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ABSTRACT 

Spacecraft health monitoring is essential to ensure that a spacecraft is operating properly and has no anomalies that 

could jeopardize its mission. Many current methods of monitoring system health are difficult to use as the 

complexity of spacecraft increase, and are in many cases impractical on CubeSat’s which have strict size and 

resource limitations. To overcome these problems, new data-driven techniques such as Inductive Monitoring System 

(IMS), use data mining and machine learning on archived system telemetry to create models that characterize 

nominal system behavior. These characterizations can then be autonomously compared against real-time telemetry 

on-board the spacecraft to determine if the spacecraft is operating nominally. 

This paper presents an adaption of IMS to create a spacecraft health monitoring system for CubeSat missions 

developed by the PolySat lab. This system is integrated into PolySat's flight software and provides real time health 

monitoring of the spacecraft during its mission. Any anomalies detected are reported and further analysis can be 

done to determine the cause. The system was successful in the detection and identification of known anomalies in 

archived flight telemetry from the IPEX mission. In addition, real-time monitoring performed on the satellite yielded 

great results that give us confidence in the use of this system in all future missions. 

INTRODUCTION 

There have been many advancements and 

improvements made throughout the years on the 

capabilities and functions of various satellites. The 

design of such systems has consequently become 

extremely sophisticated and complex. Unfortunately, 

the monitoring of such systems also becomes very 

complex as there are many sensor and component 

interactions that become hard to predict and classify as 

nominal through traditional techniques  [2]. There are 

currently many traditional methods of monitoring 

spacecraft that include parameter limit checking, 

model-based, and rule-based techniques that become 

difficult and cumbersome as the complexity of the 

spacecraft increases. These challenges are exacerbated 

in CubeSat satellites where using extra downlink 

capacity for high resolution engineering telemetry is not 

feasible. 

New data-driven techniques based on data-mining and 

machine learning have been developed to make this 

task of monitoring much more manageable and 

autonomous. One such technique, the Inductive 

Monitoring System (IMS), uses nominal archived data 

to create clusters that represent nominal system 

behavior. This model represented as a knowledge base 

of clusters can then be compared with new input to 

perform monitoring. IMS has been successfully 

implemented in various applications. 

This paper uses the research and work done on IMS and 

applies it to create a validated and flight ready 

monitoring system for use on CubeSat satellites 

produced by the PolySat lab. This system is integrated 

into the flight software to provide real time monitoring 

and analysis of archived events.  

BACKGROUND 

Inductive Monitoring System 

Monitoring the health of a spacecraft usually involves a 

large team of people including mission controllers and 

system engineers who analyze down-linked data to find 

any anomalies. A big team for this task is usually not 

possible for institutions that run CubeSat missions as 

the number of people involved is usually much smaller. 

Therefore a more autonomous approach is needed that 

can provide health monitoring with the least amount of 

input from people. 

Traditional techniques of health monitoring include 

parameter limit checking where a reference table of 

nominal sensor values is created for all sensors on a 

system. This table is then compared against real-time 

telemetry to determine if the values fall within the 

ranges. If not, then that sensor may have an anomaly. 

This method of health monitoring is very inefficient and 

time consuming because as the number of components 

increase, the generation of this reference table becomes 
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extremely hard. It is difficult to correctly determine 

what would constitute a healthy sensor value. Also, 

multiple reference tables would have to be made for 

each of the satellites different operational modes due to 

different component interactions . Another drawback of 

such an approach is that it only considers individual 

parameter ranges when making its decision, and can't 

model complex interactions that may involve several 

concurrent parameters in the operating context [3]. 

Data driven techniques such as Inductive Monitoring 

System (IMS) were created to address the challenges of 

monitoring increasingly complex component 

interactions of spacecraft, and provide a more 

autonomous way of finding anomalies within a system. 

These techniques have been made possible by the 

abundance of archived system telemetry that exists for 

several different spacecraft and applications. IMS uses 

this archived telemetry to characterize nominal system 

behavior models that can be compared against real time 

telemetry to provide monitoring of system health. If the 

system is performing nominally, the telemetry will fall 

under one of the models. If not, than this may indicate a 

potential anomaly or fault in the system. 

IMS is a distance-based anomaly detection tool that 

models the relationship between a set of sensors in 

time-series data as clusters. It uses vectors as a data 

structure that holds values of several related system 

parameters for a specific time. In its learning phase, it 

goes through the archived data, forms these vectors, and 

groups vectors with similar or consistent values in the 

same cluster. Therefore, each cluster defines a different 

characterization or nominal state that the system can be 

in and the sensor ranges that represent it. The cluster 

defines a nominal operating region that is represented 

as an N-dimensional hyper-cube in the vector space 

where N is the number of parameters chosen. Each 

dimension of this hyper-cube specifies a minimum and 

maximum value for that parameter in the given cluster. 

This is beneficial because it allows us to model 

interactions between related parameters instead of 

looking at each one individually. The end result of the 

learning phase is a knowledge base of many clusters 

that define a model of the nominal states of the system. 

This knowledge base can then be queried with new 

input to see if it falls within a nominal operating region. 

It is important that the training data is free of any 

anomalies to ensure bad behavior isn’t incorporated 

into the system. 

Once a knowledge base has been created from the 

learning phase, it can be used for real time monitoring 

or the analysis of archived events. This monitoring 

produces a deviation value that signifies  how well the 

system is conforming to the model. Large deviation 

values may highlight a precursor to a malfunction or a 

malfunction itself. This monitoring phase does not 

explicitly pinpoint the exact problem with the system, 

rather it gives details as to which features are causing 

the issue and where it is occurring so that a mission 

controller can later do a closer inspection. 

IMS monitoring starts by formatting real time data 

coming from the system to be monitored into the 

predefined data vectors from the learning phase. This 

data vector is normalized to ensure the parameters have 

the same scale, and can be further scaled with weights 

given to each parameter to given more significant 

features higher sensitivity. The data vector is then 

compared against each cluster in the knowledge base to 

find the one it falls within or has the minimum distance. 

If the vector does not fall within a cluster, this distance 

can be considered a deviation score signifying how far 

the input vector falls from a nominal cluster. The higher 

the deviation value, the more significant the anomaly. 

Deviation scores that are small may indicate nominal 

behavior that was not captured in the training data. A 

threshold value is usually given as a parameter to the 

monitoring algorithm that accepts input vectors that 

have deviation scores that fall under the threshold. 

Along with the deviation score, the individual 

parameter contributions to the score can be saved to 

give the operator more details as to which sensors are 

causing the issues. An overview of the two phases can 

be seen in Figure 1. 

 

Figure 1: Overview of IMS 

Overall, IMS’s monitoring capabilities are robust and 

powerful. It gives the ability to model complex system 

behavior easily by just using nominal archived data. It 

is also very adaptable for system monitoring 

applications. The knowledge base can be updated at any 

time to provide a more accurate model of the system as 

more nominal telemetry is gathered. The features that 

are monitored can also be updated to remove or add 

new features that may provide better results. The 

strengths of IMS have led it to become very successful 

in a number of system applications. 



Singh 3 31st Annual AIAA/USU 

  Conference on Small Satellites  

PolySat Software Architecture 

PolySat is a multidisciplinary lab run by students on 

Cal Poly's campus devoted to the design, fabrication, 

testing, and integration of CubeSats. While there is a 

certain level of fault tolerance built into the CubeSat’s 

designed by the lab, there is no health monitoring 

system that exists that alerts members of anomalies 

occurring during a mission. To solve this problem, IMS 

is integrated into the flight software to provide 

monitoring capabilities. 

PolySat’s flight software is designed to be highly 

modular, extensible, and robust so that it can be used 

reliably for many missions. It is built on top of the 

Linux kernel and takes advantage of the large amounts 

of pre-existing code and libraries that exist to handle 

low-level tasks of managing hardware, drivers, and 

communication. The software also operates in an event-

driven fashion where timed or command initiated event 

cause something to occur. The overall software 

architecture consists of three layers: processes , 

abstraction libraries, and drivers  [5].  

The flight software uses Linux’s process model to 

provide address space and code isolation of major 

spacecraft functionality into separate processes. 

Processes are the highest level of software in the 

architecture and each serve a very specific role. 

Examples of some processes include System manager 

which is responsible for maintaining the state of the 

avionics system, Beacon which periodically broadcasts 

spacecraft health information, and SatComm which 

controls the radio. Processes can communicate with one 

another using Inter-process Communication which 

leverages the UDP/IP Networking protocol in Linux. 

Each process also contains an event-handler that allows 

it to respond to some event, or block otherwise. 

There is a large set of functionality that is common 

across all processes. Examples of this include event and 

command handling, inter-process communication, and 

configuration management. These common services are 

provided by a standard set of abstraction libraries that 

expose an API that processes can use. By using these 

libraries, the development of the process is significantly 

easier and faster. 

SYSTEM OVERVIEW 

PolySat's system health monitoring abilities are only 

limited to detection of problems that are glaringly 

obvious through its beacon or manual examination of 

flight telemetry. These methods are not only inefficient 

and time-consuming for mission controllers, but also 

require increased bandwidth to send large amounts of 

telemetry which could be utilized more effectively for 

mission tasks. 

Fortunately, PolySat has collected a large archive of 

system flight data throughout many missions that make 

it possible to use data-driven monitoring techniques 

such as IMS to monitor the health of the satellite. By 

using this technique, we gain all of the advantages IMS 

offers such as simplicity, adaptability, and efficiency. 

To be successfully integrated, the new monitoring 

system needs to meet a set of requirements to ensure 

that it doesn’t negatively impact spacecraft operations, 

and can successfully run on a resource restricted 

CubeSat. The system must be fast and efficient and 

output anomaly reports in real time. It must have low 

resource consumption in terms of computing power and 

memory usage. It must also be generic so that it can be 

used in multiple missions with little change required. 

And most importantly it must be adaptable so that it can 

be updated as the mission progresses to provide the 

most accurate model of system behavior. 

High Level Design 

The new system meets these requirements and uses 

IMS’s learning and monitoring algorithms to provide 

anomaly reporting capabilities. The high level design of 

this system consists of a learning phase which occurs 

on the ground, and monitoring which occurs on the 

spacecraft during its mission. The idea behind this 

separation is to perform the more resource intensive 

learning phase on a computer on the ground, and then 

load the knowledge base onto the spacecraft so that it 

can perform the less intensive monitoring. The 

monitoring returns a report on the health status of the 

system. The steps can be summarized as such: 

1. Gather all nominal telemetry from archives  

2. Select features to monitor 

3. Run learning algorithm on selected features 

and archived data 

4. Upload resulting knowledge base of clusters to 

the satellite 

5. Run monitoring 

6. Report health status 

 

The model that is generated during the learning phase 

can be updated as the mission progresses and the 

spacecraft down-links relevant nominal telemetry. This 

new telemetry is added to the archive, and a new model 

is generated and the cycle can continue. This design in 

shown in Figure 2. 
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Figure 2: High Level system design 

Reporting of the health status is done through the 

satellites beacon packet. The beacon packet is received 

by the ground station and the health status of the 

spacecraft can be determined. Additionally, the 

monitoring algorithm’s deviation score and individual 

feature contributions can be saved on a file on board 

that can be down-linked for further analysis. 

The final system consists of multiple IMS modules that 

define different feature sets to be monitored. Each 

module will be trained separately on the ground and run 

independently on the satellite. Each module belongs to 

a process on the satellite and the monitoring capabilities 

are provided as a library that the process uses. 

IMPLEMENTATION 

Learning Module 

One of the first steps in this health monitoring 

application is to create the models that will represent 

nominal system behavior for the satellite. This is done 

using IMS learning and is performed on a local 

computer on the ground. The output of this phase is a 

set of cluster and configuration files that represent the 

knowledge base to be used by monitoring. 

This module uses archived nominal flight data from the 

Intelligent Payload Experiment (IPEX) to create the 

models that represent nominal system behavior [4]. 

This training data set has been filtered of any outliers 

and bad readings so incorrect system behavior isn’t 

captured. The data set consists of about 50,000 time 

series data points that were taken every 10 minutes and 

contain data for over 150 features including 

temperature, current, and voltage sensors. 

Since IMS works best with small feature sets of highly 

correlated parameters, this  data was broken up into 

separate modules that run independently on the satellite. 

To create the feature sets, a correlation matrix is used to 

find the pairwise correlation coefficient between each 

parameter in the data. This coefficient determines the 

strength of correlation between any two parameters. 

The result of the correlation matrix created for the 

IPEX data led to the creation of two main modules: one 

for temperature sensors, and another for power sensors. 

Once these modules were created, the IMS learning 

algorithm was implemented to train the system against 

the data using the feature sets defined by the module. 

The IPEX data would be parsed to include only the 

selected features in the module, and the clustering 

algorithm would run to generate the clusters that define 

the model for each module. The resulting cluster file 

includes the clusters, along with some scaling 

information needed for the data normalization such as 

the means, standard deviations, and weights of each 

parameter. Along with the cluster file, a configuration 

file is provided that gives details about the module 

including the features that it consists of. These cluster 

and configuration files are then uploaded to the satellite 

as the knowledge base that monitoring uses. 

Monitoring Library 

The monitoring module that was created to run on the 

spacecraft was designed to fulfill all the requirements  

listed in the overview section. The code to perform the 

monitoring is compatible with the flight software and 

integrated in way that makes full use of the libraries and 

abstractions provided. The first instinct was to 

implement the health monitoring system as a new 

process on the spacecraft. This idea made sense because 

monitoring can be seen as its own entity in the modular 

design of the architecture, and would therefore fit well. 

It would interact with other processes to obtain 

information to do the monitoring and would exist in its 

own code-space. However, this design doesn’t fit well 

with the requirement of making this system generic. 

The hardware components and complexity of each 

spacecraft differ from mission to mission and this 

would require frequent updates to the code of the 

process to make the system compatible to the new 

hardware of a different mission. 

 To better fit this requirement, the monitoring phase is 

provided as a new library that processes can import for 

monitoring. Through this design, each process can have 

a unique monitoring module running with its own 

parameters and feature sets. Also, the library can be 

easily and separately updated to coincide with any 

changes to hardware components without any major 

changes needed in the system process itself. The library 
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will initialize the data structure objects containing the 

information for monitoring, and have methods for 

checking anomalies and cleanup. 

 At a high level, the monitoring library adds scheduled 

events to each importing process so that the monitoring 

can run continuously. The configuration and cluster 

files are read to set up the data structures needed to 

perform monitoring. An anomaly checking event sends 

UDP commands to obtain the values  for each feature in 

the module. Once all the data has arrived, the 

monitoring algorithm return a deviation score that is 

reported. Along with the deviation score, the individual 

feature contributions to the score are recorded so faulty 

sensors can be easily identified. This cycle continues 

throughout the mission life cycle. 

The monitoring library also allows the models to be 

easily updated as the mission progresses. This update 

process consists of adding or changing a 

cluster/configuration file that exists in the file system 

on the satellite. It does this by creating a SSH session 

with the satellite and transferring the new files while 

the mission is in progress. When an update is detected, 

the library automatically adapts itself to use the new 

files that define a more comprehensive model of system 

behavior. 

VALIDATION 

The integration of the new Inductive Monitoring 

System into the PolySat flight software code base was  

thoroughly tested and validated to ensure that the 

system provides good results and doesn’t waste any 

precious resources on the CubeSat. 

Algorithm Validation 

The first step in validating the system was to ensure that 

the IMS algorithms used generated the correct results. It 

was very important to test this because the success of 

the system is highly dependent on these to properly 

identify anomalies. The validation of the learning 

algorithm involved examining the clusters that were 

being generated from various data. Correct cluster 

formation and hyper-cube generation is vital for the 

correct modeling of the nominal operating regions of 

the satellite, and for the monitoring algorithm to 

provide accurate results. 

To do this, multiple two dimensional data sets  of 

clusters were generated and our clustering algorithm 

was run against this data set to see if it could properly 

identify the correct clusters. After creating several such 

data sets and running our algorithm, we saw good 

results that properly identified each cluster in the data. 

The IMS monitoring algorithm was also tested to verify 

that it would correctly identify any anomalous results 

and produce a good deviation value. This algorithm 

takes input data vectors and uses the cluster knowledge 

base to predict whether or not the system is performing 

nominally. To validate the monitoring algorithm, a 

reference training and test data set with multiple 

features was used. The training set was used by the 

learning algorithm to create the cluster knowledge base. 

The test set was used to form input vectors that would 

be fed into the monitoring algorithm to produce a 

deviation score. A graph of the resulting deviation 

scores was compared against a validated graph that 

used the original IMS algorithm. The results of our run 

matched the ones in the validated set which gave us 

confidence that our algorithms work properly. 

Experimental Tests on archived data 

The next phase of testing was to utilize real CubeSat 

flight data with known anomalies to see if the system 

could identify the problems. Archived flight data from 

the IPEX mission was used for this purpose. The 

original IPEX flight dataset contained anomalies that 

occurred to the satellite during the mission. There were 

two major problems that the data reflected. To create a 

valid nominal training data set, the sensors that were 

contributing to these anomalies were manually 

corrected to reflect nominal behavior. This training set 

would be used for training the system and creating the 

knowledge base, while the original data set would be 

used as the test set for monitoring. The goal was to have 

the system identify the anomalous sensors. The two 

temperature and power models created by the 

correlation matrix were used to define the feature sets 

that were tested. To identify which sensors/features 

were causing the issue, the individual sum that each 

feature contributed to the overall deviation score was 

also stored. These modules were run separately and the 

deviation score along with the individual sums were 

written to a file to analyze. 

The first run of the monitoring system against the IPEX 

flight data used the temperature model and produced 

the individual feature deviation sums seen on the left 

graph of Figure 3. 

 

 

This graph reflects the overall sum of the error 

produced by each feature throughout the run and 

contains a partial set of the features. Looking at this 
graph, the boardpx sensor contributed to the most 
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Figure 3: Results of running temperature model against archived data. 

error. This sensor measures the temperature on one of 

the side panels of the satellite, in this case the positive 

X panel that is oriented in the x-axis of the satellite’s 

reference frame. Error sums were also seen in the other 

side panel temperature sensors, but to a less extent.  

Most of the contribution to the error sum was seen in 

the first quarter of the test set, with very little seen in 

the latter part. The graph on the right shows a line chart 

of the temperature data for the boardpx sensor that was 

contained in both the training and test set. The red line 

represents the temperature data for the training set 

while the blue line is for the test set. Looking at this 

chart, it can be seen that the temperature of the sensor 

in the flight set was higher than the seen anywhere in 

the training set, especially in the beginning. This 

matches with the large increase in the error sum we saw 

in the beginning of graph on the left.  

After looking at these results, it was obvious that there 
was an anomaly on the boardpx side panel. There was 

in fact a problem with the side panels that occurred 

during the IPEX mission. The panels were found to not 

have good thermal conductivity and would get too hot 

when facing the sun. The positive X panel in particular 

would get very hot as reflected by the sensor readings. 

The other panels had a brass mass placed behind that 

absorbed most of this heat, and this is why those 

sensors contributed much less error. Over time, the 

thermal conductivity increased and more heat was 

absorbed as reflected by the flattening of the error sum. 

These results on the temperature model show that our 

system was able to successfully identify one of the 

anomalies that occurred during the IPEX mission. 

The second run of the monitoring system against the 

IPEX flight data used the power model that contained 

most of the voltage and current sensors in the data. This 
model contained a sensor, threeV_volt, that was the 

source of an anomaly on the main system board’s 3.3 

voltage line. There was a hardware defect that caused 

the voltage on this line to be badly regulated which 

resulted in higher than expected voltages. The initial 

run of the model did in fact capture this anomaly 

indicating that the system correctly identified this 

problem. However, it also captured a false positive 

result that gave a nominally operating feature an 

anomalous result.  

At first, the explanation for this behavior was a poorly 

defined model that did not capture the specific 

relationship between this sensor and the others  which 

caused the system to produce bad deviation scores . 

However, after taking a look again at the correlation 

matrix, there was very weak correlation found between 

some of the features in the power model. There were a 

total of 14 features in this module including the power 

sensors for the solar panels. We decided to remove and 

separate some of the solar panel sensors that had weak 

correlation to another model. After running the 

monitoring again, we obtained the results in Figure 4. 

The results in this chart look far better and only contain 

high error for the problematic threeV_volt sensor. This 

result highlights the need for well-formed and highly 

correlated features in a given model. Large models with 

a lot of features are good if you want to monitor a lot of 

sensors. However, they require much more training data 

to capture every possible behavior between each sensor 

in the set. If the models contain fewer, highly correlated 

features, then not as much training data is needed and 

the results are usually more accurate. 
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Figure 4: Individual feature contributions of 

running monitoring on Power model 

Real-time CubeSat testing 

Through previous testing we were able to conclude that 

given well-formed feature sets, our system worked 

successfully to identify any anomalies that occurred in 

the data. The final step involves testing the full IMS 

system that was integrated into the PolySat flight 

software to see if we could reliably use this system in 

future missions. 

These tests were run on an experimental test unit for the 

Ionospheric Scintillation explorer (ISX) mission that is 

planned to launch in late 2017 [1]. During the time of 

testing, this test unit had most of its components 

assembled except the side panels which contain the 

solar panels. This meant that readings from all possible 

sensors were not possible, because some of the 

hardware wasn’t connected. 

For monitoring, two modules were created that used the 

feature sets in the temperature and power models . To 

train the model, the archived IPEX data was used. Since 

the side panels were not attached, the corresponding 

sensors were removed from the two modules . These 

modules were trained and the resulting configuration 

and cluster files were uploaded to the appropriate 

directories in the satellites file system. A temporary 

process was created in the flight software which 

initialized the monitoring library objects and set the 

event for the anomaly detection to run every five 

seconds. 

The result of running the temperature module on the 

ISX test unit was very good. The system was run for 

several minutes and produced a deviation score of zero 

for every input data vector. Since the IPEX data 

contains temperatures seen in space, the ambient 

temperatures in the PolySat lab may have resulted in an 

anomalous result. However, somewhere in the training 

flight data, similar temperature conditions to our lab 

were captured and modeled in the knowledge base 

which led to nominal results. 

The deviation scores produced by the power module, 

however, were too high indicating that it was  picking 

up anomalies. There was one feature specifically, 
atmel_curr, that was causing the deviation score to be 

high. The individual feature sums for this run are shown 

in Figure 5.  Looking at the sensor values for 
atmel_curr in the training data, we found that the 

average current draw from IPEX was about 35 mA. The 

standard deviation of this feature in the training data 

was also very low indicating that this value did not 

fluctuate much. Looking at the current readings from 

ISX, we found that the average current draw for this 

sensor was about 25 mA. This isn’t much of a 

difference and isn’t indicative of a major malfunction. 

This difference can be due to the fact that this is a test 

unit for a completely different mission, and may have 

different current draws from the processor. However 

since the training data does not capture this difference, 

it resulted in the system reporting a large anomaly for 

this sensor. 

 

Figure 5: Deviation Sums of Real time run against 

Power Model. 

This result once again shows the importance of a good, 

comprehensive training data set that contains as much 

component interaction behavior as possible. The more 

data in the training set, the better the algorithm can 

model the behavior of the system. This result also 

demonstrates one of the drawbacks of using this 

system. Not all missions are the same, and telemetry 

that corresponds to one mission may not be what is 

experienced by another. Therefore training data must be 

carefully selected and used only for missions and 

features that should experience similar behavior. After 

updating the model to include the new reading’s 
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experienced by ISX, the system performed much better 

and we saw very low deviation scores. 

CONCLUSION 

The application of the Inductive Monitoring System for 

system health monitoring of CubeSat satellites has great 

potential. Such a system can be accurately and 

efficiently used to monitor for anomalies in a size and 

resource restricted CubeSat satellite. Archived 

telemetry can be used by data driven health monitoring 

techniques such as IMS to characterize models of 

nominal system behavior from the data itself instead of 

having to rely on more traditional parameter checking 

methods or more complicated model based techniques. 

As the amount of archived telemetry and data increases 

the more missions that are flown, these models can be 

updated to provide better and more accurate results that 

generate a more comprehensive model of the system’s 

behavior. 

The results of our tests indicate that the system 

performed very well in finding errors in archived flight 

telemetry and real time monitoring given good training 

models. The training data used must be comprehensive 

to include all possible system behavior. Since this 

requirement is somewhat impractical, the ability for the 

system to update itself given new flight telemetry 

allows for a more accurate representation of the system 

as the mission progresses. The importance of well 

correlated feature sets for monitoring was also 

examined so the system can perform at its best and have 

the least amount of false positives. The resource usage 

and efficiency of the integrated system was well within 

the limits of the resource constrained CubeSats, making 

such a system completely practical for use. The success 

of this system makes it perfect for use as an 

autonomous tool for system health monitoring in all 

future PolySat missions. 
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