MicroSD Operational Experience
and Fault Mitigation Techniques

Joshua Lamorie
Francesco Ricci
Background

• Xiphos started operations in 1996 and produces application processor cards
Background

• Xiphos started operations in 1996 and produces application processor cards
• Application domains include:
 • Control (e.g. flight, instrument, motor, ...)
 • Interface (e.g. memory, imaging devices, ...)
 • Data acquisition (e.g. AIS, video, hyperspectral imagery, ...)
 • Data processing (e.g. compression, image registration, tracking, ...)

©2015 Xiphos Systems Corp.
Background

• Xiphos started operations in 1996 and produces application processor cards
• Application domains include:
 • Control (e.g. flight, instrument, motor, ...)
 • Interface (e.g. memory, imaging devices, ...)
 • Data acquisition (e.g. AIS, video, hyperspectral imagery, ...)
 • Data processing (e.g. compression, image registration, tracking, ...)
• Some goals:
 • Robust
 • Affordable
 • Low power, small size
 • Fast application memory
 • Computationally capable
 • Accommodate (almost) arbitrary interfaces
 • Familiar S/W development and runtime environments (e.g. Linux, Yocto)
Background

To achieve these goals Xiphos cards feature:

- General purpose CPUs and programmable logic
- Low power RAM
- NOR flash to store application configuration (bootloaders, kernel, rootfs, logic bitstream)
- High density, high speed NAND flash in the form of MicroSD cards to store application data
Background

• To achieve these goals Xiphos cards feature:
 • CPUs and programmable logic
 • Low power RAM
 • NOR flash to store application configuration (bootloaders, kernel, rootfs, logic bitstream)
 • High density, high speed NAND flash in the form of MicroSD cards to store application data
• Example: Q6 processor card (2011)
 • Xilinx Spartan 6
 • One or more Microblaze soft processors
 • 2 x 128 MB LPDDR2 RAM, 2 x 2 GB MicroSD
Background

- To achieve these goals Xiphos cards feature:
 - CPUs and programmable logic
 - Low power RAM
 - NOR flash to store application configuration (bootloaders, kernel, rootfs, logic bitstream)
 - High density, high speed NAND flash in the form of MicroSD cards to store application data
- Example: Q6 processor card (2011)
 - Xilinx Spartan 6
 - One or more Microblaze soft processors
 - 2 x 128 MB LPDDR2 RAM, 2 x 2 GB MicroSD
- Example: Q7 processor card (2014)
 - Xilinx Zynq-7020 (2 x ARM Cortex-A9, Artix-7 FPGA)
 - 1 x 512 MB and 1 x 256 MB LPDDR2 RAM, 2 x 32 GB MicroSD
Q7 Top

- Power input
- RJ45 Gigabit Ethernet
- Micro-AB USB 2.0 OTG
- RTC
- Low-power RAM
- Xilinx Zynq AP SoC
- High Efficiency Power Supply
- PIM Interface (incl. RSXXX)
- High Reliability System Controller
- QSPI Flash (NOR)
Q7 Bottom

- Up to 32 GB of Flash
- Another 32 GB of Flash
- Mezzanine Connectors (incl. RSXXX & USB)
NAND Flash, MicroSD

- NAND vs. NOR: NAND flash is a relatively high density memory
- NAND vs. NOR: NAND is relatively fast (~166 MB/s vs. ~1.5 MB/s)
NAND vs. NOR: NAND flash is a relatively high density memory
NAND vs. NOR: NAND is relatively fast (~166 MB/s vs. ~1.5 MB/s)
NAND vs. NOR: NAND flash bit error rate is higher
NAND vs. NOR: NAND flash component error rate is higher
NAND Flash, MicroSD

- NAND vs. NOR: NAND flash is a relatively high density memory
- NAND vs. NOR: NAND is relatively fast (~166 MB/s vs. ~1.5 MB/s)
- NAND vs. NOR: NAND flash bit error rate is higher
- NAND vs. NOR: NAND flash component error rate is higher
- To mitigate these errors MicroSD cards have a “flash translation layer” (FTL) that consists of
 - Controllers that implement error correction and wear leveling
 - Memory areas that store error correcting codes and FTL controller configuration
NAND Flash, MicroSD

- NAND vs. NOR: NAND flash is a relatively high density memory
- NAND vs. NOR: NAND is relatively fast (~166 MB/s vs. ~1.5 MB/s)
- NAND vs. NOR: NAND flash bit error rate is higher
- NAND vs. NOR: NAND flash component error rate is higher
- To mitigate these errors MicroSD cards have a “flash translation layer” (FTL) that consists of
 - Controllers that implement error correction and wear leveling
 - Memory areas that store error correcting codes and FTL controller configuration
- These mitigations are appropriate for the terrestrial, COTS use-case but additional errors occur in space
 - Core NAND flash components?
 - FTL controller?
 - FTL controller configuration memory?
Xiphos Experience

In Orbit Observations

- Xiphos has supplied spacecraft developers with (Micro)SD equipped processors for LEO applications since 2006. Examples:
 - Cameras systems for SpaceQuest and Bigelow Aerospace Genesis-1/2
 - AIS payload processors for SpaceQuest
 - Payload monitoring and networking for the OSTEO-4 experiment on ISS
- Failures are rare but do occur
- Symptom: card information and status register queries result in responses but corrupted values
- Vendor feedback: controller firmware corruption resulting in device factory reset
- Perfect correlation: a rise in power consumption of ~100 mA @ 3.3 V
- This rise is about twice the expected peak current during SD write operations but much lower than the threshold required to trip standard latch-up protection
- This is a condition known as “low-current latch-up”
Xiphos Experience

Radiation Test Observations

- Xiphos tested (Micro)SD cards and Xiphos processor cards against the Proton Irradiation Facility (PIF) at TRIUMF in 2004, 2011, 2012, 2014

- Test goals:
 - Detect weaknesses in Xiphos designs
 - Characterise the radiation events that produce SD card failures
 - Characterise the SD card failures themselves

- Observed failures:
 - Temporary, transient write errors (low-current latch-up)
 - Temporary, multi-sector data corruption (low-current latch-up)
 - Destruction (one observation) (30 krad TID)

- Radiation:
 - Transient errors can occur at relatively low doses e.g. 2 – 5 krad
 - One campaign actively sought to find some “sweet spots” e.g. errors occur within 100 s under a 63 MeV bean at 6 nA
Xiphos Experience

Radiation Tests
Xiphos Experience

Radiation Tests
Xiphos Experience

Radiation Tests
Xiphos Fault Mitigation Techniques

- Xiphos developed techniques for protecting (Micro)SD card data from radiation upsets
- These are predicated on both flight and test experience
Xiphos Fault Mitigation Techniques

• Xiphos developed techniques for protecting (Micro)SD card data from radiation upsets
• These are predicated on both flight and test experience
• Software-based, robust storage mechanism:
 • Linux kernel module implementation (xdm_replicate)
 • Provides a robust virtual block device via combination of multiple non-robust devices
 • Detects and repairs corrupted sectors
Xiphos Fault Mitigation Techniques

• Xiphos developed techniques for protecting (Micro)SD card data from radiation upsets
• These are predicated on both flight and test experience
• Software-based, robust storage mechanism:
 • Linux kernel module implementation (xdm_replicate)
 • Provides a robust virtual block device via combination of multiple non-robust devices
 • Detects and repairs corrupted sectors
• Low-current latch-up detection:
 • ProASIC3 monitors MicroSD card power consumption
 • Automatic shutdown is triggered when the overcurrent condition is detected
 • Reaction time is < 1 microsecond
 • Extremely effective according to the 2014 TRIUMF test campaign

©2015 Xiphos Systems Corp.
Xiphos Experience

Low-Current Latch-Up Detection

AP-001 #11 - Power-Off

SD Current (mA)

Time (sec)

©2015 Xiphos Systems Corp.
Xiphos Fault Mitigation Techniques

- MicroSD FTL controller reconfiguration
 - With MicroSD manufacturer cooperation it may be possible to modify/reconfigure FTL controller firmware “in the field”
 - Xiphos has had positive response from one manufacturer and is looking at ways to develop this capability
Xiphos Fault Mitigation Techniques

• MicroSD FTL controller reconfiguration
 • With MicroSD manufacturer cooperation it may be possible to modify/reconfigure FTL controller firmware “in the field”
 • Xiphos has had positive response from one manufacturer and is looking at ways to develop this capability

• Robust design!
 • Store critical firmware and software in redundant, error corrected NOR flash
 • Store payload data to redundant MicroSD cards
 • Keep MicroSD cards unpowered when not in use
Summary

- Xiphos...
 - Has flown SD and MicroSD cards for almost 10 years
 - Observed SD card failures in orbit
 - Tested SD cards at TRIUMF since 2004
 - Designed techniques to protect SD card data from radiation upsets
 - Low-current latch-up detection
 - Software-based robust storage mechanism for corrupted sector detection and repair
 - FTL controller firmware reconfiguration (in progress)
 - Tested low-current latch-up detection and software-based robust storage
- Xiphos is confident that event detection techniques and robust design elements can permit long term and reliable use of MicroSD cards in orbit

©2015 Xiphos Systems Corp.
Contact

• For more information, please contact:

 Stephane Germain
 Xiphos Technologies
 Tel: 514-847-9474 x205
 Cell: 514-573-9127
 Email: stephane.germain@xiphos.com

• Or visit www.xiphos.com