Road Map

- Introduction

- Research Overview – Focus Areas
 - Heritage Method Deficiencies
 - Process Improvements

- Verification Methods
 - Component Level
 - System Level

- Future Work

- Conclusion

TBEx satellite CAD model
INTRODUCTION
BACKGROUND

- Solar Panel Lead, Michigan Exploration Laboratory
 - Characterize cells
 - Fabricate & test panels

- Fabricated solar panels for 3 institutions & missions:
 1. **MXL**: CADRE
 2. **CU-Boulder**: QB50
 3. **LASP**: MinXSS, Flight Model 2

- Surveyed common practices → identified areas of improvement

CADRE Flight Model
RESEARCH OVERVIEW
Research: Objective

Goal: Synthesize and refine best practices and procedures for solar panel fabrication to increase subsystem reliability and efficiency
– Target mission: MXL’s TBEx (delivery May 2017)

Focus areas:
– Solar cell tabbing
– Solar cell stringing
– Solar cell adhesion to PCB substrate
– Solar cell coverglass application
Research: Outcome

- Process improvements: increased **reliability, yield, and manufacturability** of solar panel subsystem
 - Reliability: key to use of CubeSats as meaningful tools of science
 - Single-day fabrication: can accommodate tight build schedules
 - To be implemented on MXL’s TBEx mission

TBEx proto-panels incorporating proposed procedures
CELL TABBING
Heritage Deficiencies and Process Improvements
Solar Cell Tabbing: Background

- **Cell type:** EMCORE Multi-Junction BTJM, bare
 - Require in-house integration of tabs and coverglass
 - Produce ~1 W per cell (nominal)
 - Bypass diode: prevents cell damage in case of shadowing
 - “M” interconnects: connect cells in series
Solar Cell Tabbing: Deficiencies

- **Low cell yield**
 - Multiple heating cycles (hot plate, reflow gun, soldering iron) → high incidence of cell shorting (10% rate per batch)

- **Required excess time**
 - ~10 min/cell

- **Required excess manpower**
 - 2 fabricators required

- **Required risky elements**
 - Weights on cell faces increased risk of cell fracturing
Solar Cell Tabbing: Improvements

- **High cell yield**
 - Decreased required heating cycles → shorting rate: reduced by 70%

- **Reduced tabbing time**
 - ~10 min/cell to ~3 min/cell

- **Reduced manpower**
 - 1 fabricator required

- **Eliminated risky elements**
 - No pressure on cell faces required
CELL STRINGING
Heritage Deficiencies and Process Improvements
Cell Stringing: Background

- Cells connected in series
 - Smaller power loss => more efficient
 \(P = I^2R \)

- Heritage: cells connected via direct soldering
 - Tabs connect negative pads with positive backside of adjacent cell
 - Design justification: maximize # of cells per PCB

CADRE deployable and body panel
Cell Stringing: Deficiencies

- **Difficult** to manufacture
 - Soldering directly to backside of cells → increased handling and incidence of shorting

- **Difficult** to repair
 - Difficult to de-integrate damaged cells → risk damage to other cells

- **Limited** cell orientation
 - Only vertical

CADRE deployable cell string
Cell Stringing: Improvements

- Easy to manufacture
- Easy to repair
- Versatile cell configuration: horizontal and vertical

Side-by-side comparison of decoupled panel (left) and heritage CADRE panel (right)

TBEx deployable, requires versatile cell placement
CELL ADHESION
Heritage Deficiencies and Process Improvements
Cell Adhesion: Background

- Heritage: cells adhered to PCB with silicon epoxy
Cell Adhesion: Deficiencies

- **High risk** of voiding
 - Uneven adhesive application → adhesive voiding → outgassing → panel damage

- **Lengthy** assembly time
 - Application time: 30-45 min/panel
 - Cure time: 4 hours

- **Prevented** cell de-integration

- Involved **extensive cleanup**

- **Required** **high costs**
 - $300 to populate 6-8 PCBs
Cell Adhesion: Improvements

- **Lower risk** of voiding
 - Demonstrated by IR data

- **Short** assembly time
 - Application time: 15 min/panel
 - Cure time: 0 hours!

- **Enabled** cell de-integration

- **Minimized** cleanup

- **Decreased** costs
 - $45 to populate 8-10 PCBs

Infrared imaging comparison of cell adhesion with epoxy (left) and Kapton tape (right)

De-integrating damaged cell from panel
COVERGLASS
Heritage Deficiencies and Process Improvements
Coverglass: Deficiencies

Heritage:
We didn’t have a procedure!

- Coverglass desirable because it:
 - Physically protects cells
 - Decreases cell degradation due to UV radiation, atomic oxygen degradation and high-energy particle radiation*

Coverglass: Improvements

- Developed **simple, robust procedure**
 - EPM 2420 Low Volatility General Purpose Silicon Adhesive
 - Application time: 5 min/cell
 - Curing time: 1 hr @ 65C
 - Resulted in power loss of < 2%

![Applying coverglass to cells with EPM 2420 Silicon Adhesive](image)
VERIFICATION METHODS

Component Level
Electroluminescence (EL) Testing

- Visual assessment of cell health
 - Dark regions: diode damage
 - Shorted cells: no electroluminescence

- Supplies voltage to cell in forward bias configuration

- Performed: post-tabbing, post-stringing, and post-integration onto PCB
Illumination Testing

- Characterization of cell performance in on-orbit luminosity conditions

- Measures current produced from cell when exposed to “sun-like” light source
 - Generates IV-curve \rightarrow calculates max power

- Performed: post-tabbing, post-stringing, and post-integration onto PCB
Infrared Testing

- Non-invasive method of detecting adhesive voiding
- Photo-documents heat dissipation in panel
 - Monolight flash = uniform heat source → air pockets (voids) dissipate heat more slowly → visible “hot spots”
- Performed: post-integration
VERIFICATION METHODS

System Level
Vibration Test: Background

- Two panels of six cells tested:
 1. With coverglass
 2. Without coverglass

- Performed: post-integration

- Panels on test pod → accelerometers on panels

- Tests run:
 - Sine sweeps: characterize resonant frequency
 - Random vibration: simulate launch conditions (11 and 22.5 G_{rms})
Vibration Test: EL Analysis

- No panel-wide structural debris/damage produced

Top Cell: Coverglass Panel
- EL testing reveals damage to cell with coverglass. Damage attributable to test set-up failure.
- Cause:
 - Test set-up failure. Accelerometer impacted cell face.
 - Coverglass prevented debris production

Top Cell: Non-Coverglass Panel
- EL testing reveals damage to cell without coverglass. Cause unknown.
- Cause:
 - Unconfirmed. Hypotheses:
 - Cell mishandling prior to vibe
 - Cell voiding near tabs
 - Requires further testing
Vibration Test: Illumination Analysis

- Confirmation of damage: 1 cell/panel
 - Step-like feature: indicative of bypass diode activation
 - Power output: ~1 W lost

Illumination Analysis

Post-vibration IV-curve, coverglass panel

Power Analysis

<table>
<thead>
<tr>
<th>Steps</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pre-Integration</td>
</tr>
<tr>
<td>B</td>
<td>Post-Vacuum Bag</td>
</tr>
<tr>
<td>C</td>
<td>Post-Vacuum Chamber</td>
</tr>
<tr>
<td>D</td>
<td>Post-Vibration Test</td>
</tr>
</tbody>
</table>

AIAA/USU Conference on Small Satellites

Sandberg
Thermal Vacuum Testing

- Results: Panels survived with 0.01W loss in power \(\rightarrow\) negligible

- Same test panels as vibration testing
 - Cells with damage replaced \(\rightarrow\) demonstration of de-integration feasibility

- Test conditions
 - Eight thermal cycles
 - Temperature: -45C to 60C
 - Vacuum: \(1 \times 10^{-6}\) torr
FUTURE WORK
Future Work

- Resolve non-coverglass cell fracturing cause
 - Observed post-vibration testing

Plan:
1. Construct design model of solar subsystem for TBEx (using same “as-built” procedures)
2. Subject panel to same vibration conditions
3. Assess reproducibility of damage
CONCLUSION
Conclusion

- Process improvements: increased **reliability**, **yield**, and **manufacturability** of solar panel subsystem
 - Reliability: key to use of CubeSats as meaningful tools of science
 - Single-day fabrication: can accommodate tight build schedules
 - To be implemented on MXL’s TBEx mission

TBEx proto-panels incorporating proposed procedures
Acknowledgements

- Dr. James Cutler: Michigan Exploration Laboratory Director
- Dr. Tim Smith: Faculty Advisor
- Emanuela Della Bosca, Brian Shaw, Gregorio Lopez, and Andrew Plave: Fabrication and test assistants
- Andrew Dahir: CU-Boulder QB50 Project Manager
- James Mason: LASP MinXSS Project Manager
BACK-UP SLIDES
Tape Integration Work Flow

Integrating cells with Kapton adhesion method
Why Do We Need Bypass Diodes?

- Bypass diodes prevent panel damage in case of shadowing

Shadowing scenario. Credit: PVEducation.

- Shadowed cell “current limits” string → excess power dissipates in shadowed cell, damages string
 - Bypass diode provides alternative current path
The Scoop on Solar IV-Curves

- **Open-circuit voltage** \((V_{oc})\): max voltage, array not connected to load
- **Short-circuit current** \((I_{sc})\): max current, output connectors shorted
- **Max power point**: \(I_{mp} \times V_{mp}\), normal operating conditions
- **Fill factor**: relationship between max power under normal operating conditions and \(V_{oc} \times I_{sc}\)
 - Reflects quality of array

Credit: Alternate Energy Tutorials
More Future Work

Resolve cell warping around side tab
- Observed post-vacuum bagging
- Suspected cause: localized height offset due to stacking of side tab on Kapton → potential voiding vulnerability

Possible remedy: cut away Kapton beneath tab
- Plan: Prepare & examine sample panel
Sneak Preview

Test panel with Kapton cut away beneath side tabs