
Daytime plasma drifts in the equatorial lower ionosphere
Debrup Hui1 and Bela G. Fejer1

1Center for Atmospheric and Space Science, Utah State University, Logan, Utah, USA

Abstract We have used extensive radar measurements from the Jicamarca Observatory during low solar
flux periods to study the quiet time variability and altitudinal dependence of equatorial daytime vertical and
zonal plasma drifts. The daytime vertical drifts are upward and have largest values during September–October.
The day-to-day variability of these drifts does not change with height between 150 and 600 km, but the
bimonthly variability is much larger in the F region than below about 200 km. These drifts vary linearly with
height generally increasing in the morning and decreasing in the afternoon. The zonal drifts are westward
during the day and have largest values during July–October. The 150 km region zonal drifts have much larger
day-to-day, but much smaller bimonthly variability than the F region drifts. The daytime zonal drifts strongly
increase with height up to about 300 km fromMarch through October, andmoreweakly at higher altitudes. The
December solstice zonal drifts have generally weaker altitudinal dependence, except perhaps below 200 km.
Current theoretical and general circulation models do not reproduce the observed altitudinal variation of the
daytime equatorial zonal drifts.

1. Introduction

Equatorial plasma drifts play important roles in low-latitude electrodynamic processes including the equator-
ial electrojet, the equatorial ionization anomaly, and E and F region plasma irregularities and density struc-
tures [e.g., Fejer, 1997, 2011]. These drifts are driven by electric fields resulting primarily from the dynamo
action of E and F region neutral winds but can be affected also by low atmospheric and high-latitude iono-
spheric processes [e.g., Richmond, 1995]. Several general circulation models have recently been used to study
the climatology and the spatial and short-term variability of the equatorial plasma drifts [e.g., Maute et al.,
2012; Liu and Richmond, 2013; Liu et al., 2013].

Equatorial F region vertical and zonal plasma drifts have been measured using ground-based radio and radar
systems since the late 1960s. Over the last two decades, they have also been measured by in situ satellite
probes [e.g., Fejer et al., 2008, 2013; Kil et al., 2009; Stoneback et al., 2011; Coley et al., 2014]. The equatorial
F region vertical drifts are upward during the day and downward at night with typical values of about
20–30m/s and do not change much with solar flux, season, longitude, and height, except near sunset and
sunrise [e.g., Fejer, 1997; Fejer et al., 2014]. The zonal drifts are westward during the day with typical values
of about 40–50m/s and eastward at night with peak values increasing with solar flux from about 100 to
200m/s [e.g., Fejer et al., 1991, 2005]. The morphology of the equatorial plasma drifts has been described
in detail in various review papers [e.g., Fejer, 1997, 2011].

Kudeki and Fawcett [1993] showed that the vertical Doppler velocities of daytime coherent echoes from the
150 km region (between about 140 and 170 km)measured at the Jicamarca Radio Observatory (11.9°S, 76.8°W;
dip latitude 1°N) correspond to the F region vertical drifts. Since August 2001, daytime (between about 0800
and 1600 LT) 150 km region plasma drifts have been measured routinely with the low-power Jicamarca
Unattended Long-term Ionosphere and Atmosphere System (JULIA). In a detailed study, Chau and Woodman
[2004] reported very good agreement between the linearly downward extrapolated F region vertical drifts
and the JULIA vertical drifts. On the other hand, they observed large differences between the F region and
150 km zonal drifts. Alken [2009] presented an empirical model of the 150 km vertical drifts using JULIA obser-
vations between August 2001 and July 2008. Over the last few years, daytime 150km vertical drifts have also
been measured extensively in the Indian, Brazilian, and Asian equatorial regions [Patra et al., 2012, 2014;
Rodrigues et al., 2013, 2015].

Murphy and Heelis [1986] derived the relationships between low- and middle-latitude plasma drift compo-
nents resulting from a curl-free electric field. In this case, they showed that the height dependence of the
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equatorial F region vertical drifts is strongly coupled to the longitudinal gradients (or temporal variation
assuming that local time and longitude are interchangeable) of the zonal drifts. Pingree and Fejer [1987]
showed that F region vertical and zonal drifts measured over Jicamarca during a March equinox low solar
flux period were consistent with a curl-free electric field. They reported that vertical drifts are highly variable
but generally increase (decrease) with height in the morning (afternoon), as expected from the correspond-
ing increase (decrease) of the westward drifts with time. The same altitudinal dependence was inferred
from comparisons of the JULIA and the Scherliess and Fejer [1999] model drifts [Alken, 2009; Rodrigues
et al., 2015].

Early studies suggested that equatorial daytime zonal plasma drifts do not change much with height [e.g.,
Fejer, 1991; Pacheco et al., 2010]. Recently, Fejer et al. [2013] showed that during the 2008–2011 low solar flux
period the daytime westward drifts measured by the Vector Electric Field Instrument on board the
Communication/Navigation Outage Forecasting System (C/NOFS) satellite at an average height of about
650 km in the Peruvian equatorial region are larger than the corresponding radar drifts at an average altitude
of 400 km. Recently, equatorial measurements between 400 and 1000 km over the 170°–180° longitudinal
sector, by the Coupled Ion Neutral Dynamic Investigation Instrument on the C/NOFS satellite, also showed
daytime westward drifts increasing with apex height [Coley et al., 2014].

In this work, we use Jicamarca F region incoherent scatter and JULIA daytimemeasurements during geomag-
netic quiet periods (Kp< 3) low solar flux conditions to study, for the first time, the temporal variability and
altitudinal dependence of vertical and zonal plasma drifts in the lower equatorial ionosphere.

2. Measurements and Data

The incoherent scatter radar (ISR) technique used at Jicamarca for F region plasma drift measurements was
described in numerous publications [e.g.,Woodman, 1970; Fejer et al., 1991; Fejer, 1997], and the current data
analysis was described by Kudeki et al. [1999]. Incoherent scatter drift measurements cover generally an alti-
tudinal range of 200 to 800 km with a time resolution of 5min and a height resolution of 15–25 km. The typi-
cal accuracy of daytime measurements is about 1 and 10m/s for the vertical and zonal drifts, respectively.
Near solar minimum, the accuracy of these measurements decreases sharply with height above the F peak.
In this case, the typical measurement errors at about 600 km are of the order of 4 and 50m/s for the vertical
and zonal drifts, respectively. Recently, a new experimental mode has been used for simultaneous plasma
drift and density measurements from about 150 to 400 km [e.g., Chau and Kudeki, 2013]. We have used only
a small number of drift measurements using this observational mode since they have much larger errors. The
JULIA drift measurement and data analysis techniques were described by Chau and Woodman [2004]. These
measurements have usually an integration time of 5min resolution and accuracies typically better than 1 and
5m/s for the vertical and zonal drifts, respectively. The databases of Jicamarca incoherent scatter radar and
JULIA zonal drifts are smaller than those of the vertical drifts. These data are available at the Jicamarca
website (jro.igp.gob.pe/madrigal/).

We used 214 days of F region vertical and 184 of F region zonal drift measurements during 1997–2014 and
1036 days of vertical and 509 days of zonal JULIA drift measurements from August 2001 to December
2013. These days were selected so that the vertical and zonal drift databases have nearly identical average
solar flux values (about 110 solar flux unit (sfu)). Table 1 gives the number of days of our measurements in
bimonthly bins. It is important to keep in mind that the incoherent scatter radar and the JULIA drift

Table 1. Distribution of Days of Data

Zonal Drift Vertical Drift

ISR JULIA ISR JULIA

Jan–Feb 9 105 15 154
Mar–Apr 37 42 42 71
May–Jun 34 38 39 109
Jul–Aug 22 143 22 220
Sep–Oct 21 109 38 207
Nov–Dec 17 55 25 204
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measurements were not made on the
same days. We used only quiet time
(Kp< 3) drifts and did not include mea-
surements during sudden stratospheric
warming (SSW) events [e.g., Chau et al.,
2009]. Since we have a large number of
measurements during very low solar flux
values, we deleted vertical and zonal
drifts with errors larger than 10 and
50m/s, respectively, and restricted most
of our analysis to altitudes below
600 km for the vertical drifts and below
500 km for the zonal drifts.

3. Results

Figure 1 shows examples of 30min aver-
age height profiles of daytime vertical
and zonal drifts during the 14–23
September 2009 very low solar flux
(about 71 sfu) period. The zonal drifts
above 500 km have much larger errors
than at lower altitudes. Figure 1 illus-
trates the large day-to-day variability of
the F region daytime vertical and zonal
drifts during, which is typical of very

low solar flux periods [e.g., Fejer and Scherliess, 2001]. Figure 1 also illustrates the small but highly variable alti-
tudinal dependence of the vertical drifts, and the general decrease of the westward drifts with height below
about 500 km.

Scatter plots of September–October quiet time JULIA 150 km and F region drifts at selected height ranges are
presented in Figure 2. The F region drifts correspond to 100 km height averages centered at 250, 350, and
450 km. The zonal drift database is smaller at 450 km than at lower heights as a result of our error restriction.
The F region and the JULIA vertical drifts have comparable variability with standard deviations of about 6m/s.
On the other hand, the JULIA zonal drifts are much more variable (standard deviations of about 22m/s) than
the higher-altitude drifts (standard deviations of about 12m/s at 250 and 350 km, and about 17m/s at
450m/s). Similar results were obtained during other bimonthly periods.

Figure 3 presents the bimonthly averages of the vertical and zonal plasma drifts. In this case, the data at 250
and 400 km correspond to 100 and 200 km averages, respectively, and the 15min average drifts were
smoothed further by three-point running averages. As mentioned earlier, we have not used observations dur-
ing SSW events, which led to a small number F region zonal drift measurements during January–February.
The standard deviations and standard errors of the means of the JULIA average drifts are about 8 and
1m/s for the vertical component and about 55 and 14m/s for the zonal component. The incoherent scatter
average drifts have corresponding values of about 8 and 2m/s for the vertical and about 14 and 3m/s for the
zonal component. We note that these standard deviations are mostly due to the large quiet time variability
and that different binings would result in slightly different averages, especially during periods of small num-
ber of measurements.

The F region vertical drifts shown in Figure 3 are upward and vary weakly with altitude. These drifts are largest
near noon and during September–October, when they have values of about 22m/s, and smallest during
November–December, when they are smaller than 10m/s. The bimonthly F region vertical drifts are consistent
with the Scherliess-Fejer season averagedmodel drifts. On the average, the F region vertical drifts increase with
altitude in the morning and decrease in the afternoon, in general agreement with the results of Pingree and
Fejer [1987]. However, the largest vertical drift variations generally occur between about 150 and 250 km,
although this could at least be partly due to our nonconcurrent 150 km and F region measurements.

Figure 1. Examples of height profiles of daytime (top row) vertical and
(bottom row) zonal drifts over Jicamarca during September 2009. The
zonal drifts above 500 km have large errors.
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Figure 3. Bimonthly averaged (left column) vertical and (right column) zonal plasma drifts at three altitudinal ranges over
Jicamarca during low solar flux conditions.

Figure 2. Scatter plots of equatorial daytime (left column) vertical and (right column) zonal plasma drifts measured using
the Jicamarca incoherent scatter radar and JULIA during September–October. The thick lines denote the average drifts.
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Figure 3 also indicates that the JULIA late morning and early afternoon vertical drifts are larger than the higher-
altitude drifts during November–December and May–June, and smaller during July–October.

The zonal drifts are westward with magnitudes increasing with height, except during November–December
when they do not change much with height. The largest F region westward drifts (about 60m/s) occur at
about 400 km during September–October, and smallest occur during November–February. The 150 km
region drifts are systematically smaller than the higher-altitude drifts. This is particularly the case in the
afternoon when the westward drifts increase strongly with height between about 150 and 250 km. The
zonal drift reversals to eastward occur much earlier in the 150 km region than at higher altitudes, except
during November–February.

Figure 4 presents altitudinal profiles of 30min and 50 km bimonthly averaged vertical drifts at 1015, 1215,
and 1415 LT. These data have typical standard deviations of about 6m/s. In the interpretation of these data
it is important to remember that as mentioned earlier, the incoherent scatter radar and the JULIA measure-
ments were not made on the same days. Figure 4 shows much larger bimonthly variability in the F region
drifts than in the JULIA drifts, especially during the solstices. This variability, which can also be seen in
Figure 2, will be discussed in more detail later. The equinoctial drifts increase at about 0.02m/s/km at
1015 LT; they are nearly height independent at 1215 LT, and decrease with height at 1415 LT. This altitudinal
dependence is in good agreement with the low solar flux March equinoctial results of Pingree and Fejer
[1987]. The F region drifts exhibit generally weaker increases in the morning and decreases in the afternoon
during June and December solstice months. The June solstice and December solstice 150 km drifts do not
match as closely the downward extrapolated F region drifts most likely because the JULIA and F region drifts
were measured during different days. Furthermore, these differences are smaller than the typical standard
deviations of these drifts.

Figure 4. Examples of the altitudinal variations of equatorial plasma drifts obtained from Jicamarca incoherent scatter
radar and JULIA measurements. The scatter bars denote the standard errors of the means.
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Figure 5 shows height profiles of 30min
bimonthly averaged zonal drifts. The
December solstice averages were derived
using a relatively small number of measure-
ments, as indicated in Table 1. Figure 5 shows
that the daytime westward drifts increase
strongly with height below 300km, especially
from March to October, and more weakly at
higher altitudes. The largest westward drifts
occur above 400km during September–
October, and the smallest occur during
December solstice months, when they also
have only weak height dependence.

The local time dependence of the daytime
zonal drifts during July–October is shown
in more detail in Figure 6. The incoherent
scatter data correspond to 50, 50, and
100 km averages, respectively, and the
15min average drifts were smoothed
further with three-point running averages.
In this case, the standard deviations and
standard errors of the means are about 26
and 2.5m/s for the JULIA drifts and about

Figure 5. Same as Figure 4 for the zonal drifts. The December solstice plots were obtained using a relatively small number
of measurements. The scatter bars denote the standard errors of the means.

Figure 6. Zonal plasma drifts at four altitudinal ranges for July–
August and September–October.
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18 and 3.5m/s for the F region drifts, respectively. Figure 6 shows the systematic increase of the westward
drifts with height. These drifts increase weakly with height in the morning, more strongly from 225 to
350 km near noon, and from the 150 km region to 225 km in the afternoon. As shown earlier in Figures 3
and 4, the zonal drifts show weaker altitudinal dependence during from November to June.

The bimonthly vertical and zonal drifts at three altitudinal ranges are compared in Figure 7. The standard devia-
tions and standard errors of the means are about the same as those of the data shown in Figure 3. The 250 km
and the 400 km average drifts were obtained using 100 and 200 km altitudinal bins, respectively. The JULIA
vertical drifts are essentially identical during the December solstice, June solstice, and equinoctial months, as
expected based on the results in Figure 4. In the F region, the vertical drifts are generally larger during
January–February, September–October, and July–August than during November–December, March–April,
and May–June, respectively. Figure 1 also shows that the JULIA zonal drifts are almost identical during the
equinoctial and June solstice months, but the January–February westward drifts are about 5m/s smaller than
the November–December drifts. At F region heights, the westward drifts are nearly the same during
December solstice months but have very large variations during the equinoctial and June solstice months.

4. Discussion

The electrodynamics of the equatorial ionosphere was studied using several theoretical models and numer-
ical simulations. These studies have now accounted for the main features of the F region vertical and zonal
plasma drifts [e.g., Eccles, 1998; Fesen et al., 2000; Milward et al., 2001] and for the main sources of their quiet
time temporal and spatial variability [e.g.,Maute et al., 2012; Liu et al., 2013]. On the other hand, they have not
examined in detail the altitudinal dependence of these drifts.

Eccles [1998] developed a model for the low-latitude ionospheric electric field by solving a two-dimensional
potential equation with the assumptions of current continuity and equipotential magnetic field lines. They

Figure 7. Jicamarca bimonthly averaged F region and JULIA (left column) vertical and (right column) zonal plasma drifts.
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reported electric field structures resulting from divergencies in the neutral-wind dynamo and curl-free effects.
The model predicts essentially height-independent daytime vertical drifts. The morning zonal model drifts are
eastward at 200 km and westward above 400 km, while the midafternoon drifts are westward with values of
about 50m/s from 200 to 1100 km. Simulations of equatorial plasma drifts for high solar flux equinoctial condi-
tions using the thermosphere-ionosphere-electrodynamics general circulation model (GCM) [Richmond et al.,
1992] predicted daytime upward drifts decreasing weakly with altitude, and westward drifts of the order of
60–80m/s decreasing slightly with height from 100 to 550 km [Heelis et al., 2012; Rodrigues et al., 2012].
These theoretically predicted zonal drift height profiles are not in good agreement with our observations.

Chau and Woodman [2004] presented concurrent daytime observations of incoherent scatter and 150 km drifts
during 17–18 December 2003 using a novel experimental mode. They showed good agreement between the
150 km and the average F region vertical drifts and even a better agreement with the linearly extrapolated drifts
from F region altitudinal profiles. Chau and Woodman [2004] showed that the 150 km zonal drifts were always
smaller than the F region drifts, which is consistent with our results. They also reported good agreement
between the 150 km zonal drifts and both the F region drifts and their linearly extrapolated values in the
afternoon, but poor agreement in the morning, in spite of their close temporal variability. Since our 150 km
and F region drifts were not made simultaneously, our database is not ideally suited for a more detailed study
of the relationships between these drifts. On the other hand, our average F region altitudinal drift profiles, as
well as the results shown in Figure 2, suggest that the assumption of linearly varying zonal drifts is probably
not a good one below about 300 km, and that these daytime drifts increase significantly with height. This is also
confirmed by studies using C/NOFS satellite measurements [Fejer et al., 2013; Coley et al., 2014].

Chau and Woodman [2004] discussed the morphology of the 150 km zonal plasma drifts using a simple
model of equatorial electrodynamics suggested in a private communication by A. D. Richmond. This model,
based on the requirement of zero field line integrated current outflow and negligible zonal current density
gradients, relates the zonal E × B drift (Vx) to the vertical drift (Vz) and zonal wind velocity (Un) by

Vx ≈ ΣH=Σp
� �

Vz þ ∫ σp�Unds
� �

=Σp

where σp is the Pedersen conductivity, ΣH and Σp are the field-line-integrated Hall and Pedersen
conductivities, and the integrations are along the magnetic field lines. The daytime vertical drifts and ΣH/Σp
vary weakly with height, but the Pedersen conductivity is largest in the E region. Therefore, E region zonal
winds should play a major role on the large variability of the 150 km zonal drifts, as suggested by Chau and
Woodman [2004].

We have shown that while the day-to-day variability of the 150 km and F region vertical drifts is nearly iden-
tical, the bimonthly drift variability is much larger in the F region than at lower altitudes. The zonal drifts have
also larger longer-term variations in the F region than at lower altitudes. This is consistent with the larger
longer-term variability of the F region conductivities. Liu et al. [2013] studied the day-to-day variability of
the equatorial E × B drifts under December solstice solar minimum conditions (70 sfu) using thermosphere-
ionosphere-mesosphere-electrodynamics GCM constrained by realistic lower atmosphere wind patterns
from whole atmosphere community climate model simulations. This study predicts that lower atmospheric
perturbations cause day-to-day variabilities of about 4 and 10m/s on the F region vertical and zonal drifts,
respectively. These values are in reasonable agreement with our results.

5. Summary and Conclusions

We have used Jicamarca incoherent scatter radar and JULIA measurements to study the quiet time variability
and altitudinal dependence of equatorial daytime plasma drifts. The day-to-day variability of the vertical
drifts does not change over this altitudinal range, but their bimonthly and longer-term variability is much
larger above 200 km than in the 150 km region. The altitudinal profiles of the vertical drifts are highly variable
from day-to-day, but on the average these drifts vary linearly with height. The altitudinal dependence and
variability of the equatorial daytime vertical drifts predicted by theoretical and numerical models are in good
agreement with our data.

F region daytime zonal drifts are westward drifts with largest values during September–October and smallest
from November to February. The 150 km zonal drifts have much larger day-to-day and much smaller
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bimonthly variability than the drifts above 200 km. From March to October, the bimonthly averaged zonal
drifts increase strongly with height below about 300 km, and at much smaller rates at higher altitudes.
Over this period, the strongest increases in the westward drifts occur from about 150 to 225 km in the after-
noon. The December solstice average drifts do not appear to change much with height, except perhaps
below 200 km. The altitudinal variations of the equatorial daytime zonal plasma drifts in the lower ionosphere
predicted by current theoretical and general circulation models are not in good agreement with our results.
Additional simultaneous plasma drift measurements from about 150 km to F region heights and theoretical
and simulation studies are needed for a better understanding of the complex variability of lower ionospheric
equatorial plasma drifts.
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