What’s this Talk About?

• What are Challenges?
• What is NASA’s Centennial Challenges?
• Why a Cube Quest Challenge?
• What is Cube Quest? Who is Eligible?
• What is EM-1?
• How do they get on EM-1?
• What is the current status?
In 1761, John Harrison (clockmaker) solved the British maritime navigation challenge.

In 1809, Nicolas Appert (baker) solved the Napoleon challenge for food preservation.

In 1901, Alberto Santos-Dumont (coffee plantation heir) won the French airship challenge.

In 1910, Georges Chavez (pilot) won the Milan Committee challenge being the first to fly over the Alps.

In 1927, Charles Lindbergh (mail pilot) won the Orteig Prize being the first to fly across the Atlantic Ocean.

In 1977 & 1979, Paul MacCready (aeronautic engineer) won the Kremer Prizes for human-powered flight challenges.

In 2004, Burt Rutan (aerospace engineer) won the X-Prize Ansari challenge being the first private entity to enter space twice within two weeks.

In 2007, Peter Homer (unemployed engineer) won the NASA Astronaut Glove challenge by making a better glove.
What is the Centennial Challenges Program?

- NASA STMD’s Centennial Challenges Program, initiated in 2005, named after Wright Brothers’ Kitty Hawk flight
- Engages public in advanced technology development
- Prizes for solving problems of interest to NASA and the nation
- Competitors based in US; not supported by government funding.
- Since 2005, there have been eight challenge categories, resulting in more than 20 challenge events to date.
- More than $6 million in prize money has been awarded to more than 17 different teams
- Summer 2013, work began on Cube Quest Challenge

Current Centennial Challenges:
- Sample Return Robot
- 3-D Printed Habitat
- Mars Ascent Vehicle
- Cube Quest
• CubeSats are smaller in: cost, mass, volume, risk

• Constellations of cooperative, little satellites > single, conventional satellites

• Cube Quest incentivizes progress of CubeSats for deep space:
 • Long distance, high bandwidth comm
 • Navigation and pointing - without GPS or Earth’s magnetic reference
 • Thermal management outside Earth’s albedo
 • Survival in radiation beyond LEO

How Can CubeSats Enable Future Missions Faster and More Affordably?
• Astrophysics:
 – Distributed RF and Optical Arrays on affordable satellite constellation
 – Affordable, time-correlated (simultaneous) multi-point observations of NEOs (mass density, albedo, etc)

• Planetary Explorations:
 – Distributed measurements (Ex: surface seismographic; Mars “weather systems”, multi-site impactors to detect lunar subsurface volatiles, etc.)
 – Co-ordinated assets (Ex: landers paired with orbiting relays)

• Heliophysics:
 – Global coverage
 – Multiple observations of transient events (Ex: radio occultation)
 – Geographically distributed time-correlated “space weather” measurements

• Earth Science
 – Global coverage (multiple)
 – Time correlated weather, oceanic observations

• DoD
 – Global coverage
 – Rapid response
 – System-level redundancy; high reliability
Get your CubeSat to the Moon
– or far beyond –
Work the best. Survive the longest. Win prizes.

Goal: to foster innovation in small spacecraft navigation, operations, and communications techniques for deep space

Lunar Derby
While in lunar orbit
- Achieve Lunar Orbit- $1.5M/shared, $1M max per team
- Error-free Communication
 - Burst Rate- $225k/25k
 - Total Volume- $675k/75k
- Longevity
 - $450k/50k

Deep Space Derby
While range ≥4M km
- Farthest Distance
 - $225k/25k
- Error-free Communication
 - Burst Rate- $225k/25k
 - Total Volume- $675k/75k
- Longevity
 - $225k/25k

Ground Tournaments (GT)
- 4 Rounds
- Approx every 6 months
- Top 5 teams receive incremental funding (max $100k per team)
- Top 3 teams launch free on EM-1

CubeSat limited to 6U and 14 kg
Qualify for EM-1 launch - or – get your own ride

$5.0M Prize Money

More info: http://www.nasa.gov/cubequest/details
SLS Safety and Interface Requirements
- SLS Payload Safety Reviews (to fly on EM-1)
- Or equivalent, for 3rd-party launches

Any allowable part of the spectrum
- subject to FCC public freq. alloc. and licensing regs

Comm data eligible for prizes
- May use NASA DSN – at your cost
- DSN tracks all trajectories; checks lunar orbit, 4M km range
- Comm data format per Rules, to qualify

Comply with Orbital Debris and Planetary Protection laws and regs

http://www.nasa.gov/cubequest/reference
Who Can Compete?

• US citizens, permanent residents, and US-based entities
• No federal employees, within their employment scope
• Register per rules
• Compete in any, or all, Ground Tournaments
• Your team can enter and win!

http://www.nasa.gov/cubequest/howtoenter
What is EM-1?

• NASA’s first non-crewed lunar flyby mission of Orion from SLS
 – Launch in late 2018
• Capacity for thirteen 6U-sized CubeSats
• Secondary Payloads deploy after Orion departure into lunar flyby trajectory
Orion:
Carries astronauts into deep space

RS-25 Engines:
Space Shuttle engines for the first four flights are already in inventory

Core Stage:
Newly developed for SLS, the Core Stage towers more than 200 feet tall

Interim Cryogenic Propulsion Stage:
Based on the Delta IV Heavy upper stage; the power to leave Earth

Solid Rocket Boosters:
Built on Space Shuttle hardware; more powerful for a new era of exploration

Stage Adapter:
The Orion MPCV Stage Adapter will be the first new SLS hardware to fly.
What is EM-1?

Total Payload Deployment System
Mission Duration: 10 days

2) Perigee Raise Maneuver (PRM)
 ICPS - 100x975 nmi
 (185x1806 km)

3) TRANS-LUNAR INJECTION (TLI)
 ICPS

4) MPCV/ICPS Separation
 10 min. after TLI

5b) Trajectory Disposal Maneuvers (TDMs)
 ICPS w/ 2nd Payloads 45 – 60 min.

5a) Trajectory Correction Maneuvers (TCMs)
 Outbound: 3 - 8 days

6b) 2nd Payload Deployment - Start
 Deployment window 10 days

6a) Mission & Return to Earth
 Orion

7) ICPS to Helio Orbit

2nd Payload Option(s)
- Orbit Moon
- Impact into Moon
- Fly out past moon

Outbound: 3 - 8 days

2nd Payload Deployment Conditions
- Ground launch window up to 2 Hrs long (depends on launch day in weekly window).
- DRO Mission Scenario— Weekly Launch Window with Lunar Arrival ~3.5 to 8.5 days, early in window is longest trip time.
- End of the disposal maneuver, the ICPS is at 26,750 km Earth Radius, inertial velocity of 5.279 km/s.
Eleven 6U/12U payload locations
6U volume/mass is the current standard
(14 kg payload mass)

Payloads will be “powered off” from
turnover through Orion separation and
payload deployment

Payload Deployment System Sequencer;
payload deployment will begin with pre-
loaded sequence following MPCV
separation and ICPS disposal burn

Payload requirements captured in
Interface Definition and Requirements
Document
Top 3 qualified GT-4 Winners offered free EM-1 launch

– Declare intent to fly EM-1
– Be a top five winner in GT-1 and/or GT-2
– Pass SLS payload safety reviews
– Compete and win in GT-4

• Four Ground Tournaments (GTs)
 – GT-1 - Aug 2015 - $20k - winners announced!
 – GT-2 - Mar 2016 - $30k – winners announced!
 – GT-3 - Oct 2016 - $30k
 – GT-4 - Mar 2017 - $20k and chance to launch on EM-1

• Teams may compete in any or all four GTs
 – they get harder as they go!
How Ground Tournaments Work

Teams submit GT documents

5 Judge Panel
- 2 NASA
- 3 Non-NASA leaders
 - Industry
 - Academic
 - DoD

GT Winners:
Top 5 Teams
Scoring > 3.0/5.0

Total GT Score

40% Likelihood of Mission Success

60% Compliance with Rules, SLS IDRd, SLS Safety Rqts

- Rules
- GT Workbook
- SLS IDRD
- SLS Safety Rqts (or equiv. launch provider rqts)

Team of technical SMEs

06Aug2016

CubeQuest for SmallSat Conference
What’s the Schedule?

Fall 2014 Competition Registration

2018 EM-1 Launch

EM-1 L+365 Days Competition End

Today

GT-1

GT-2

GT-3

GT-4

Down Select (if more Teams than launch spaces)

Team A

Team B

Team C

Team D

(Not Selected)

28 days

3rd-Party Launch

28 days

Team X End

28 days

3rd-Party Launch

28 days

Team Y End

3rd-Party Launch

< 365 Days

Team Z End

< 28 days

< 28 days

Team X

Team Y

Team Z

Team A

Team B

Team C

Team D

Team X

Team Y

Team Z
GT-3 Competitors

* - indicates EM-1 Qualifier

Industry

Alpha CubeSat Xtraordinary
Innovative Space Partnerships, Inc.

*Heimdallr
Ragnarok Industries, Inc.

*Team Miles
Fluid & Reason LLC

Academia

*Cislunar Explorers
Cornell University

* MIT KitCube
Massachusetts Institute of Technology

* SEDS UC San Diego
University of California - San Diego

G.O.A.T.S.
Worcester Polytechnic Institute

* CU-E3
University of Colorado – Boulder
• **Registration is Open for GT-3**
 – September 21, 2016
 • Registration Deadline and Submittals due date
 – Winners announced in October 2016

• **Final Ground Tournament**
 – In-Person at Ames Research Center in March 2017

http://www.nasa.gov/cubequest/howtoenter
Jim Cockrell
Cube Quest Challenge Administrator

ARC-CubeQuestChallenge@mail.nasa.gov
Good Luck and May the Best CubeSat Win!
• Challenge:
 – Farthest distance, largest volume, fastest rate - transmitted data

• Demonstrates:
 – Comm: award for farthest comm on certain date
 – Ground Stations: challengers can provide their own deep space ground stations, off-loading heavily subscribed DSN assets
 – Survival: award for farthest comm
 – Power: survival in cold environment
 – Pointing: aim directional antenna, camera
 – Propulsion, G&NC to point antennas

• Applications:
 – Planetary missions
 – NEO/NEA surveyor/precursor
• **Challenge:**
 – *Achieve verifiable lunar orbit*

• **Demonstrates:**
 – Propulsion: 700-900 m/s dV for Lunar Orbit Injection
 – Pointing: hi-gain antenna, articulated solar arrays
 – G&NC: navigate without benefit of GPS or Earth’s magnetic references
 – Power: perform while coping with lunar and Earth eclipse periods
 – Survival: achieve orbits and survive longest

• **Applications:**
 – NEO missions
 – Earth Science
 – Pathfinders, In-situ resource surveyors
 – Heliophysics
 – Planetary science
 – Lunar Science
• **Challenge:**
 – *Survive the longest in lunar orbit or 4M km range*

• **Demonstrates:**
 – Rad tolerance in deep space (where CubeSats have not ventured before)
 – Power generation and management away from Earth
 – Thermal management in deep space
 – G&NC: point antennas without benefit of GPS or Earth’s magnetic references
 – G&NC and propulsion: station keeping while in lunar orbit
 – Long distance communications, command and control
 – Autonomy

• **Applications:**
 – NEO missions
 – Earth Science
 – Pathfinders, In-situ resource surveyors
 – Heliophysics
 – Planetary science
 – Lunar Science