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ABSTRACT

In this work, continuum kinetic formulations are employed as a mechanism to include closure physics in an extended magnetohydrodynamics
model. Two continuum kinetic approaches have been implemented in the plasma fluid code NIMROD [Sovinec et al., “Nonlinear
magnetohydrodynamics with high-order finite elements,” J. Comput. Phys. 195, 355 (2004)] including a Chapman–Enskog-like (CEL) formula-
tion and a more conventional df approach. Ion kinetic closure schemes are employed to describe the neoclassical flow properties in axisymmetric
toroidal geometry. In particular, predictions for steady-state values of poloidal flow profiles in tokamak geometry are provided using both the df
formulation and two different solution techniques for the CEL approach. These results are benchmarked against analytic theory predictions as
well as results from the drift kinetic code DK4D. The continuum kinetic formulations employed here show agreement with both the analytic the-
ory and DK4D results, and offer a novel velocity space representation involving higher-order finite elements in pitch angle.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054978

I. INTRODUCTION

Fluid-based models are commonly employed to describe macro-
scopic plasma behavior in toroidal confinement devices. However,
many important phenomena require the inclusion of kinetic physics.
Important examples of tokamak physics that require the inclusion of
kinetic effects include the neoclassical tearing mode1–7 and the resistive
wall mode (RWM).8–12 For the RWM, the properties of the poloidal
and toroidal rotation profiles impact stability predictions.11,12

Nonlinear field error penetration by resonant magnetic perturbations
(RMPs) in tokamaks is also impacted by macroscopic flow dynam-
ics,13–15 which requires a neoclassical (preferably kinetic) treatment to
provide a comprehensive prediction for the flow evolution. In the fol-
lowing, we describe efforts to incorporate important kinetic theory-
based physics into extended magnetohydrodynamic (MHD) models
using a coupled continuum kinetic approach to describe ion dynamics.
In particular, this work concentrates on predictions for poloidal flow

profiles in tokamak geometry using continuum kinetic models in
NIMROD.16 These predictions are benchmarked against analytic the-
ory and prior drift-kinetic calculations.17

Two continuum drift kinetic models are currently implemented
in the plasma fluid code NIMROD: a more conventional df imple-
mentation18 and a Chapman–Enskog-like (CEL) implementation.19

The CEL approach19–21 allows for a tight, self-consistent coupling
between the fluid equations and the kinetics by specifying that the
number density (n), temperature (T), and flow velocity (u), which are
separately evolved by the fluid equations, be contained in the zeroth-
order (in d � q=L, where q is the Larmor radius and L is a macro-
scopic length scale) evolving Maxwellian distribution function. The
first-order distribution function then has no density, momentum, or
temperature moment. Closure quantities in the fluid equations (not n,
T, or u) are found by taking appropriate velocity moments of the first-
order kinetic distribution function.
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In NIMROD, the df implementation has been sufficiently bench-
marked,16 but the CEL implementation is relatively new. The goal of the
CEL implementation is to enable rigorous kinetic closure of NIMROD’s
fluid model, which is not possible with the conventional df approach for
the simple reason that the n, u, and Tmoments of the kinetic distortion
in this approach are non-zero. This allows the possibilities of inconsis-
tencies developing between those moments of the kinetic distortion and
the fluid variables. For these reasons, the conventional df approach is
not suitable for computing bulk closures in extended MHD modeling.
Whereas the CEL approach provides consistency in closures for bulk
species, the df approach is still useful for coupling a minority species,
like energetic ions, into NIMROD. However, in the present work, we
use the df method as simply another approach in computing the bulk
ion poloidal flow offset. Before testing the full fluid/kinetic coupling of
the CEL implementation however, we first benchmark the solely kinetic
aspects of the formulation. This allows us to test subtle details of the for-
mulation, such as the feasibility of incorporating moments of the kinetic
distortion in the kinetic equation in a fully time-implicit fashion, among
others. Note a time-implicit approach is used for all the solution meth-
ods herein. We demonstrate herein two methods for solving the CEL
drift kinetic equation (DKE) in NIMROD. We refer to them as the
DK4D approach and the collisional drive approach. Along with the df
approach, we then have three different ways of kinetically solving for
the poloidal flow in NIMROD.

The damping of poloidal flows in tokamaks is fundamentally
kinetic in nature. In the banana collisionality regime, it arises from the
collisions of “passing” particles (which carry the poloidal flow) with
“trapped” particles.22,23 Examining the poloidal flow profiles provides
a simple way to test the kinetic aspects of our implementations.
Specifically, we look at the value for the steady-state ion poloidal flow
coefficient, a, which is defined as follows:

a ¼ � ui � rh
B � rh

ehB2i
IðdTi=dwÞ

; (1)

where Ti is the ion temperature, B is the magnetic field, B ¼ jBj, h is
the poloidal angle, e is the elementary charge unit, w is the poloidal
magnetic flux normalized by 2p; IðwÞ ¼ RB/ with R the major radius
and B/ the toroidal component of the magnetic field, and brackets
represent the flux-surface average defined as

hf ðw; hÞi ¼
ð2p
0

f ðw; hÞdh
B � rh

�ð2p
0

dh
B � rh

: (2)

This definition for a is standard in neoclassical theory. For r � ui ¼ 0
[which will be true in the steady state to OðdÞ, see Eqs. (3) and (9)
below], the quantity ui � rh=B � rh (and hence a) can be shown to be
a flux function.22,23 Analytically, the value of a can be obtained using a
moment approach, where needed viscosity coefficients are found
through a solution of the drift kinetic equation in each asymptotic
regime. Details for these calculations are provided in Refs. 22–24.
Herein, computational predictions of a are compared against analytic
predictions. We also compare our numerical results for a to those
from another drift kinetic code, DK4D.17 DK4D implements a similar
CEL drift kinetic equation and allows for code comparison of the axi-
symmetric, steady-state results presented here.

II. ASSUMPTIONS AND PRELIMINARIES

The axisymmetric equilibrium magnetic field has the form

B ¼ IðwÞr/þr/�rw; (3)

and, along with the zeroth-order total pressure, satisfies the
Grad–Shafranov equation. In this work, the magnetic field is station-
ary, and the zeroth-order ion pressure, pi0, is exactly half of the zeroth-
order total pressure, p0. For a given equilibrium, we have the freedom
to partition pi0 between ni0 and Ti0, allowing us to explore different
collisionality regimes. For further details on the equilibria used, see
Sec. VI.

NIMROD uses a right-handed (R, Z, /) cylindrical coordinate
system in physical space. In velocity space, we use n � vk=v and
s � v=vTi, where v is speed, vk is velocity along the magnetic field,
vTi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti0=mi

p
is the ion thermal speed, Ti0 is the zeroth-order ion

temperature, and mi is the ion mass. We assume protons for the ions
in this work.

For testing purposes, we restrict ourselves to axisymmetric geom-
etry and quote steady-state values from the simulations when perform-
ing the benchmarks. A study of time dependent effects, already
implemented in NIMROD, is forth coming.

III. KINETIC CLOSURES IN FLUID EQUATIONS.

We here demonstrate what kinetic closures would look like in the
fluid equations for the general case and when evolving all quantities in
time. To first-order in d, the fluid equations for the ions take the
form19

@ni
@t
þr � ðniuiÞ ¼ 0 (4)

for number density,

mini
@ui
@t

� �
¼ �rðniTiÞ � r � ððpik � pi?Þðbb� I=3ÞÞ

þ eniðEþ ui � BÞ; (5)

for flow velocity, and

3
2
ni

@Ti

@t
þ ui � rTi

� �
¼ �r � qikbþ

5niTi

2eB
b�rTi

� �
�niTiðr � uiÞ; (6)

for temperature. Here, b ¼ B=B, I is the identity tensor, E is the elec-
tric field, ðpik � pi?Þ is the difference between the parallel and perpen-
dicular pressures, and qik is the parallel heat flux. Note that we employ
the ordering ui � OðdÞ herein, so the convective derivative term is
neglected in Eq. (5).

In extended MHD calculations, the total momentum balance
equation is often used in place of Eq. (5). Due to quasineutrality, it
does not contain a contribution from the electric field. Instead, the ion
viscosity,18,19,25

Pi1 ¼ ðpik � pi?Þðbb� I=3Þ; (7)

is critical and dominates the corresponding electron viscosity. It thus
provides the dominant kinetic addition to the total momentum bal-
ance equation. With an appropriate closure for the electron pressure
in the total momentum balance equation, and with an appropriate
Ohm’s law to govern the time evolution of the magnetic field,
what then remains is to close for ðpik � pi?Þ and qik in the fluid equa-
tions. In a solely fluid approach, heuristic closures can be used for
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ðpik � pi?Þ and qik. However, when coupled with kinetics, these quan-
tities can be rigorously specified throughOðdÞ as

ðpik � pi?Þ ¼ 2pmiv
5
Ti

ð1
0
dss4

ð1
�1

dnP2ðnÞfi1 (8)

and

qik ¼ pmiv
6
Ti

ð1
0
dss5

ð1
�1

dnP1ðnÞfi1; (9)

where P1ðnÞ and P2ðnÞ are the first and second-order Legendre poly-
nomials in n, and fi1 is the first-order ion distribution function. Note
that the macroscopic flow (ui) does not appear in Eqs. (8) and (9)
because it is ordered as OðdÞ.

IV. POLOIDAL FLOW

We define Uih � ui � rh=B � rh. Uih can be obtained by assum-
ing that the lowest-order perpendicular flow is given by the sum of the
diamagnetic and E� B flows, namely,

ui1 ¼ ui1k þ ui1? ¼
ui1k
B

Bþ p0i0
eni0
þ /00

� �
B�rw

B2

� �
; (10)

from which Uih is easily found to be

Uih ¼
ui1k
B
þ I
B2

p0i0
eni0
þ /00

� �
: (11)

Here, /0 is the zeroth-order electric potential, and prime (0) signifies
d=dw. As is standard in neoclassical theory, the stress tensor contribu-
tion to the perpendicular flow (which is one order higher in d) has
been omitted in Eq. (10).

The poloidal flow constant a, which is proportional to Uih [see
Eq. (1)], depends on both the trapped fraction,

ft ¼ 1� 3
4
hB2i

ð 1
Bmax

0

kdk

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kB
p

i
; (12)

where Bmax is the maximum value for B on a given flux surface and
k � v2?=ðv2BÞ (with v? the velocity perpendicular to B), and the
collisionality,

�?i ¼
e4ni0 lnKii

4p�20m
2
i v

3
Ti�

3=2
� qR

vTi

� �
� �̂

�3=2
: (13)

Here, �0 is the permittivity of free space, � is the inverse aspect
ratio, lnKii is the Coulomb logarithm, q is the safety factor
(q ¼ hB � r/i=hB � rhi), and �̂ is defined for consistency with Ref.
17. There are two different analytic results for a that we use in the
banana regime (�? � 1). Both results are obtained by initially
letting22–24

fi1 ¼ �
IsnvTi

X
n0i0
ni0
þ e/00

Ti0
þ ðs2 � 3=2ÞT

0
i0

Ti0

� �
fMi þ g (14)

and expanding g in associated Laguerre polynomials Lð3=2Þk ðs2Þ of order
3/2. Here, X ¼ eB=mi is the gyrofrequency, and fMi ¼ ni0

v3Tip
3=2 e�s

2
is a

Maxwellian. Putting this into the df DKE (see Sec. VA), and taking
appropriate velocity moments, leads to a set of coupled equations for

the expansion coefficients. The first of these two analytic results in the
�? � 1 regime is given by Hirshman and Sigmar,22,23

aH�S ¼
�1:173

1þ 0:462ft=ð1� ftÞ
: (15)

The second is a more refined analytic approach given by Taguchi,24

where the analytic treatment uses the exact pitch-angle-scattering part
of the collision operator and expands the non-pitch-angle-scattering
part of the collision operator up to l¼ 3 in Legendre polynomials. This
differs from the Hirshman and Sigmar result,22 who also used the
exact pitch-angle-scattering part of the collision operator, but used a
model collision operator for the non-pitch-angle-scattering part [pro-
portional to P1ðnÞ]. For Taguchi’s formula, see Eq. (18) of Ref. 24.

V. KINETIC FORMULATIONS

Here, we discuss the two continuum drift kinetic implementa-
tions currently in NIMROD. The first uses the df kinetic approach,
where the distribution function fi1 beyond a static lowest-order distri-
bution is solved for, and relevant fluid quantities of interest are
obtained by taking appropriate moments. In the second, the CEL
implementation, the distribution function strictly contains informa-
tion needed to close NIMROD’s set of fluid equations. We will enu-
merate the details of, and some important distinctions between, the
two approaches in Subsections VA and VB.

A. df Approach

1. df Equation

In this work, the OðdÞ dfDKE18 solved in NIMROD is

@fi1
@t
þ nsvTib � rfi1 �

1� n2

2n
nsvTib � r lnB½ � @fi1

@n
� Cðfi1Þ

¼ � efi0 vD � rwð Þ
Ti0

p0i0
eni0
þ /00

� �
þ 5

2
� s2

� �
fi0
Ti0

vD � rwð ÞT 0i0 ;

(16)

where C is the full, linearized Fokker–Planck Coulomb collision opera-

tor, vD ¼ Ti0s2

eB ð1þ n2Þb�r lnBþ l0s
2Ti0

eB2 ½2n2J? þ ð1� n2ÞJk�, l0 is
the permeability of free space, J? and Jk are the perpendicular and
parallel current densities [Jk ¼ ð1=l0Þb � r � B, and J? ¼ J� Jk],
and fi0 is the zeroth-order ion distribution function which is a station-
ary Maxwellian (fi0 ¼ fMi). For further details on the collision opera-
tor, see the Appendix and Refs. 16 and 26. In deriving this equation, it
was assumed that vk � r/1 ¼ 0, a common assumption in neoclassi-
cal transport literature.22,23

2. Specification for /00

It can be seen from Eq. (16) that the df approach still requires
specification for the electrostatic potential. As we show subsequently
though, the choice for /00 does not affect the result for the steady-state
poloidal flow. It will, however, affect the general flow dynamics; thus,
there is the need for a specification for /00. Although it is not needed
for the results in this paper, we briefly summarize the specification
method that would be used for general calculations in the df approach.
For our purpose, we use an approach that does not require coupling to
an electron evolution equation (or a subsequent Poisson solve).
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From the addition of the first-order electron and ion momentum
equations, and under the assumption of axisymmetry, we obtain

mini0
@ðRui1/Þ

@t
þmene0

@ðRue1/Þ
@t

¼ �
X
j¼i;e

R/̂ � r �Pj1; (17)

where we have neglected the presence of any second-order currents,
consistent with Grad–Shafranov solutions defining the magnetic field.
We then take the flux-surface average of Eq. (17) [noting the form for
Pj1 from Eq. (7)] to obtain

mini0
@hRui1/i

@t
þmene0

@hRue1/i
@t

¼ 0: (18)

Assuming that the flux surface-averaged electron flow does not change
on too small of a timescale so that we can omit the second term, which
is Oðme=miÞ, we obtain

mini0
@hRui1/i

@t
	 0: (19)

Equation (19) is similar to the result used in Refs. 27 and 28, but
therein the authors used simply that

@ui1/
@t
¼ 0:

Dotting R/̂ into Eq. (10), and then flux-surface averaging, we obtain
the constant

hRui1/i ¼ I
ui1k
B

D E
� I2

B2
h

B2B2
/

* +
p0i0
eni0
þ /00

� �
; (20)

where Bh � B � rh=jrhj. Choosing hRui1/i is equivalent to
choosing the initial perpendicular flow. A simple choice is hRui1/i
¼ Ihui1k=Bit¼0, which is equivalent to specifying that the initial per-
pendicular flow is zero. With this choice, we obtain

/00 ¼

ui1k
B

D E
�

ui1k
B

D E
t¼0

I
B2

h

B2B2
/

* + � p0i0
eni0

; (21)

and therefore we have a specification for /00 to use in Eq. (16).

3. Solution methodology

Major details of the continuum df implementation are contained
in Ref. 16. To obtain the first-order parallel ion flow from fi1, we use
the formula

ui1k ¼
1
ni0

ð
d3vvkfi1 ¼

2pv4Ti
ni0

ð1
0
dss3

ð1
�1

dnP1ðnÞfi1: (22)

This equation is nothing more than the definition of the appropriate
moment needed to obtain the parallel flow.

To get Uih from the ion distribution function, we here show that
the specification of /00 does not affect the result for the steady-state
poloidal flow. We first substitute Eq. (14) into Eq. (22). From Eq. (11),
one can see that only g will contribute to the poloidal flow. Then, upon
substituting the ansatz [Eq. (14)] into the steady-state version of

Eq. (16), we find that /00 cancels out of the equation. So the steady-
state equation for g does not depend on /00, and therefore the steady-
state poloidal flow does not depend on the specification of /00. For
convenience, we set /00 ¼ �p0i0=ðeni0Þ (having the E� B flow exactly
cancel the diamagnetic flow). From the result of Eq. (11), this then
immediately gives that Uih ¼ ui1k=B, which indicates how to get Uih

from fi1. Note, this formula for Uih only applies because of our choice
of /00. Once Uih is obtained, a is easily obtained from Eq. (1).

B. Chapman–Enskog-like (CEL) Approach

There are a few key differences between the CEL and the conven-
tional df approach. The first is that the lowest-order distribution func-
tion in the CEL method is a flow-shifted Maxwellian, defined in terms
of the total number density, temperature, and flow-velocity (as opposed
to just the zeroth-order equilibrium values). In the full CEL approach,
these fluid quantities are then evolved using the fluid equations. One
consequence of this is that the first-order distribution function must sat-
isfy the constraints,

Ð
d3vfi1 ¼

Ð
d3vvfi1 ¼

Ð
d3vv2fi1 ¼ 0. These con-

straints are enforced by the kinetic equation (as can be seen by taking
appropriate velocity moments of the DKE).29 In order to monitor error
in the numerics, however, we compute the ni, ui, and Ti moments of fi1
as a diagnostic in NIMROD. Convergence studies indicate that the mag-
nitude of these moments decrease as resolution is added, thus preserving
the analytic properties of the CEL formulation. For the CEL-DKE used
here, the velocity is also defined in the macroscopic flow reference
frame.19

1. CEL Equation

In this section, we state the CEL-DKE to first-order in di � qi=L,
which is sufficient for processes that evolve on the diamagnetic drift
timescale or faster.19,29 The full O(di) CEL-DKE is currently coded in
NIMROD. However, with our assumptions of an axisymmetric config-
uration, and assuming ni and Ti are stationary flux functions, the CEL-
DKE for the ions simplifies to

@fi1
@t
þ nsvTib � rfi1 �

1� n2

2n
nsvTib � r lnB½ �@fi1

@n
�C fi1ð Þ

¼ nsvTi
niTi

2
3
b � r pik � pi?ð Þ� pik � pi?ð Þb � r lnB

� ��

þP2ðnÞ
2
3
s2 r � ui � 3b � b � rui½ �ð Þ þ 2

3niTi
s2 � 3

2

� �
r � qikb
	 


þ I
3eB

1
2
P2 nð Þ2s2 2s2 � 5ð Þþ4s4 � 20s2 þ 15

� �
b � r lnB

dTi

dw

�
fMi;

(23)

where vTi and fMi are now defined with the full number density and
temperature, ni and Ti. Further simplification occurs by assuming that
the ion flow equals the neoclassical value, ui ¼ UihB� R2r/ðp0i=
ðeniÞ þ /00Þ and that the ion parallel heat flux equals the

Pfirsch–Schluter-like return component, r � ðqikbÞ ¼ �r � 5niTi
2eB b

�
�rTiÞ. The heat flux assumption is required for consistency when
not evolving temperature17 [see Eq. (6)]. With these two assumptions,
the CEL-DKE becomes
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@fi1
@t
þ nsvTib � rfi1 �

1� n2

2n
nsvTib � r lnB½ � @fi1

@n
� C fi1ð Þ

¼ nsvTi
niTi

2
3
b � r pik � pi?ð Þ � pik � pi?ð Þb � r lnB

� ��

�2P2 nð Þs2Uihb � rB

þ 2I
3eB

P2 nð Þ þ 2ð Þs2 s2 � 5
2

� �� �
b � r lnB

dTi

dw

�
fMi : (24)

2. Solution methodology I—DK4D approach

For this solution approach, we follow the method that is used in
the DK4D code.17 Because Eq. (24) is linear, it can be solved separately
for each of the two non-moment drive terms. The sum satisfies Eq.
(24) and can be written

fi1 ¼ fi1;Uih þ fi1;T 0i ¼ gUihUih þ gT 0i ðIT
0
i=eÞ; (25)

where fi1;Uih is the solution with only the Uih drive term in Eq. (24),
and fi1;T 0i is the solution with only the T 0i drive term in Eq. (24). For
convenience, we also define gUih � fi1;Uih=Uih and gT 0i � fi1;T 0i =ðIT

0
i=eÞ.

Two versions of Eq. (24), one for each of the non-moment drives on
the right-hand side, are evolved in time, namely,

L gUihð Þ ¼
nsvTi
niTi

2
3
b � r pik � pi?ð ÞjgUih� pik � pi?ð ÞjgUih b � r lnB

� ��

�2P2 nð Þs2b � rB
�
fMi; (26)

for gUih , where L represents the linear operator on the LHS of Eq. (24)
and

ðpik � pi?ÞjgUih ¼ 2pmiv
5
Ti

ð1
0
dss4

ð1
�1

dnP2ðnÞgUih (27)

and

L gT 0ið Þ ¼
nsvTi
niTi

2
3
b � r pik � pi?ð ÞjgT0

i

� pik � pi?ð ÞjgT0
i

b � r lnB

� ��

þ 2
3B

P2 nð Þ þ 2ð Þs2 s2 � 5
2

� �� �
b � r lnB

�
fMi; (28)

for gT 0i , where

ðpik � pi?ÞjgT0
i

¼ 2pmiv
5
Ti

ð1
0
dss4

ð1
�1

dnP2ðnÞgT 0i : (29)

The full solution to Eq. (24) is then given by Eq. (25). Then using the
fact that hðpik � pi?Þb � rBi ¼ 0 in the steady state (when neglecting
ion–electron collisions), and evaluating the ðpik � pi?Þ moment with
the full fi1 from Eq. (25), we obtain

Uihh pik � pi?ð ÞjgUih b � rBi þ ðIT
0
i=eÞh pik � pi?ð ÞjgT0

i

b � rBi ¼ 0:

(30)

This then gives Uih as

Uih ¼
�ðIT 0i=eÞh pik � pi?ð ÞjgT0

i

b � rBi

h pik � pi?ð ÞjgUih b � rBi
; (31)

and a is immediately found from Eq. (1). As can be seen from Eqs.
(27), (29), and (31), this method uses a ratio of appropriate P2ðnÞ
velocity moments of the solution, which provides a contrast with the
next approach which will ultimately use an appropriate P1ðnÞ velocity
moment of the solution.

3. Solution methodology II—Collisional drive approach

There is a second solution methodology that can be used to find
the steady-state Uih from the CEL-DKE. This approach involves the
particular solution to the steady-state version of Eq. (23). When
neglecting collisions, the particular solution is19

fi1;p ¼
1

niTi

ð
dlk

2
3
b � r pik � pi?ð Þ pik � pi?ð Þb � r lnB

� ��

� miUihB
Ti

þ miI
eBTi

s2 � 5
2

� �
T 0i

� �
nsvTi

�
fMi ; (32)

where lk is length along the magnetic field. We can define the full solu-
tion as fi1 ¼ fi1;p þ hi. Putting this into Eq. (24), we obtain an equation
for hi,

nsvTib � rhi �
1� n2

2n
nsvTib � r lnB½ � @hi

@n
� C hið Þ

¼ �i2
3=2

	 
 21=2
s2vTi

IT 0i
eB

n 2s2 � 5ð Þ/err sð Þ þ 5s
d/err sð Þ

ds

� �
fMi ; (33)

where /errðsÞ � 2=
ffiffiffi
p
p	 
 Ð s

0 due
�u2 is the error function. Solving for hi

(see Sec. VII for a summary of the computational methods used
herein) and using the fact that

Ð
d3vvfi1 ¼ 0 for the CEL approach

leads to

Uih ¼
1
niB

ð
d3vnsvTihi; (34)

and again a is easily obtained from Eq. (1). An interesting observation
is that the moment required to obtain Uih from the solution here is
identical to the moment required in the conventional df approach
although the drive terms are different.

To summarize, in the interest of vetting the kinetic aspects of the
df and CEL implementations in NIMROD, we have represented three
different methods for obtaining a. With the df implementation, we
can obtain a through the parallel flow moment of fi1. With the CEL
implementation, we can obtain a through either the DK4D approach
or the collisional drive approach. The DK4D approach involves a ratio
of quantities that depend on the P2ðnÞ moments of gUih and gT 0i , and
the collisional drive approach involves a parallel flow moment of hi.

VI. EQUILIBRIA DETAILS

For this verification exercise, we use the same two JSOLVER30

Grad–Shafranov equilibria studied in Ref. 17. The first is a high aspect
ratio equilibrium with � � r=R0 ¼ 0:1 [see Fig. 1(a)], and the second
is an NSTX equilibrium [see Fig. 1(b)]. Here, ~w � ðw� waxisÞ=
ðwedge � waxisÞ is a normalized poloidal flux variable that varies from 0
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at the magnetic axis to 1 at the last closed flux surface. We note that
for the equilibria herein, ft is a monotonically increasing function of ~w.
The high aspect ratio equilibrium easily enables comparison with ana-
lytics, whereas the NSTX equilibrium is a more realistic equilibrium
with high jBj variation and high ft. We specify that the ion number
density has the profile ni0 ¼ naxisð1� ~wÞ0:75. For each equilibrium,
we vary the on-axis ion number density (naxis) to explore different col-
lisionality regimes, leaving pi0, and hence the Grad–Shafranov force
balance, fixed.

VII. COMPUTATIONAL METHODS

We will use Eq. (16) with /00 ¼ �p0i0=ðeni0Þ to illustrate how the
time-stepping scheme works. As in Ref. 16, we step all fi1 terms using
a H-centered implicit approach as follows:

cDfi1 þ DtHnsvTib � rðDfi1Þ � DtH
1� n2

2n
nsvTib � r lnB½ � @ðDfi1Þ

@n

� DtHCðDfi1Þ ¼ �DtnsvTib � rf k�1i1

þDt
1� n2

2n
nsvTib � r lnB½ � @f

k�1
i1

@n

þDtCðf k�1i1 Þ þ Dt
5
2
� s2

� �
fi0
Ti0

vD � rwð ÞT 0i0 ; (35)

where the superscript on fi1 refers to the time step, Dfi1 ¼ f ki1 � f k�1i1 ,
H will be set to one for all our cases, and c is a numerical term that is
either 0 or 1 (depending on whether one wants to step directly to the
steady-state solution or not). At each time step, we solve for Dfi1,
which we then add to f k�1i1 to get f ki1.

NIMROD uses a finite element (FE) representation in its poloidal
domain and a Fourier expansion in its toroidal direction. For more
details on this representation, see Ref. 31. Although the 3D terms in
Eqs. (16) and (23), and subsequent equations are implemented in

NIMROD, we only evolve the lowest-order (axisymmetric) Fourier
component herein.

In the s dimension, we use a collocation approach, where we
evaluate the kinetic equation at a set of collocation points in s.
We also use a set of orthogonal polynomials32 in s to expand the
s-derivative terms in the collision operator. In the n dimension, we
use either Legendre polynomials or 1D finite element (FE) basis
functions. For more details on the s and n representations, see Sec.
VII A and Refs. 16 and 26.

Once our basis is chosen, we follow the Galerkin approach by
multiplying the differential equation by the same set of basis functions
and then integrating to obtain a matrix equation. For further details,
see Refs. 31 and 16. This matrix equation is then solved in NIMROD
for the change in the coefficients of the distribution function over the
time step. For details on the numerical implementation of the full line-
arized Fokker–Planck Coulomb collision operator, see the Appendix
and Refs. 16 and 26.

A. Further details on n representation

In this work, we generalize the 1D FE method from Ref. 16. For
finite elements in n, we define a logical variable g such that it varies
from 0 to the total number of cells as n varies from�1 to 1. The map-
ping from g to n allows the velocity grid to vary depending on the
position in physical space, allowing the cell boundaries in n to vary.
This allows one to have cell boundaries in n that follow either approxi-
mately or exactly the trapped-passing boundary (tpb), which is crucial
for convergence in n when running in the banana collisionality
regime.

We definemg as the total number of FE cells,mgp as the number
of cells in the positive passing domain (which mirrors the number in
the negative passing domain), and mgt as the number of cells in the
trapped domain. Then the mapping from g to n is given as

FIG. 1. We use both a high aspect ratio (a) and an NSTX (b) equilibrium. p0 on axis � 8.0� 102 Pa in (a) and �2.3� 104 Pa in (b). In each subfigure, the normalized profiles,
safety factor, and ft are shown at the right, and flux surfaces and jBj contours are shown at the left. Note the high jBj variation and high ft for the NSTX equilibrium.
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n ¼

�cos htpg

mgp

 !
; 0 
 g < mgp

�cos htp þ ðp� 2htpÞ
g�mgp

mgt

� �
; mgp 
 g < mgp þmgt

cos
htpðg�mgÞ

mgp

 !
; mgp þmgt 
 g 
 mg;

8>>>>>>>>>>><
>>>>>>>>>>>:

(36)

where htp defines the spacing of the vertex nodes (cell boundaries) in
n. For uniform grid spacing in pitch angle [i.e., in cos�1ðnÞ],
htp � ðpmgpÞ=mg. To have the grid spacing be constant on flux surfa-
ces but to have the cell boundaries agree with the tpb on the outboard

midplane, htp ¼ cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Bmin=Bmax

p� 

. We call this an approxi-

mate tpb grid. For exact tpb grids, htp ¼ cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B=Bmax

p� 

,

where B(R, Z) is the local jBj. To prevent a trapped domain of zero
width on the inboard midplane for exact tpb grids, we set

htp ¼
cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B=Bmax

p� 

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B=Bmax

p
> dmin;

cos�1ðdminÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B=Bmax

p

 dmin;

8<
: (37)

where dmin is some small number (dmin � 0:01). For an illustration of
the exact tpb grid, see Fig. 2.

When using 1D finite elements (in the g coordinate), we use
either Lagrange polynomials with internal nodes uniformly spaced in
g or Gauss–Lobatto–Legendre (GLL) polynomials with internal nodes
non-uniformly spaced in g. The GLL set gives a natural packing
around the tpb (see Fig. 2).

No matter the representation used for n, we expand the distribu-
tion function as

f ki1ðR;Z;/; nðg;R;ZÞ; smÞ ¼
X
j

f ki1;j;n¼0ðg; smÞajðR;ZÞ; (38)

where n¼ 0 signifies the lowest order Fourier component, ajðR;ZÞ are
the 2D poloidal FE basis functions, sm is a specified speed point, and

f ki1;j;n¼0ðg; smÞ ¼
X
l

f ki1;j;l;m;n¼0QlðgÞ; (39)

where f ki1;j;l;m;n¼0 are the coefficients of the distribution function that
are advanced in time, and QlðgÞ are either the Legendre polynomials,
QlðgÞ ¼ PlðnÞ, or the 1D FE basis functions [using the mapping in
Eq. (36)]. Details on the collocation approach in speed may be found
in Refs. 16 and 26. We also note here that many drift kinetic codes,
including DK4D,17 NEO,33 and CQL3D,34 use a Legendre polynomial
expansion for their pitch angle variable.

The only other subtlety is that, when expanding the distribution
function in g, there is an additional term that appears in the DKE.
Specifically, we have by the chain rule that

b � rjnfi1 ! b � rjgfi1 þ
@fi1
@g

b � rg; (40)

where g ¼ gðn;R;ZÞ is the inverse of the mapping in Eq. (36). For
general cases, this extra term is non-zero for velocity grids that vary in
the poloidal plane.

Figures 3 and 4 show that for similar degrees of freedom (dof) in
n, at �? � 10�2, convergence in the result for the poloidal flow coeffi-
cient a is obtained for the exact tpb FE grid in n, but not when using
Legendre polynomials in n. Physically, this phenomnon is due to the
development of a discontinuity in the n derivative of fi1 in the steady-
state banana regime solution at the tpb22 (see Fig. 5). While velocity
grids that follow the exact tpb in velocity space have been used
before,34–36 to our knowledge, this is the first time they have been used
with a higher order FE basis of GLL polynomials in pitch angle in a
code that can simulate the whole physical domain.

VIII. NUMERICAL RESULTS AND DISCUSSION

Here, we show our numerical results for a and compare with
analytics and to results from DK4D.17 As a reminder, in NIMROD,

FIG. 2. Sample exact tpb FE grids on both the outboard and inboard midplanes, with three cells in g (mg ¼ 3), and mgp ¼ mgt ¼ 1. On the left, the cell boundaries corre-
spond to the tpb and are highlighted in red. On the right, the cell boundaries correspond only approximately to the tpb, with dmin 	 0:016. The sample grids here use 8 s points
and GLL polynomials in each cell of degree 7. We note the natural packing of the GLL nodes at the tpb.
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we can calculate a using either the DK4D approach, the collisional
drive approach, or the conventional df approach. Each of these
approaches can use various methods of numerical expansion for n, as
stated in Sec. VIIA. For the results herein, we compare two of these
methods: an exact tpb FE grid with GLL basis polynomials and
Legendre polynomials. Figures 6 and 7 show our a profiles for the
high aspect ratio equilibrium at both a higher collisionality
(�̂ � 1; naxis ¼ 1:0� 1019 m�3) and a banana regime collisionality
(�̂ � 10�4; naxis ¼ 5:0� 1017 m�3), respectively. Figures 8 and 9
show our a profiles for the NSTX equilibrium at both a higher colli-
sionality (�̂ � 1; naxis ¼ 2:0� 1020 m�3) and a banana regime colli-
sionality (�̂ � 10�4; naxis ¼ 1:0� 1019 m�3), respectively. We plot a
vs ft, which is a flux label for the equilibria used herein (see Fig. 1).

As can be seen from Figs. 6 and 8, excellent agreement is
obtained between all of NIMROD’s approaches and DK4D in the
regime of higher collisionality (�̂ � 1). At higher collisionality, details
of the collision operator are paramount, and so the high level of agree-
ment in this regime is an excellent result. In Fig. 6, we also plot the pla-
teau regime analytic result from Ref. 22. Differences can be seen
between the numerical results and the plateau analytic result.
However, the analytic result uses a model collision operator as well as
other approximations.22 In addition, at a �̂ of about 1, we are at the
edge of the plateau regime, rather than squarely inside it. The fact then
that the analytic result is as close to the numerical results as it is
(within about 8%) is encouraging.

In Figs. 7 and 9, all of NIMROD’s Legendre approaches agree
with each other, and all of NIMROD’s FE approaches agree with each
other. We also see some discrepancies between NIMROD’s

FIG. 3. Convergence in a, for the high aspect ratio (� ¼ 0:1) case with naxis ¼ 5:0� 1017m�3 (�? � 10�2). As can be seen on the left (a), 75� of freedom (dof) in n is still
insufficient for convergence in a when using Legendre polynomials. On the right (b), we can see that convergence in a is essentially obtained at only 58 dof in n when using
the exact tpb FE grid.

FIG. 4. The superior convergence of the exact tpb FE grid is shown above for the
high aspect ratio case (� ¼ 0:1) with �? � 10�2. Data taken from Fig. 3 at
ft 	 0:32.
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approaches, analytics, and DK4D. However, we again note here that
the Legendre polynomial in n cases is not converged at this low colli-
sionality. Obtaining convergence in the banana collisionality regime is
difficult with a Legendre basis, as we showed in Fig. 3(a). This occurs
because of the discontinuity of the n derivative of fi1 at the tpb. For
these cases, we simply went to the same maximum Legendre degree as
DK4D to enable comparison. Through looking at our simulations (see
Fig. 4), we have a reason to believe that with increasing Legendre
degree, NIMROD’s Legendre in n results will agree with the exact tpb
FE results. However, at the high Legendre degree required for

convergence in n, memory requirements impose constraints which
make these runs too computationally expensive to continue further.

We also note here that Figs. 7 and 9 do not include NIMROD’s
DK4D approach for the exact tpb FE grid. This is because in the
banana collisionality regime, when using the exact tpb FE grid,
NIMROD’s implementation of the DK4D approach develops a
numerical instability involving cell to cell oscillations in physical space
that washes out any attempt at a sensible solution. An ad hoc diffusion

FIG. 5. A contour plot of fi1 in velocity space
at R 	 10:67, Z¼ 0.0, and �? � 10�4.
Sharp variation in @fi1=@n at the tpb (shown
in red) is easily resolved by the exact tpb FE
grid with GLL polynomials.

FIG. 6. a profiles for the high aspect ratio case with �̂ � 1 show excellent agree-
ment between all of NIMROD’s numerical approaches and DK4D. The analytic
result shown is the plateau regime result from Hirshman and Sigmar.22

FIG. 7. a profiles for the high aspect ratio case with �̂ � 10�4. Here, Legendre
polynomial cases in NIMROD use a maximum degree of 57, as in DK4D. All
NIMROD exact tpb FE curves (green) agree between each other, as well as all
NIMROD Legendre curves (blue). Analytic (magenta) and DK4D (red) curves are
also shown.
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term seems to be able to fix this problem; however, it modifies the
solution in the low-collisionality, banana regime cases presented
herein. We have preliminarily implemented and tested an ad hoc dif-
fusion term for more relevant test cases that we will use in future
work, with positive results so far; however, this is a work in progress.

For the banana regime collisionality results, the analytics are also
seen to differ from the numerics both for NIMROD and DK4D. This
disagreement is partly due to the fact that we are not completely in the
deep banana regime. A �̂ � 10�4 translates to �? � 10�2 for the high
aspect ratio case and �? � 10�3 for the NSTX case. We have observed
that a �? of about 10�4 is required to be in the asymptotic regime
where the analytics are valid. It is also noted that Taguchi’s refined
analytic result,24 which goes to a higher Legendre expansion of the
non-pitch-angle-scattering part of the collision operator, gives better
agreement with our results than the Hirshman/Sigmar analytic formu-
lation. This shows that getting the collision operator right in an ana-
lytic formulation is important, even in the banana regime where
collisions at the tpb remain important.

For an additional comparison, we ran at �? � 10�4 for both the
high aspect ratio and NSTX equilibrium. We compare these results for
a (where we use the exact tpb FE grid in n) to Taguchi’s analytic for-
mulation in Fig. 10. Here, we see that when using our converged
results (both in resolution and �?) and Taguchi’s refined analytic for-
mula, the difference is reduced to less than 5%. This last discrepancy
might well be resolved by refining the analytic formulation even
further.

IX. CONCLUSIONS AND FUTURE WORK

As shown herein, we have successfully verified and benchmarked
several NIMROD continuum kinetic formulations. We have
compared the results for the poloidal flow coefficient a between the
different NIMROD formulations, analytics, and DK4D in various col-
lisionality regimes. Results agree very well between the approaches in
the higher collisionality regime (�̂ � 1). In the banana collisionality
regime (�̂ � 10�4), the results differ. However, it was noted that the
Legendre results are not converged in the banana regime, a familiar
problem in banana regime drift kinetics. It is also seen that going to
a refined analytic formulation for a—namely, using the Taguchi
formula—further reduces the discrepancy between NIMROD’s
numerical results and analytics to less than 5%.

The agreement of results in the higher collisionality regime indi-
cate the NIMROD’s general implementation of the collision operator,
which allows for several basis sets in 2D velocity space, most notably
the exact FE tpb grids, is accurate and efficient. A description of the
implementation and further verification may be found in Ref. 26.

Having verified the CEL-DKE solutions, further testing of the
fluid/kinetic coupling of the CEL approach is warranted before pursu-
ing relevant fusion-related questions using our continuum kinetic for-
mulation. One immediate planned area of focus will be to use the CEL
kinetic formulation in NIMROD to continue prior work on the effects
of nonlinear mode penetration by RMPs in tokamaks.15 This research
was previously done in a slab geometry using NIMROD’s fluid model
and a heuristic closure for the viscous stress tensor. Current contin-
uum kinetic capabilities would allow us to run in tokamak geometry
using our more rigorous closure for the viscous stress tensor.
Importantly, in the problem of time-dependent forced reconnection,
the needed ion viscosity for the closure scheme must incorporate

FIG. 8. a profiles for the NSTX case with �̂ � 1 show excellent agreement
between all of NIMROD’s numerical approaches and DK4D.

FIG. 9. a profiles for the NSTX case with �̂ � 10�4. Here, Legendre polynomial
cases in NIMROD use a maximum degree of 73, as in DK4D. All NIMROD exact
tpb FE curves (green) agree between each other, as well as all NIMROD Legendre
curves (blue). Analytic (magenta) and DK4D (red) curves are also shown.
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temporal dependence.28,37 Simplified viscosity models based on time-
asymptotic neoclassical viscosity calculations cannot rigorously model
these effects, but a fully coupled ion CEL-DKE/fluid model in
NIMROD can.

Overall, our verification efforts for the continuum kinetic formu-
lations in NIMROD have been a success, and we anticipate many
future applications to plasma and fusion-related problems of interest.
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APPENDIX: COLLISION OPERATOR SPECIFICS

For the simulations herein we use only the ion–ion portion of
the full, linearized Fokker–Planck Coulomb collision operator. The
ion–ion part is made up of a “test particle” term and a “field parti-
cle” term. The test particle part is given as

Cðfi1; fMiÞ ¼
�ii
2s3

/errðsÞ � vðsÞð Þ @

@n
ð1� n2Þ @fi1

@n

� �� �

þ �ii
s2
@

@s
vðsÞ s

@fi1
@s
þ 2s2fi1

� �� �
; (A1)

where vðsÞ ¼ ð/errðsÞ � s/0errðsÞÞ=ð2s2Þ is the Chandrasekhar func-
tion, and

�ii ¼
nie4 ln ðKiiÞ
4p�20m

2
i v

3
Ti
: (A2)

The numerical evaluation of Eq. (A1) is straightforward and
involves an integration by parts of the Lorentz term after multipli-
cation by the test function in the Galerkin approach (see Ref. 16).
The field particle part is given as

CðfMi; fi1Þ ¼
e4 ln ðKiiÞ
4p�20m

2
i

4pfi1 þ
2s2

v4Ti

@Gi

@s2
� 2

v2Ti
Hi

( )
fMi; (A3)

where Gi �
Ð
d3v0fi1jv � v0j and Hi �

Ð
d3v0fi1jv � v0j�1 are the

Rosenbluth potentials. The numerical evaluation of the Rosenbluth
potential integrals is nontrivial. The accurate and efficient evalua-
tion of Eq. (A3) is discussed in detail in Ref. 26.

We also note here that the exact definition of the Coulomb
logarithm does make a significant difference when running in
higher collisionality regimes. To be consistent with DK4D, we used
the same definition, namely,

ln ðKiiÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0Ti=ðnie2Þ

p
e2=ðp�0miv2TiÞ

 !
; (A4)

which differs from that in Ref. 23 by a factor of 2 inside the loga-
rithm. Equation (A4) differs from the NRL plasma formulary
definition,39

ln ðKiiÞ ¼ 23� ln
1
Ti

2� 10�6ni
Ti

� �ð1=2Þ" #
; (A5)

by as much as 7% for the higher collisionality (�̂ � 1) equilibria
used herein. This led to �5% or greater differences in our results
for a. In Eq. (A5), Ti is measured in eV without an implied

FIG. 10. Comparison of a profiles for �? � 10�4, with the Taguchi24 analytic formula. Here, we use an exact tpb FE grid in n with GLL polynomials, and the profiles agree
within 5%.
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Boltzmann factor multiplication, and ni is measured in m�3.
Equation (A5) is more typically used in NIMROD continuum
kinetic calculations.

DATA AVAILABILITY

The code used to produce the results contained in this study can
be found in the Tech-X NIMROD repository at https://ice.txcorp.
com/nimsvn/nimroot, Ref. 38. Input files that support the findings of
this study are available from the corresponding author upon reason-
able request.
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