BioSentinel
A 6U Nanosatellite for Deep Space Biological Science

Hugo Sanchez
Spacecraft Bus Systems Engineer

13th Annual Summer CubeSat Developers’ Workshop
Logan, UT

8/6/16
BioSentinel Project Objectives

• Advanced Exploration Systems (AES) Program Office selected BioSentinel to fly on the Space Launch System (SLS) Exploration Mission (EM-1) as a secondary payload
 • Payload selected to help fill Strategic Knowledge Gaps in Radiation effects on Biology
 • Current EM-1 Launch Readiness Date (LRD): July 31, 2018

• Key BioSentinel Project Objectives
 • Develop a deep space nanosat capability
 • Develop a radiation biosensor useful for other missions
 • Define & validate SLS secondary payload interfaces and accommodations for a biological payload

• Collaborate with two other AES selected missions (non-biological) for EM-1
 • Near Earth Asteroid (NEA) Scout (MSFC)
 • Lunar Flashlight (JPL)
A BioSensor in Space

• **What**: BioSentinel is a yeast radiation biosensor that will measure the response to DNA damage caused by space radiation, primarily double strand breaks (DSBs).

• **Why**: The space radiation environment’s unique spectrum cannot be duplicated on Earth. It includes high-energy particles, is omnidirectional, continuous, and of low flux. During solar particle events (SPEs), radiation flux can spike to a thousand nominal levels.

• **How**: Laboratory-engineered *S. cerevisiae* cells will receive ionizing radiation in desiccated state and in suspension; cell growth and metabolic activity in microwells will indicate DSB-and-repair events. Multiple microwells will be in active mode during the mission & extra wells will be activated in the event of an SPE.

Why budding yeast?

Eukaryotic organism; easy genetic / physical manipulation; availability of assays; flight heritage; ability to be stored in stasis for long durations; and common DNA repair mechanism with humans

While it is a simple model system, yeast is the best model organism for the job given the limitations and constraints of deep-space missions
BioSentinel FreeFlyer Spacecraft: Physical Overview

- Propulsion System
- Batteries
- Integrated Guidance Navigation & Control Unit
- Solar Arrays
- Solar Array Gimbal
- Medium-Gain Antenna
- Low-Gain Antennas
- Transponder
- Avionics and Power
- BioSensor Payload
- Total Ionizing Dosimeter (TID) and Linear Energy Transfer (LET) spectrometer

13th Annual Summer CubeSat Developers' Workshop, 8/6/16
BioSentinel Mission Phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Entry</th>
<th>Exit</th>
<th>Duration</th>
<th>Summary & Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Launch</td>
<td>Loading of biology</td>
<td>L/V Lift-off</td>
<td>~180 days</td>
<td>- Load Flight Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Charge, checkout, and configure FreeFlyer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Integrate FreeFlyer with Dispenser and SLS</td>
</tr>
<tr>
<td>Launch</td>
<td>L/V Lift-off</td>
<td>Deployment of FreeFlyer</td>
<td><1 day</td>
<td>- FreeFlyer is powered off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Survive launch environments and deployment</td>
</tr>
<tr>
<td>Initialization</td>
<td>Deployment of FreeFlyer</td>
<td>Completion of FreeFlyer checkout</td>
<td>~14 days</td>
<td>- Power-on, reduce tip-off rates, deploy solar arrays, transition to safe mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Ground station initial acquisition and tracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Checkout of FreeFlyer systems</td>
</tr>
<tr>
<td>Science</td>
<td>Nominal FreeFlyer SOH</td>
<td>Final science data received at SD Center</td>
<td>365 days</td>
<td>- Collect data from all payloads</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Execute biology experiments per science plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Respond to SPE events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Maintain FreeFlyer bus health</td>
</tr>
<tr>
<td>Science (Extension)</td>
<td>ATP Science Extension</td>
<td>Final science data received at SD Center</td>
<td>180 days</td>
<td>- Collect data from all payloads</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Execute biology experiments per science plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Respond to SPE events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Maintain FreeFlyer bus health</td>
</tr>
<tr>
<td>Operational</td>
<td>End of Nominal Science Ops</td>
<td>FreeFlyer decommissioned (power-off)</td>
<td>~7 days</td>
<td>- Ensure all data downlinked</td>
</tr>
<tr>
<td>Decommission</td>
<td></td>
<td></td>
<td></td>
<td>- Solar array switches open to ensure battery never recharges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Transmitter power-down</td>
</tr>
</tbody>
</table>
BioSentinel Spacecraft Modes

Pre-launch
- Launch Vehicle Integration: 4 months
- Biology Load & Integration: 1 month
- Shipping & Dispenser Integration: 1 month

Launch
- Checkout: 2 weeks
- Science Operations: 12 months

Spaceflight
- Extended Science: 6 months

Diagram:
- PRE-LAUNCH PHASE: Diagnostics Mode (Power-off sequence) → Launch (all off)
- INITIALIZATION PHASE: Ejection from Dispenser → Startup → Checkout
- SCIENCE PHASE: Safe Mode → Science Mode → Comm Mode
- DECOMMISSIONING PHASE: Shutdown Mode

Legend:
- Ground Cmd
- Onboard Cmd
- Onboard Logic
- Transition
- Operating Mode

13th Annual Summer CubeSat Developers’ Workshop, 8/6/16
13th Annual Summer CubeSat Developers’ Workshop, 8/6/16

Secondary Payload Location on SLS EM-1

- 13 - dispenser locations that each support a 6U (14 kg) secondary payload
- 1 - bracket location allocated to a sequencer
- EM-1 only accommodates 6U payloads; EM-2 may accommodate 12U payloads
Total Payload Deployment Mission Duration: 10 days

1) LAUNCH

2) Perigee Raise Maneuver (PRM)
 ICPS - 100x975 nmi (185x1806 km)

3) TRANS-LUNAR INJECTION (TLI)
 ICPS

4) MPCV/ICPS Separation
 10 min. after TLI

5a) Trajectory Correction Maneuvers (TCMs)
 Orion
 Outbound: 3 - 8 days

5b) Trajectory Disposal Maneuvers (TDMs)
 ICPS w/2nd Payloads 45 – 60 min.

6a) Mission & Return to Earth
 Orion
 Outbound: 3 - 8 days

6b) 2nd Payload Deployment - Start
 Deployment window 10 days

7) ICPS to Helio Orbit

2nd Payload Option(s)
- Orbit Moon
- Impact into Moon
- Fly out past moon

2nd Payload Deployment Conditions
- Ground launch window up to 2 hours long (depends on launch day in weekly window).
- DRO Mission Scenario—Weekly Launch Window with Lunar Arrival ~3.5 to 8.5 days, early in window is longest trip time.
- End of the disposal maneuver, the ICPS is at 26,700 km from Earth, inertial velocity of 5.279 km/s.
Deployment “Bus Stops”

<table>
<thead>
<tr>
<th>Bus Stops</th>
<th>Distance</th>
<th>Flight Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26,700 km</td>
<td>4 Hrs. & 32 Min.</td>
</tr>
<tr>
<td>2</td>
<td>64,000 km</td>
<td>13 Hrs. & 17 Min.</td>
</tr>
<tr>
<td>3</td>
<td>192,500 km</td>
<td>3 Days, 10 Hrs. & 18 Min.</td>
</tr>
<tr>
<td>4</td>
<td>238,900 km</td>
<td>6 Days, 20 Hrs. & 51 Min.</td>
</tr>
<tr>
<td>5</td>
<td>313,400 km</td>
<td>7 Days, 9 Hrs. & 38 Min.</td>
</tr>
</tbody>
</table>

- **Bus Stops** 1: First opportunity for deployment, 2nd radiation belt
- **Bus Stops** 2: Clear radiation belt plus an hour
- **Bus Stops** 3: Half way to the moon
- **Bus Stops** 4: At the moon (~250 km from surface)
- **Bus Stops** 5: Past the moon plus 12 hours (lunar gravitational assist)
Science Operations: 12 months

- Science Operations are periodic with 8 time points throughout the 12 months
- 2 cards are kept in reserve for Solar Particle Events (SPEs)
- Activation Time points: T0, T0+45 days, T0+90 days, T0+135 days, T0+180 days, T0+225 days, T0+270 days, T0+315 days
- Schedule is adjustable as part of Science Planning process during operations
- Two 4x4 cards are activated at a time
- Two media are used for each biology 4x4 cards
 - Media A for 4 weeks rehydrates the desiccated samples
 - Media B for 2 weeks includes raising the temperature and adding growth media with Alamar Blue
Heliocentric Orbit

Range from Earth

Sun-BioS-Earth Angle

Nominal Mission (380d, 0.56AU)
Nominal Mission (379d, 71.9deg)
Extended Mission (540d, 0.71AU)
Extended Mission (540d, 64.1deg)
Based on current trajectory and transponder design assumptions, the system supports:

- 8 kbps through the minimum mission duration (3 months)
- 500 bps through the nominal mission duration (12 months)
- 250 bps through the extended mission duration (18 months)

BioSentinel Communication Links

Link Margin (dB) vs. Mission Days

- 90 days – Min. Mission
- 380 days - Nominal
- 540 days - Extended
More work in progress…
Thank you!

Questions?
BioSentinel Back-Up Charts

BACK-UP
BioSentinel FreeFlyer Spacecraft Bus Summary

- LEON3 RT based C&DH
 - Embedded VxWorks OS with cFS/cFE
 - Port of LADEE FSW for Bus
 - Port of EcAMSat / SporeSat FSW for P/L
- 3-axis controlled GNC system
 - Blue Canyon XACT Integrated GN&C Unit
 - 3 Reaction Wheels
 - Star Tracker
 - CSS, IMU for safe mode
 - 5° pointing requirement
- Propulsion
 - 3D printed system from GT / LSR
 - Null tipoff rates and momentum management
 - Seven cold gas R236cf thrusters
 - ~60 sec Isp
 - ~200 grams propellant
- Communications
 - X-Band to DSN @ 62.5 - 8000 bps
 - LGA and MGA patch antennae
 - IRIS v2 coherent transponder
- Power
 - ~32 W generated power EOL
 - Deployable HaWK arrays from MMA
 - Panasonic 18650 batteries
 - ARC design EPS and switch controllers
- Structure
 - 6U nominal volume
 - ARC Nanosat heritage
 - EcAMSat provided baseline for BioSentinel development
- Thermal
 - Cold biased system
 - Heaters, thermistors, paint, reflective tape for control
- Supports Payloads
 - Yeast based BioSensor Payload
 - JSC LET Spectrometer
 - Teledyne based TID Dosimeter
 - 4U volume
BioSentinel Month-in-the-Life ConOps

Monitor Bus Functions

<table>
<thead>
<tr>
<th>Major Functions</th>
<th>Sub-functions</th>
</tr>
</thead>
</table>
| Select card | Determine fluidic card
| | Select μ-controller
| | Select pump and valve set |
| Apply Fluids | Open inlet valve
| | Open plate valve
| | Open nutrient valves
| | Activate Pump |
| Configure Thermal Control | Apply cold set points to other cards
| | Warm set points for Media B |
| Close System | Close inlet valve
| | Close plate valve
| | Close nutrient valves
| | De-activate pump |

Transmit to DSN

- (Daily, 30 minute contact, ATS)

<table>
<thead>
<tr>
<th>Major Functions</th>
<th>Sub-functions</th>
</tr>
</thead>
</table>
| Readout BioSensor | Determine fluidic card
| (15 min cadence) | Select u-controller
| | Select and power well LEDs
| | Select and readout sensor
| | Iterate all wells |
| Readout TID sensor | Apply power to sensor
| (5 min cadence) | Wait for stabilization
| | Sample analog readouts |
| Readout LET Spectrometer sensor | Acquire binned data
| (1 hour cadence) | Store data in file system |
| Monitor for SPE | Sample TID readout
| | Sample LET shutter info
| | Wet new card if SPE detected |

Media A: 4 weeks

- Wet new cards with Media A (2 fluidic cards every 6 weeks, ATS)
- Collect science data (Continuous, RTS)

Media B: 2 weeks

- Wet cards with Media B (4 weeks after Media A, RTS)

Media B: 2 weeks

- Wet cards with Media B (4 weeks after Media A, RTS)
LET Spectrometer & TID Dosimeter Radiation Monitoring

• Linear Energy Transfer (LET) Spectrometer Designed by JSC RadWorks specifically for the BioSentinel Project.

 LET Spectrometer Engineering Development Unit (EDU)

• Total Ionizing Dose (TID) Dosimeter using a Teledyne uDOS001 sensor, board design by ARC. Prototype board with dummy sensor
Ground System Architecture

Space Communication and Navigation (SCaN) Networks

NASA Deep Space Network (DSN)
- Goldstone 34-m BGW (x3)
- Goldstone 34-m HEF (x1)
- Canberra 34-m BGW (x3*)
- Canberra 34-m HEF (x1)
- Madrid 34-m BGW (x2)
- Madrid 34-m HEF (x1)
- Morehead St 21-m (x1) (in dev.)

NASA Near Earth Network (NEN)
- Hawaii 13-m (x2)
- Wallops 11-m (D/L only)
- Dongara 13-m / 7-m
- Hartebeethok 10-m (D/L only)

Mission Operations Center - ARC

- Telemetry & Command System
- Activity Planning System
- Command Sequencing System
- Flight Dynamics System
- Engineering Analysis System
- Plotting & Trending System
- Simulation System
- Monitor & Alerting System
- Short-Term Data Archival System

File & Data Management
- Productivity Tools
- Networking

Science Data Center - ARC

- Science Data Calibration
- Plotting & Trending System
- Short-Term Data Archival System

File & Data Management
- Results for Archive
- Space Weather Reports
- Space Weather Alerts
- Calibrated Data Set

NASA Life Sciences Data Archive (ARC)

Legend
- Real Time
- Delayed
- RF Link
- Open for Trade (any color)

International Space Station (ISS) Infrastructure

BioServe

ISS On-Board Network

Ground Dist.

HOSC

Delayed Async. Ground Control Facility - ARC

Ground Support Equipment

Environment Control (FF-GC)

Ground Support Equipment

Environment Control (ISS-GC)

Radiation Ground Control Facility - BNL

Ground Support Equipment
Preliminary Operational Staffing Profile

<table>
<thead>
<tr>
<th>Mission Phase</th>
<th>Length</th>
<th>Mission Operations Staffing Profile</th>
<th>Assumptions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Launch</td>
<td>~ 30 day</td>
<td>- 4x5 support for monitoring of BioSentinel DSGC pre-launch profile</td>
<td>- DSGC must start while BioSentinel is at KSC</td>
</tr>
<tr>
<td>Launch & Ascent</td>
<td>~ 1 day</td>
<td>- Full team will staff the MOC</td>
<td>- BioSentinel is powered off. No real-time stream of data from S/C into the MOC during L&A</td>
</tr>
</tbody>
</table>
| Initialization | ~ 14 days| - 24x7 console support for L + 5 days to check out S/C bus systems, ensure payloads are functional, perform orbit determination and update activity plan | - Launch dispersions and deployment uncertainty will require BioSentinel re-plan cycle.
- No propulsive maneuver to achieve heliocentric orbit. |
| Science (early) | ~ 60 days| - 8x5 console support to monitor first two biosensor experiments and to assist in planning and executing calibration activities as needed
- Surge support if needed | - Autonomous momentum dumping |
| Science (routine) | ~ 305 days| - One planning cycle every week with goal of two weeks
- Uplink console supports once per week, available for other with notice
- Continuous trending of S/C bus data
- Console staff on-call to respond to SPE | - Review of DSN schedule every month, for three months in the future
- Limited real-time changes to schedule and plan except for SPE response |
| Extended Science | ~ 180 days| - Continuation of Science | |
Spacecraft to Sun Range

Sun Range in AU

Mission Day

- Nominal Mission (380d)
- Extended Mission (540d)

20% Power Loss
10% Power Loss
Power Budget

Actual Power Margin (No SE Contingency)

Mission Days

Power (Watts)

Margin

Avg Draw
Supply, Gimbal
Supply, No Gimbal
Margin, Gimbal
Margin, No Gimbal

13th Annual Summer CubeSat Developers’ Workshop, 8/6/16
Battery Discharge

DOD After 30 Minute Comm Pass (Iris in Tx/Rx) with SE Contingency

Mission Days

Depth of Discharge

- Maximum
- No gimbal
- Gimbal

13th Annual Summer CubeSat Developers' Workshop, 8/6/16
The Project Team

- **Mission Management** - Bob Hanel, Dawn McIntosh, James Chartres, Mario Perez, Elwood Agasid, Vas Manolescu, Matt D’Ortenzio
- **Science** - Sharmila Bhattacharya, Sergio Santa Maria, Diana Marina, Macarena Parra, Tore Straume, C. Mark Ott, Sarah Castro, Greg Nelson, Troy Harkness, Roger Brent
- **Payload** - Charlie Friedericks, Rich Bielawski, Tony Ricco, Travis Boone, Ming Tan, Aaron Schooley, Mike Padgen, Diana Gentry, Terry Lusby, Scott Wheeler, Susan Gavalas, Edward Semones
- **Spacecraft and Bus** - Hugo Sanchez, Matthew Sorgenfrei, Matthew Nehrenz, Vanessa Kuroda, Craig Pires, Shang Wu, Abe Rademacher, Josh Benton, Doug Forman, Ben Klamm

Affiliations

NASA Ames, NASA JSC - RadWorks, LLUMC, Univ. Saskatchewan

Support

NASA Human Exploration and Operations Mission Directorate (HEOMD); Advanced Exploration Systems Division – Jitendra Joshi, Jason Crusan Program Execs.