Tools for Software Based Validation and Verification of Small Satellites

Matt Grubb
Matthew.d.grubb@nasa.gov

Small Sat Workshop 2016
ITC Developed Simulators
Overview

What is NOS3?

- Based upon Simulation-to-Flight 1 (STF-1) hardware, but sufficiently generic
- Easily-interfaces to Core Flight System (CFS), but CFS not required
- A collection of Linux executable and libraries, deployed ready-to-run
- Allows the testing of flight software as it is flown

What is it used for?

- FSW early-development – NOS3 provides real-world inputs to FSW
- FSW V&V – Testing FSW, invalid inputs, behavior, stress conditions
- FSW Integration – Applications can be tested with simulated hardware
- Mission Planning – Example: power analysis, command and telemetry
NOS3 Components

- Virtual Machine – NOS3 environment
- NOS Engine Middleware
- Hardware Models
- FSW Hardware Abstraction Layer
- Orbit Inview & Power Prediction (OIPP) Tool
- CFS – Flight Software
- 42 – Dynamics Simulation and Visualization
- COSMOS – Commanding & Telemetry
Ease of Deployment

• Ready-to-run after unpacking a .tar
• Install Vagrant and VirtualBox
• Run nos3_installer
• Developer build tools installed
• Convenience scripts for building/running
NOS Engine Middleware

- ITC developed middleware
- Common server to communicate to all data nodes (CFS, Hardware simulators, Time ticker, Command terminals)
- C/C++ API
- I2C, UART and SPI protocols
- Asynchronous and Synchronous
Hardware Models

• Modeled based on characteristic data, or manufacturers data specifications

• Currently have modeled
 – Novatel GPS
 – Clyde Space EPS
 – Honeywell Magnetometer
 – ISISpace Antenna System
 – Gomspace A3200 support chips (FRAM, Gyro)
Flight Software (CFS)

• Open source flight software developed by GSFC

• Includes an OS Abstraction Layer
 – Allows building for flight and NOS3 targets on same machine without source code changes

• Additional Platform-Support-Package (PSP) added to sync CFS time with NOS3
GSFC Open Source Dynamics Simulator

- NOS3 TCP/IP Socket Integration
- Simulation time synchronized with NOS3
- Moving toward closed loop
COSMOS

• Open Source software for embedded system commanding and telemetry

• Currently connects to CFS TO_lab
 – Future plan is to have radio simulator to replace TO_lab

• Can be used for operator training, testing table loads to SC, verifying command and telem databases, etc.
Orbit, Inview, and Power Prediction

- Web page: Generated daily by cron job
- TLE Data pulled from http://celestrak.com as obtained from NORAD
- Time Periods (configurable)
 - Yesterday, Today, Future
- Displays
 - Ground station in-views
 - Sunlight and Eclipse times
Orbit, Inview, and Power Prediction (OIPP)

<table>
<thead>
<tr>
<th>Times Displayed are EDT</th>
<th>04-01 23:59:59-04:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Generation Time:</td>
<td>Report was generated at: 2016-04-01 04:22:10.482481-04:00</td>
</tr>
</tbody>
</table>

Wallops Antenna Day Shift

- **Wallops Antenna - S/C 39404 Inviews**: 2
- **Wallops Antenna Day Shift (8AM-4PM ground station local time, which is EDT)**

Morehead Antenna Day Shift

- **Morehead Antenna - S/C 39404 Inviews**: 1
- **Morehead Antenna Day Shift (8AM-4PM ground station local time, which is EDT)**

SRI Palo Alto Antenna Day Shift

- **SRI Palo Alto Antenna - S/C 39404 Inviews**: 0
- **SRI Palo Alto Antenna Day Shift (8AM-4PM ground station local time, which is EDT)**

S/C 39404 In Sunlight Times

- **5-12 PM**
 - **12:43 pm - 12:50 pm**
 - **Wallops Antenna - S/C 77777 Inviews**
 - **Duration: 0.12 hours**

nos³

NASA Operational Simulator
for Small Satellites

NASA ITC

Independent Test Capability
Acquiring NOS3

- Stop by the GSFC booth and see us
- Email us: ivv-dl-nos3-support@mail.nasa.gov