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Introduction1

The storage effect, originally a theoretical hypothesis to explain how ecologically similar species2

could coexist by responding differently to environmental variability (Chesson & Warner, 1981;3

Shmida & Ellner, 1984), has developed into a core concept in community ecology (Mittelbach 2012)4

with empirical support from communities of prairie grasses (Adler et al., 2006), desert annual plants5

(Pake & Venable, 1995; Angert et al., 2009), tropical trees (Usinowicz et al., 2012) and zooplankton6

(Caceres, 1997). An essential step in this maturation was mathematical analysis (Chesson, 1994,7

2000a) that identified the conditions required for the storage effect to help stabilize coexistence of8

competitors. For the temporal storage effect, the focus of this paper, those conditions include (1)9

species-specific responses to environmental variability, (2) density-dependent covariance between10

environment and competition, and (3) buffered population growth.11

A second important step was development of quantitative measures for the contribution of the12

storage effect to coexistence (Chesson, 1994, 2000a, 2003). These measures go beyond demonstrat-13

ing that storage effect is operating, by quantifying how much it contributes to coexistence. In14

Angert et al. (2009), analysis of a model for competing annual plants with between-year varia-15

tion in germination and growth rates led to expressions for the community-wide average storage16

effect in terms of quantities that could be estimated from the data, such as variance components17

of germination rates.18

However, deriving the quantitative measures requires specialized and complicated calculations.19

Empirical case studies often require a new model, to capture the critical processes operating in that20

system, and thus a new mathematical analysis to obtain the necessary formulas (e.g. Usinowicz21

et al., 2012; Angert et al., 2009). This is in part because each model requires a new small-variance22

approximation. For example, models for competing annual plants with a seed bank were a focal23

example in Chesson (1994), but the first empirical application (Angert et al., 2009) required a24

more general model and an extensive new analysis (17 pages of online SI) to derive the necessary25

formulas.26

Another limitation is that analytic theory is mostly limited to unstructured population models,27

where each species is described only by its total abundance (total number, total biomass, etc.).28

But demographic data are increasingly analyzed using structured population models (e.g., ma-29
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trix (Caswell, 2001) and integral projection models (IPM) (Ellner et al., 2016)). Some theory for30

structured models is available (Dewi & Chesson, 2003; Yuan & Chesson, 2016), but again, empirical31

applications will require many different models.32

Here we show how to get around these limitations through a simulation-based approach. Storage33

effect theory (Chesson, 1994, 2003, 2008) tells us what quantities we need to compute, specifically34

covariances of components of population growth rates. We show how to calculate the values by35

doing Monte Carlo simulations, instead of deriving model-specific formulas. The simulations can36

be done with any model for competing populations in which population growth is determined by37

competition and environmental variability. We use the Chesson & Warner (1981) lottery model38

and a generic IPM to introduce ideas, and present two empirical applications: the four dominant39

species in Idaho sagebrush steppe (Adler et al. (2010); Chu & Adler (2015)), and two competing40

algal species in a chemostat with periodic temperature variation (Descamps-Julien & Gonzalez,41

2005). These examples illustrate our approach’s broad applicability.42

Two types of measure for the contribution of the storage effect have been developed. The first43

(Chesson, 1994) comes from the “mechanistic decomposition” of low-density population growth rate44

into storage effect, relative nonlinearity, average response to environment, and processes operating45

on shorter time scales. The second (Chesson, 2003, 2008) is the “community average” measure. We46

focus on the first because it identifies which species benefit from a storage effect, but the community47

average measure can also be calculated by our methods (see SI section Section SI.3).48

Storage effect theory49

Our approach is based on two key concepts from storage effect theory (Chesson, 1989, 1994, 2000a),50

which we now review.51

Storage effect theory assumes that the instantaneous population growth r(t) for each species52

j (see Box 1) can be written as a function of an environment-dependent parameter Ej(t) and the53

competitive pressure Cj(t). rj is assumed to be an increasing function of Ej , and a decreasing54

function of Cj . In the lottery model (Chesson & Warner, 1981) Ej is the per-capita fecundity of55

species j adults, and Cj is the number of new offspring in all species divided by the number of open56

sites.57
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The first key concept is that a storage effect occurs, and stabilizes coexistence, when a rare58

species escapes the damaging effects of EC covariance, i.e. covariance between environment and59

competition. Consider a two species community. Stable coexistence occurs if each species has60

a positive average population growth rate as an invader, facing the other species as resident (at61

relative abundance near 1). For storage effect to occur, EC covariance has to hurt a resident: when62

the resident has a good-E year, its competition C tends to be above-average, limiting population63

growth. This is a reasonable expectation, because a common species can’t avoid intraspecific64

competition (Fig. 1). But a rare invader may not have that problem, so that it can increase rapidly65

when it has a good year.66

But the invader also has bad years: poor environment and possibly high competition because67

the resident is doing well. To increase in the long run, its population growth rate r must be68

“buffered” against large decreases in bad years (this is sometimes called subadditivity). This occurs69

when the impact of competition is weaker (less negative) in bad years than in good years:70

∂

∂E

(
∂r

∂C

)
=

∂2r

∂E∂C
< 0. (1)71

This is equivalent to the definition (Chesson, 1994, eqn. 14) in terms of “standard” environment72

and competition parameters (see Section SI.2).73

Combining subadditivity with density-dependent EC covariance gives the situation in Fig.74

1, where the invader’s average population growth rate exceeds the resident’s. This difference is75

stabilizing because it benefits whichever species is rare at the time.76

The second key concept (Chesson, 1994) is that the storage effect can be quantified by asking,77

for each of the M ≥ 2 species in a community: how much does EC covariance contribute to the78

difference between its population growth rate as an invader, and the population growth rates of the79

resident species? Specifically, storage effect for species i is defined (Chesson, 1994, eqn. 22) to be80

the contribution of EC covariance to the difference between the invader and resident growth rates,81

r̄i(Ei\i, Ci\i)−
∑
r 6=i

qirr̄r(Er\i, Cr\i). (2)82
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Here r̄ denotes average population growth rate when the community is at its stochastic steady state,83

and j\k indicates a value for species j when species k is absent, e.g. Ei\i is E(t) for species i when84

invading the community. The sum runs over all resident species, indexed by r.1 The scaling factors85

qir, which determine how each resident is weighted relative to the invader, measure the relative86

sensitivity to competition of invading species i and resident species r (see SI section Section SI.587

for the precise definition and methods to calculate them). The analytic theory shows that these88

factors define the appropriate weighting so that invader population growth rate can be separated89

into components that “measure the contributions of different coexistence-affecting mechanisms”90

(Chesson, 1994, p. 241).91

The simulation-based method92

This paper shows how quantitative storage effect measures can be computed through simulations93

with a model for competing species. We are not dispensing with previous theory; we just diverge94

from it in using Monte Carlo simulations, instead of analytic small-variance approximations, to95

obtain numerical values for the measures.96

The central idea is to compute each growth rate, r̄, in equation (2) twice for each species, by97

simulating the model with and then without EC covariance. The difference between the values98

of (2) calculated from the two simulations is then the contribution of EC covariance to the value99

of (2), which is exactly the definition of the storage effect in the analytic theory (Chesson, 1994,100

p.240). This simulation-based comparison does not use small-variance approximations, so it is101

more general than previous analytic approaches, and potentially more accurate because the error102

converges to zero as simulation length increases.103

To explain the procedures, we use the classic lottery model (Chesson & Warner, 1981); complete104

R code for the calculations is in Table SI-1. We use this model to give a clear example of our105

approach, even though the storage effect for this model has been found analytically (for small106

variance). For simplicity we consider two species with equal, constant death rates. In the model,107

the habitat consists of N sites that, at each annual census, are each occupied by one female adult of108

either species 1 or species 2. Thus N1(t) +N2(t) ≡ N , where Ni is the number of sites occupied by109

1Using a subscript r to index resident species is potentially confusing, but this notation is standard in storage
effect theory so it would be more confusing to do something else.
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species i. Following the census each adult produces Bi(t) juveniles. The adult per-capita fecundities110

B1(t) and B2(t) are random variables, representing the effects of environmental fluctuations. A111

fraction δ of adults in each species then dies, leaving δN open sites. Competition among juveniles112

is neutral, so that a fraction B1N1/(B1N1 + B2N2) of open sites are occupied by species 1, the113

rest by species 2. By time t + 1 these new recruits have become adults. The resulting population114

dynamics are115

Ni(t+ 1) = (1− δ)Ni(t) + δN
Bi(t)Ni(t)

B1(t)N1(t) +B2(t)N2(t)
, i = 1, 2. (3)116

The model is completed by specifying distributions for the Bi (we assume lognormal distributions117

with possibly nonzero correlation between B1(t) and B2(t)) and parameter values (lines xx-yy in118

Box SI-1).119

The steps to calculate the storage effect for species 1 are as follows.120

(Step 1) First, define the environmental variable E and competition C. We set Ei = Bi, and121

C1 = C2 = (B1N1 + B2N2)/(δN), the ratio between the number of competing juveniles and the122

number of available sites. We then have123

ri(t) = log (1− δ + Ei(t)/Ci(t)) . (4)124

E and C can be defined in other ways: (Chesson (1989, 1994) uses the log of our E and C) but125

this has no effect on results.126

(Step 2) The second step is to generate the environment sequence E(t) = (E1(t), E2(t)) and127

a second independent environment sequence E#(t) = (E#
1 (t), E#

2 (t)), for t = 0 to some large time128

T .2 For the lottery model we use the multivariate Gaussian random number generator mvrnorm129

to create logB1(t) and logB2(t) series, and do the same again to make logB#
1 (t) and logB#

2 (t).130

An alternative, which is sometimes simpler, is to make E#(t) by shuffling E(t) at random. Both131

methods have the necessary effect: E and E# are independent of each other but have the same132

marginal distribution.133

2E# is pronounced “E - sharp”.

6



(Step 3) The third step is using E1(t), E2(t) to do a long simulation of the model with species134

1 as an invader – at zero density or too rare to affect other species (e.g., relative abundance135

below 10−8). At each time step, compute and save the population growth rate of each species,136

rj(t) = log(Nj(t + 1)/Nj(t)), j = 1, 2 where Nj is total population size of species j (or total137

biomass, total cover, etc., depending on the model’s units). At the same time, use E#
1 (t), E#

2 (t) to138

compute what the population growth rates would be with these different values of the environment-139

dependent parameters, all else being equal (including the abundance and population structure of140

each species): call these r#
j (t).141

In the lottery model, with species 1 invading and species 2 resident we have C1(t) = C2(t) =142

B2(t)N/(δN) = B2(t)/δ. We substitute these into equation (4) to compute the population growth143

rates,144

r1(t) = log
(
1− δ + δB1(t)/B2(t)

)
,

r#
1 (t) = log

(
1− δ + δB#

1 (t)/B2(t)
)
.

(5)145

Only B1 is “sharped” in r#
1 , because δ/B2(t) in that formula is C1(t), which is carried over from146

the first simulation. This is typical : because the C (competition) for a species is often a function147

of the Es (environments) for several species, formulas for r# often include Es and E#s (here, B148

and B#). For species 2,149

r2(t) = log
(
1− δ + δB2(t)/B2(t)

)
,

r#
2 (t) = log

(
1− δ + δB#

2 (t)/B2(t)
)
.

(6)150

(Step 4) Next, we compute the average population growth rates151

r̄j = E[rj(t)], r#
j = E[r#

j (t)], j = 1, 2 (7)152

where E denotes the average (i.e., expectation) over the simulation. In general, to eliminate effects153

of initial transients, a burn-in period should be omitted (e.g., average r(t) and r#(t) over times154

t = 500 to T ). The resident species 2 necessarily has r̄2 = 0, but computing it is a useful check on155

your code.156
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(Step 5) Next, find the scaling factor q12. In the symmetric lottery model with equal death157

rates q12 = q21 = 1 (Chesson, 1994). In our other case studies the scaling factors are not known,158

and we explain how they can be calculated by simulation.159

(Step 6) Finally, the storage effect for species 1 is (by definition) the change in the value of160

eqn. (2) when EC covariance is removed. This is161

∆Ib,1 = (r̄1 − q12r̄2)− (r#
1 − q12r

#
2 ) = r̄1 − r

#
1 + q12r

#
2 , (8)162

(note r̄2 = 0 because species 2 is the resident). The subscript b in ∆Ib,1 stands for “between-163

species”, because this measure compares the focal species as invader with others as residents. The164

community average storage effect measure is a sum of terms comparing each species in resident and165

invader states (see Angert et al. (2009, SI eqn. 6), Chesson (2008, Table 6.3)). These terms can166

also be calculated using our methods (Section SI.3).167

The parameters chosen in Table SI-1 give species 1 a competitive disadvantage, lower mean

fecundity. Running the code gives

r̄1 = 0.031, r#
1 = 0.082, r#

2 = 0.114, ∆Ib,1 = 0.06.

Species 1 persists (r̄1 > 0), but because r̄1 < ∆Ib,1 we know that it persists because the storage168

effect overcomes its competitive disadvantage.169

An interesting case is complete symmetry, meaning that B1(t) and B2(t) have the same marginal170

distributions. Then B#
1 (t)/B2(t) and B#

2 (t)/B2(t) are identically distributed, so r#
1 = r#

2 and171

therefore ∆Ib,1 = r̄1. This says that a positive low-density growth rate of species 1 (when it occurs)172

is entirely due to the storage effect, which is true because storage effect is the only potential173

stabilizing mechanism in the completely symmetric lottery model.174

The storage effect for species 2 is estimated the same way: simulate with species 2 invading and175

species 1 resident, and calculate176

∆Ib,2 = r̄2 − r
#
2 + q21r

#
1 . (9)177

(note that all the rjs in (8) are rj\1, while all those in (9) are rj\2).178
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The steps in our approach are summarized in Box 2. We now present several case studies which179

show how to implement those steps in other settings: continuous time, periodic environmental180

variation, structured populations, and three or more competing species.181

Example: algal coexistence in a periodic environment182

Storage effect theory and empirical applications have emphasized between-year variability, but183

within-year variation can also promote coexistence (Brown, 1989a,b; Chesson et al., 2001; Math-184

ias & Chesson, 2013). Even periodic (e.g., seasonal) variation can maintain coexistence, in both185

theory (Stewart & Levin, 1973; Smith, 1981; Brown, 1989a; Smith & Waltman, 1995; Mathias &186

Chesson, 2013) and experiments (e.g., Sommer, 1984, 1985; Descamps-Julien & Gonzalez, 2005),187

supporting G.E. Hutchinson’s proposal that the “paradox of the plankton” might be explained by188

environmental variability that favors different species at different times.189

However, none of these empirical examples quantify the storage effect’s contribution to coexis-190

tence. For example, Descamps-Julien & Gonzalez (2005) demonstrated coexistence of competing191

diatom species in a chemostat with periodic temperature variation. Having no way to quantify the192

storage effect, Descamps-Julien & Gonzalez (2005) argued that the requirements for the storage193

effect were satisfied (e.g., “the compensatory dynamics indicate the strong covariance between the194

environment and interspecific competition”, p. 2823), and that relative nonlinearity of competition195

(Chesson, 1994, 2000b) could be ruled out as a coexistence mechanism because they did not observe196

“endogenously generated resource fluctuations” (p. 2822). However, relative nonlinearity can also197

occur when populations fluctuate in response to an exogenous factor (eqn. 6 in Chesson, 2000b;198

Yuan & Chesson, 2015). Other experiments on competition in periodic environments share the199

problem that the contribution of the storage effect could not be quantified. Here we show how this200

can be done, using the Descamps-Julien & Gonzalez (2005) experiments and model.201

The Descamps-Julien & Gonzalez (2005) model is a standard two-species chemostat, with202

temperature-dependent parameters for resource uptake and reproduction:203

dS

dt
= D(S0 − S)−Q1x1

V1S

K1 + S
−Q2x2

V2S

K2 + S
dxj
dt

= xj
VjS

Kj + S
−Dxj , j = 1, 2.

(10)204
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S is extracellular silicate concentration in the chemostat, xi are population densities of the diatoms,205

Cyclotella pseudostelligera and Fragilaria crotonensis. S0 is silicate concentration in the inflow,206

and D is dilution (outflow) rate. Parameters Vj (maximum reproduction rate), Kj (half-saturation207

constant), and Qj (resource required to produce one individual) all depend on temperature208

θ(t) = θ0 + a sin(2πt/P ). (11)209

which is periodic with mean θ0, amplitude a, period P . Functions specifying how Qj , Vj and210

Kj depend on temperature were estimated from batch experiments (Fig. 2). Predictions from this211

model match microcosm experiments (Descamps-Julien & Gonzalez, 2005) which found coexistence212

under fluctuating temperatures (θ0 = 18◦C, a = 6, P = 60d) but not constant temperature; see Fig.213

SI-1.214

In a continuous-time model, average population growth r̄j is
1

T

T∫
0

rj(τ) dτ in the limit T →∞,215

which can be evaluated by averaging over finely-spaced times tk = kT
m with T � 1,m� T :216

E[rj ] ≈
1

m+ 1

m∑
k=0

rj (E(tk), C(tk)) . (12)217

T and m must be large enough (in practice this means that doubling their values has negligible218

effect), and the system should be in steady state at t = 0 (i.e., t = 0 is after the actual start of the219

experiment or simulation).220

Step 1 is defining E and C to match the concept of the storage effect in Fig. 1. E should rep-221

resent potential population increase, and C the extent to which increase is limited by competition.222

We therefore set Ej(t) = Vj(t), and Cj(t) = (Kj(t) + S(t))/S(t) so that223

rj(Ej , Cj) =
1

xj

dxj
dt

=
Ej
Cj
−D. (13)224

Our definition of C follows Freckleton et al. (2009), who argued for measuring competition by the225

ratio between potential and achieved performance. In a similar model Mathias & Chesson (2013)226

define C so that r = E(1− C)−D but both definitions give the same results in our approach.227

For Step 2, eqn. (11) combined with the temperature-dependent maximum uptake rate Vj228

gives Ej(tk) = Vj(θ(tk)) for both species. We create E#(tk) by shuffling at random the E(tk)229
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values in eqn. (12). This destroys temporal autocorrelation in E, not just covariance with C.230

However, correlation in E# has no effect on E[ri(E
#, C)] so long as E# and C are independent.3231

Any shuffling that makes E# independent of C can therefore be used.232

For Step 3 we run a long baseline simulation using E(t) (or do a long experiment) with233

species 1 as invader (x1(t) = 0), computing and saving r1\1(tk) = r1(E(tk), C1(tk)) and r2\1(tk) =234

r2(E(tk), C2(tk)) using (13). At each time tk we also compute r#
1\1(tk) and r#

2\1(tk) by using E#(t)235

in place of E(t). Averaging the saved r values (Step 4) gives r̄1\1, r̄2\1, r
#
1\1, r

#
2\1. Repeating with236

species 2 as invader gives r̄1\2, r̄2\2, r
#
1\2, r

#
2\2.237

Step 5 is to compute the scaling factors qir, which have not been derived for this model. The238

qir are defined (Chesson, 1994) in terms of the competitive effects C experienced by each species239

when species i is invader and all others (indexed by r) are resident. Define240

Cj = −rj(E∗j , Cj) (14)241

where the baseline environment E∗j should be near a central value of Ej(t) such as the mean or242

median. Cj > 0 when competition Cj is strong enough that the population would decrease in the243

baseline environment. Then for invading species i and resident species r,244

qir =
∂Ci\i
∂Cr\i

(15)245

evaluated at the Cr where Cr\i = 0.246

We can’t easily calculate the derivative in eqn. (15) analytically, but we can find its value using247

the simulation with species 1 invading species 2. Define E∗1 = E∗2 =average temperature over the248

simulation. At each time tk, we compute and save Cj\1(t) = −rj(E∗j , Cj(t)), j = 1, 2 calculated249

from (13): what population growth would be if Ej was at E∗j . Plotting the C1\1(tk) values as a250

function of C2\1(tk) (Fig. 2D) traces out their relationship. To evaluate the derivative in (15), we251

fit a nonlinear regression curve, and q12 is the slope of the regression curve at C2\1 = 0. Repeating252

3Write E[r(E#, C)] =
∫∫

r(x, y)pE#,C(x, y)dxdy where pE#,C is the joint density function of E# and C. When

E# and C are independent, pE#,C(x, y) = pE#(x)pC(y). Because E# is a reshuffling of E, pE# = pE . We therefore

have E[r(E#, C)] =
∫∫

r(x, y)pE(x)pC(y)dxdy for any reshuffling that makes E# and C independent.
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this process with the roles swapped gives q21. Finally (Step 6) we compute ∆I by substituting253

the calculated r̄, r# and qir values into equations (8) and (9).254

The results (Table 1) show that although temperature fluctuations are necessary for coexistence,255

the storage effect contribution is small, especially for Cyclotella. Over the experiment’s temperature256

range (12 - 24◦C) Fragillaria is affected little by temperature, so when it is sole resident, S remains257

low, C1 and C2 are nearly constant, and so EC covariance χ ≈ 0 for both species. Because EC258

covariance has little effect on either species, ∆Ib ≈ 0 for the invader, Cyclotella. In contrast, S259

varies when Cyclotella is resident (in model simulations and the experiments), and Cyclotella is260

limited by EC covariance (χr = 0.17): when temperature is favorable, silicate is quickly depleted261

(see online SI Fig. SI-2). At the same time, Fragillaria as invader has little EC covariance because262

its E is nearly constant. Consequently ∆Ib > 0 for Fragillaria, because the negative impact of263

EC covariance on Cyclotella as resident contributes to the growth rate advantage of Fragillaria as264

invader.265

However, even without the storage effect contribution, Fragillaria’s low-density growth rate266

would be positive (i.e., r̄i > ∆Ib). The same is true for Cyclotella. Coexistence requires environ-267

mental fluctuations – at any constant temperature only one species persists – but the storage effect268

cannot be acting alone to maintain coexistence, as both invader growth rates are positive without269

it.270

Environment and resource fluctuations can also affect population growth rates through nonlinear271

averaging. In this model variability in S is the only source of nonlinear averaging, because E[ri] is272

linear in Vi, and the Ki are constant over the experiment’s temperature range. We can quantify273

the nonlinear averaging effect by comparing population growth rates from a “flattened” simulation274

in which S is held constant at its average value, with population growth rates from the baseline275

simulation in which S fluctuates. The flattened simulations remove the storage effect (because276

Cov(E,C) = 0 when C is constant) and also nonlinear averaging, so the differences r[ − r#, for277

each species in resident and invader states, measure the effect of nonlinear averaging. Nonlinear278

averaging is unimportant when Fragillaria is resident, but when Cyclotella is resident and S is279

variable, the effects of nonlinear averaging on the species are much larger than the storage effect.280

Because of a contamination problem, the Descamps-Julien & Gonzalez (2005) experiments281

provide reliable data for only one cycle of temperature variation. Our analysis here therefore uses282
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model simulations. However, exactly the same calculations can be done with data from a long283

experiment, sampled frequently enough to capture the population fluctuations.284

Structured Populations285

We now use a hypothetical “prototype” IPM to illustrate how our approach works with structured286

populations, and then analyze an empirically-parameterized IPM for sagebrush steppe.287

Our prototype IPM has the typical structure in which demographic rates are functions of log-288

transformed size z (e.g. Ellner & Rees, 2006; Coulson, 2012). The model also includes time-289

varying environmental responses, and an interaction between environment and competition to allow290

a storage effect in the model.291

Survival of species j is described by logistic regression,292

logit sj(z, t) = b
(S)
0,j + b

(S)
1,j z + b

(S)
2,j Ej(t)−

[
2∑

k=1

α
(S)
jk Nk(t) +

2∑
k=1

β
(S)
jk Ek(t)Nk(t)

]
, (16)293

where Ej is the environment covariate for species j in year t (representing a measured variable,294

such as rainfall, affecting all demographic rates), Nj(t) =
∫
eznj(z, t)dz is total cover of species j295

in year t (because z is the log of individual cover). The term in brackets is the Cj(t) for survival296

(Step 1). Similarly, for growth we assume that each individual’s size at time t+ 1, conditional on297

its size at time t, is Gaussian with constant variance, and mean given by the right-hand side of (16)298

with coefficients b
(G)
0,j and so on. Per-capita fecundity Bj(z, t) is modeled with Poisson regression299

using the canonical log link function, so that logBj(z, t) equals the right-hand side of (16) with300

coefficients b
(F )
0,j and so on.301

For Step 2, environment covariates Ej(t) and then E#
j (t) for each year are drawn from lognor-302

mal distributions with specified means and variance-covariance matrices (“distribution sampling”,303

Metcalf et al., 2015).304

Population structure introduces two new aspects in Steps 3 and 4 of our approach. First,305

survival, growth, and fecundity are separate process, so ~Ci is now a vector of the distinct Cs for306

survival, growth and fecundity. Second, population growth rates depend on population structure,307

so r# calculations use the population structures from the corresponding baseline simulation. So if308
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Kj(Ej , ~Cj) is the projection kernel for species j, then309

r#
j (t) = log

(
N#
j (t+ 1)/Nj(t)

)
where N#

j (t+ 1) =

∫
ezn#

j (z, t+ 1)dz, n#
j (t+ 1) = Kj(E

#
j (t), ~Cj(t))nj(t).

(17)310

As always, ~Cj is from the baseline simulation, and depends on Ej but not Ej
#. Scaling factors were311

estimated by the regression method (Step 5c), as in Fig. 2D (see SI script IPM-qir-wrapper.R).312

Fig. 3 shows results for completely symmetric parameters (b
(S)
0,1 = b

(S)
0,2 , β11 = β12 = β21 =313

β12 = βEN etc.); the only difference between species is that they respond to different environment314

covariates having identical marginal distributions. In all cases the storage effect goes to zero as315

Cor(E1, E2) increases to 1, as expected: nobody ever escapes EC covariance because a good-E year316

is good for everyone and competition is high. Similarly, the storage effect is zero when βEN = 0317

because nobody ever experiences EC covariance. Fluctuating fecundity produces a stabilizing318

(positive) storage effect (fig. 3A), as in the lottery model, whereas fluctuating growth does not319

(fig. 3B). Storage effect from fluctuating survival can be positive (fig. 3C,D) depending on whether320

parameter values make mean survival high or low. This contrasts with the lottery model, where321

variable survival can only stabilize coexistence when survival is high and correlated with recruitment322

fluctuations (Chesson & Warner, 1981).323

However, these results are largely dictated by the model’s structure. The linear predictors in324

the demographic models (e.g., the right-hand side of (16)) are additive in E and C. Consequently,325

the nonlinearities that can buffer populations against poor years via subadditivity (or amplify the326

decrease in poor years via superadditivity) are all produced by the link function, which specifies327

how the mean response depends on the linear predictor in a generalized linear model. Specifically328

(see section Section SI.6), a positive storage effect is only possible if the inverse of the link function329

is concave up. For fecundity, the inverse link is the exponential function: the storage effect can330

be positive. For survival the inverse link is the logistic function, which is concave up for survival331

below 0.5, so the storage effect can be (and is) positive in our model, and concave down for survival332

above 0.5, so the storage effect has to be negative. For growth the inverse link is the identity (zero333

concavity) so the storage effect is near 0. Our results for this model are a cautionary tale: effects334

14



of environmental variability are mediated by second derivatives, and those are often dictated by335

statistical “habits” that are harmless for other purposes (e.g., projecting population growth).336

Empirical four-species IPM337

Our empirical IPM is closely based on the Chu & Adler (2015) model for the dominant species338

in a sagebrush steppe community, three perennial grasses and the shrub, Artemisia tripartita.339

Environmental variation was modeled by fitted random year effects (“kernel resampling”, Metcalf340

et al., 2015). However, Chu & Adler (2015) assumed constant competition coefficients, hence C is341

not a function of E, precluding EC covariance. Even if a storage effect were present in the natural342

system, the model could not generate one.343

We therefore re-fitted the model with temporal variation in interaction coefficients, fitted as344

random year effects (see SI section Section SI.7), so that a storage effect is possible. The linear345

predictors are then346

b0,j + b1,jz + b2,jEj(t)−

[
4∑

k=1

αjkWjk(t) +
4∑

k=1

Djk(t)Wjk(t)

]
(18)347

where Wjk is the competitive pressure from species k on species j. The crucial difference from Chu348

& Adler (2015) is that C (the term in brackets) has random year effects Djk so that EC covariance349

can occur. The difference with the prototype IPM (16) is that the year effects Ej and Djk are350

distinct, so EC covariance only occurs if the fitted E and Ds for a species are correlated.351

With multiple species, the storage effect for species i is352

∆Ib,i = r̄i\i − r
#
i\i +

∑
r 6=i

q1rr
#
r\i. (19)353

The random variation in interaction strengths made it difficult to estimate scaling factors by re-354

gression, so we used an alternate approach based on species’ responses to perturbed competitor355

densities (Step 5d — see sect. Section SI.5(d)). Otherwise, everything is the same as with the356

prototype IBM.357

The results (Table 2) are very consistent: the storage effect is tiny for all species and all358

demographic processes, separately or together. This occurs because EC covariance is so low, for359

the empirically fitted parameters, that removing it has essentially no effect and there are only360
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minute differences between each r̄ and the corresponding r# (tabulated in section Section SI.8).361

When environmental variability is completely removed, one species, Artemisia, declines slowly to362

extinction in the model (Adler et al., 2010). As in the chemostat study above, some fluctuation-363

dependent mechanism besides the storage effect must be contributing to persistence of Artemisia.364

1 Discussion365

Until now, empirical applications of temporal storage effect theory had to begin by analyzing366

a community model to derive formulas for the storage effect and other mechanisms in terms of367

measurable attributes. Our simulation-based approach works directly with a parametrized model368

for competing species, without requiring model-specific mathematical analysis, and can give more369

accurate results than small-variance approximations. We have shown how our approach can be370

used in practice with a wide range of models, using the same kinds of data as analytic approaches.371

Our empirical examples highlight the fact that the storage effect is only one component of372

low-density growth rates. Simulation-based approaches can and should be developed for the other373

fluctuation-dependent stabilizing mechanism, relative nonlinearity (Chesson, 1994), as well as mech-374

anisms based on spatial variation, the spatial storage effect (Melbourne and Shoemaker in prep),375

fitness-density covariance, and their interactions with temporal variability (Chesson, 2000a). We376

have considered only competition, either direct or through resource competition. Coexistence can377

also be mediated by other interactions: shared enemies, mutualists, facilitation, etc., and we need378

methods to quantify their stabilizing effects. Simulation methods are also needed to quantify the379

overall contributions of stabilizing and equalizing mechanisms, and the stabilizing and equalizing380

components of each mechanism. All these methods should accommodate structured populations.381

Our case studies highlight the importance of thinking carefully about model structure, because382

“traditional” choices can have side-effects that make it impossible or difficult for a storage effect383

to operate. For example, IPMs often include main effects (in the ANOVA sense) of competition384

and environmental stochasticity, but not their interaction, in the linear predictor of demographic385

models. A main motivation for this paper was our experience of fitting a traditional IPM to Kansas386

grassland data we had previously studied (Adler et al., 2006) using a spatially explicit individual-387

based model (IBM). The IBM revealed that environmental variability was important for species388

coexistence; the IPM said that environmental variability played no role (Chu & Adler, 2015) –389
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as an unintended side-effect, we eventually realized, of structural assumptions in its demographic390

models. The methods here will let us re-visit the Kansas data with an IPM that can include the391

storage effect and other mechanisms.392

Similarly, demographic modelers have not given much attention to estimating second deriva-393

tives, but effects of environmental variability are mediated by the second derivatives (curvature)394

of demographic responses to environmental factors. The optimal statistical model for predicting395

a response is generally not optimal for predicting its derivatives (Fan & Gijbels, 1996). Standard396

practices such as logistic regression should be supplemented by checking robustness to more flexi-397

ble approaches such as generalized additive models, and by statistical tests for curvature (Ye and398

Hooker, in prep).399

The scaling factors qir, measuring relative sensitivity to competition, are the most difficult400

and delicate piece in storage effect theory. They are needed when mechanisms are quantified by401

comparing each species as invader with other species as residents. The qir are well-defined when402

competitive impacts on an invader (eqn. 14) are a unique function of the impacts on residents. But403

that is not always true (see sect. Section SI.5), our empirical IPM being an example. However, as404

Chesson (2008, p.151) noted, often a mechanism “is most easily understood in terms of how the405

conditions encountered by an individual species change between its resident and invader states.”406

This corresponds to the Adler et al. (2007) characterization of stabilizing mechanisms: “species’407

per capita growth rates decline as their relative abundance or frequency in a community increases”.408

Our approach should make it possible to quantify stabilizing mechanisms from this more intuitive409

perspective, in which scaling factors are not needed because each species is compared to itself at410

a different abundance. Instead, measures will be calculated from specific effects of falling to low411

relative abundance – for example, by asking what population growth rate would be if EC correlation412

were unaffected by becoming rare.413

“Modern coexistence theory” is a conceptually powerful framework that has become central to414

community ecology. The analytic theory is essential for understanding how different coexistence415

mechanisms arise and interact. But there are still very few examples of carrying the theory into416

the field in a rigorous, quantitative way. We hope that the tools introduced here, and the potential417

extensions that we suggest, will change this situation.418
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Notation Meaning or formula

nj(t) Population state of species i at time t. In an IPM this is short for nj(z, t).

Nj(t) Total population measure of species j at time t (total number, total biomass, etc.)

Ej(t) Environment-dependent parameter (or parameter vector) for species j.

Cj(t) Competition experienced by species j. This must be a function of populations and
environment,

Cj(t) = cj (E1(t), n1(t), E2(t), n2(t), · · · , EM (t), nM (t))

and can be a vector of competition pressures on different vital rates or life-stages.

rj(t) Instantaneous population growth rate, rj(t) = log(Nj(t + 1)/Nj(t)) in discrete

time, and rj(t) =
1

Nj

dNj

dt
in continuous time.

Kj Projection matrix or kernel for species j in a matrix model or IPM. It must be
possible to write Kj as a function Kj(Ej(t), Cj(t), θ) where θ is a vector of constant
model parameters. So for each species,

nj(t+ 1) = Kj(Ej(t), Cj(t), θ)nj(t) (20)

j\k A value for species j, when species k is absent from the community and all other
species are present.

r̄j Average value of rj in a simulation of the model, r̄j = E[rj(Ej(t), Cj(t))].

r#
j Average value of rj using Cj from a baseline simulation and a second, independent

realization of the environment process E#
j , r

#
j = E[rj(E

#
j (t), Cj(t))].

qir Scaling factors in the between-species measure of the storage effect.

Box 1: Summary of notation used in the paper.
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1. Define environment E and competition C, and write the competition model in terms of them.
Then for each species i as invader in turn, carry out the following steps (all Cj below are Cj\i,
similarly for all rj).

2. Generate and save environmental sequences Ej(t) and E#
j (t) for each species j = 1, · · · ,M

for t = 0, 1 · · · , T . Alternatively, if using empirical data or the original Ej(t) series is deter-

ministic, obtain E#
j (t) by randomly shuffling Ej(t), using the same shuffling for all species to

preserve between-species correlations.

3. Do a simulation using the Es, computing and saving the competition parameters Cj for all
j, including i (if using empirical data, calculate the Cj(t) from the measured Ej(t)s and
population densities). Then do a second simulation (or second calculation of population growth
rates from experimental data) using the E#s with the Cs from the first simulation. At each time

step of each simulation, compute the population growth rates rj(t) and r#
j (t). For structured

population, the calculations of r#
j (t) should use the population structure time series from the

first simulation (or the actual experiment).

4. Compute the average population growth rates r̄j = E[rj(t)], r
#
j = E[r#

j (t)]. Note that if

r̄i = r#
i and r̄r = r#

r regardless of which species is the invader, there is no storage effect in the
system.

5. Calculate the scaling factors qij using one of the following methods (ranked from most prefer-
able to least):

(a) Analytic derivation using eqn. (15). See Section SI.5(a) for an example.

(b) Compute and save Ci and Cj during the model simulations, and fit a regression to estimate
qij , as described in the text below eqn. (15) and in Section SI.5(b).

(c) Use the scaling factors for models with a common limiting factor, eqn. (SI.19), with one
of the Cr as the limiting factor, as explained in Section SI.5(c).

(d) Use (eqn. SI.19) by perturbing the population size (at all size classes in a structured
model), as described in the text around eqn (SI.23) and in Section SI.5(d).

6. Calculate the storage effect using eqns. (8) (2 species) or (19) (> 2 species).

Box 2: Steps for calculating the storage effect for species i in a community of M ≥ 2
competing species.
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Table 1: Components of the storage effect for coexisting diatoms (Descamps-Julien & Gonzalez,
2005). Subscripts i and r refer to the species in invader and resident states. χ denotes the co-
variance between E and C. r̄, r# and r[ indicate, respectively, average population growth rates in
baseline simulations, simulations with EC covariance removed, and simulations with silicate concen-
tration S held constant. Both species necessarily have r̄r = 0. Source files: ForcedChemoSubs.R,

ForcedChemo rbars Deltas.R

r̄i r#
i r#

r χi χr ∆Ib r[i r[r

Fragillaria 0.061 0.058 0.00057 -0.035 0.0099 0.042 0.24 0.0012

Cyclotella 0.007 0.005 0.034 -0.018 0.17 0.0029 0.0058 0.16
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Table 2: Invasion growth rate r̄i and the storage effect contribution ∆Ib (in parentheses) for the
empirical IPM. “All” means the fitted model which has variability in survival, growth and recruit-
ment. The other columns are results with variability in only one component, holding the coefficients
in other components constant at their mean. Values of 0 indicate an estimate < 0.001 in magni-
tude. The results are based on simulations of 5000 generations, with the first 500 discarded so
that the system was in steady state during the time period used for estimation. Five replicates
were done for each simulation (defined by which vital rate(s) varied, and which species was invad-
ing). Standard errors for each estimate in the Table are given in Section Section SI.8. Source files:
IPM-empirical-wrapper.r, IPM-empirical-summary.r and scripts that they source.

Species All Survival Growth Recruitment

Artemisia tripartita 0.017(0) -0.016(0) 0.018(0) 0.023(0)

Hesperostipa comata 0.164(0.002) 0.130(-0.012) 0.130(-0.012) 0.089(0)

Poa secunda 0.360(-0.010) 0.332(-0.002) 0.332(-0.001) 0.222(0)

Pseudoroegneria spicata 0.169(0.001) 0.133(0.002) 0.134(0.002) 0.084(0)
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Figure 1: An illustration of how EC covariance and subadditivity can produce the storage effect.
The labelled points show population growth rates when EC covariance affects a resident more than
an invader. When the resident has a good year, the competition it experiences is high, so the
resident has only moderately good population growth. When the invader has a good year, the
competition that it experiences is nonetheless low (because the invader is rare, and the resident
is either having a bad year or does not compete much with the invader), so the invader has high
population growth rate. Because of subadditivity, the invader’s gains in good years are much greater
than the losses suffered in bad years.
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Figure 2: A),B),C) The species-specific temperature responses of the parameters V ,K,and Q gov-
erning nutrient uptake and conversion efficiency give rise to a storage effect, which we quantified
through simulations of the chemostat model (10). Points (closed circles: Fragillaria, open circles:
Cyclotella) are estimated values from 9 day batch experiments, Table 1 of Descamps-Julien & Gon-
zalez (2005). The fitted lines and curves were used to simulate the model with continuously varying
temperature. D) Plot of competition impacts on the invader, Ciı, versus competition impacts on
the resident, Crı, during two long model simulations with one species invading and the other resi-
dent; this is used to estimated the scaling factors qir. Note that K and Q for Cyclotella could not
be estimated at 24◦C because of its very low growth rate in the batch experiments. Cyclotella’s
growth at 24◦C was much better in chemostats than in the batch experiments that the estimates
plotted here are based on. Our V function for Cyclotella (dashed line in panel A) therefore used
a higher value of V at 24◦C, chosen to make the model match better the average abundance of
Cyclotella in chemostat experiments; even without this adjustment the model predicted coexis-
tence of the two species in the variable temperature regime. Source files: ForcedChemoSubs.R,

PlotForcedChemo.R, ForcedChemo qir regression.R
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Figure 3: Results for the prototype IPM with symmetric parameters, as described in the text. In
each panel, the environment covariates E1, E2 affect only the one vital rate noted in the figure; for
all other rates the Ej are held at zero (their mean value). Each panel shows the estimated storage
effect ∆Ib (which has the same value for both species) as a function of the correlation between
E1(t) and E2(t); βEN in panel legends is the common value of all nonzero βij , and determines the
strength of the environment by competition interaction. The storage effect cannot operate when
βEN = 0. Source files: IPM-experiments-wrapper.R and scripts that it sources.
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Supporting Information Appendix S1
Ellner et al., “How to quantify the temporal storage effect. . .”

Section SI.1 Additional Table and Figures509

Table SI-1: R code to compute storage effect for the lottery model with equal death rates. The
same code with more extensive comments is in SI file LotteryCalculateDeltaIb.R

library(MASS)

## Step 1: specify the model. E and C are defined in the text

## so that r = log(1-delta+E/C)

delta <- 0.25 # death rate

mu.B <- c(0.5,0.6); # mean of log birth rate for the two species

sigma.B <- c(0.8,0.8); # Std Dev of log birth rates

rho <- 0.5; # correlation of log birth rates

totT <- 10^6; # number of generations to simulate

## Step 2: generate E(t) and E-sharp(t). In this model E=B.

sigma <-cbind(c(sigma.B[1]^2,rho*sigma.B[1]*sigma.B[2]),

c(rho*sigma.B[1]*sigma.B[2],sigma.B[2]^2))

B <- exp(mvrnorm(n=totT,mu=mu.B,Sigma=sigma))

B.sharp <- exp(mvrnorm(n=totT,mu=mu.B,Sigma=sigma))

B1 <- B[,1]; B2 <- B[,2]; B1.sharp <- B.sharp[,1]; B2.sharp <- B.sharp[,2];

## Step 3a: simulate to generate C1(t), C2(t), and r1(t).

C1 <- C2 <- B2/delta;

r1.t = log(1-delta + B1/C1); r2.t = log(1-delta + B2/C2);

## Step 3b: use C1(t) and C2(t) with the E-sharps to

## calculate r1.sharp and r2.sharp

rsharp1.t = log(1-delta + B1.sharp/C1);

rsharp2.t = log(1-delta + B2.sharp/C2)

## Step 4: compute the average growth rates

rbar.1 = mean(r1.t); rsharp.1 = mean(rsharp1.t)

rbar.2 = mean(r2.t); rsharp.2 = mean(rsharp2.t)

## Step 5: compute the scaling factors. For this model we know them.

q12 = 1;

## Step 5: calculate storage effect for species 1

Delta.Ib1 = rbar.1 - rsharp.1 + q12*rsharp.2;
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Figure SI-1: Simulation results for the Descamps-Julien & Gonzalez (2005) chemostat model,
confirming that the model matches the experimental observation that coexistence occurs under
the fluctuating temperature regime (mean 24◦C, amplitude 6◦C, period 60 days) but only one
species persists at either 18 or 24◦C constant temperature. Source files: PlotForcedChemo.R,

ForcedChemoSubs.R
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Figure SI-2: Simulation results for the Descamps-Julien & Gonzalez (2005) chemostat model. The
three columns show simulation results for Fragillaria invading Cyclotella at steady state, for Cy-
clotella invading Fragillaria at steady state, and for the coexistence steady state, over two com-
plete cycles of the temperature variation (120 days). Top panels show the instantaneous population
growth rates r for the two species, middle panels show the time-varying environment parameter E =
V (this is the same in all columns, because V is determined strictly by temperature) and competition
C as defined in the main text. Source files: ForcedChemo PlotInvasions.R,ForcedChemoSubs.R
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Section SI.2 Standard parameters510

The analytic theory (Chesson, 1994) begins by transforming the environment and competition511

parameters (E and C) for each species to the “standard parameters” E and C ,512

E = g(E,C∗), C = −g(E∗, C), (SI.1)513

where E∗, C∗ are baseline values of E and C (central values such as the mean or median) that are514

used in the analytic theory as the point about which Taylor expansions are done to derive small515

variance approximations. In this paper we mostly work with E and C. Here we explain why that516

is legitimate.517

There are two properties that we define in terms of standard parameters: subadditivity, and518

EC covariance. The definition of subadditivity in terms of standard parameters is that ∂2r̃
∂E ∂C < 0,519

where r̃ denotes r as a function of E and C . Our definition, equation (1), uses E and C. But these520

two definitions are equivalent. Because g is monotonic by assumption in each of its arguments,521

there are functions h1, h2 such that E = h1(E),C = h2(C), both monotonic increasing. Then522

∂r

∂E
=

∂

∂E
r̃(h1(E), h2(C)) = h′1(E)

∂r̃

∂E
(h1(E), h2(C)). (SI.2)523

Now differentiate both sides with respect to C, to see that the two definitions are equivalent because524

h′1h
′
2 > 0.525

“EC covariance” refers to effects of the fact that E and C are not independent (in the probability526

theory sense of independence). The between-species storage effect measure, which we study in this527

paper, is the part of the difference between invader and scaled resident population growth rates528

that goes away if the covariance of E and C is set to 0, while the marginal distributions of E and C529

are left the same (see p. 240 in Chesson (1994)). In our approach, we make E and C independent,530

while the marginal distributions of E and C remain the same. But because E is a function of E531

alone, and C is a function of C alone (recall that the baseline values are constants), our approach532

is exactly equivalent to making E and C independent (so their covariance is 0) while leaving their533

marginal distributions the same.534

Section SI.3 The community average storage effect measure535

The community average storage effect measure (Angert et al. (2009, SI eqn. 6), Chesson (2008,536

Table 6.3)) is a weighted sum of terms that compare each species in invader and resident states.537

We refer to the term for species j as the “within-species” measure ∆Iw,j , defined as follows. Define538

r̄j,I = r̄j\j as the mean population growth rate of species j as an invader into the community, and539

(as in the main text) r̄j\k as the mean growth rate of species j as a resident within the community540

(at stochastic steady-state) when species k 6= j is absent. In a community of M competing species,541
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the within-species measure of storage effect for species j is the contribution of EC covariance to542

r̄j,I − r̄j,R, (SI.3a)543

544

where r̄j,R =
1

M − 1

∑
k 6=j

r̄j\k. (SI.3b)545

In r̄j,I , species j is an invader into a community of M − 1 resident species. In r̄j,R, species j is one546

resident in a community of M − 1 residents, and we average over all such possible communities.547

Note that there are no scaling factors qir; this is because the community average measure results548

from a weighted average of the between-species measures ∆Ib,j such that the scaling factors cancel549

out (see Chesson, 2003, 2008).550

In the community average measure, the invader and resident in Figure 1 are the same species,551

at low and high frequency in the community. The difference r̄j,I − r̄j,R represents the gain (or loss)552

in population growth rate as a result of becoming rare. We measure storage effect by asking: how553

much of this change in population growth rate is due to the storage effect? Because the storage554

effect is the result of EC covariance, an equivalent question is: how much of r̄j,I − r̄j,R is due to555

the change in EC covariance when a species becomes rare?556

To introduce the procedures, consider a two-species community. As with the between-species557

measure, the simulation steps are to558

• generate the independent environment sequences E1(t), E2(t) and E#
1 (t), E#

2 (t).559

• do a long “baseline” model simulation with species 1 as the invader560

• at each time step compute and save the population growth rate r1,I(t), r2,R(t) of the two561

species, and the corresponding growth rates r#(t) that result from replacing each Ej(t) by562

E#
j (t), retaining everything else from the baseline simulations. As before, average the saved563

growth rates (omitting an initial burn-in period) to compute the estimates564

r̄1,I = E[r1,I(t)], r#
1,I = E[r#

1,I(t)], r̄2,R = E[r2,R(t)], r#
2,R = E[r#

2,R(t)]. (SI.4)565

• To compute r̄2,I , r̄1,R and the corresponding “sharped” population growth rates, repeat the566

entire process with species 1 as the resident, and species 2 invading.567

The within-species measure of storage effect for species j is then568

∆Iw,j = (r̄j,I − r̄j,R)− (r#
j,I − r

#
j,R) = r̄j,I − r

#
j,I + r#

j,R, j = 1, 2. (SI.5)569

Computing r̄ and r# for all species during a single simulation is important when there are570

more than 2 species. If environment series E(t) and E#(t) are generated for all species before any571

simulations are run, then one model simulation with species j invading and all other species resident572

can be used to calculate r̄j,I , r̄k\j for all k 6= j, and all of the corresponding “sharped” population573
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growth rates for each species. M simulations, one with each species invading, then provide all of574

the r̄ and r# values needed to compute ∆Iw for all species using equations (SI.3a) and (SI.3b).575

Section SI.4 Comparison of simulation and analytic approaches576

for the symmetric two-species lottery model577

Here we compare our simulation-based measure of the storage effect ∆Ib to the formulas in Chesson578

(1994) for the case of small fluctuations in fecundity in the symmetric two-species lottery model with579

equal death rates. This example illustrates that our approach is equivalent to previous analytic580

theory without the additional small-variance assumptions that the analytic theory requires, by581

showing that if you first apply our approach and then add to it the small-variance assumptions,582

the published analytic formula is recovered.583

It is convenient to switch to the Chesson (1994) definitions in which the environment parameter

E is the log of per-capita fecundity, bi(t) ≡ logBi(t), and the competition parameter C is the log

of the ratio between the total number of juveniles and the number of open sites,

Ci(t) = log

(
B1(t)N1(t) +B2(t)N2(t)

δN

)
.

This has no effect at all on our approach, because generating B#
i (t) directly is exactly equivalent to584

generating b#i (t) and defining Bi = ebi . For species 1 invading species 2, equation (5) then becomes:585

r̄1 = E log (1− δ + δ exp(b1 − b2))

r#
1 = E log

(
1− δ + δ exp(b#1 − b2)

)
r#

2 = E log
(

1− δ + δ exp(b#2 − b2)
) (SI.6)586

Chesson (1994) derives the small-variance approximation to ∆Ib for the symmetric case where587

the species have equal mortality rates δ, the bi have equal variance σ2 and correlation ρ, so that588

Cov(b1, b2) = ρσ2:589

∆Ib ≈ σ2δ(1− δ)(1− ρ). (SI.7)590

For this symmetric case with equal death rates, the scaling factors are qir = 1 (Chesson, 1994,591

Table 1), so in our approach ∆Ib,1 = r̄1 − r#
1 + r#

2 in a simulation where species 1 is invading and592

species 1 resident. bi and b#i are two independent realizations of the same stochastic process, so593

we can simplify the calculations by noting that b#1 − b2 has the same distribution as b1 − b#2 , and594

b#2 − b2 has the same distribution as b2 − b#2 . We therefore have595

r#
1 = E log

(
1− δ + δ exp(b1 − b#2 )

)
r#

2 = E log
(

1− δ + δ exp(b2 − b#2 )
)
.

(SI.8)596
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In MAPLE we set597

b1:= m1 + sigma*z1;598

b2:= m2 + sigma*z2;599

b2sharp:= m2 + sigma*z3;600

where the zi represent random fluctuations with mean 0, variance 1; z1 and z2 have correlation ρ,601

and z3 is independent of z1 and z2. To approximate the expectations in (SI.6) we define602

rI:= log(1- delta + delta*exp(b1 - b2));603

rIsharp:= log(1- delta + delta*exp(b1 - b2sharp));604

rRsharp:= log(1- delta + delta*exp(b2sharp - b2));605

DeltaI:= rI - rIsharp + rRsharp;606

and do a Taylor explansion of DeltaI in σ to order σ2. We find that607

• The constant (order 0) term is zero, as it should be.608

• The order-σ term has zero mean, as it should.609

The order σ2 term is:610

1/2
δem1−m2 (z1− z2)2

1− δ + δem1−m2
− 1/2

δ2 (em1−m2)
2

(z1 − z2)2

(1− δ + δem1−m2)2

− 1/2
δem1−m2 (z1− z3)2

1− δ + δem1−m2
+ 1/2

δ2 (em1−m2)
2

(z1− z3)2

(1− δ + δem1−m2)2

+ 1/2δ (z2 − z3)2 − 1/2δ2 (z2 − z3)2 .

(SI.9)611

We need to find the expectation of this expression. The properties of the zj imply that E(z1−z2)2 =612

2(1−ρ), E(zi−z3)2 = 2. Substituting these into the expression above, and using MAPLE to simplify,613

gives614

Our ∆Ib ≈ σ2δ (1− δ)
[
1− ρem1−m2

(1− δ + δem1−m2)2

]
. (SI.10)615

This is qualitatively what we expect: the storage effect is maximized at intermediate δ, high616

variance, and low correlation between resident and invader Es. In several cases our results agree617

with Chesson’s formula (SI.7):618

• When ρ = 0, our result becomes σ2δ(1− δ), agreeing with Chesson’s formula with ρ = 0.619

• Setting m1 = m2 (equal mean fecundity for the two species) before doing the Taylor expansion,620

the result is again σ2δ(1− δ)(1− ρ), agreeing with Chesson’s formula.621

But when the species have unequal mean fecundity, we do not replicate (SI.7).622

Reconciling our results with Chesson (1994) requires one more aspect of the small variance623

approximation used to derive (SI.7): “competitive differences between species are of similar mag-624

nitude to the means and variances of environmental fluctuations” (Chesson, 1994, p. 237). In the625
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symmetric model this means that m1 −m2 is O(σ) or smaller. With this additional assumption,626

Taylor expansion shows that627

em1−m2

(1− δ + δ em1−m2)2 = 1 +O(σ) (SI.11)628

and therefore to order σ2, our ∆Ib = σ2δ(1− δ)(1− ρ).629

In summary, when our simulation-based definition of ∆Ib is combined with the small variance630

assumptions used in Chesson (1994), we recover exactly Chesson’s results for the symmetric lottery631

model with equal death rates.632

Section SI.5 More details about computing the scaling factors633

All approaches to computing the scaling factors start with the competition effects defined in equa-634

tion (14), which we repeat here:635

Cj = −rj(E∗j , Cj). (SI.12)636

The baseline environment E∗j is typically a central value of Ej(t), such as the mean or median,637

but this is not a requirement. The scaling factors qir that appear in the storage effect measure for638

species i are calculated from the competition effects639

Cj\i = −rj(E∗j , Cj\i) (SI.13)640

when species i is invading (i.e., at zero or negligibly low density).641

We now explain in detail each of the possible approaches for computing the scaling factors, from642

most to least preferable as listed in Box 2 of the main text.643

(a) Analytic calculation644

Scaling factors should be calculated analytically whenever this is possible. The analytic calculation645

approach can be used whenever an explicit and unique formula can be found for Ci\i as a function646

of the effects Cr\i, r = 1, 2, · · · ,M, r 6= i for the resident species. This is most likely to occur when647

there are only two species and the functional form of the model is relatively simple and does not648

involve transcendental functions.649

One extremely simple example is the two-species symmetric lottery model. In that model,650

C1(t) ≡ C2(t): both are equal to the ratio between the total number of juveniles, and the total651

number of open sites. If we choose E∗1 = E∗2 (which is possible because E1 and E2 have the same652

marginal distributions), then C2 ≡ C1 at all times, and under all circumstances. The general653

formula for the scaling factors, equation (15), then states that654

q12 =
∂C1\1

∂C2\1
=
dC2\1

dC2\1
= 1. (SI.14)655

and for the same reason q21 = 1.656
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(b) Simulation-regression approach657

The next-best situation is when there is a deterministic relationship between the competition ex-658

perienced by the invader and the competition experienced by the resident species, but it cannot be659

found analytically (e.g., multispecies models whose dynamic equations include transcendental func-660

tions). The analysis in Chesson (1994) uses his assumption (a6), which states that the competitive661

impact Ci\i experienced at any time by species i as an invader, can be expressed as a function of662

the competitive impacts experienced by the resident species at the same time, {Cr\i}. So long as663

that is true, the scaling factors are defined by equation (15), and the functional relationship among664

the C s can often be estimated by a regression analysis of simulation output, as follows.665

The first step is to compute the time series of competitive impacts Cj\i(t) for each species666

j = 1, 2, · · · ,M . In unstructured population models like our chemostat case study, there is a667

generally a formula for r that can be used to compute C for each species at each time step of a668

simulation, directly from the definition (14). With structured populations, the population growth669

rate depends on population structure, so Cj(t) is computed by changing Ej(t) to E∗j while retaining670

everything else, including the population structure at time t. In an IPM this means recomputing671

the kernel for species j at time t with E∗j in place of Ej(t) and everything else the same (including672

Cj(t), even if Cj depends on Ej), applying the new kernel to the population state of species j at673

time t in the simulation, and recording the change in log total population size (or total cover, etc.)674

between time t and time t + 1. The population state at t + 1 computed using E∗j (t) is discarded,675

because the simulation continues from the population state computed using Ej(t).676

Then, having generated values of Cj\i for each species in a simulation with species i invading677

(or absent), the partial derivative in (15) can be evaluated by doing a regression of Ci\i on {Cr\i}.678

This is a simple regression if there is only one resident (a two-species community) and multiple679

regression with more than one resident. If the relationship is linear, the slope coefficients in the680

linear regression are then the qir for invading species i and all of the residents. If the relationship681

is nonlinear, the slope of the fitted nonlinear regression at the point where Cr\i = 0 for all residents682

should be used, because this is the point about which the Taylor expansion of invader growth rate683

is done in the small-variance analytic theory.684

This process has to be repeated M times for an M species community, once with each species685

as the invader to compute the scaling factors that figure into the ∆Ib for that species.686

The two-species lottery model with unequal death rates is a simple example where we can verify687

that the simulation-regression approach to estimating the qir leads to the same result as the analytic688

theory when environmental variance is small. This example illustrates the fact that the simulation-689

regression approach is equivalent to the analytic approach without requiring any additional small-690

variance assumptions. Without loss of generality we can let species 1 be the invader, and species 2691

resident. In the notation of the main text, which is more convenient for this analysis, Ej(t) = Bj(t)692
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and the two species experience the same competition C1(t) = C2(t) = B2(t)/δ2. We then have693

Cj(t) = −rj(E∗j , C(t)) = − log(1− δj + E∗j /C(t)), j = 1, 2. (SI.15)694

Over the course of a simulation, variation over time in C(t) will produce values for C1(t) and695

C2(t) that can be plotted against each other, as we did for the two species in the chemostat case696

study in Fig. 2D. However, because C is always the same for both species, we can calculate697

analytically the slope of the regression function:698

∂C1

∂C2
=
∂C1/∂C

∂C2/∂C
=
E∗1(1− δ2 + E∗2/C)

E∗2(1− δ1 + E∗1/C)
. (SI.16)699

As in Section SI.4, formula (SI.16) is reconciled with Chesson (1994) when we apply the same700

small-variance assumptions. In the small-variance analysis, q12 is the value of (SI.16) at the baseline701

values E∗j and C∗j . Chesson (1994) chooses to use a common baseline value of C, so C∗1 = C∗2 = C∗.702

The baseline E values are then determined by the requirement that rj(E
∗
j , C

∗
j ) = 0, implying that703

E∗j /C
∗ = δj . (SI.17)704

Substituting (SI.17) into (SI.16) we get q12 = δ1/δ2 and by symmetry q21 = δ2/δ1, exactly the same705

as Chesson (1994, Table 1).706

There are some potential complications to the simulation-regression approach. First, the as-707

sumed function relating invader and resident C s might not exist. However, the regression analysis708

can still be used to calculate the qir based on the expected value of Ci\i conditional on {Cr\i},709

which is the closest analog to what the qir accomplish under assumption (a6) in Chesson (1994).4710

The qir are chosen to remove from ∆C any effect of mean response to competition, to the order of711

accuracy of the small fluctuations approximation. Starting from equation (21) in Chesson (1994)712

we have713

∆C = E
[
Ci\i −

∑
r

qirCr\i

]
= E

[
E

(
Ci\i −

∑
r

qirCr\i

)
|{Cr\i}

]

= E
[ 1©︷ ︸︸ ︷
E[Ci\i|{Cr\i}]−

2©︷ ︸︸ ︷∑
r

qirCr\i

]
.

(SI.18)714

The qir are defined so that the linear terms cancel out when we Taylor-expand terms 1© and 2©715

in (SI.18), as functions of the (Cr\i − C∗r ), to second order around 0. Under assumption (a6) of716

Chesson (1994), Ci\i is a deterministic function of {Cr\i}, and definition (15) causes the linear term717

in 1©− 2© to be identically zero. Without assumption (a6) this is impossible, but we can still make718

the linear term equal zero in expectation, so that it still contributes zero to ∆C. This will be true719

4To follow the rest of this paragraph, you need to have read Chesson (1994) at least up to the end of section 4.
Your other option is skipping to the next paragraph below, taking it on trust that the simulation-regression approach
is appropriate in this situation.
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if the qir are the coefficients in the linear approximation to E[Ci\i|{Cr\i}] as a function of {Cr\i}.720

That is exactly what is estimated by the simulation-regression approach.721

(c) Models with a common limiting factor722

A more difficult complication for the simulation-regression approach is that there may be several

different functions relating invader and resident C s (or their expectations), so that the qir are not

uniquely defined. There is then not a unique linear approximation that can be estimated by the

regression method, and as a result the regression method fails for reasons we explain below in

the paragraph containing equation (SI.22). Non-uniqueness arises unavoidably if several resident

species are responding to a single limiting factor. The result is near-perfect collinearity among

the Cr\i(t) vectors. In such a situation, scaling factors are not uniquely defined because Ci can

be written as a function of any one of the collinear Cr, or any combination of them. In such

cases, Chesson (1994, p. 255) suggests that the scaling factors should be defined in a way that

“treats the resident species in an equivalent manner”, which leads to the following recipe (Chesson,

1994, p. 251). Define one of the Cr\i to be the limiting factor F for species i as invader, and do

univariate nonlinear regressions (as in the previous subsection) to estimate how the other C s (or

their expectations) depend on F ,

E[Ck\i(t)] = φk,i(F (t)), k = 1, 2, · · · ,M.

The scaling factors are then723

qir = (1/(M − 1))φ′i,i/φ
′
r,i (SI.19)724

with the derivatives evaluated at a central value of F (e.g., the mean or median value, in the725

simulation with species i invading).726

(d) Perturbation approach727

There is no corresponding recipe for more complicated kinds of collinearity, or other causes for728

non-uniqueness of a function giving Ci\i as a function of the {Cr\i}. For example, it does not729

cover a situation where each species responds (in a different way) to the same two limiting factors.730

The effect of a non-unique relationship is that estimates of the qir will be very sensitive to small731

random perturbations of the predictors, so that small changes in model parameters, or a different732

seed for the random number generator, could easily lead to very different estimates of qir. Another733

likely outcome, which we encountered in our empirical IPM case study, is that estimated qir can be734

negative. To understand how nonuniqueness leads to negative qir consider the hypothetical case of735

a common limiting factor Z, for species 1 invading species 2 and 3, with736

C1 = Z − 1, C2 = 2Z − 2, C3 = 3Z − 3. (SI.20)737
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We have φ′1 = 1, φ′2 = 2, φ′3 = 3 and the recipe (SI.19) gives q12 = 1/4, q13 = 1/6. This corresponds738

to the fact that739

C1 =
1

4
C2 +

1

6
C3 (SI.21)740

because applying the definition qir = ∂Ci
∂Cr

to (SI.21) we get q12 = 1/4, q13 = 1/6. But it is also true741

that742

C1 = 5C2 − 3C3 (SI.22)743

which leads to q12 = 5, q13 = −3; and also C1 = 3C3− 4C2 giving q12 = −4, q13 = 3, and so on. So744

if the relationship between Ci and the Cr is non-unique, it is easy for the regression approach to745

give estimated qs that are large and opposite in sign. This is what we obtained for several species746

using the regression approach on the empirical IPM. A negative qir is not necessarily a conceptual747

problem. It means that in computing ∆Ib, a mechanism that increases the population growth rate748

of resident r is counted as contributing to invader i population growth, and that may be reasonable749

if that resident facilitates growth of the invader. The problem here, however, is different: a negative750

estimate of qir when in fact the species are competing for a common limiting resource.751

In this case and others where the definition (15) cannot be applied, recent results for a structured752

population model suggest that it is reasonable to instead calculate scaling factors using (SI.19) with753

the total abundance of all stages (or individual states) within all species as the limiting factor (P.L.754

Chesson, personal communication), as follows.755

The ratio φ′i,i/φ
′
r,i intuitively represents the relative sensitivity of the species to an increase in756

competition. This can be estimated by perturbing competition, and seeing how much each species757

changes in population growth rate. Competition is perturbed by making the same small increase758

in the density of all categories within every resident species (but not the invader). In an IPM759

this means perturbing nj(z, t) to nj(z, t) + ε for all z in every resident species. With unstructured760

populations, this is just adding ε to the total population size of each species. As in our “sharped”761

simulations with structured population models, the only change is the addition of ε, and everything762

else (including the population structure time series) is carried over from the baseline simulation.763

For each time step in the baseline simulation, the value of Cj(t) for each species is recomputed764

using the perturbed populations, and population growth rate is recomputed. In an IPM this means765

recomputing the kernels for each species using the recomputed C(t) values, applying the recomputed766

kernels to the population structure at that time in the baseline simulation, and recording the767

population growth rate that results. Let r̃j denote the time-average of these population growth768

rates with perturbed C(t). The scaling factors are then estimated as769

qir = (1/(M − 1))
r̄i − r̃i
r̄r − r̃r

. (SI.23)770

We caution readers that (SI.23) is based on generalizing from the analysis of one simple struc-771

tured model with two discrete life stages. Further analysis of structured population models should772
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soon either firm up or modify the recommendations. For now, we recommend that that whenever773

possible, the qir should be derived analytically for the model at hand, or calculated by the multiple774

regression approach when the relationship among the C s is identifiable.775

Section SI.6 Subadditivity of r for the prototypical IPM776

We consider here the situation in Figure 3 of the main text, in which only one of the vital rates777

(survival, growth, or fecundity) is fluctuating in response to a varying environment variable E(t).778

Our question is, when do we have subadditivity (equation 1) so that storage effect can operate and779

promote coexistence, and when do we have the opposite inequality so that storage effect opposes780

coexistence?781

Total number of individuals and total cover have the same long-term growth rates (Tuljapurkar,782

1990; Ellner & Rees, 2007) so we can define r in terms of total cover
∫
ezn(z)dz (as we do in783

the main text) rather than total number of individuals. Let ñ denote the current population784

structure normalized to have total cover 1; then the instantaneous growth rate in total cover is785

r(E,C) = log λ(E,C) where786

λ = 〈u,K(E,C)ñ〉 , u(z) = ez (SI.24)787

and 〈a, b〉 denotes the inner product
∫
a(z)b(z) dz.788

Basic calculus applied to eqn. (SI.24) gives789

∂2r

∂E∂C
=

1

λ

〈
u,

∂2K

∂E∂C
ñ

〉
+
−1

λ2

〈
u,
∂K

∂E
ñ

〉〈
u,
∂K

∂C
ñ

〉
. (SI.25)790

〈
u,
∂K

∂E
ñ

〉
is positive, because larger E in any of the vital rate models results in more individuals791

or larger individuals at the next time step, and

〈
u,
∂K

∂C
ñ

〉
< 0 because higher C has the opposite792

effect. The second term on the right-hand side of (SI.25) is therefore always positive, opposing793

subadditivity of r and making a negative contribution to storage effect.794

The sign of the first right-hand term depends on which one of the vital rates is fluctuating in795

response to E. When it is either survival and fecundity, the entries in the kernel K = sG+B are796

linear functions of a response R (survival probability, or per-capita offspring number) of the form797

R = f(b0 + b1z+ b2E−C) where f is the inverse of the link function in the regression model. ∂2K
∂E∂C798

therefore has the sign of ∂2R
∂E∂C = −b2f ′′(b0 + b1z + b2E − C).799

The inverse link function for fecundity is f(x) = ex with f ′′ > 0 so ∂2K
∂E∂C < 0 and the first term800

on the right-hand side of (SI.25) is negative. A positive contribution of storage effect is possible if801

the first term outweighs the second, and this occurs for the parameters used in Fig. 3.802

The inverse link function for survival is f(x) = ex/(1 + ex). This has f ′′ > 0 when x < 0803

corresponding to survival probability below 0.5, so storage effect can be positive, but f ′′ < 0 for804

x > 0 corresponding to survival probability above 0.5, so storage effect must be negative. Both of805

these match our results in Fig. 3.806
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Growth is more complicated because K is (all else being equal) proportional to a Gaussian807

function of b2E − C, hence the partial derivatives in (SI.25) all take both positive and negative808

values within the range of the integrations that calculate the inner product. However, a different809

approach shows that r is approximately additive in E and C when environmental variability affects810

only growth. An individual at the initial time who survives to size z′ at the subsequent time811

has cover ez
′
. z′ has mean µ(z) = b0 + b1z + b2E − C and size-independent variance which we812

can represent as a random variable ε, writing z′ = µ(z) + ε. The total cover of survivors at the813

subsequent time is therefore E[s(z)eµ(z)+ε] where E here is joint expectation over ñ (the initial814

distribution of z) and the growth variability ε (recall that we are here studying r as a function of815

E and C, rather than r as a random variable driven by variation in E and C). In our toy IPM, as816

in the empirical IPM that it is loosely based on, new recruits are very small and contribute little817

to the total cover in the subsequent year. If we ignore their contribution, then λ is the total cover818

of survivors:819

λ ≈ E[s(z)eb0+b1z+b2E−C+ε] = e(b2E−C)E[s(z)eb0+b1z+ε]. (SI.26)820

It follows that r = log λ is approximately equal to b2E−C plus a constant depending on the initial821

size distribution and the growth variance. Therefore ∂2r
∂E∂C = 0, neither sub- nor super-additive, so822

the storage effect due to variability in growth is approximately zero, as we found in our numerical823

results. As with survival and fecundity, this conclusion is a consequence of the link function in the824

demographic model (i.e., the fact that µ(z) is a linear function of E and C).825

Section SI.7 Methods for the empirical IPM826

This section borrows heavily from the corresponding SI sections of Adler et al. (2010), because the827

model we use here is a generalized version of that model.828

Extracting demographic data from digitized quadrat maps829

Genets were classified as survivors or new recruits using a computer program that tracks genets830

based on their spatial locations within the quadrats (Lauenroth and Adler 2008). For example,831

when a genet present in year t+ 1 overlaps in space with a conspecific genet present in year t, we832

assume it to be the same genet. If a genet in year t + 1 is more than 5cm from any conspecific833

genet present in year t, we classify it as a recruit. Our approach allows genets to fragment and/or834

coalesce over the study period. Some plants were identified by the original mappers as seedlings;835

we classified these plants as recruits regardless of their location.836

For parameterizing our models we represented each genet as a circle with area equal to the sum837

of all polygons in the map assigned to that genet, centered at the genet’s centroid. Very small plants838

were originally mapped as points; we represented those as circles with an area of 0.25 cm2. The839

distance between two genets was defined to be the distance between their centroids. Information on840

the fate of plants located along quadrat edges was not used in the statistical modeling of growth and841
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survival. However, edge plants were included in the amount of neighborhood crowding experienced842

by more centrally located genets.843

Statistical modeling of survival and growth844

We assume that the survival probability and growth of individual genets is a function of genet size,845

the neighborhood-scale crowding experienced by the genet, temporal variation among years, and846

permanent spatial variation among groups of quadrats (the 4-6 quadrats within each group are847

generally within 50m of each other, while groups may be separated by up to 3 km).848

Our model for neighborhood crowding assumes that the influence of neighbors on a focal indi-849

vidual depends on the distance, d, to the neighbor and the neighbor’s size, u:850

wljm,t =
∑
k

e−αjmd
2
ljkm,tukm,t (SI.27)851

Here, wljm,t is the crowding that genet l in species j in year t experiences from neighbors of species852

m, αjm determines the spatial scale over which neighbors of species m exert influence on a genet of853

species j, k indexes all the focal genet’s neighbors of species m at time t, and dljkm,t is the distance854

between genet l in species j and genet k in species m. Using squared distances implies a Gaussian855

competition kernel. An exponential kernel performed marginally better in the statistical models,856

but caused simulations of the individual-based model to crash. The total crowding impact on a857

genet was assumed to be a weighted sum of the impacts from each species,858

wVlj,t =
4∑

m=1

(ω̄Vjm + ωVjm,t)wljm,t (SI.28)859

where V=S or G, indicating Survival or Growth. Note that the competition coefficients ω are860

different for survival and growth but the distance-weighted neighborhood crowding w is the same,861

because the fitted values of α for survival and growth were similar enough that we assumed a862

common value. We estimated an average competition coefficient ω̄, and a time-varying competition863

coefficient ωSjm,t that was fitted as a random year effect.864

We modeled the survival probability, S, of genet l in species j and group g from time t to t+ 1865

as866

logit(Sljg,t) = γSj,t + φSjg + βSj,tulj,t + wSlj,t (SI.29)867

where γ is a time-dependent intercept, and φ is the coefficient for the effect of quadrat group.868

Fitting this model to the data included estimation of the average and year-specific competition869

coefficients ω̄Sjm and ωSjm,t .870

Our model for expected growth conditional on survival has a similar structure:871

E[uijg,t+1] = γGj,t + φGjg + βGj,tuij,t + wGij,t + εGij,t. (SI.30)872
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Following previous analyses of these data (Adler et al., 2010; Chu & Adler, 2015) we modeled the873

variance in growth as a nonlinear function of predicted genet size:874

V ar(uljg,t+1) = aebE[uljg,t+1]. (SI.31)875

Statistical modeling of recruitment876

In contrast to survival and growth, which are modeled at the individual level, we model recruitment877

at the quadrat level because we cannot determine which recruits were produced by which potential878

parents. The model is a form of a Ricker equation for discrete time population growth. We assume879

that the number of individuals, y, of species j recruiting at time t+1 in location q follows a negative880

binomial distribution (the observations appeared overdispersed relative to a Poisson model):881

yjq,t+1 ∼ NegBin(λjq,t+1, θ) (SI.32)882

where λ is the mean and θ is the size parameter. In turn, λ depends on the composition of the883

quadrat in the previous year :884

λjq,t+1 = C ′jq,te
(γRt +φRg +ωR

t C
′
qt) (SI.33)885

C ′jqt is the cover (cm2) of species j in quadrat q at time t, γ is a time-dependent intercept, φ is a886

coefficient for the effect of group location, ω is a vector of time-varying coefficients that determine887

the strength of intra- and interspecific density-dependence; the year-specific ωRjk,ts (e.g. the effect of888

species k on species j at time t) are drawn from a normal distribution with mean ω̄Rjk and variance889

σRjk, which are themselves drawn from a prior distribution with a mean of zero and large variance.890

C ′ is the vector of effective cover of each species. By estimating each species’ effective cover in a891

quadrat, we recognized that plants outside the mapped quadrat may contribute recruits to the focal892

quadrat, and vice versa. We estimated effective cover in a quadrat q as a mixture of the observed893

cover in the focal quadrat and the mean cover across the group g in which the quadrat is located:894

C ′jqt = pjCjqt + (1− pj)C̄jgt, (SI.34)895

where p is the mixing fraction between 0 and 1.896

Parameter estimation897

Adler et al. (2010) and Chu & Adler (2015) conducted model selection analyses to determine which898

parameters should vary through time, whether size and crowding interact, and whether values of899

α should vary with the focal species, the neighbor species, or both. Here we retain the model900

structures of Chu & Adler (2015) and simply add random year effects on competition.901

Parameters of each model were estimated in a Bayesian framework using WinBUGS 1.4 (Lunn902

et al. 2000) via the R2WinBUGS package, using exactly the same methods as Chu & Adler (2015).903

Each model was run for 30,000 MCMC iterations of three chains with different initial values for904
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parameters. We discarded the initial 10,000 MCMC samples, and the remaining samples were905

thinned to 1 out of every 20 time steps to reduce autocorrelation. Convergence of the three chains906

was verified using the Brook and Gelman potential scale reduction factor.907

Integral projection model908

In our IPM, the population of species j is represented by a density function n(uj , t) which gives909

the density of genets of size u at time t, with genet size on natural-log scale, i.e. n(uj , t)du is910

the number of genets whose area (on arithmetic scale) is between exp(uj) and exp(uj + du). The911

density function for size v at time t+ 1 is given by912

nj(vj , t+ 1) =

∫ Uj

Lj

kj(vj , uj , w̄j(uj))nj(uj , t) (SI.35)913

where the kernel kj describes all possible transitions from size u to v and w̄j is a vector whose914

elements are the average crowding experienced by an individual of size uj in species j from all915

species in the community. We describe below how w̄j is calculated from the density functions for916

the species in the model. The integral is evaluated over a size interval [L,U ] that extends beyond917

the range of observed sizes.918

The kernel is constructed from the fitted survival (S), growth (G), and recruitment (R) models:919

kj(vj , uj , w̄j) = Sj(uj , ~n)Gj(vj , uj , ~n) +Rj(vj , uj , ~n) (SI.36)920

where ~n is the set of size-distribution functions for all species in the community. S is given by921

eqn. (SI.29) and G by eqns. (SI.30) and (SI.31), using an expected neighborhood crowding cal-922

culated from the size distribution functions. In fitting the vital rate regressions, we calculated923

a neighborhood crowding unique to each individual i based on the spatial locations and sizes of924

neighboring plants (eqn. SI.27). This spatially-explicit approach cannot be extended to the IPM,925

which does not track individual locations. Instead, we used spatially-implicit approximations that926

incorporate the essential features of local neighborhood competition. When we analyzed the spatial927

point patterns of conspecifics in the observed data, we found that while very small individuals were928

distributed randomly, large genets had a distribution that was more regular (Adler et al. 2010,929

Chu and Adler 2015). Thus, large plants experience less conspecific crowding than small plants on930

average. However, this pattern is much weaker for heterospecific spatial patterns.931

For heterospecific crowding, we applied the simplest mean-field approximation, which assumes932

that plant locations (the centers of the circles representing individual genets) are distributed ran-933

domly and independently. In this approximation, (Adler et al., 2010) showed that the mean crowd-934

ing exerted by species k on a species j individual is given by935

w̄jk =
πNkX̄k

αkA
(SI.37)936
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where N is the average density of species k (individuals per quadrat), X̄ is the average size of species937

k individuals (on absolute scale), α is the spatial scale over which species k affects neighbors (defined938

in eqn. SI.27), and A is the area of a quadrat, in the same units as X̄.939

The principal feature of the overdispersion of large plants is that conspecific large plants do not940

overlap. More specifically, large plants have very few conspecific neighbors closer than twice the941

mean radius of large plants of their species. For conspecifics, we therefore modified our mean-field942

approximation by assuming that plants are distributed at random subject to a “no-overlap” rule943

which requires that the centers of any two conspecific genets must be separated by at least the944

sum of their radii. With the no-overlap constraint, the mean conspecific crowding experienced by945

a species j individual of radius r due to neighbors of species k is given by946

w̄jk(r) = 2π

∫ ∞
r

ze−αjkz
2
Ck(z − r)dz (SI.38)947

where Ck(z − r) is the total cover of plants of species k of radius z − r or smaller (Adler et al.,948

2010). When we simulated the IPM using eqn. (SI.38) for k = j and eqn. (SI.37) for k 6= j, the949

model generated realistic abundances for all species.950

For recruitment, the factor Φ = exp(γRt + φRg + ωRt C
′
qt) in eqn (SI.32) gives the total cover951

of new recruits produced per quadrat, per unit area of potential parents. To incorporate this952

recruitment function into the IPM, we assumed that individual fecundity increases linearly with953

size, hence Rj(vj , uj , ~n) = c0,j(vj)e
ujΦ where c0,j is the initial size distribution of recruits. This954

has the consequence that recruitment by any species is proportional to total cover, as desired. Φ is955

calculated from ~n by converting the size distributions into total cover values, C ′j =
∫
eznj(z, t)dz.956

To see exactly how this all works, you can look at the code, which is available as online SI for this957

article. Un-zip the code file, and look in the StorageEffectEmpirical folder.958
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Section SI.8 Additional simulation results for the empirical IPM968

. The values below are output from IPM-empirical-summary.r, copy-pasted in from an R terminal969

window to avoid transcription errors. These supplement the results in the main text (Table 1B) by970
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giving the standard error for each r̄ and storage effect estimate. The 4 rows of each matrix printed971

below refer to the four species in alphabetical order, as in Table 1B.972

################## all vary973

mean.rbar mean.StorEff se.rbar se.StorEff974

[1,] 0.01679455 -9.898525e-05 0.001285667 0.0005474857975

[2,] 0.16445939 2.223129e-03 0.017463292 0.0033962214976

[3,] 0.36039142 -1.040730e-02 0.024715585 0.0076218151977

[4,] 0.16926097 1.070577e-03 0.018990713 0.0020556259978

979

################## Survival980

mean.rbar mean.StorEff se.rbar se.StorEff981

[1,] -0.01623313 -6.490216e-05 0.0007770064 7.913399e-05982

[2,] 0.21294608 1.441708e-03 0.0008635267 1.701027e-03983

[3,] 0.45327433 -1.686123e-03 0.0035771432 1.123093e-03984

[4,] 0.20170212 5.664377e-04 0.0004458345 4.243876e-04985

986

################## Growth987

mean.rbar mean.StorEff se.rbar se.StorEff988

[1,] 0.0181178 0.0001233947 0.0009679576 0.001153233989

[2,] 0.1299404 -0.0120102284 0.0050356218 0.005670503990

[3,] 0.3318691 -0.0015066244 0.0050138884 0.007870236991

[4,] 0.1335365 0.0019123402 0.0044844931 0.002952262992

993

################### Recruitment994

mean.rbar mean.StorEff se.rbar se.StorEff995

[1,] 0.02277508 2.540828e-05 0.0002031379 1.855953e-05996

[2,] 0.08915329 -7.975082e-04 0.0005797697 5.058217e-04997

[3,] 0.22151679 1.912484e-03 0.0008079610 1.585120e-03998

[4,] 0.08366997 -1.810414e-04 0.0012221126 5.306882e-04999
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