Tools for Software Based Validation and Verification of Small Satellites

Matt Grubb
Matthew.d.grubb@nasa.gov

Small Sat Workshop 2016
ITC Developed Simulators
Overview

What is NOS3?

- Based upon Simulation-to-Flight 1 (STF-1) hardware, but sufficiently generic
- Easily-interfaces to Core Flight System (CFS), but CFS not required
- A collection of Linux executable and libraries, deployed ready-to-run
- Allows the testing of flight software as it is flown

What is it used for?

- FSW early-development – NOS3 provides real-world inputs to FSW
- FSW V&V – Testing FSW, invalid inputs, behavior, stress conditions
- FSW Integration – Applications can be tested with simulated hardware
- Mission Planning – Example: power analysis, command and telemetry
NOS³ Components

- Virtual Machine – NOS³ environment
- NOS Engine Middleware
- Hardware Models
- FSW Hardware Abstraction Layer
- Orbit Inview & Power Prediction (OIPP) Tool
- CFS – Flight Software
- 42 – Dynamics Simulation and Visualization
- COSMOS – Commanding & Telemetry
NOS³ Architecture

- **cFS**
 - Linux (x86, ARM/Pi)
 - NOS Engine
 - Hardware Models
 - 42

- **STF-1**
 - Hardware Lib

- **OS Abstraction Layer (OSAL)**

- **Ground System Software (COSMOS)**

- **Commanding & Telemetry**

- **NOS³ UI & Control**

- **Flight Hardware**
 - FreeRTOS (AVR32)

- **Hardware Adapter**
 - i2c / SPI

NOS³

NASA Operational Simulator for Small Satellites

Independent Test Capability
Ease of Deployment

• Ready-to-run after unpacking a .tar
• Install Vagrant and VirtualBox
• Run nos3_installer
• Developer build tools installed
• Convenience scripts for building/running
NOS Engine Middleware

- ITC developed middleware
- Common server to communicate to all data nodes (CFS, Hardware simulators, Time ticker, Command terminals)
- C/C++ API
- I2C, UART and SPI protocols
- Asynchronous and Synchronous
Hardware Models

• Modeled based on characteristic data, or manufacturers data specifications

• Currently have modeled
 – Novatel GPS
 – Clyde Space EPS
 – Honeywell Magnetometer
 – ISISpace Antenna System
 – Gomspace A3200 support chips (FRAM, Gyro)
Hardware Models

NOS Engine Interface → NOS Engine Message
NOS Engine Interface → NOS Engine Message
NOS Engine Interface → NOS Engine Message

Hardware Model

Environment Data Provider

NASA Operational Simulator for Small Satellites

Independent Test Capability
Flight Software (CFS)

• Open source flight software developed by GSFC

• Includes an OS Abstraction Layer
 – Allows building for flight and NOS3 targets on same machine without source code changes

• Additional Platform-Support-Package (PSP) added to sync CFS time with NOS3
42
GSFC Open Source Dynamics Simulator

- NOS3 TCP/IP Socket Integration
- Simulation time synchronized with NOS3
- Moving toward closed loop
COSMOS

• Open Source software for embedded system commanding and telemetry

• Currently connects to CFS TO_lab
 – Future plan is to have radio simulator to replace TO_lab

• Can be used for operator training, testing table loads to SC, verifying command and telem databases, etc.
Orbit, Inview, and Power Prediction

• Web page: Generated daily by cron job
• TLE Data pulled from http://celestrak.com as obtained from NORAD
• Time Periods (configurable)
 • Yesterday, Today, Future
• Displays
 • Ground station in-views
 • Sunlight and Eclipse times
Orbit, Inview, and Power Prediction (OIPP)
Acquiring NOS3

- Stop by the GSFC booth and see us
- Email us: ivv-dl-nos3-support@mail.nasa.gov