Design, AIT, Launch & Early Operations of Galassia Nano-Satellite

National University of Singapore
Satellite and Airborne Radar Systems Laboratory

Eugene Ee, Ajie Nayaka Nikicio, Feng Dan, Goh Cher Hiang, Harsh Kamdar, Hassan Askari, Liaw Hwee Choo, Luo Sha, Zhang Runqi
Outline

- Executive Summary
- Mission Objectives
- System Overview
- Assembly, Integration and Testing
- Launch & Early Operations
- Preliminary Results
Executive Summary

- 1st NUS Nano-Satellite
- Student-Centric Nano-satellite Project (35 FYP Students, 2012-2015)
- 2U CubeSat Bus Design with Passive Magnetic Attitude Control
- 3 Mission Payloads
 - Primary 1: A Total Electron Content payload (TEC)
 - Primary 2: A Quantum Science payload from Centre For Quantum Technologies (CQT)
 - Secondary: Experimental Active Attitude Determination & Control Subsystem (ADCS)

- Successfully Launched on 16 Dec 2015 (NEqO, 15° inclination, 550km altitude)
- Status: All systems functional and Payload Exp in progress
Mission Objectives (1)

- Student built payload to acquire **Total Electron Content (TEC)** in the ionosphere above Singapore.

- Novel approach using **3 equally spaced tones** is used to acquire TEC.

 \[TEC = 5.97 \times 10^5 \times \frac{f_0^3}{f_m^2} \Delta \Phi \]

 Where, TEC is in the units of TECU = 10^{16} electrons/m², f_0 and f_m are the carrier and modulation frequencies, and \(\Delta \Phi \) is the phase difference between the signals on ground after mixing.

- Knowledge of TEC can be used to improve **GPS navigation** and **radio communication**.
Mission Objectives (2)

- The **Small Photon Entangling Quantum Systems** (SPEQS) developed by NUS Centre for Quantum Technologies (CQT) will be used to verify if quantum based communication is possible in space.

- Qualification of a quantum light source for use in space.
ADCS-EP is a student built secondary payload.

To conduct experiments on various attitude control which are useful for future missions.
System Overview

System Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>2U Cubesat</td>
</tr>
<tr>
<td>Dimension (mm)</td>
<td>$100 \times 100 \times 227$</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>1.64 (Measured)</td>
</tr>
<tr>
<td>Communication</td>
<td>UHF (436.4 MHz)</td>
</tr>
<tr>
<td>Power (W)</td>
<td>Max Consumption: 2</td>
</tr>
<tr>
<td>Battery</td>
<td>20 Whr (Li-Ion)</td>
</tr>
<tr>
<td>Solar Panels</td>
<td>GaAs Cells</td>
</tr>
<tr>
<td>Flight Computer</td>
<td>ARM 7</td>
</tr>
<tr>
<td>Attitude Control</td>
<td>Passive: Permanent Magnet & Hysteresis Rods</td>
</tr>
<tr>
<td>Orbit Altitude</td>
<td>550 km, 15 deg Inc Near Equatorial Orbit</td>
</tr>
</tbody>
</table>
Assembly, Integration and Testing (1)

- A customized **2-Model Philosophy** is used to Assemble, Integrate and Test Galassia.
 - Engineering Model ("FlatSat")
 - Flight Model
Assembly, Integration and Testing (2)
Assembly, Integration and Testing (3)

- **Flight Model Testing**
 - Done at ST Electronics (Satellite Systems)
 - Shaker & Thermal Vacuum Chamber in **Class 100K cleanroom**

- **Tests Conducted**
 - **Vibration Test**
 - Sinusoidal Vibration
 - Random Vibration
 - **Thermal Vacuum Test**
Assembly, Integration and Testing (4)

- **Test Levels**
 - *Tests on Flight Model done at Protoflight Model Levels (i.e. Qualification Level at Acceptance Duration).*

- **Test Campaign (29th July – 09th Sept 2015)**
Assembly, Integration and Testing (5)

- Test Campaign (29th July – 09th Sept 2015)

Galassia Vibrational Tests

Galassia Thermal Bake
Thermal Vacuum Test

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Cycle</td>
<td>Hot</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>25°C</td>
</tr>
<tr>
<td>Vacuum Pressure</td>
<td>10^{-5} Torr</td>
</tr>
<tr>
<td>No. of Cycles</td>
<td>2</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>1 hour cold soak</td>
</tr>
<tr>
<td></td>
<td>1 hour hot soak</td>
</tr>
<tr>
<td>Temperature Ramp</td>
<td>1°C/min</td>
</tr>
<tr>
<td>Range</td>
<td>-15°C to +35°C</td>
</tr>
</tbody>
</table>

Galassia During Thermal Vacuum Test
Assembly, Integration and Testing (7)

- Thermal Vacuum Test Profile
Launch & Early Operations (1)

- Launch Site Integration at Sriharikota, India
Launch & Early Operations (2)

- PSLV-C29 Launch on 16th Dec 2015, 2030 Hrs SGT
- First signal received on 16th Dec 2015, 2218 Hrs SGT
Preliminary Results (1)

- **Temperature Data from In Orbit Test**

 ![Graph showing temperature data](image)

 1 Feb 2016
 20:34hrs — 22:09 SGT

 Internal Temperature
 Min: **2.5 °C**
 Max: **25 °C**

 Solar Panel Temperatures
 Min: **-21.5 °C**
 Max: **34.5 °C**
Preliminary Results (2)

- TEC Preliminary Test Data

Max. Elevation 82 deg

Peaked at -85 dBm with 15 dB SNR
Thank You

Questions?

Contact: Eugene Ee (eleewhe@nus.edu.sg)
 Harsh Kamdar (elehars@nus.edu.sg)