SWIMSat: Science Weather and Meteor Impact Monitoring using a Low-Cost 6U CubeSat

V. Hernandez, P. Gankidi, A. Chandra, A. Miller, P. Scowen, H. Barnaby, E. Adamson, E. Asphaug, J. Thangavelautham

Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory
Arizona State University
Presentation Outline

• Introduction to Space Hazards
 o Coronal Mass Ejections
 o Meteor Impacts
• Mission Overview
• Spacecraft Design Overview
• Challenges
• Project Future
Coronal Mass Ejections

Photo Credit: http://giphy.com/gifs/space-fire-sun-RCk2tX2HldzX2
Coronal Mass Ejections

Photo Credit: https://svs.gsfc.nasa.gov/11660
Meteor Impacts

Chelyabinsk, 2013
Meteor Impacts

SWIMsat Network Goals

- Meteor flux and distribution
- Publicly released data

Bolide Events 1994–2013
(Small Asteroids that Disintegrated in Earth’s Atmosphere)

Goals

Dedicated satellite network for space hazards:
- Real-time monitoring
- Provide alerts/warnings
- Forecasting*

*Provide minutes to hours forewarning
Mission Overview

- Low-cost 6U (36 x 24 x 12 cm) CubeSat
- Near continuous, autonomous monitoring
- Geostationary Orbit (GEO)
- 2 year mission
Mission Success

Success Criteria

– Successful detection of an M class solar flare event

Image Credit: NASA/ESA
Success Criteria

– Successful detection of at least one 0.1 kT or larger airburst

SWIMSat Spacecraft

Design

– Typical 6U bus/components
– Instruments
 1) Coronagraph
 2) Meteor camera
SWIMSat Spacecraft
Hardware Architecture

- Tyvak Intrepid Watchdog Set #1
- Tyvak Intrepid CD&H #1
- Tyvak Intrepid Watchdog Set #2
- Tyvak Intrepid CD&H #2
- Spacecraft Main Computer System
- Mirrored Data Storage
- 32 GB SD Flash Card
- Spacecraft Peripheral Computer System
- Space Micro CSP Peripheral Computer #1
- Space Micro CSP Peripheral Computer #2
- X-band Radio
- XACT Attitude Control & Determination
- Meteor Monitoring
- Solar Coronagraph
- Thermal Management
- Propulsion + Attitude Thrusters Cold Gas
- Solar Panel Gimbaling
On Board Algorithm
SWIMsat Conops

1. Deploy into GEO
 - L + 12 hrs

2. Calibrate Instruments
 - L + 15 days

3. Start Data Gathering
 - L + 45 days

4. Enter GEO Disposal Orbit
 - L + 770 days
<table>
<thead>
<tr>
<th>Mission</th>
<th>SWIMSat</th>
<th>MSat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>6U</td>
<td>3U</td>
</tr>
<tr>
<td>Number of Sats</td>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>Orbit</td>
<td>GEO</td>
<td>LEO</td>
</tr>
<tr>
<td>Science</td>
<td>CMEs, Meteors</td>
<td>Meteors</td>
</tr>
<tr>
<td>Earth FOV</td>
<td>Disk (5000 km)</td>
<td>Swath (1000 km)</td>
</tr>
<tr>
<td>Instruments</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Propulsion</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Challenges

• Low TRL
• Operation in GEO
• In-house development
• Meteor detection algorithm
Autonomy

• Space hazards are rare, but critical to detect
• Not feasible to perform continuous monitoring by humans
• Onboard autonomous algorithm for continuous monitoring/tracking
• Images and video of event transmit to ground
Next Steps

• Viability of prototype CubeSat for space hazard monitoring
• Coverage vs. altitude vs. launch opportunities
Next Steps

SWIMsat Mission Schedule

<table>
<thead>
<tr>
<th>Phase</th>
<th>Duration</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase A</td>
<td>2 Yrs</td>
<td></td>
</tr>
<tr>
<td>SCR</td>
<td>3/2/16</td>
<td></td>
</tr>
<tr>
<td>SRR</td>
<td>4/15/16</td>
<td></td>
</tr>
<tr>
<td>PMR1</td>
<td>8/12/16</td>
<td></td>
</tr>
<tr>
<td>PDR</td>
<td>Jan/Feb 2017</td>
<td></td>
</tr>
<tr>
<td>Phase B</td>
<td>2 Yrs</td>
<td></td>
</tr>
<tr>
<td>CDR</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>Phase C</td>
<td>1 Yr</td>
<td></td>
</tr>
<tr>
<td>Launch</td>
<td>TBA</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

UNP Team
• Sarah Means, Kate Yoshino, David Voss

SpaceTREx / SWIMSat
• Himangshu Kalita, Ravi Nallapu, Salil Rabade, Andrew Warren, Shota Ichikawa, Akshay Choudhari, Mercedes Herreras-Martinez
References

1. http://www.nasa.gov/content/goddard/the-difference-between-flares-and-cmes
THANK YOU!!!