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Summary

1. Rapid environmental change has generated growing interest in forecasts of future population trajectories.

Traditional population models built with detailed demographic observations from one study site can address the

impacts of environmental change at particular locations, but are difficult to scale up to the landscape and regio-

nal scales relevant to management decisions. An alternative is to build models using population-level data that

are much easier to collect over broad spatial scales than individual-level data. However, it is unknown whether

models built using population-level data adequately capture the effects of density-dependence and environmental

forcing that are necessary to generate skillful forecasts.

2. Here, we test the consequences of aggregating individual responses when forecasting the population states

(percent cover) and trajectories of four perennial grass species in a semi-arid grassland in Montana, USA. We

parameterized two population models for each species, one based on individual-level data (survival, growth and

recruitment) and one on population-level data (percent cover), and compared their forecasting accuracy and

forecast horizons with and without the inclusion of climate covariates. For both models, we used Bayesian ridge

regression to weight the influence of climate covariates for optimal prediction.

3. In the absence of climate effects, we found no significant difference between the forecast accuracy of models

based on individual-level data and models based on population-level data. Climate effects were weak, but

increased forecast accuracy for two species. Increases in accuracy with climate covariates were similar between

model types.

4. In our case study, percent cover models generated forecasts as accurate as those from a demographic model.

For the goal of forecasting, models based on aggregated individual-level data may offer a practical alternative to

data-intensive demographic models. Long time series of percent cover data already exist for many plant species.

Modelers should exploit these data to predict the impacts of environmental change.

Key-words: climate change, forecasting, grassland, integral projection model, population model,

ridge regression, statistical regularization

Introduction

Perhaps the greatest challenge for ecology in the 21st century is

to forecast the impacts of environmental change (Clark et al.

2001; Petchey et al. 2015). Forecasts require sophisticated

modeling approaches that fully account for uncertainty and

variability in both ecological process and model parameters

(Luo et al. 2011, but see Perretti, Munch & Sugihara 2013).

The increasing statistical sophistication of population models

(Rees & Ellner 2009) makes them promising tools for predict-

ing the impacts of environmental change on species persistence

and abundance. But reconciling the scales at which population

models are parameterizedwith the scales at which environmen-

tal changes play out remains a challenge (Clark et al. 2010,

2012; Freckleton et al. 2011; Queenborough et al. 2011).Most

population models are built using demographic data from a

single study site because tracking the fates of individuals is so

difficult. The resulting models cannot be applied to the land-

scape and regional scales relevant to decision-making without

information about how the estimated parameters respond to

spatial variation in biotic and abiotic drivers (Sæther et al.

2007). The limited spatial extent of individual-level demo-

graphic datasets constrains our ability to use population mod-

els to address applied questions about the consequences of

climate change.

Aggregate measures of population status, rather than indi-

vidual performance, offer an intriguing alternative for model-

ing populations (Clark & Bjørnstad 2004; Freckleton et al.

2011). Population-level data cannot provide inference about

demographicmechanisms, butmight be sufficient formodeling

future population states, especially because population-level

data, such as plant percent cover, are feasible to collect across
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broad spatial extents (e.g., Queenborough et al. 2011). The

choice between individual and population-level data involves a

difficult trade-off: while individual-level data are necessary for

mechanistic models, population-level data enable models that

can be applied over greater spatial and temporal extents. An

open question is how much forecasting skill is lost when we

build models based on population rather than individual-level

data.

To date, most empirical population modelers have relied on

individual-level data, with few attempts to capitalize on popu-

lation-level measures. An important exception was an effort by

Taylor &Hastings (2004) to model the population growth rate

of an invasive species to identify the best strategies for invasion

control. They used a ‘density-structured’ model where the state

variable is a discrete density state rather than a continuous den-

sity measure. Such models do not require individual-level

demographic data and can adequately describe population

dynamics. Building on Taylor & Hastings (2004), Freckleton

et al. (2011) showed that density-structured models compare

well to continuous models in theory, and Queenborough et al.

(2011) provide empirical evidence that density-structuredmod-

els are capable of reproducing population dynamics at land-

scape spatial scales (also see Mieszkowska et al. 2013), even if

some precision is lostwhen compared to fully continuousmod-

els. However, previous tests of density-structured population

models have yet to assess their ability to forecast out-of-sample

observations, and they have not included environmental

covariates, which are necessary to forecast population

responses to climate change.

Addressing climate change questions with models fit to pop-

ulation-level data is potentially problematic. Population

growth (or decline) is the outcome of demographic processes

such as survival, growth, and recruitment that occur at the

level of individual plants. Climate can affect each demographic

process in unique, potentially opposing, ways (Dalgleish et al.

2011). These unique climate responses may be difficult to

resolve in statistical models based on population-level data

where demographic processes are not identifiable. Futhermore,

models based on aggregated datamay reflect short-term effects

of one vital rate more than others whose importance may only

emerge over the long-term. For example, a one-year change in

a plant species’ cover or biomass might reflect growth or

shrinkage of the largest individuals, whereas the long-term tra-

jectory of the population might be more influenced by recruit-

ment. The same is true for density dependence: intraspecific

density depedence may act most strongly on vital rates, like

recruitment, that are difficult to identify from population-level

data. If density dependence and/or important climate effects

are missed because of the aggregation inherent in population-

level data, then population models built with such data will

make uninformative or unreliable forecasts.

We compared the forecasting skill (accuracy and precision)

of statistical and populationmodels based on aggregated, pop-

ulation-level data with the skill of models based on individual-

level data.We used a demographic dataset that tracks the fates

of individual plants from four species over 14 years to build

two kinds of single-species population models, traditional

models using individual growth, survival, and recruitment data

and alternative models based on population-level (basal cover)

data. We simulated from the models to answer two questions

motivated by the fact that the effects of intraspecific competi-

tion (density dependence) and interannual weather variability

act at the level of the individual (Clark et al. 2011). First, can

population models fit using aggregated individual-level data

(percent cover) adequately capture density dependence to pro-

duce forecasts as skillful as those from models fit to demo-

graphic data? Second, can population models fit using

aggregated data adequately capture the influence of climate on

population growth and, in turn, produce forecasts as skillful as

those frommodels fit to demographic data?

Materials andmethods

OVERVIEW OF ANALYSIS

We used two types of data: individual-level data and percent cover

data. Using the individual-level data, we fit three vital rate regressions

(survival, growth, and rectruitment) to build an Integral Projection

Model (IPM) for simulating the plant populations. Using the percent

cover data we fit a simple, Gompertz population growth model, which

we refer to as a quadrat-based model (QBM). For both model types

(IPM and QBM), we fit and simulate versions of the model with and

without climate covariates. We used Bayesian ridge regression to

weight the importance of each climate covariate. We then performed

cross-validation to assess each model’s ability to predict out-of-sample

data. We compared the forecast accuracy (q, correlation between

observations and predictions) andmean absolute error (MAE) between

the IPMand theQBM to test our expectation that the IPM should out-

perform the QBM. Lastly, we use in-sample forecasts to quantify each

model’s forecast horizon (Petchey et al. 2015).

STUDY SITE AND DATA

Our demographic data were obtained from a northern mixed grass

prairie at the Fort Keogh Livestock and Range Research Laboratory

nearMiles City,MT,USA (46� 190 N, 105� 480 W). The dataset is avail-

able on Ecological Archives (http://esapubs.org/archive/ecol/E092/

143/) (Anderson, Vermeire & Adler 2011), and interested readers

should refer to the metadata for a complete description. The site is

800 m above sea level and mean annual precipitation (1878–2009) is

334 mm, with most annual precipitation falling from April through

September. The community is grass-dominated, and we focused on the

four most abundant grass species: Bouteloua gracilis (BOGR),Hesper-

ostipa comata (HECO), Pascopyrum smithii (PASM), and Poa secunda

(POSE) (Fig. 1 and Table 1).Bouteloua gracilis is a warm-season peren-

nial grass, whereasH. comata,P. smithii, andPoa secunda are cool-sea-

son perennial grasses. The growing season begins in early spring

(typically inApril) and lasts throughmid-summer (typically in June).

From 1932 to 1945, individual plants were identified and

mapped annually in 44 1-m2 quadrats using a pantograph. The

quadrats were distributed among six pastures, each assigned a

grazing treatment of light (1�24 hectare per animal unit month),

moderate (0�92 ha per aum), and heavy (0�76 ha per aum) stock-

ing rates (two pastures per treatment). In this analysis, we

accounted for potential differences among the grazing treatments,

but do not focus on grazing 9 climate interactions. The annual

maps of the quadrats were digitized and the fates of individual
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plants tracked and extracted using a computer program (Lauen-

roth & Adler 2008; Chu et al. 2014). The permanent quadrats

have not been relocated, but their distribution in six different pas-

tures implies that the data represent a broad spatial distribution

for the study area. Daily climate data are available for the dura-

tion of the data collection period (1932–1945) from the Miles

City airport, Wiley Field, 9 km from the study site.

Wemodeled each grass population based on two levels of data: indi-

vidual and quadrat. The individual data are the ‘raw’ data. For the

quadrat-level data, we summed individual basal cover for each quad-

rat by species. This is equivalent to a near-perfect census of quadrat

percent cover because measurement error at the individual-level is

small (Chu & Adler 2015). Based on these two datasets of 13 year-to-

year transitions, we can compare population models built using indi-

vidual-level data and aggregated, quadrat-level data. At the individual

level, we explicitly model three vital rates: growth, survival, and

recruitment. At the quadrat level, we model population growth as

change in percent cover of quadrats with non-zero cover in year t and

in year t � 1, ignoring within-quadrat extirpation and colonization

events because they are very rare in our time series (N = 16 and

N = 13, respectively, across all species). Sample sizes for each species

and vital ratemodel are shown in Table 1.

All R code and data necessary to reproduce our analysis is archived

on GITHUB as release v1.1 (http://github.com/atredennick/MicroMeso

Forecast/releases).We have also deposited the v1.1 release onFIGSHARE

(http://doi.org/10.6084/m9.figshare.4007520).

STATIST ICAL MODELS OF VITAL RATES

At both levels of inference (individual and quadrat), the building blocks

of our populationmodels are vital rate regressions. For individual-level

data, we fit regressions for survival, growth, and recruitment for each

species. At the quadrat-level, we fit a single regression model for popu-

lation growth. We describe the statistical models separately because

they required different approaches. For both model types, we fit vital

rate models with and without climate covariates. Models with climate

effects contain five climate covariates that we chose a priori based on

previous model selection efforts using these data (Chu et al. 2016) and

expert advice (L. Vermeire, pers. comm.): ‘water year’ precipitation at

t � 2 (pptLag); April through June precipitation at t � 1 and t (ppt1

and ppt2, respectively) and April through June temperature at t � 1

and t (TmeanSpr1 and TmeanSpr2, respectively), where t � 1 to t is

the transition of interest. We also include interactions among same-

year climate covariates (e.g., ppt19TmeanSpr1), resulting in a total of

seven climate covariates.

We fit all models using a hierarchical Bayesian approach. In the fol-

lowing description, we focus on the main process and the model likeli-

hood (full model descriptions are in the Supporting Information). For

the likelihood models, yX is always the relevant vector of observations

for vital rate X (X = S,G,R, or P for survival, growth, recruitment, or

population growth). For example, yS is a vector of 0s and 1s indicating

whether a genet survives from t to t + 1, or not, for all observation

years and quadrats. All model parameters are species-specific, but we

omit subscripts for species in model descriptions below to reduce visual

clutter. For brevity, we only describe models with climate covariates

included, but models without climate covariates are simply the models

described belowwith the climate effects removed.

Vital ratemodels at the individual level

We used logistic regression to model the probability that genet i in

quadrat group g survives from time t to t + 1 (si;g;t):

ySi;g;t �Bernoulliðsi;g;tÞ; eqn 1

logitðsi;g;tÞ ¼ b0;t þ bs;txi;g;t þ bQ;g þ z0tbc þ bd;1wi;t þ bd;2ðxi;g;twi;g;tÞ;
eqn 2

where xi;g;t is the log of genet i basal area at time t, b0;t is a year specific
intercept, bQ;g is the random effect of the gth quadrat group to account

for spatial location, bs;t is the year-specific slope parameter for size, z is

a vector of p climate covariates specific to year t, bc is a vector of fixed
climate effects of length p, bd;1 is the effect of intraspecific crowding

experienced by the focal genet at time t (wi;g;t), and bd;2 is a size by

crowding (xi;g;twi;g;t) interaction effect.
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Fig. 1. Time series of average percent cover over all quadrats for our four focal species: Bouteloua gracilis (BOGR),Hesperostipa comata (HECO),

Pascopyrum smithii (PASM), and Poa secunda (POSE). Light grey lines show trajectories of individual quadrats. Note the different y-axis scales

across panels. See Table 1 for sample size information.

Table 1. Description of data. The observations span 13 year-to-year

transitions

Species Vital ratemodel

Number of

observations

Number of

quadrats

Bouteloua gracilis Growth 5670 29

Survival 10 102 33

Recruitment 304 33

Percent cover 281 29

Hesperostipa comata Growth 1990 16

Survival 3257 18

Recruitment 304 18

Percent cover 171 17

Pascopyrum smithii Growth 8052 19

Survival 11 344 19

Recruitment 304 19

Percent cover 217 19

Poa secunda Growth 3018 18

Survival 4650 18

Recruitment 304 18

Percent cover 197 18
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We follow the approach of Chu & Adler (2015) to estimate crowd-

ing, assuming that the crowding experienced by a focal genet depends

on distance to each neighbor genet and the neighbor’s size, u:

wi;q;t ¼
X
k

e�dd2
ik;q;t uk;q;t: eqn 3

In equation 3, wi;q;t is the crowding that genet i in year t expe-

riences from k conspecific neighbors (uk;q;t) in quadrat q. Note

that specific quadrats (q) are mapped to specific quadrat groups

(g), which is why we use the g subscript in the regression equa-

tions. The spatial scale over which conspecific neighbors exert

influence on any genet is determined by d. The function is

applied for all k conspecific genets that neighbor the focal genet

at time t, and dik;q;t is the distance between genet i and conspeci-

fic genet k in quadrat q. We use regression-specific (survival and

growth) d values estimated by Chu & Adler (2015).

We modeled growth as a Gaussian process describing log genet size

(yGi;g;tþ1) at time t + 1 in quadrat group g as a function of log size at time

t and climate covariates:

yGi;g;tþ1 � Normal ðli;g;tþ1;r
2
xi;g;tþ1

Þ; eqn 4

li;g;tþ1 ¼ b0;t þ bs;txi;g;t þ bQ;g þ z0tbc þ bd;1wi;g;t þ bd;2ðxi;g;twi;g;tÞ;
eqn 5

where li;g;tþ1 is log of genet is predicted size at time t + 1, and all other

parameters are as described for the survival regression. We capture

non-constant error variance in growth by modeling the variance in the

growth regression (r2
xi;g;tþ1

) as a nonlinear function of predicted genet

size:

r2
xi;g;tþ1

¼ a exp ½b� li;g;tþ1�; eqn 6

where li;g;tþ1 is log of predicted genet size predicted from the growth

regression (eqn 4), and a and b are constants.

Our data allows us to track new recruits, but we cannot assign

a specific parent to new genets. Therefore, we model recruitment

at the quadrat level. We assume the number of individuals,

yRq;tþ1, recruiting at time t + 1 in quadrat q follows a negative

binomial distribution:

yRq;tþ1 � NegBin ðkq;tþ1;/Þ; eqn 7

where k is the mean intensity and / is the size parameter. We define k
as a function of quadrat composition and climate in the previous year:

kq;tþ1 ¼ ~cq;t exp b0;t þ bQ;g þ z0tbc þ bd
ffiffiffiffiffiffiffi
~cq;t

p� �
; eqn 8

where ~cq;t is effective cover (cm2) of the focal species in quadrat q at

time t, and all other terms are as in the survival and growth regressions.

Effective cover is a mixture of observed cover (c) in the focal quadrat

(q) and the mean cover across the entire group (�c) of Q quadrats in

which q is located:

~cq;t ¼ pcq;t þ ð1� pÞ�cQ;t; eqn 9

where p is a mixing fraction between 0 and 1 that is estimated when fit-

ting themodel.

Populationmodel at the quadrat level

The statistical approach used to model aggregated data depends on the

type of data collected. We have percent cover data, which can easily be

transformed to proportion data in our case because plant areas were

scaled by plot area. An obvious choice for fitting a linear model to pro-

portion data is beta regression because the support of the beta

distribution is (0,1), which does not include true zeros or ones. How-

ever, when we used fitted model parameters from a beta regression in a

quadrat-based population model, the simulated population tended

toward 100% cover for all species. We therefore chose a modeling

approach based on a truncated log-normal likelihood. The model for

quadrat cover change from time t to t + 1 is

yPq;g;tþ1 � LogNormal ðlq;g;tþ1;r
2Þ10; eqn 10

lq;g;tþ1 ¼ b0;t þ bs;txq;g;t þ bQ;g þ z0tbc; eqn 11

where lq;g;tþ1 is the log of proportional cover in quadrat q of group g at

time t + 1, and all other parameters are as in the individual-level

growth model (eqn 4) except that x now represents log of proportional

cover. The log normal likelihood includes a truncation (subscript 0,

superscript 1) to ensure that predicted values do not exceed 100%

cover.

MODEL FITTING AND STATIST ICAL REGULARIZAT ION

Model fitting

Our Bayesian approach to fitting the vital rate models required

choosing appropriate priors for unknown parameters and deciding

which, if any, of those priors should be hierarchical. For each spe-

cies, we fit yearly size effects and yearly intercepts hierarchically,

where year-specific coefficients were modeled with global distribu-

tions representing the mean size effect and intercept. Quadrat ran-

dom effects were also fit hierarchically, with quadrat offsets

modeled using distributions with mean zero and a shared variance

term (independent Gaussian priors). Climate effects were modeled

as independent covariates whose prior distributions were optimized

for prediction using statistical regularization (see ‘Statistical regular-

ization: Bayesian ridge regression’ below).

All of our analyses (model fitting and simulating) were conducted in

R (RCore Team 2013).We used the ‘No-U-Turn’ HamiltonianMonte

Carlo sampler in Stan (StanDevelopment Team 2014a) to sample from

the posterior distribution of model parameters using the package

rstan (Stan Development Team 2014b). We obtained samples from

the posterior distribution for all model parameters from three parallel

MCMC chains run for 1000 iterations after discarding an initial 1000

iterations. Such short MCMC chains are possible because the Stan

sampler reduces the number of iterations needed to achieve conver-

gence. We assessed convergence visually and checked that scale reduc-

tion factors for all parameters were <1�1. For the purposes of including
parameter uncertainty in our population models, we retained the final

1000 iterations from each of the threeMCMC chains to be used as ran-

domly drawn values during population simulation. We report the pos-

terior mean, standard deviation, and 95% Bayesian Credible Intervals

for every parameter of each model for each species in the Supporting

Information (Tables S5–S20).

Statistical regularization: Bayesian ridge regression

For models with climate covariates, our objective is to model the

response of our focal grass species to interannual variation in climate,

even if those responses are weak. Therefore, we avoid selecting among

models with all possible combinations of climate covariates, and

instead use Bayesian ridge regression to regulate, or constrain, the pos-

terior distributions of each climate covariate (Gerber et al. 2015; Hoo-

ten & Hobbs 2015). Ridge regression is a specific application of

statistical regularization that seeks to optimize model generality by

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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trading off bias and variance. As the name implies, statistical regular-

ization involves the use of a regulator that constrains an optimization.

The natural regulator in a Bayesian application is the prior on the

coefficients of interest. Each of our statistical models includes

the effects of climate covariates via the term z0tbc with prior

bc � Normal ðlbc ;r2
bc
IÞ. Because we standardized all climate covari-

ates to have mean zero and variance one, we set lbc ¼ 0 and let r2
bc

serve as the regulator that shrinks covariate effects toward zero – the

smaller the prior variance, the more the posteriors of bc are shrunk

toward zero, and the stronger the penalty (Hooten&Hobbs 2015).

To find the optimal penalty (i.e., optimal value of the hyperpa-

rameter r2
bc
), we fit each statistical model with a range of values for

r2
bc

and compared predictive scores from leave-one-year-out cross-

validation. We performed the grid search over 24 values of r2
bc
,

ranging from r2
bc

¼ 0�01 to r2
bc

¼ 2�25. For each statistical model

and each species, we fit 13924 = 312 iterations of the model fitting

algorithm to search r2
bc

for the optimal value (13 years to leave out

for cross-validation and 24 values of r2
bc
) – a total of 4992 model

fits. We calculated the log pointwise predictive density (lppd) to

score each model’s ability to predict the left-out data (Gelman,

Hwang & Vehtari 2014). Thus, for training data ytrain and held-out

data yhold at a given value of r2
h across all MCMC samples

s = 1,2,. . .,S and all hold outs of data from year t to year T, and

letting h represent all unknowns, lppd is

lppdCV ¼
XT
t¼1

loge

Z
½yt;holdjh�½hjytrain�dh; eqn 12

and computed as

XT
t¼1

loge
1

S

XS
s¼1

½yt;holdjhts�
 !

: eqn 13

We chose the optimal prior variance for each species-statistical

model combination as the one that produced the highest lppd and then

fit each species-statistical model combination using the full data set for

each species and the optimal prior variance. We calculated the lppd

from posterior samples using the algorithm from Vehtari, Gelman &

Gabry (2016).

POPULATION MODELS

Using samples from the posterior distribution of the vital rate statistical

models, it is straightforward to simulate the population models. We

used an Integral Projection Model (IPM) to simulate populations

based on individual-level data (Ellner & Rees 2006) and a quadrat-

based version of an individually-based model (Quadrat-Based Model,

QBM) to simulate populations based on quadrat-level data. We

describe each inwhat follows.

Integral projectionmodel

We use a stochastic IPM (Rees & Ellner 2009) to simulate our focal

populations based on the vital rate regressions described above. In all

simulations, we ignore the random year effects so that interannual vari-

ation is driven solely by climate. We fit the random year effects in the

vital rate regressions to avoid over-attributing variation to climate

covariates. Our IPM follows the specification of Chu & Adler (2015)

where the population of species j is nðuj; tÞ, giving the density of sized-u
genets at time t. Genet size is on the natural log scale, so that nðuj; tÞdu
is the number of genets whose area (on the arithmetic scale) is between

euj and eujþdu. The function for any size v at time t + 1 is

nðvj; tþ 1Þ ¼
Z Uj

Lj

kjðvj; uj; �wjðujÞÞnðuj; tÞduj; eqn 14

where kjðvj; uj; �wjÞ is the population kernel that describes all possible

transitions from size u to v and �wj is a scalar representing the average

intraspecific crowding experienced by a genet of size uj and species j.

The integral is evaluated over all possible sizes between predefined

lower (L) and upper (U) size limits that extend beyond the range of

observed genet sizes.

The IPM is spatially-implicit, thus, we cannot calculate neighbor-

hood crowding for specific genets (wij). Instead, we use an approxima-

tion ( �wj) that captures the essential features of neighborhood

interactions (Adler, Ellner & Levine 2010). This approximation relies

on a ‘no-overlap’ rule for conspecific genets to approximate the

overdispersion of large genets in space (Adler, Ellner&Levine 2010).

The population kernel is defined as the joint contributions of survival

(S), growth (G), and recruitment (R):

kjðvj; uj; �wjÞ ¼ Sjðuj; �wjðujÞÞGjðvj; uj; �wjðujÞÞ þ Rjðvj; uj; �wjÞ; eqn 15

which means we are calculating growth (G) for individuals that survive

(S) from time t to t + 1 and adding in newly recruited (R) individuals of

an average sized one-year-old genet for the focal species. Note the S,G,

andR are incorporated in the IPMusing the fitted vital rate regressions.

Our statistical model for recruitment (R, described above) returns the

number of new recruits produced per quadrat. Following previous

work (Adler, Dalgleish & Ellner 2012; Chu & Adler 2015), we assume

that fecundity increases linearly with size (Rjðvj; uj; �wjÞ ¼ eujRjðvj; �wjÞ)
to incorporate the recruitment function in the spatially-implicit IPM.

We used random draws from the final 1000 iterations from each of

three MCMC chains for each vital rate regression to carry-through

parameter uncertainty into our population models. At each time step,

we drew the full parameter set (climate effects and density-dependence

fixed effects) from a randomly selected MCMC iteration. Relatively

unimportant climate covariates (those that broadly overlap 0) will have

little effect on the mean of the simulation results, but can contribute to

their variation. To retain temporal variation associated with random

year effects, we used posterior estimates of the mean temporal effect

and the standard deviation of that effect to generate a random year

effect for unobserved years. That is, for some future year T, the inter-

cept is b0;T � Normal ðb0;r2
b0
Þ and the effect of size is

bs;T � Normal ðbs;r2
bs
Þ.

Quadrat-basedmodel

To simulate our quadrat-based model (QBM), we iterate the quadrat-

level statistical model (Eqns 9 and 10). We use the same approach for

drawing parameter values as described for the IPM. After drawing the

appropriate parameter set, we calculate themean response (log cover at

t + 1 is ltþ1) according to eqn 10. We make a random draw from a

[0,1] truncated lognormal distribution with mean equal to ltþ1 from

eqn 10 and the variance estimate from the fitted model. We project the

model forward by drawing a new parameter set (unique to climate year

and MCMC iteration) at each timestep. Random year effects are

included as described above for the IPM.

MODEL VALIDATION

To test eachmodel’s ability to forecast population states, we made out-

of-sample predictions using leave-one-year-out cross validation. For

both levels of modeling and for models with and without climate

covariates, we fit the vital rate models using observations from all years
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except one, and then used those fitted parameters in the population

models to perform a one-step-ahead forecast for the year whose obser-

vations were withheld from model fitting. We made predictions for

each observed quadrat in each focal year, initializing each simulation

with cover in the quadrat the previous year. Because we were making

quadrat-specific predictions, we incorporated the group random effect

on the intercept for both models. We repeated this procedure for all 13

observation years, making 100 one-step-ahead forecasts for each quad-

rat-year combination with parameter uncertainty included via random

draw from the MCMC chain as described above. As described above,

year-specific parameters for left-out data were drawn from the poste-

rior distribution of themean intercept.

This cross-validation procedure allowed us to compare the accuracy

and precision of the two modeling approaches (IPM vs. QBM) with

and without climate covariates. We first calculated the median pre-

dicted cover across the 100 simulations for each quadrat-year and then

calculated forecast skill as the correlation (q) between forecasts and

observations. We calculated forecast error as mean absolute error

(MAE) between forecasts and observations.We compared q andMAE

between model types and within model types between models with and

without climate covariates using one-sided t tests with adjusted degrees

of freedom following Wilcox (2009) and standard errors calculated

using the HC4 estimator of Cribari-Neto (2004). Statistical tests for

comparing correlations and error were conducted using algorithms

fromYe et al. (2015).

FORECAST HORIZONS

An important feature of any forecasting model is the rate at which

forecast skill declines as the time between an observation and a fore-

cast increases. In particular, we are interested in the temporal distance

at which forecast skill falls below a threshold: the so-called ecological

forecast horizon (Petchey et al. 2015). To assess the forecast horizons

of our models, we initiate the forecast model with the population state

at some time t and make sequential forecasts of the population at

times t + 1, t + 2,. . ., t + T where T is the maximum number of years

between the initial year and the final year of our observations. For

example, if we initialize the forecast model with percent cover in 1940,

we are able to make five forecasts up to the year 1945. Forecast mod-

els are not re-initialized with observations between years. Thus, in our

current example, the model forecast for percent cover in 1941 has a

forecast horizon of one year, the forecast in 1942 has a forecast hori-

zon of two years, and so on. We performed these simulations using

mean parameter values for all model types (IPMwith/without climate;

QBM with/without climate) and all possible initial years. For a given

forecast distance, we averaged the correlation between forecasts and

observations. Note that our forecasts for the horizon analysis are all

made using in-sample data because we used model fits from the full

data set. Nonetheless, our simulations offer insight into the differences

among model forecast horizons. We chose an arbitrary forecast accu-

racy of q = 0�5 as our forecast proficiency threshold. the forecast hori-
zon is the temporal distance at which forecast accuracy falls below

q = 0�5. For basic research on forecasting, arbitrary proficiency

thresholds suffice for comparative purposes (Petchey et al. 2015), and

q = 0�5 represents the point at which about 25% of the variance in

observations is explained by the predictions.

Results

The IPMandQBMgenerated one-step-ahead forecasts of sim-

ilar skill for out-of-sample observations, with an average

correlation between predictions and observations (q) of 0�71
across all models and species (Fig. 2). Without climate covari-

ates, the accuracy of forecasts from the IPM were not statisti-

cally greater than the accuracy of forecasts from the QBM

(Fig. 2) and overall error was similar (mean absolute error;

Fig. S1). With climate covariates, the best out-of-sample pre-

dictive model (highest lppd) for each species and vital rate typi-

cally resulted from highly constrained priors on the climate

effects (Fig. S2). Thus, the posterior distributions of climate

effects included in our models overlapped zero and generally

were shrunk toward zero, though for some species-vital rate

combinations, important effects (80% credible interval does

not include zero) did emerge (Fig. 3).

Despite the weak climate effects, including climate covari-

ates did increase the mean accuracy of forecasts for two spe-

cies: B. gracilis and Poa secunda (Fig. 2 and Fig. S3,

Supporting Information). However, skill increases were only

statistically significant at a = 0�05 for the B. gracilis QBM

Significance Tests
BOGR HECO PASM POSE

IPM - no climate vs.
QBM - no climate P = 0·96 P = 0·95 P = 0·29 P = 0·38

IPM - climate vs.
QBM - climate

P = 0·86 P = 0·76 P = 0·02** P = 0·13

IPM - climate vs.
IPM - no climate

P = 0·12 P = 0·49 P = 0·54 P = 0·07*

QBM - climate vs.
QBM - no climate

P = 0·04** P = 0·77 P = 0·74 P = 0·06*

Fig. 2. Comparisons of one-step-ahead, out-of-sample forecast accu-

racy between the IPMandQBMmodels with andwithout the inclusion

of climate covariates. Boxplots show the distribution of q averaged

over quadrats for each cross-validation year (i.e., 13 values of q for each
species-model combination). For each comparison, P-values are from

one-sided t tests designed to assess whether the first model in the com-

parison statement had higher accuracy than the second model in the

comparison statement (see details in Table S22). *, statistically signifi-

cant difference at a = 0.1 and **, significance at a = 0.05. Statistical

tests relied on correlation values for each quadrat-year-species combi-

nation, after averaging over model reps for each combination. In no

case did adding climate covariates decrease forecast accuracy (Table

S21). Species codes are as in Fig. 1.
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(tð279Þ ¼ 1�80, P = 0�037). Forecast error decreased

significantly with the inclusion of climate covariates for the

B. gracilis IPM (tð280Þ ¼ � 2�33, P = 0�01) and QBM

(tð280Þ ¼ � 3�34, P < 0�0001), and for the Poa secunda IPM

(tð196Þ ¼ � 2�19, P < 0�0001) and QBM (tð196Þ ¼ � 2�47,

P = 0�007) (Fig. S1). In no case did including climate covari-

ates significantly decrease forecast skill (Table S21), despite

small changes in themean skill (Fig. 2 and Fig. S3).

Integral Projection Model forecasts were significantly more

accurate than the QBM in only one case (Fig. 2): forecast

Fig. 3. Posterior distributions of climate effects (bC) for each species and vital rate statistical model. Because our priors were constrained via ridge-

regression, we highlight climate effects whose 80% credible intervals do not overlap zero (red for negative coefficients, blue for positive coefficients).

Kernel bandwidths of posterior densities were adjusted by a factor of 4 for visual clarity. Species codes are as in Fig. 1. Climate covariate codes:

pptLag = ‘water year’ precipitation at t � 2; ppt1 = April through June precipitation at t � 1; ppt2 = April through June precipitation at t;

TmeanSpr1 =April through June temperature at t � 1;TmeanSpr2 =April through June temperature at t.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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accuracy of P. smithii percent cover from an IPMwith climate

covariates was greater than the accuracy from the QBM with

climate covariates (tð215Þ ¼ 2�02, P = 0�022). However, add-

ing climate covariates decreased the skill of both models, and

the difference between the IPM and QBM emerges only

because skill decreased less for the IPM than theQBM.Results

from all pairwise statistical tests are shown in Table S22.

With climate covariates included and using mean parameter

values, the accuracy of both models’ forecasts declined as the

distance between the last observation and the forecast

increased, but they did so at similar rates (Fig. 4). The only

exception is for Poa secunda, where QBM forecast accuracy

remained steady as the temporal distance of the forecast

increased, whereas IPM forecast accuracy declined (Fig. 4).

The forecast horizons were short: forecast accuracy fell below

q = 0�5 after one year for the IPM for most species, and after

four years, at most, for the QBM (Fig. 4). Across the different

temporal distances from the observation to the forecast, the

IPM was never more accurate than the QBM (P > 0�05 for all
one-sided t-tests, Table S23). Likewise, the QBM was rarely

more accurate than the IPM, the only exceptions being for

H. comata at a temporal distance of three years (t(98) = 2·04,

P=0·032) and B. gracilis at a temporal distance of eight years

(t(37)= 1·67,P=0·05) (Table S24).

Discussion

Our comparison between a traditional, demographic popula-

tion model without environmental forcing (the IPM) and an

equivalent model inspired by density-structured models (the

QBM) showed that IPM forecasts of out-of-sample plant pop-

ulation states were no more accurate than forecasts from the

QBM (Fig. 2; ‘no-climate’ bars). This result differed from our

expectation that the IPM would out-perform the QBM,

because of its mechanistic representation of the perennial life

cycle. Our result also confirms theoretical (Freckleton et al.

2011) and empirical work (Taylor &Hastings 2004; Queenbor-

ough et al. 2011) showing that density-structured models can

be useful surrogates for demographic models when the goal is

to estimate or forecast population states over large spatial

extents.

We also expected the inclusion of environmental forcing to

reveal further differences between the models. Interannual

variation in weather can affect vital rates in different ways

(Dalgleish et al. 2011). Thus, estimates of climate effects on

plant population growth may be biased or non-identifiable

when the underlying statistical model is fit using population-

level data that integrates over the potentially unique climate

responses of individual vital rates. We found some evidence

that the QBM failed to detect climate effects for three species

(B. gracilis,H. comata, and Poa secunda), where important cli-

mate effects were identified in the individual vital rate models

but not in the percent cover model (Fig. 3). For H. comata,

adding climate covariates did not improve forecasts (Fig. 2),

despite the significant climate effects in the vital rate regressions

(Fig. 3). Furthermore, for the two species where including cli-

mate covariates increased forecast accuracy (B. gracilis and

Poa secunda), forecast accuracy (Fig. 2) and error (Fig. S2)

were equivalent between the IPMandQBM.

The higher accuracy and lower error of the IPM and QBM

with climate covariates for B. gracilis and Poa secunda high-

lights the advantage of contemporary modeling and variable
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Fig. 4. The forecast horizons for both models with climate covariates

included and using mean parameter values. Points show the average

accuracy (q, correlation between observations and predictions) across

all forecasts at a given distance between the last observation and the

forecast, where forecasts aremade for in-sample data.We only examine

the forecast accuracy of models with climate covariates included

because in no case did including climate covariates significantly

decrease accuracy (see Fig. 2). The dashed blue line indicates a forecast

proficiency threshold of q = 0�5. Species codes are as in Fig. 1 and sta-

tistical comparisons between the IPM and QBM at each forecast dis-

tance are in Tables S23 and S24.
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selection approaches such as ridge regression and LASSO over

techniques that would exclude ‘non-significant’ effects from

final models. Ridge regression allows researchers to retain

covariates whose effects may be difficult to identify in noisy

data or short time series. This is especially important when

forecasting the impacts of climate variability, where it is impor-

tant to include the effects of forcing variables (e.g., temperature

and precipitation) even if such effects are difficult to identify.

Indeed, we failed to detect strong climate effects in the QBM

for B. gracilis and Poa secunda, but including climate covari-

ates still improved forecasting skill (Fig. 2 and Fig. S3) and

reduced forecasting error (Fig. S1). If a species is truly unre-

sponsive to a given climate variable, statistical regularization

techniques will shrink the mean and variance of a covariate

estimate toward zero (Hooten & Hobbs 2015). Of course,

regardless of whatmodel selection approach is adopted, a criti-

cal step is identifying the appropriate candidate covariates,

which we attempted to do based on our knowledge of this

semi-arid plant community. However, the climate covariates

we chose required aggregating daily weather data over discrete

time periods. It is possible that we did not choose the optimal

time periods over which to aggregate. New methods using

functional linear models (or splines) may offer a data-driven

approach for identifying the appropriate time periods over

which to aggregate to produce a tractable set of candidate cli-

mate variables (Sims et al. 2007; van de Pol & Cockburn 2011;

Teller et al. 2016).

We also expected IPM forecast accuracy to decline at a

lower rate than the QBMas the time between themodel initial-

ization and the forecast increased. In principle,moremechanis-

tic models should produce better predictions, especially under

novel conditions (Evans 2012; Schindler & Hilborn 2015). In

our case, the IPM explicitly models the influence of weather on

recruitment and survival, effects that may be poorly repre-

sented in the QBM because recruitment and survival mainly

affect small plants that contribute little to year-to-year changes

in percent cover. Over longer time scales, the addition and sub-

traction of small plants could have large effects on population

growth, so explicitly modeling these effects could contribute to

a longer forecast horizon. However, we found no evidence that

the forecast horizon for the IPM was greater than the QBM

(Fig. 4). On the contrary, the QBM tended to have a slightly

longer forecast horizon than the IPM for most species (Fig. 4).

The QBM has fewer processes and parameters, which can

reduce bias due to parameter uncertainty. As a result, the

QBM may better capture near term dynamics when popula-

tions do not fluctuate widely, as in our case.

Our comparison of a model based on individual-level data

with one based on percent cover data is not an exhaustive test.

Understanding the reasons why the percent cover-basedmodel

matched the skill of a demographic model for our focal species

may help us anticipate situations in which a percent-cover

approachwould fail. First, for none of our species did a climate

covariate have a strong negative effect on one vital rate and a

strong positive effect on a different vital rate (Fig. 3). As noted

by Freckleton et al. (2011), complex age or stage structure can

compromise predictions from models that aggregate over life-

histories, and the same should be true when aggregating across

vital rates with contrasting responses to climate drivers. Sec-

ond, our particular recruitment model is already so aggregated

– it averages across seed production, germination and estab-

lishment – that it may fail to detect important demographic

responses to climate, putting our individual-based model and

percent cover model on more equal footing. More finely

resolved recruitment data might help our individual-based

model outperform the population-level model. As advocated

by Freckleton et al. (2011), knowledge of a species’ population

ecology should guide the modeling approach. Third, our per-

cent cover data are essentially error-free because we were able

to aggregate individual plant areas to calculate percent cover.

Percent cover data collected by typical sampling methods (e.g.,

Daubenmire frames) will include error that may affect popula-

tion forecasts due to misspecifing the initial conditions and/or

biasingmodel parameters (Queenborough et al. 2011). Percent

cover models based on data containing more measurement

error than ours might perform worse in comparison with indi-

vidual-based models. One way to account for such error is to

develop a sampling model that relates the observations (esti-

mated percent cover in a plot) to the true state (percent cover

derived from individual plant measurements in the same plot)

(Hobbs&Hooten 2015).

Although our main goal was to compare individual-based

and population-level modeling approaches relative to one

another, it is worth reflecting on the absolute forecasting skill

of our models. In particular, the forecast horizon of bothmod-

els, defined as the time horizon at which the correlation

between predictions and observations falls below q = 0�5, is
<5 years for all species. Such short forecast horizons are not

encouraging. Unfortunately, we have few ideas about how to

improve population forecasts that have not already been pro-

posed (Mouquet et al. 2015; Petchey et al. 2015). Longer time-

series should improve our ability to detect exogenous drivers

such as climate (Teller et al. 2016), and modeling larger spatial

extents may reduce parameter uncertainty (Petchey et al.

2015). We may also have to shift our perspective from making

explicit point forecasts to making moving average forecasts

(Petchey et al. 2015). Whether the poor predictive ability of

our models impacts the comparison of models based on indi-

vidual vs. population-level data is an open question.

In conclusion, we found that models based on individual-

level demographic data generally failed to generate more skill-

ful population forecasts thanmodels based on population-level

data, even in models which included climate covariates. This

finding runs counter to our expectations, but is consistent with

recent theoretical (Freckleton et al. 2011) and empirical work

(Queenborough et al. 2011). We conclude that models based

on population-level data, rather than individual-level data,

may be adequate for forecasting the states and dynamics of

plant populations. This conclusion comes with the caveat that

our analysis may be a weak test of the prediction that individ-

ual-level data is necessary for forecasting if different vital rates

respond to climate in opposing ways, because climate effects

were relatively unimportant in our vital rate regressions.

Nonetheless, our results should encourage the use of easy-to-
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collect population-level data for forecasting the state of plant

populations.
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