primary’s Roche radius. Larger disc radii show a small spread in

impact angles (∼ 2◦), a consequence of tight stream coherency, while smaller radii result in

a larger impact spread (as high as ∼ 10◦) due to the oblique angle of attack at impact.

Viscosity Term

The overflow stream consists of a collection of infalling particles, which will have some

measure of interaction with each other, plausibly influencing the trajectory. To explore this,

a dimensionless viscosity parameter is used in the Equations of motion, Equation 5.12. In

general, this value is expected to be small, ξ � 0.1, but even smaller values are typical in

modern accretion simulations (Kley et al. 2008), to the point of using inviscid flow (Sawada

& Matsuda 1992). By examining the range of ξ over which the stream crosses itself, it

is seen that neither the mean impact angle nor the angular spread vary significantly in

the range 0 ≤ ξ ≤ 0.3 (see Figure 5.9). For viscosity values larger than ξ � 0.3, these

simulations enter the regime where the stream will not cross itself, but rather it will impact

the primary directly, resulting in no disc formation. This implies that the stream viscosity

does not significantly affect the angle α⋆. A value of ξ = 0.06 is adopted for the simulations

presented here.

5.3.3 Lightcurve Simulations

Since simultaneous, coordinated electromagnetic and gravitational wave observations

of ultra-compact binaries do not exist (yet), simulated lightcurve data are generated for this
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Figure 5.8: Stream impact angle α⋆ for various disc radii, ranging up to the size of the
primary Roche lobe. Radius values are scaled by the value Rmax, which is defined as the
distance from the primary to the L1 Lagrange point. The grey envelope shows the spread
of impact angles for a random selection of initial velocities, while the black line plots the
mean of the spread. The dashed line plots the angular spread of the stream impact with
values on the right vertical axis.

study. Lightcurves are generated via a simple geometric model with numerically modeled

accretion implemented in a matlab program. In this simulation, a close binary system

with an accretion disc and a hot spot is rotated in three dimensions, and the observed

portions of the bodies in the system are used to generate a synthetic lightcurve. This is
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HS Phase

Angular Spread

Figure 5.9: HS phase offset angle, α⋆, for various values of dimensionless viscosity, ξ. Note
that the mean impact angle and angular spread are essentially unchanged over many orders
of magnitude.

a geometry-based simulation; physical processes such as gravitational attraction are not

explicitly computed. This is a well-known basis for lightcurve simulations, e.g., Wilson &

Devinney (1971).

Setup

There are four distinct objects in the simulation: the primary star, the accretion disc,

the hot spot, and the Roche lobe filled by the secondary star. Three-dimensional point

clouds (collections of points in 3-D) are generated for each object in appropriate orbital

positions, which are then used to compute the three-dimensional convex hull of each object.

The convex hull of a 3-D point cloud is a triangulation of the bounding surface of the cloud,

i.e., a set of vertex-connected triangles such that all points in the cloud are either triangle

vertices or interior to the surface formed by the triangulation. For each triangle in the

triangulation, the geometric center, area, and normal vector are computed. Temperature

profiles (described in the next section) are mapped onto the objects by assigning a temper-

ature for each triangle in the convex hulls, based on input parameters for the simulation.
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The simulation can be run for as long as desired to generate lightcurves of arbitrary length.

Temperature Profiles

Temperature values for the Roche lobe are generated by the law of gravity darkening,

Te ∝ g1/4 (Lucy 1967; von Zeipel 1924). This leads directly to an expression for the

temperature at any point on the Roche lobe given the pole temperature, Tpole,

T (x, y, z)

Tpole
=

�

g(x, y, z)

gpole

�1/4

, (5.15)

where Tpole and gpole are the values of temperature and gravitational acceleration at the

star pole. Tpole is generally taken to be the effective temperature of a comparable field

star (Orosz & Bailyn 1997), and gpole can be found by taking the gradient of the known

gravitational potential at the pole of the Roche lobe.

The temperature profile for the disc is a simple energy-conservation-based model given

by

T = Tdisc

�

R

r

�3/4
�

1−
�

R/r
�1/4

, (5.16)

where

Tdisc =

�

3Gm1ṁ1

8πσR3

�1/4

(5.17)

is a characteristic temperature of the disc with ṁ1 the mass transfer rate, R the radius of the

primary, r the radial distance out from the center of the disc, and σ the Stephan-Boltzmann

constant.

The hot spot is modeled as a sphere with center located at the edge of the accretion

disc, and assigned an exponentially decaying temperature profile according to

T (x̂) = (THS − Td) exp (−ζx̂) + Td, (5.18)

where x̂ is a dimensionless coordinate that ranges from 0 ≤ x̂ ≤ 2, given by x̂ = (s −

sCM)/RHS + 1, s is the radial distance of the center of the hot spot from the primary,

sCM is the center of the hot spot, RHS is the radius of the hot spot, THS is the maximum
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temperature on the hot spot, Td is the outer disc temperature, and ζ is the spatial cooling

rate.

The primary white dwarf temperature is set as a constant value over a sphere.

Geometric Flux Projection

The lightcurve simulation assumes the observer is positioned far away on the negative z-

axis, in which case the xy-plane is the sky plane for the observer. At each time step, a point

on the synthetic light curve is computed as follows. For the four objects in the simulation,

the normal vectors for each triangle in the convex hull triangulations are examined to

determine if the value of the z component is negative, i.e., has a component pointing toward

the observer. Triangles failing this condition are discarded for this iteration. Next, the

objects are ordered based on their z coordinate, essentially from lowest to highest. The

triangle centers of the first object in the order are projected onto the xy-plane. Subsequent

objects are also projected; however, care is taken to avoid overlap of the objects by use of a

2-D convex hull and a standard point-in-polygon algorithm. The 3-D convex hull and 2-D

projection are shown for the Roche lobe in Figure 5.10a. Triangles whose projected centers

lie interior to the convex hull of a previously projected object are discarded, thus ignoring

those triangles occulted by other objects in the system.

The luminosity of each triangle visible to to the observer is calculated using the Stefan-

Boltzmann law. Total flux arriving at Earth is then computed using the standard flux-

luminosity relationship, summed over V(tk), the set of all visible triangles at the kth time

step,

F (tk) =
�

i∈V(tk)

σAiT
4
i (ô · n̂i)

4πD2
E

, (5.19)

where Ai and Ti are the area and temperature of the ith triangle, respectively, ô is the unit

vector pointing toward the observer, n̂i is the unit vector normal to the ith triangle (see

Figure 5.10b), and DE is the distance to Earth.

This simulation calculates only raw bolometric blackbody luminosities; more detailed

effects such as frequency specific flux, reflectance, etc. are not included. We are using the
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(a) Example of the 3-D convex hull for the
Roche lobe as used in the lightcurve simula-
tion. Also shown is the 2-D projection onto
the x-y plane.

(b) Illustration of observer vector and trian-
gle normal vector, overlaid on a convex hull
element at the stellar surface.

Figure 5.10: Lightcurve simulation figures.

full simulation only as a test for the radius estimation method, not for detailed parameter

estimation, so we find these omissions acceptable. A lightcurve generated for the AM CVn

model parameters is plotted against observed lightcurve data in Figure 5.11.

5.3.4 GW Phase Calibration

The h+(t) and h×(t) waveforms in Equation 5.4 represent the expected signals that

will be observable by a gravitational wave observatory. These expressions can be solved for

θ to give an estimate of the binary phase as a function of time:

θ̂(t) =
1

2
cos−1





2
�

h̃2+(t) + h̃2×(t)− cos2(ι)

sin2(ι)



 , (5.20)

where h̃+ and h̃× are the measured waveform amplitudes scaled by H, i.e., h+ = Hh̃+.

There is a four-fold degeneracy in Equation 5.20 due to the square root and inverse
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Figure 5.11: Simulated lightcurve for AM Canum Venaticorum in the top panel, displayed
as magnitude deviation from mean, Δm. Solid line shows simulation output, dots represent
actual AM CVn data [extracted from Harvey et al. (1998)]. Bottom panel shows residuals
between model and observation.

cosine. This results in four locations where θ̂ = 0 during each binary orbit, corresponding

to the phases where the projected distances between the binary components are maximized

or minimized, i.e., the quadrature and conjunction phases. The model lightcurve uses a

value of φ = 25◦, resulting in gravitational wave signals and phase estimate as shown in

Figure 5.12.

5.4 Model Demonstration and Implementation

Our accretion disc radius estimation method is now described explicitly and applied to

the AM CVn system. Lightcurve data from our model and the actual observed lightcurve

from Harvey et al. (1998) are used to demonstrate the method. Gravitational waveforms

and model lightcurves are generated using the model parameters in Section 5.3.1. Since

gravitational wave observations do not yet exist for this system, we regard this as a test of

the method with partially real data.
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Figure 5.12: Gravitational wave signals, h̃+ and h̃×, as well as the estimated phase value
θ̂. Note there are four possible zero values of phase in each orbital period.

We assume that fundamental parameters of the system can be extracted, i.e. compo-

nent masses, secondary temperature, orbital period, inclination, and luminosity distance,

from which a stream overflow model and lightcurve model for the ellipsoidal variations

(EV) can be generated. We also assume the gravitational wave signals h+(t) and h×(t)

have been disentangled and are separately available. There will be a substantive number of

multi-messenger binaries that can be simultaneously observed in EM and GW spectrums

(Littenberg et al. 2013). The gravitational wave data will provide accurate values for the

component masses, the orbital period, and the inclination, all of which will inform the

modeling described here.

The method proceeds as follows:

• Model accretion stream.

• Model ellipsoidal variations.

• Use GW signal to calibrate lightcurve to orbital phase.

• Subtract EV from observational data – remaining modulation should be due to hot

spot.

• Determine phase offset between binary axis and hot spot.

• Use stream overflow model to determine radius of disc.
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5.4.1 System Modeling

The methods outlined in Section 5.3.3 have been used to model the AM CVn lightcurve,

which is shown against the observed lightcurve in Figure 5.11. Using our model parameters,

the calculated magnitude for this simulation is msim ≈ 14.18, which matches the accepted

value for AM CVn.

The model output shown in Figure 5.11 displays the residuals between the observed

data and the model fit in the bottom panel. The model performs reasonably well in recre-

ating the qualitative features of the observed data given it’s simplicity, though it greatly

overestimates the amount of dimming that occurs during the quadrature phases. These

errors are likely due to omitting physical effects, such as reflectance and limb darkening,

which would have small but noticeable effects on the total flux output.

Our lightcurve model is used in two ways. First we assume the model lightcurve

generated by simulating the full AM CVn system is the observed lightcurve and proceed

with the method from there, showing that the method can recover the disc radius well

for the simulated data. In parallel, we work with the true lightcurve data where the full

system model is not used. For each case, a model of the EVs are required to perform the

subtraction which results in the hot spot modulation, and so each demonstration utilizes

the EV model generated by our simulation. Given the simple and predictable nature of

EVs, this is a reasonable course of action.

5.4.2 EV Subtraction

In order to locate the hot spot phase, the contribution to the lightcurve from the EV

must be modeled and removed. The resulting EV from our model using the AM CVn

parameters from Table 4 is shown in Figure 5.13.

In Section 5.3.4 the method for identifying the quadrature and conjunction phases using

the gravitational wave signals was described. To compute the hot spot phase offset from the

binary axis, we need to identify the conjunction phase in which the secondary Roche lobe

is closest to the observer, as the hot spot flux should peak briefly before that time. It is the

phase difference between the hot spot flux peak and the following conjunction phase that



127

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35
x 10

−15 EV Model

F
lu

x

Figure 5.13: Ellipsoidal variation model output for Am CVn. This curve will be subtracted
from observed lightcurve to find the HS modulation after the correct initial phase θ0 is found.

we interpret as the hot spot phase offset. Using the synthetic GW signals, a binary phase

estimate, θ̂(t̃), is generated and shown in Figure 5.12. The conjunction and quadrature

phases are identified as the points where θ̂(t̃) = 0 (t̃ ≡ t/Porb), and since our EV model

treats a quadrature phase for θ = 0, the initial phase, θ0, for the EV model will take one of

four values

θ0,i = 2π(1− 0.25i − t̃0), (5.21)

where i ∈ {0, 1, 2, 3}, and t̃0 is the first location where θ(t̃) = 0.

Based on the overflow trajectory simulations, we expect the phase of the HS peak

output to lead the appropriate conjunction phase. We make the reasonable assumption

that the peak in the lightcurve corresponds closely to the peak in received hot spot flux,

and so we choose the valley in θ̂ just behind the lightcurve peak to be the appropriate

conjunction phase, making the previous t̃ = 0 point the quadrature phase we want for the

initial EV phase, i.e., the point near t̃ = 0.75 in our demonstration data.

With both the EV model and initial phase estimate in hand, the estimated hot spot

modulation can be found by performing the subtraction HS = OD − EV (abbreviations

from Table 5). If the correct initial phase was chosen, the remaining variation in the

lightcurve should be due to either HS modulation or eclipses. The subtraction results are

shown in Figure 5.14 for both the full model simulation (solid red curve) and the actual

observed data (blue dots). The top panel illustrates the result of choosing an incorrect t̃0
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Table 5

Lightcurve Abbreviations

Abbreviation Meaning

OD Observed lightcurve data
HS Hot spot modulation
EV Ellipsoidal variations

as the initial phase for the EV model, while the bottom panel shows the result of choosing

the correct initial phase as described previously.

5.4.3 Disc Radius Estimate and Errors

The subtractionHS = OD−EV yields what should be the modulation in the lightcurve

due to the hot spot flux. From here it is possible to estimate the phase at which the hot

spot flux peaks (the face-on view), and therefore compute a value for the HS phase angle

α⋆.

Noise exists in both the simulated data and the observed data. In the simulated data

this arises from the fact that the simulation samples are taken at a realistic rate (60 Hz),

and numerical noise that is introduced by the finite discretization of the body surfaces. Due

to the noise present in the lightcurves, we estimate the location of maximum HS flux output

by fitting parabolas to random subsets of the lightcurve data surrounding the apparent peak

in the HS = OD − EV subtraction and taking the mean of the resulting parabola vertex

locations as the orbital phase of the HS peak flux output, θHS . The HS phase offset, φHS ,

is then estimated by finding the phase difference between θHS and the conjunction phase

following the initial phase, i.e., φHS = (θ0 + π/2)− θHS, and the corresponding disc radius

is identified from the accretion stream simulations described in Section 5.3.2. The parabola

fitting procedure is depicted in Figure 5.15, which displays a small selection of the number

of parabolas used.

For the model data using the random parabola procedure, we find a HS phase offset

of φHS = 7.76◦ ± 1.6◦. Using the overflow stream simulation, we find a corresponding disc

radius estimate of R̂D/a ≈ 0.476 ± 0.025, where the error bars arise from various parabola

fits. This gives an error for the mean value of ≈ 0.4% when compared with the accepted
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Figure 5.14: Results of the HS = OD − EV subtraction for both the model data (red
line) and observed data (blue dots) using the conjunction phase (incorrect) as θ0 (top panel)
and the quadrature phase (correct) as θ0 (bottom panel). Also plotted in the bottom panel
is the actual HS output from the model (black dot-dash). The model subtraction result
matches very closely to the model HS output, but not perfectly due to errors discussed in
the text.
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Figure 5.15: The parabola fitting procedure used to estimate the location of the observed
HS peak output. Parabolas are fit to random subsets of the data surrounding the apparent
peak near t = 1. The average peak location (left hand black line) is found and regarded as
the true peak location, θHS, which is then used to find the HS phase offset, φHS , relative
to the subsequent conjunction phase (right hand black line).

value of 0.478a.

The noisy nature of the true observed data makes it less clear where the HS peak flux

lies. We attempt the same fitting procedure and find HS phases in the approximate range

φHS = 7.6◦ ± 2.8◦. This translates to an estimated disc radius of R̂D/a ≈ 0.481 ± 0.05.

With this method we find an estimation error of ≈ 0.6%.

5.5 Discussion

The method described here is an independent method that is applicable to mass-

transferring galactic binaries observable by multi-messenger campaigns involving gravita-

tional wave and electromagnetic observatories. It is a method for measuring the accretion

disc radius in any compact binary system, whether it is eclipsing or not.

Recent work has estimated that with even modest, submeter class telescopes, there will

be hundreds of ultra-compact binaries that will be simultaneously detectable in gravitational
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waves and with EM telescopes (Littenberg et al. 2013); thousands will be observable with

multi-meter class telescopes, opening the potential to characterize the physical nature of an

entire population of mass transferring binaries.

The model described here for measuring accretion disc radii assumes the primary varia-

tion in the optical lightcurve can be identified with a radiating hot spot on the disc, rotating

about the primary with the orbital frequency, ωo. In low-mass ratio systems like AM CVn,

it has been predicted that the accretion disc will suffer tidal instabilities, deforming it into

an eccentric precessing disc, resulting in the phase offset angle varying in time, α⋆ = α⋆(t).

This instability was first recognized in SU UMa stars, and is thought to be responsible for

the superhump phenomena in the optical signature of CV stars. The lightcurve of AM CVn

is known to exhibit a superhump signature, which could complicate the measurement of

the optical phase if it were not well characterized, especially when tracked over long time

periods.

The superhump mechanism has been well studied, and there is a known relationship

between the periods of the binary orbit (τo), the precessional period of the accretion disc

(τaa, period of apsidal advance), and the superhump signature (τsh) given by

τ−1
o = τ−1

sh + τ−1
aa . (5.22)

For AM CVn, all three periods have been measured [τo = 1028.77 s, τsh = 1051.2 s, and

τaa = 13.38 hr (Patterson et al. 1993; Harvey et al. 1998)]. This allows the lightcurve to

be reduced and a measurement of the accretion disc made using the difference in phase

with a gravitational wave signal. In principle, the presence of the superhump signature,

together with the disc radius measurements described here, could be used in concert with

gravitational wave observations to measure the ellipticity of the accretion disc. This in turn

can provide a method to probe theoretical models of the pressure profile of the accretion

disc (Goodchild & Ogilvie 2006). This will be the focus of a future study.

The analysis presented here also depends crucially on knowledge of the trajectory of the

matter stream which overflows from the secondary Roche lobe into the sphere of influence
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of the white dwarf. If the hydrodynamic simulations of the overflow present an accurate

picture of the trajectory, then gravitational wave observations can provide a new tool for

probing the physical character of astrophysical systems.
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CHAPTER 6

CONCLUSION

6.1 Summary and Future Directions

As the long-awaited GW detections come closer to reality, physicists are (and have

been) working diligently to produce an extensive set of theoretical applications that will

make use of the the observations. Techniques, models, and tools are being developed that

will immediately put GW detections to work as new sources of astrophysical information.

The deeper we can dig now, the more we will be able to learn once GW observations become

a reality.

6.1.1 SMBH Encounters

The first project (Chapter 4) considered parabolic encounters between a binary system

composed of two stellar-mass black holes and a galactic supermassive black hole. This setup

was intended to mimic possible encounters in the center of galaxies similar to the Milky

Way. Numerical codes were run that simulated this encounter, tracking relevant orbital

quantities and reporting the end-state configuration. Approximately 13,000,000 of these

simulations were run, giving confidence in the statistical conclusions drawn.

It was found that binaries disrupted by the SMBH form extreme mass ratio inspirals

which would begin with very high eccentricity, e ≈ 1−O(10−2), but circularize dramatically

by the emission of GW radiation. At the time when the stable orbit turns over to a plunge

orbit, the EMRIs still have some small residual eccentricity, e ≈ 0.05 on average. While this

is much smaller than the typical residual eccentricity in the EMRIs formed by the capture

of single stars, it is slightly larger than the previous estimate.

The surviving binaries were classified based on their final relation with the SMBH. A

surviving binary could either remain unbound from the SMBH and hence have a merger life-

time T < T0, or become bound to the SMBH in which case we compare the merger lifetime

to the BEMRI (binary extreme mass ratio inspiral) period where long-period BEMRIs have

T < P• and short-period BEMRIs have T > P•. When inspecting the merger lifetime of
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the surviving binaries, it was found that the unbound binaries and the long-period BEMRIs

have mean merger lifetime of T̃ = 0.8T0. When factoring in this new lifetime with other

relevant data, we calculate the merger rate of these systems in the range of aLIGO to be

about 0.25 yr−1, which represents a small percentage of the current predicted CBC rates.

Over long observing times, however, this effect could become noticeable.

Future possibilities for this project first include improving the integration scheme to

make use of recent developments in post-Newtonian few-body simulation techniques. This

would allow for more physically accurate results at very close encounters. Additionally,

increasing the size of the parameter space to include neutron star masses or a spectrum

of mass would extend the range of this study to more than stellar mass black holes, and

using noncircular initial binaries, varied initial semimajor axis, and closer encounters with

the SMBH would also form a more complete picture of these interactions.

6.1.2 Accretion Disc Radius

In the second project (Chapter 5), we studied the possibility of merging electromagnetic

and gravitational wave observations to estimate the radius of the accretion disc in compact

binary systems similar to AM CVn. The idea was built off of the well-accepted theory

that the impact between the essentially freely flowing accretion stream and the inward

spiralling accretion disc will result in a hot spot, which shines brightly with EM radiation.

By identifying the angle of this hot spot on the accretion disc measured from the binary

axis, φHS , the radius of the disc can be recovered.

Two simulations were built for this project. The first modeled the accretion stream as

it flows from the inner Lagrange point and intersects with the accretion disc. This allows us

to compute a disc radius for a given HS phase offset angle. The second simulation modeled

the EM flux generated by a system like AM CVn, and was used as both a full simulation of

the binary system as a test of our method, and to generate the lightcurve from the ellipsoidal

variations, which must be removed in order to reveal the hot spot lightcurve modulations.

We tested the proposed method against the fully simulated lightcurve output from our

model, as well as the true observed AM CVn lightcurve. In both cases, we found our method



135

capable of estimating the disc radius to high precision by taking the average of the peak

location of parabolas fit to random subsets of the data surrounding the apparent hot spot

peak after EV subtraction. We calculated a disc radius of R̂D/a ≈ 0.476 ± 0.025 for the

fully simulated data and R̂D/a ≈ 0.481± 0.05 for the true lightcurve data. These estimates

agree with the accepted value of RD = 0.478a to within the uncertainties, and differ from

the accepted value by 0.4% and 0.6%, respectively.

When GW observations from candidate systems are made, this method can truly be

tested. Until then, this project could be advanced by including additional physics into

the lightcurve simulation such as reflectance, limb darkening, and frequency-specific EM

radiation. The method we have developed here could also be used to measure the elliptic-

ity of noncircular, precessing discs. Such a measurement can provide a method to probe

theoretical models of the disc pressure profile, and will be the focus of a future paper.

6.2 Final Thoughts

This dissertation has focused on work that centers around binary systems, which lie

at the heart of the intersection between gravitational wave science and astrophysics. The

projects presented here have addressed contrasting topics in both the astrophysics of com-

pact binaries (three-body interactions and cataclysmic variable stars) and gravitational

wave science (EMRIs, CBCs, and multi-messenger astronomy). I believe this illustrates the

utility and importance of GW observations as new probes of astrophysical systems, and it

is my sincere hope that this work has added constructively to the great scientific endeavor.
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UAA Dean’s List, Fall 2005, Fall 2004.
Recognizes students with a semester GPA of 3.5 or better

Undergraduate

Mentoring

Katelyn Brevik (BS, Physics, USU, graduated)

Darren McKinnon (BS, Physics, USU, current)

Russell Floyd (High School Student, InTech HS)

Workshops Introduction to High Performance Computing, Sep. 21-22, 2013

Advanced School in General Relativity: Relativistic Astrophysics and
Cosmology, July 16-27, 2012.
Competitive entrance, travel grant.

Center for Astronomy Education Tier 1 Teaching Excellence Workshop,
June 9-10, 2012

South Padre Island International Summer School in Gravitational Wave
Astronomy, June 1-12, 2009.
Competitive entrance, travel grant.

Service and

Activities

USU SIAM Student Chapter Member and Webmaster
Webmaster for student club. Helped develop and instruct biweekly
C++ programming tutorial sessions.

USU Science Unwrapped Lecture Series Volunteer, 2009-2010.
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UAA Alaska Natives in Science and Engineering (ANSEP) Tutor, 2007-
2008

UAA IEEE Student Branch Founding Chairman, 2007.

IEEE INFOCOMM Volunteer, May 2007

Tang Soo Do Black Belt Instructor, 2007.

Other Work

Experience

ExxonMobil Exploration Company, Houston, TX
Geophysical Processing Intern

• Trained and worked with Omega2 and OpenCPS seismic data
processing software.

• Familiarized with various seismic processing skills including: survey
geometry, velocity analysis, frequency filtering and spectral analysis,
NMO correction, statics corrections, mute picking, visualization,
demultiple, stacking, and seismic migration.

• Implemented 5D interpolation in Omega2 for multiple surveys for
the first time at ExxonMobil. Had a significant impact on four
production datasets, two of which were time sensitive.

• Collaborated with the ExxonMobil Upstream Research Company for
testing new interpolation tools in OpenCPS.

• Created 5D interpolation documentation and reference materials for
future use by ExxonMobil.

• Participated in various intern educational events.

Alaska Air National Guard, Anchorage, Alaska
Search and Rescue Loadmaster

• Responsible for aircraft inspections, equipment rigging, loading opera-
tions supervision, air-drop operations, and in-flight helicopter refueling.

• Deployed twice in support of OEF (Uzbekistan, Afghanistan, and
Djibouti, Africa)

• Vehicle control officer responsible for equipment totalling $240K.
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Erik Neumann, Geophysical Processing, ExxonMobil Exploration Co.
Supervisor, erik.neumann@exxonmobil.com, (281) 654-2987
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