• Two 1.5U satellite formation
• Selected for a launch opportunity through the Terra Bella (formerly Skybox) University Cubesat Partnership
 – Satellite delivery due in 2016
• Mission objectives
 – Improve absolute and relative positioning capabilities of nanosats
 – Explore propulsion-less formation control techniques
 – Transmit low-rate optical (laser) communications
• Innovations
 – Demonstrate m to cm level POD for cubesats
 – Demonstrate mm-level inter-satellite ranging
 – Demonstrate inter-satellite laser comm from a nanosat platform
 – Evaluate performance of miniaturized atomic clock
RANGE - CONOPS

Satellite Laser Ranging (SLR)

UHF / VHF

Intersat laser ranging/comms

GPS
• Satellites will have no propulsion system
• Intersatellite distance (in plane) will be controlled through differential drag
 – Change in drag ratio (orientation) between the two satellites causes a relative motion
 – Well described in the literature, but few mission examples (Planet Labs, Aerospace AC6)
• Current mission plan will vary distance from hundreds to thousands of meters
Primary payloads
- Novatel OEM628 Receiver (L1/L2)
- Chip Scale Atomic Clock (CSAC)
 - < 2.5e-11 ADEV over 10s

Orbit validation through ground-based satellite laser ranging (SLR)
- Service provided by the NLR/ILRS
- Cm-level accuracy
• Laser Rx/Tx System
 – Made by Voxtel
 – 25 kW, 4 ns pulses
 – APD sensitive to nW
 – Custom optics design (GTRI)
 – 2.5° beam divergence to account for coarse s/c pointing
 – Class 1 (eye-safe), 1535nm

• Est. one-way detections to 500 km, dual-way detections < 1km

• Same system will also be tested as a low-rate laser communications
GPS antenna (Antcom)

Solar panels (Pumpkin)

CSAC (Microsemi, Jackson Labs)

GPS receiver (Novatel)

Laser Rx/Tx (Voxtel)

OBC/COMMS/CDH (Gomspace)

ADCS (GT, CubeSpace, SolarMEMS)

EPS (Gomspace)

Corner cube reflectors

UHF/VHF antenna (Gomspace)
- Custom structure
- Custom solar panels (Pumpkin)
HARDWARE

- Ruggedized electronics
- ReacEon wheels (CubeSpace)
- Custom Torque rods
- IntegraEon and TesEng
- ADCS
CHALLENGES AND NEXT STEPS

• Complete RANGE integration and testing
 – Flight software maturity
 – Environmental testing (thermal vacuum, vibration, antenna characterization)

• Controlling inter-satellite distance
 – Differential drag techniques still experimental
 – Want to avoid fast/out-of-plane separation of satellites
 – Refining simulations using advanced models (rarefied flow)

• Maintaining sufficient pointing control for laser Rx/Tx
 – 3-axis S/C pointing control expected to be 3-5°
 – With 2.5° laser beam divergence, continuous Rx/Tx not guaranteed
 – With only one reaction wheel, precise rotation only possible for one-axis
 – May require random attitude “search” until alignment achieved
• Acknowledgements
 – Terra Bella
 – Office of Naval Research & Naval Research Laboratory
 – Georgia Tech’s Center for Space Technology and Research (CSTAR)
 – Georgia Tech Research Institute (GTRI)
 – Over 40+ graduate and undergraduate students involved to date

• Contact: Brian Gunter
 brian.gunter@aerospace.gatech.edu