
Singh 1 31st Annual AIAA/USU

 Conference on Small Satellites

SSC17-WK-06

A Data-Driven Approach to CubeSat Health Monitoring

Serbinder Singh. John Bellardo, Jordi Puig-Suari

California Polytechnic University, San Luis Obispo

1 Grand Avenue, San Luis Obispo, CA 93407; (209)-298-4031

serbinder.singh01@gmail.com

ABSTRACT

Spacecraft health monitoring is essential to ensure that a spacecraft is operating properly and has no anomalies that

could jeopardize its mission. Many current methods of monitoring system health are difficult to use as the

complexity of spacecraft increase, and are in many cases impractical on CubeSat’s which have strict size and

resource limitations. To overcome these problems, new data-driven techniques such as Inductive Monitoring System

(IMS), use data mining and machine learning on archived system telemetry to create models that characterize

nominal system behavior. These characterizations can then be autonomously compared against real-time telemetry

on-board the spacecraft to determine if the spacecraft is operating nominally.

This paper presents an adaption of IMS to create a spacecraft health monitoring system for CubeSat missions

developed by the PolySat lab. This system is integrated into PolySat's flight software and provides real time health

monitoring of the spacecraft during its mission. Any anomalies detected are reported and further analysis can be

done to determine the cause. The system was successful in the detection and identification of known anomalies in

archived flight telemetry from the IPEX mission. In addition, real-time monitoring performed on the satellite yielded

great results that give us confidence in the use of this system in all future missions.

INTRODUCTION

There have been many advancements and

improvements made throughout the years on the

capabilities and functions of various satellites. The

design of such systems has consequently become

extremely sophisticated and complex. Unfortunately,

the monitoring of such systems also becomes very

complex as there are many sensor and component

interactions that become hard to predict and classify as

nominal through traditional techniques [2]. There are

currently many traditional methods of monitoring

spacecraft that include parameter limit checking,

model-based, and rule-based techniques that become

difficult and cumbersome as the complexity of the

spacecraft increases. These challenges are exacerbated

in CubeSat satellites where using extra downlink

capacity for high resolution engineering telemetry is not

feasible.

New data-driven techniques based on data-mining and

machine learning have been developed to make this

task of monitoring much more manageable and

autonomous. One such technique, the Inductive

Monitoring System (IMS), uses nominal archived data

to create clusters that represent nominal system

behavior. This model represented as a knowledge base

of clusters can then be compared with new input to

perform monitoring. IMS has been successfully

implemented in various applications.

This paper uses the research and work done on IMS and

applies it to create a validated and flight ready

monitoring system for use on CubeSat satellites

produced by the PolySat lab. This system is integrated

into the flight software to provide real time monitoring

and analysis of archived events.

BACKGROUND

Inductive Monitoring System

Monitoring the health of a spacecraft usually involves a

large team of people including mission controllers and

system engineers who analyze down-linked data to find

any anomalies. A big team for this task is usually not

possible for institutions that run CubeSat missions as

the number of people involved is usually much smaller.

Therefore a more autonomous approach is needed that

can provide health monitoring with the least amount of

input from people.

Traditional techniques of health monitoring include

parameter limit checking where a reference table of

nominal sensor values is created for all sensors on a

system. This table is then compared against real-time

telemetry to determine if the values fall within the

ranges. If not, then that sensor may have an anomaly.

This method of health monitoring is very inefficient and

time consuming because as the number of components

increase, the generation of this reference table becomes

Singh 2 31st Annual AIAA/USU

 Conference on Small Satellites

extremely hard. It is difficult to correctly determine

what would constitute a healthy sensor value. Also,

multiple reference tables would have to be made for

each of the satellites different operational modes due to

different component interactions . Another drawback of

such an approach is that it only considers individual

parameter ranges when making its decision, and can't

model complex interactions that may involve several

concurrent parameters in the operating context [3].

Data driven techniques such as Inductive Monitoring

System (IMS) were created to address the challenges of

monitoring increasingly complex component

interactions of spacecraft, and provide a more

autonomous way of finding anomalies within a system.

These techniques have been made possible by the

abundance of archived system telemetry that exists for

several different spacecraft and applications. IMS uses

this archived telemetry to characterize nominal system

behavior models that can be compared against real time

telemetry to provide monitoring of system health. If the

system is performing nominally, the telemetry will fall

under one of the models. If not, than this may indicate a

potential anomaly or fault in the system.

IMS is a distance-based anomaly detection tool that

models the relationship between a set of sensors in

time-series data as clusters. It uses vectors as a data

structure that holds values of several related system

parameters for a specific time. In its learning phase, it

goes through the archived data, forms these vectors, and

groups vectors with similar or consistent values in the

same cluster. Therefore, each cluster defines a different

characterization or nominal state that the system can be

in and the sensor ranges that represent it. The cluster

defines a nominal operating region that is represented

as an N-dimensional hyper-cube in the vector space

where N is the number of parameters chosen. Each

dimension of this hyper-cube specifies a minimum and

maximum value for that parameter in the given cluster.

This is beneficial because it allows us to model

interactions between related parameters instead of

looking at each one individually. The end result of the

learning phase is a knowledge base of many clusters

that define a model of the nominal states of the system.

This knowledge base can then be queried with new

input to see if it falls within a nominal operating region.

It is important that the training data is free of any

anomalies to ensure bad behavior isn’t incorporated

into the system.

Once a knowledge base has been created from the

learning phase, it can be used for real time monitoring

or the analysis of archived events. This monitoring

produces a deviation value that signifies how well the

system is conforming to the model. Large deviation

values may highlight a precursor to a malfunction or a

malfunction itself. This monitoring phase does not

explicitly pinpoint the exact problem with the system,

rather it gives details as to which features are causing

the issue and where it is occurring so that a mission

controller can later do a closer inspection.

IMS monitoring starts by formatting real time data

coming from the system to be monitored into the

predefined data vectors from the learning phase. This

data vector is normalized to ensure the parameters have

the same scale, and can be further scaled with weights

given to each parameter to given more significant

features higher sensitivity. The data vector is then

compared against each cluster in the knowledge base to

find the one it falls within or has the minimum distance.

If the vector does not fall within a cluster, this distance

can be considered a deviation score signifying how far

the input vector falls from a nominal cluster. The higher

the deviation value, the more significant the anomaly.

Deviation scores that are small may indicate nominal

behavior that was not captured in the training data. A

threshold value is usually given as a parameter to the

monitoring algorithm that accepts input vectors that

have deviation scores that fall under the threshold.

Along with the deviation score, the individual

parameter contributions to the score can be saved to

give the operator more details as to which sensors are

causing the issues. An overview of the two phases can

be seen in Figure 1.

Figure 1: Overview of IMS

Overall, IMS’s monitoring capabilities are robust and

powerful. It gives the ability to model complex system

behavior easily by just using nominal archived data. It

is also very adaptable for system monitoring

applications. The knowledge base can be updated at any

time to provide a more accurate model of the system as

more nominal telemetry is gathered. The features that

are monitored can also be updated to remove or add

new features that may provide better results. The

strengths of IMS have led it to become very successful

in a number of system applications.

Singh 3 31st Annual AIAA/USU

 Conference on Small Satellites

PolySat Software Architecture

PolySat is a multidisciplinary lab run by students on

Cal Poly's campus devoted to the design, fabrication,

testing, and integration of CubeSats. While there is a

certain level of fault tolerance built into the CubeSat’s

designed by the lab, there is no health monitoring

system that exists that alerts members of anomalies

occurring during a mission. To solve this problem, IMS

is integrated into the flight software to provide

monitoring capabilities.

PolySat’s flight software is designed to be highly

modular, extensible, and robust so that it can be used

reliably for many missions. It is built on top of the

Linux kernel and takes advantage of the large amounts

of pre-existing code and libraries that exist to handle

low-level tasks of managing hardware, drivers, and

communication. The software also operates in an event-

driven fashion where timed or command initiated event

cause something to occur. The overall software

architecture consists of three layers: processes ,

abstraction libraries, and drivers [5].

The flight software uses Linux’s process model to

provide address space and code isolation of major

spacecraft functionality into separate processes.

Processes are the highest level of software in the

architecture and each serve a very specific role.

Examples of some processes include System manager

which is responsible for maintaining the state of the

avionics system, Beacon which periodically broadcasts

spacecraft health information, and SatComm which

controls the radio. Processes can communicate with one

another using Inter-process Communication which

leverages the UDP/IP Networking protocol in Linux.

Each process also contains an event-handler that allows

it to respond to some event, or block otherwise.

There is a large set of functionality that is common

across all processes. Examples of this include event and

command handling, inter-process communication, and

configuration management. These common services are

provided by a standard set of abstraction libraries that

expose an API that processes can use. By using these

libraries, the development of the process is significantly

easier and faster.

SYSTEM OVERVIEW

PolySat's system health monitoring abilities are only

limited to detection of problems that are glaringly

obvious through its beacon or manual examination of

flight telemetry. These methods are not only inefficient

and time-consuming for mission controllers, but also

require increased bandwidth to send large amounts of

telemetry which could be utilized more effectively for

mission tasks.

Fortunately, PolySat has collected a large archive of

system flight data throughout many missions that make

it possible to use data-driven monitoring techniques

such as IMS to monitor the health of the satellite. By

using this technique, we gain all of the advantages IMS

offers such as simplicity, adaptability, and efficiency.

To be successfully integrated, the new monitoring

system needs to meet a set of requirements to ensure

that it doesn’t negatively impact spacecraft operations,

and can successfully run on a resource restricted

CubeSat. The system must be fast and efficient and

output anomaly reports in real time. It must have low

resource consumption in terms of computing power and

memory usage. It must also be generic so that it can be

used in multiple missions with little change required.

And most importantly it must be adaptable so that it can

be updated as the mission progresses to provide the

most accurate model of system behavior.

High Level Design

The new system meets these requirements and uses

IMS’s learning and monitoring algorithms to provide

anomaly reporting capabilities. The high level design of

this system consists of a learning phase which occurs

on the ground, and monitoring which occurs on the

spacecraft during its mission. The idea behind this

separation is to perform the more resource intensive

learning phase on a computer on the ground, and then

load the knowledge base onto the spacecraft so that it

can perform the less intensive monitoring. The

monitoring returns a report on the health status of the

system. The steps can be summarized as such:

1. Gather all nominal telemetry from archives

2. Select features to monitor

3. Run learning algorithm on selected features

and archived data

4. Upload resulting knowledge base of clusters to

the satellite

5. Run monitoring

6. Report health status

The model that is generated during the learning phase

can be updated as the mission progresses and the

spacecraft down-links relevant nominal telemetry. This

new telemetry is added to the archive, and a new model

is generated and the cycle can continue. This design in

shown in Figure 2.

Singh 4 31st Annual AIAA/USU

 Conference on Small Satellites

Figure 2: High Level system design

Reporting of the health status is done through the

satellites beacon packet. The beacon packet is received

by the ground station and the health status of the

spacecraft can be determined. Additionally, the

monitoring algorithm’s deviation score and individual

feature contributions can be saved on a file on board

that can be down-linked for further analysis.

The final system consists of multiple IMS modules that

define different feature sets to be monitored. Each

module will be trained separately on the ground and run

independently on the satellite. Each module belongs to

a process on the satellite and the monitoring capabilities

are provided as a library that the process uses.

IMPLEMENTATION

Learning Module

One of the first steps in this health monitoring

application is to create the models that will represent

nominal system behavior for the satellite. This is done

using IMS learning and is performed on a local

computer on the ground. The output of this phase is a

set of cluster and configuration files that represent the

knowledge base to be used by monitoring.

This module uses archived nominal flight data from the

Intelligent Payload Experiment (IPEX) to create the

models that represent nominal system behavior [4].

This training data set has been filtered of any outliers

and bad readings so incorrect system behavior isn’t

captured. The data set consists of about 50,000 time

series data points that were taken every 10 minutes and

contain data for over 150 features including

temperature, current, and voltage sensors.

Since IMS works best with small feature sets of highly

correlated parameters, this data was broken up into

separate modules that run independently on the satellite.

To create the feature sets, a correlation matrix is used to

find the pairwise correlation coefficient between each

parameter in the data. This coefficient determines the

strength of correlation between any two parameters.

The result of the correlation matrix created for the

IPEX data led to the creation of two main modules: one

for temperature sensors, and another for power sensors.

Once these modules were created, the IMS learning

algorithm was implemented to train the system against

the data using the feature sets defined by the module.

The IPEX data would be parsed to include only the

selected features in the module, and the clustering

algorithm would run to generate the clusters that define

the model for each module. The resulting cluster file

includes the clusters, along with some scaling

information needed for the data normalization such as

the means, standard deviations, and weights of each

parameter. Along with the cluster file, a configuration

file is provided that gives details about the module

including the features that it consists of. These cluster

and configuration files are then uploaded to the satellite

as the knowledge base that monitoring uses.

Monitoring Library

The monitoring module that was created to run on the

spacecraft was designed to fulfill all the requirements

listed in the overview section. The code to perform the

monitoring is compatible with the flight software and

integrated in way that makes full use of the libraries and

abstractions provided. The first instinct was to

implement the health monitoring system as a new

process on the spacecraft. This idea made sense because

monitoring can be seen as its own entity in the modular

design of the architecture, and would therefore fit well.

It would interact with other processes to obtain

information to do the monitoring and would exist in its

own code-space. However, this design doesn’t fit well

with the requirement of making this system generic.

The hardware components and complexity of each

spacecraft differ from mission to mission and this

would require frequent updates to the code of the

process to make the system compatible to the new

hardware of a different mission.

 To better fit this requirement, the monitoring phase is

provided as a new library that processes can import for

monitoring. Through this design, each process can have

a unique monitoring module running with its own

parameters and feature sets. Also, the library can be

easily and separately updated to coincide with any

changes to hardware components without any major

changes needed in the system process itself. The library

Singh 5 31st Annual AIAA/USU

 Conference on Small Satellites

will initialize the data structure objects containing the

information for monitoring, and have methods for

checking anomalies and cleanup.

 At a high level, the monitoring library adds scheduled

events to each importing process so that the monitoring

can run continuously. The configuration and cluster

files are read to set up the data structures needed to

perform monitoring. An anomaly checking event sends

UDP commands to obtain the values for each feature in

the module. Once all the data has arrived, the

monitoring algorithm return a deviation score that is

reported. Along with the deviation score, the individual

feature contributions to the score are recorded so faulty

sensors can be easily identified. This cycle continues

throughout the mission life cycle.

The monitoring library also allows the models to be

easily updated as the mission progresses. This update

process consists of adding or changing a

cluster/configuration file that exists in the file system

on the satellite. It does this by creating a SSH session

with the satellite and transferring the new files while

the mission is in progress. When an update is detected,

the library automatically adapts itself to use the new

files that define a more comprehensive model of system

behavior.

VALIDATION

The integration of the new Inductive Monitoring

System into the PolySat flight software code base was

thoroughly tested and validated to ensure that the

system provides good results and doesn’t waste any

precious resources on the CubeSat.

Algorithm Validation

The first step in validating the system was to ensure that

the IMS algorithms used generated the correct results. It

was very important to test this because the success of

the system is highly dependent on these to properly

identify anomalies. The validation of the learning

algorithm involved examining the clusters that were

being generated from various data. Correct cluster

formation and hyper-cube generation is vital for the

correct modeling of the nominal operating regions of

the satellite, and for the monitoring algorithm to

provide accurate results.

To do this, multiple two dimensional data sets of

clusters were generated and our clustering algorithm

was run against this data set to see if it could properly

identify the correct clusters. After creating several such

data sets and running our algorithm, we saw good

results that properly identified each cluster in the data.

The IMS monitoring algorithm was also tested to verify

that it would correctly identify any anomalous results

and produce a good deviation value. This algorithm

takes input data vectors and uses the cluster knowledge

base to predict whether or not the system is performing

nominally. To validate the monitoring algorithm, a

reference training and test data set with multiple

features was used. The training set was used by the

learning algorithm to create the cluster knowledge base.

The test set was used to form input vectors that would

be fed into the monitoring algorithm to produce a

deviation score. A graph of the resulting deviation

scores was compared against a validated graph that

used the original IMS algorithm. The results of our run

matched the ones in the validated set which gave us

confidence that our algorithms work properly.

Experimental Tests on archived data

The next phase of testing was to utilize real CubeSat

flight data with known anomalies to see if the system

could identify the problems. Archived flight data from

the IPEX mission was used for this purpose. The

original IPEX flight dataset contained anomalies that

occurred to the satellite during the mission. There were

two major problems that the data reflected. To create a

valid nominal training data set, the sensors that were

contributing to these anomalies were manually

corrected to reflect nominal behavior. This training set

would be used for training the system and creating the

knowledge base, while the original data set would be

used as the test set for monitoring. The goal was to have

the system identify the anomalous sensors. The two

temperature and power models created by the

correlation matrix were used to define the feature sets

that were tested. To identify which sensors/features

were causing the issue, the individual sum that each

feature contributed to the overall deviation score was

also stored. These modules were run separately and the

deviation score along with the individual sums were

written to a file to analyze.

The first run of the monitoring system against the IPEX

flight data used the temperature model and produced

the individual feature deviation sums seen on the left

graph of Figure 3.

This graph reflects the overall sum of the error

produced by each feature throughout the run and

contains a partial set of the features. Looking at this
graph, the boardpx sensor contributed to the most

Singh 6 31st Annual AIAA/USU

 Conference on Small Satellites

Figure 3: Results of running temperature model against archived data.

error. This sensor measures the temperature on one of

the side panels of the satellite, in this case the positive

X panel that is oriented in the x-axis of the satellite’s

reference frame. Error sums were also seen in the other

side panel temperature sensors, but to a less extent.

Most of the contribution to the error sum was seen in

the first quarter of the test set, with very little seen in

the latter part. The graph on the right shows a line chart

of the temperature data for the boardpx sensor that was

contained in both the training and test set. The red line

represents the temperature data for the training set

while the blue line is for the test set. Looking at this

chart, it can be seen that the temperature of the sensor

in the flight set was higher than the seen anywhere in

the training set, especially in the beginning. This

matches with the large increase in the error sum we saw

in the beginning of graph on the left.

After looking at these results, it was obvious that there
was an anomaly on the boardpx side panel. There was

in fact a problem with the side panels that occurred

during the IPEX mission. The panels were found to not

have good thermal conductivity and would get too hot

when facing the sun. The positive X panel in particular

would get very hot as reflected by the sensor readings.

The other panels had a brass mass placed behind that

absorbed most of this heat, and this is why those

sensors contributed much less error. Over time, the

thermal conductivity increased and more heat was

absorbed as reflected by the flattening of the error sum.

These results on the temperature model show that our

system was able to successfully identify one of the

anomalies that occurred during the IPEX mission.

The second run of the monitoring system against the

IPEX flight data used the power model that contained

most of the voltage and current sensors in the data. This
model contained a sensor, threeV_volt, that was the

source of an anomaly on the main system board’s 3.3

voltage line. There was a hardware defect that caused

the voltage on this line to be badly regulated which

resulted in higher than expected voltages. The initial

run of the model did in fact capture this anomaly

indicating that the system correctly identified this

problem. However, it also captured a false positive

result that gave a nominally operating feature an

anomalous result.

At first, the explanation for this behavior was a poorly

defined model that did not capture the specific

relationship between this sensor and the others which

caused the system to produce bad deviation scores .

However, after taking a look again at the correlation

matrix, there was very weak correlation found between

some of the features in the power model. There were a

total of 14 features in this module including the power

sensors for the solar panels. We decided to remove and

separate some of the solar panel sensors that had weak

correlation to another model. After running the

monitoring again, we obtained the results in Figure 4.

The results in this chart look far better and only contain

high error for the problematic threeV_volt sensor. This

result highlights the need for well-formed and highly

correlated features in a given model. Large models with

a lot of features are good if you want to monitor a lot of

sensors. However, they require much more training data

to capture every possible behavior between each sensor

in the set. If the models contain fewer, highly correlated

features, then not as much training data is needed and

the results are usually more accurate.

Singh 7 31st Annual AIAA/USU

 Conference on Small Satellites

Figure 4: Individual feature contributions of

running monitoring on Power model

Real-time CubeSat testing

Through previous testing we were able to conclude that

given well-formed feature sets, our system worked

successfully to identify any anomalies that occurred in

the data. The final step involves testing the full IMS

system that was integrated into the PolySat flight

software to see if we could reliably use this system in

future missions.

These tests were run on an experimental test unit for the

Ionospheric Scintillation explorer (ISX) mission that is

planned to launch in late 2017 [1]. During the time of

testing, this test unit had most of its components

assembled except the side panels which contain the

solar panels. This meant that readings from all possible

sensors were not possible, because some of the

hardware wasn’t connected.

For monitoring, two modules were created that used the

feature sets in the temperature and power models . To

train the model, the archived IPEX data was used. Since

the side panels were not attached, the corresponding

sensors were removed from the two modules . These

modules were trained and the resulting configuration

and cluster files were uploaded to the appropriate

directories in the satellites file system. A temporary

process was created in the flight software which

initialized the monitoring library objects and set the

event for the anomaly detection to run every five

seconds.

The result of running the temperature module on the

ISX test unit was very good. The system was run for

several minutes and produced a deviation score of zero

for every input data vector. Since the IPEX data

contains temperatures seen in space, the ambient

temperatures in the PolySat lab may have resulted in an

anomalous result. However, somewhere in the training

flight data, similar temperature conditions to our lab

were captured and modeled in the knowledge base

which led to nominal results.

The deviation scores produced by the power module,

however, were too high indicating that it was picking

up anomalies. There was one feature specifically,
atmel_curr, that was causing the deviation score to be

high. The individual feature sums for this run are shown

in Figure 5. Looking at the sensor values for
atmel_curr in the training data, we found that the

average current draw from IPEX was about 35 mA. The

standard deviation of this feature in the training data

was also very low indicating that this value did not

fluctuate much. Looking at the current readings from

ISX, we found that the average current draw for this

sensor was about 25 mA. This isn’t much of a

difference and isn’t indicative of a major malfunction.

This difference can be due to the fact that this is a test

unit for a completely different mission, and may have

different current draws from the processor. However

since the training data does not capture this difference,

it resulted in the system reporting a large anomaly for

this sensor.

Figure 5: Deviation Sums of Real time run against

Power Model.

This result once again shows the importance of a good,

comprehensive training data set that contains as much

component interaction behavior as possible. The more

data in the training set, the better the algorithm can

model the behavior of the system. This result also

demonstrates one of the drawbacks of using this

system. Not all missions are the same, and telemetry

that corresponds to one mission may not be what is

experienced by another. Therefore training data must be

carefully selected and used only for missions and

features that should experience similar behavior. After

updating the model to include the new reading’s

Singh 8 31st Annual AIAA/USU

 Conference on Small Satellites

experienced by ISX, the system performed much better

and we saw very low deviation scores.

CONCLUSION

The application of the Inductive Monitoring System for

system health monitoring of CubeSat satellites has great

potential. Such a system can be accurately and

efficiently used to monitor for anomalies in a size and

resource restricted CubeSat satellite. Archived

telemetry can be used by data driven health monitoring

techniques such as IMS to characterize models of

nominal system behavior from the data itself instead of

having to rely on more traditional parameter checking

methods or more complicated model based techniques.

As the amount of archived telemetry and data increases

the more missions that are flown, these models can be

updated to provide better and more accurate results that

generate a more comprehensive model of the system’s

behavior.

The results of our tests indicate that the system

performed very well in finding errors in archived flight

telemetry and real time monitoring given good training

models. The training data used must be comprehensive

to include all possible system behavior. Since this

requirement is somewhat impractical, the ability for the

system to update itself given new flight telemetry

allows for a more accurate representation of the system

as the mission progresses. The importance of well

correlated feature sets for monitoring was also

examined so the system can perform at its best and have

the least amount of false positives. The resource usage

and efficiency of the integrated system was well within

the limits of the resource constrained CubeSats, making

such a system completely practical for use. The success

of this system makes it perfect for use as an

autonomous tool for system health monitoring in all

future PolySat missions.

REFERENCES

1. Collaborative Research: Cubesat--Ionospheric

Scintillation Explorer (ISX). (2016, October).

Retrieved from National Science Foundation:

https://www.nsf.gov/awardsearch/showAward

?AWD_ID=1445468

2. Iverson, D. (2005). Inductive System Health

Monitoring With Statistical Metrics. Moffet

Field: NASA Ames Reseach Center.

3. Iverson, D., Martin, R., Schwabacher, M.,

Spirkovska, L., Taylor, W., Mackey, R., &

Castle, J. P. (2009). General Purpose Data-

Driven System Monitoring for Space

Operations. AIAA Infotech. Seattle.

4. Kramer, H. J. (n.d.). IPEX (Intelligent Payload

Experiment) on CubeSat Mission . Retrieved

from eoportal.org:

https://directory.eoportal.org/web/eoportal/sate

llite-missions/i/ipex

5. Manyak, G., & Bellardo, J. (2011). PolySat's

Next Generation Avionics Design. San Luis

Obispo: Digital Commons Cal Poly.

6. Singh, S. (2017). A Data-Driven Approach to

CubeSat Health Monitoring. San Luis Obispo:

Digital Commons Cal Poly.

